
A Sandboxing Infrastructure for Alice ML
Bachelor Thesis

Andi Scharfstein, November 2006
Advisor: Andreas Rossberg

Programming Systems Lab
Saarland University

Last Time: Reminder

• Want to have safe environment for execution of dynamically linked code

Last Time: Reminder

• Want to have safe environment for execution of dynamically linked code

• Sandbox provides such an environment

Last Time: Reminder

• Want to have safe environment for execution of dynamically linked code

• Sandbox provides such an environment

• Sandbox mechanism: Wrap language API with code to check if potentially
unsafe operations should be allowed

Last Time: Reminder

• Want to have safe environment for execution of dynamically linked code

• Sandbox provides such an environment

• Sandbox mechanism: Wrap language API with code to check if potentially
unsafe operations should be allowed

• Allow user to permit specific operations at will

Last Time: Reminder

• Want to have safe environment for execution of dynamically linked code

• Sandbox provides such an environment

• Sandbox mechanism: Wrap language API with code to check if potentially
unsafe operations should be allowed

• Allow user to permit specific operations at will

➡ We need:
- definition of „unsafe operations“
- system of „permissions“
- a mechanism to implement API wrapping

Terminology

• Unsafe operations: Any operation with access to a system resource

Terminology

• Unsafe operations: Any operation with access to a system resource

• Resources: File handles, network sockets, CPU time, process IDs...

Terminology

• Unsafe operations: Any operation with access to a system resource

• Resources: File handles, network sockets, CPU time, process IDs...

• In Alice ML: Resources always acquired via system components

Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

• Disadvantages:

Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

• Disadvantages:

‣ Mixes resources and permissions („ugly“)

Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

• Disadvantages:

‣ Mixes resources and permissions („ugly“)

‣ Checks are performed even when not needed

Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

• Disadvantages:

‣ Mixes resources and permissions („ugly“)

‣ Checks are performed even when not needed

➡ We strive to achieve a more elegant solution

Java: Example (simplified)

• Every program has an associated Security Manager:

Java: Example (simplified)

• Every program has an associated Security Manager:

‣ Application calls API function
file.delete();

Java: Example (simplified)

• Every program has an associated Security Manager:

‣ Application calls API function
file.delete();

‣ API function checks permissions (and possibly throws SecurityException)
SecurityManager sec = System.getSecurityManager();
sec.checkDelete(file.getName());

Java: Example (simplified)

• Every program has an associated Security Manager:

‣ Application calls API function
file.delete();

‣ API function checks permissions (and possibly throws SecurityException)
SecurityManager sec = System.getSecurityManager();
sec.checkDelete(file.getName());

‣ If permission is granted, API function deletes file and returns
<delete file>
return true;

Java: Example (simplified)

• Every program has an associated Security Manager:

‣ Application calls API function
file.delete();

‣ API function checks permissions (and possibly throws SecurityException)
SecurityManager sec = System.getSecurityManager();
sec.checkDelete(file.getName());

‣ If permission is granted, API function deletes file and returns
<delete file>
return true;

• We use a similar principle, but implement it in a different way than Java

Our Approach: Sample Application

• Consider a browser that can execute programs embedded into websites

Our Approach: Sample Application

• Consider a browser that can execute programs embedded into websites

• These programs are hosted inside a sandbox

Our Approach: Sample Application

• Consider a browser that can execute programs embedded into websites

• These programs are hosted inside a sandbox

• If a program tries to load a system component, the sandbox may deliver a safe
counterpart instead. We call this the substitute component

Our Approach: Sample Application

• Consider a browser that can execute programs embedded into websites

• These programs are hosted inside a sandbox

• If a program tries to load a system component, the sandbox may deliver a safe
counterpart instead. We call this the substitute component

• Inside the substitute component, unsafe operations are wrapped with dynamic
checks to see if the operation is legal with respect to some ruleset

Component Managers

• Resources can only be acquired by means of system components

Component Managers

• Resources can only be acquired by means of system components

➡ Sufficient to control access to system components

Component Managers

• Resources can only be acquired by means of system components

➡ Sufficient to control access to system components

• In Alice ML: Via component managers. These enable easy and elegant
sandbox creation

Component Managers

• Resources can only be acquired by means of system components

➡ Sufficient to control access to system components

• In Alice ML: Via component managers. These enable easy and elegant
sandbox creation

• A sandbox is a (suitably defined) component manager

Component Managers

• Resources can only be acquired by means of system components

➡ Sufficient to control access to system components

• In Alice ML: Via component managers. These enable easy and elegant
sandbox creation

• A sandbox is a (suitably defined) component manager

• The sandboxing manager makes use of indirection by rewriting component
requests

<loads>

Component
Manager

Component

Further
Components

Application

<requests
component>

<requests further
components>

<loads>
<returns

component>

Component Linking

<loads>

Root Manager

Sandboxing Manager

Safe Component

Unsafe
Component

Unsafe
Components

Application

<requests unsafe
component>

<requests unsafe
component>

<may use> <loads>

<returns
safe

component>

Unsafe

Environment

Safe

Environment

<re-interprets
request>

<returns safe
component>

Indirection in sandboxing
component mangers

Policies

• Components become safe by behaving according to certain rules („Never write
to the file system!“)

Policies

• Components become safe by behaving according to certain rules („Never write
to the file system!“)

• We call sets of these rules policies

Policies

• Components become safe by behaving according to certain rules („Never write
to the file system!“)

• We call sets of these rules policies

• Policies can be defined by (dynamically) creating a Policy component and
adding rules to it

Policies

• Components become safe by behaving according to certain rules („Never write
to the file system!“)

• We call sets of these rules policies

• Policies can be defined by (dynamically) creating a Policy component and
adding rules to it

• Policies are a fundamental part of sandboxing manager creation:
Sandbox.MkManager(structure Policy : POLICY)

Policy Rules

• Policy rules are always installed for a single resource (e.g. fileHandle)

Policy Rules

• Policy rules are always installed for a single resource (e.g. fileHandle)

• They perform two distinct tasks:

Policy Rules

• Policy rules are always installed for a single resource (e.g. fileHandle)

• They perform two distinct tasks:

‣ Accepting/Rejecting a given value

Policy Rules

• Policy rules are always installed for a single resource (e.g. fileHandle)

• They perform two distinct tasks:

‣ Accepting/Rejecting a given value

‣ Rewriting values to guarantee their harmlessness (e.g. prepend a specific
directory path to a filename to which the unsafe program has write access:
„cookie.txt“ => „~/.safe_storage/cookie.txt“)

Policy Rules

• Policy rules are always installed for a single resource (e.g. fileHandle)

• They perform two distinct tasks:

‣ Accepting/Rejecting a given value

‣ Rewriting values to guarantee their harmlessness (e.g. prepend a specific
directory path to a filename to which the unsafe program has write access:
„cookie.txt“ => „~/.safe_storage/cookie.txt“)

• Can use nearly arbitrary, user-defined functions for checking and rewriting
(return type must be respected)

Policy Rules

• Policy rules are always installed for a single resource (e.g. fileHandle)

• They perform two distinct tasks:

‣ Accepting/Rejecting a given value

‣ Rewriting values to guarantee their harmlessness (e.g. prepend a specific
directory path to a filename to which the unsafe program has write access:
„cookie.txt“ => „~/.safe_storage/cookie.txt“)

• Can use nearly arbitrary, user-defined functions for checking and rewriting
(return type must be respected)

• How can safe substitute components know which rules to follow?

Root Manager

Policy-Delegating
Manager

Safe ComponentApplication

<returns
safe

component>

Sandboxing
Manager

Virtual

Sandbox
Policies

<loads>

<requests unsafe
component>

<delegates
rewritten
request>

<requests
policies,
unsafe

components>

<returns
policies,
unsafe

components>

Unsafe
Component

Unsafe
Components

<may use>
<loads>

<returns
unsafe

components><delegates
request>

<returns
safe

component>

Introducing the
Policy-Delegator

Import policies

• Introduce policies for whole system components as well as for single resources

Import policies

• Introduce policies for whole system components as well as for single resources

• These perform a decision for each component import request:

Import policies

• Introduce policies for whole system components as well as for single resources

• These perform a decision for each component import request:

‣ Load safe substitute component

Import policies

• Introduce policies for whole system components as well as for single resources

• These perform a decision for each component import request:

‣ Load safe substitute component

‣ Accept the request without modification

Import policies

• Introduce policies for whole system components as well as for single resources

• These perform a decision for each component import request:

‣ Load safe substitute component

‣ Accept the request without modification

‣ Reject the request (realised by throwing a security error)

Import policies

• Introduce policies for whole system components as well as for single resources

• These perform a decision for each component import request:

‣ Load safe substitute component

‣ Accept the request without modification

‣ Reject the request (realised by throwing a security error)

➡ We don‘t have to insert checks in the API function when they are not needed!
 Just either accept or load safe substitute component for sandboxing.

Related Work

• Java and .NET offer similar sandboxing approach, but less elegantly

Related Work

• Java and .NET offer similar sandboxing approach, but less elegantly

• Oz inspired Alice components:

Related Work

• Java and .NET offer similar sandboxing approach, but less elegantly

• Oz inspired Alice components:

‣ Oz Module Manager ~ Alice Component Manager

Related Work

• Java and .NET offer similar sandboxing approach, but less elegantly

• Oz inspired Alice components:

‣ Oz Module Manager ~ Alice Component Manager

‣ Oz Functors ~ Alice Components

Related Work

• Java and .NET offer similar sandboxing approach, but less elegantly

• Oz inspired Alice components:

‣ Oz Module Manager ~ Alice Component Manager

‣ Oz Functors ~ Alice Components

• Similar sandboxing mechanism could in principle be implemented in Oz
(component manager delegation features would need to be emulated)

Summary

• Flexible sandboxing mechanism

Summary

• Flexible sandboxing mechanism

• Alice ML enables elegant solution by providing component managers

Summary

• Flexible sandboxing mechanism

• Alice ML enables elegant solution by providing component managers

• Safe substitute components perform the work of regular components while
maintaining safety

Summary

• Flexible sandboxing mechanism

• Alice ML enables elegant solution by providing component managers

• Safe substitute components perform the work of regular components while
maintaining safety

• Still just „proof of concept“ - Limitations:

Summary

• Flexible sandboxing mechanism

• Alice ML enables elegant solution by providing component managers

• Safe substitute components perform the work of regular components while
maintaining safety

• Still just „proof of concept“ - Limitations:

‣ Missing pickle verification

Summary

• Flexible sandboxing mechanism

• Alice ML enables elegant solution by providing component managers

• Safe substitute components perform the work of regular components while
maintaining safety

• Still just „proof of concept“ - Limitations:

‣ Missing pickle verification

‣ Language implementation may still contain bugs (e.g. stack overflow)

References (1)

• Andreas Rossberg. The Missing Link - Dynamic Components for ML.
11th International Conference on Functional Programming, Portland, Oregon,
USA, ACM Press 2006.

• Drew Dean, Edward Felten and Dan Wallach. Java security: from HotJava to
Netscape and beyond.
Symposium on Security and Privacy pages 190–200, Oakland, USA,
IEEE Computer Society Press, May 1996.

• Li Gong. New Security Architectural Directions for Java.
IEEE COMPCON pages 97–102, IEEE Computer Press, 1997.

• Sheng Liang and Gilad Bracha. Dynamic class loading in the Java virtual
machine. OOPSLA’98 pages 36–44, 1998.

References (2)

• Robin Milner, Mads Tofte, Robert Harper and David McQueen. Definition of
Standard ML (revised). The MIT Press, 1997.

• John H. Reppy and Emden R. Gansner (Editors). The Standard ML Basis
Library. Cambridge University Press, October 2004.
http://www.standardml.org/Basis/

• Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus and Gert
Smolka. Alice ML through the looking glass.
In Hans-Wolfgang Loidl, editor, Trends in Functional Programming, Vol. 5,
Munich, Germany, 2005. Intellect.

• Sun Microsystems. Java 2 Platform SE 5.0 API Documentation.
http://java.sun.com/j2se/1.5.0/docs/api/

http://www.standardml.org/Basis/
http://www.standardml.org/Basis/
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/

Appendix: Permission Checking in Java

• Uses global AccessController class:

FilePermission perm = new FilePermission("path/file",
 "read");
AccessController.checkPermission(perm);

• This doesn‘t allow for separation of resources (e.g. "path/file") and policies
(e.g. "read")

• checkPermission uses a thread-local „security context“

