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Last Time: Reminder

• Want to have safe environment for execution of dynamically linked code

• Sandbox provides such an environment

• Sandbox mechanism: Wrap language API with code to check if potentially 
unsafe operations should be allowed

• Allow user to permit specific operations at will

➡ We need:
- definition of „unsafe operations“
- system of „permissions“
- a mechanism to implement API wrapping



Terminology

• Unsafe operations: Any operation with access to a system resource



Terminology

• Unsafe operations: Any operation with access to a system resource

• Resources: File handles, network sockets, CPU time, process IDs...



Terminology

• Unsafe operations: Any operation with access to a system resource

• Resources: File handles, network sockets, CPU time, process IDs...

• In Alice ML: Resources always acquired via system components



Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java



Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:



Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API



Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization



Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

• Disadvantages:



Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

• Disadvantages:

‣ Mixes resources and permissions („ugly“)



Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

• Disadvantages:

‣ Mixes resources and permissions („ugly“)

‣ Checks are performed even when not needed



Inspiration: Java

• Dynamic runtime checks inside API calls first appeared in Java

• Advantages of this approach:

‣ Checks cannot be circumvented, fundamental part of API

‣ High degree of customization

• Disadvantages:

‣ Mixes resources and permissions („ugly“)

‣ Checks are performed even when not needed

➡ We strive to achieve a more elegant solution
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Java: Example (simplified)

• Every program has an associated Security Manager:

‣ Application calls API function
file.delete();

‣ API function checks permissions (and possibly throws SecurityException)
SecurityManager sec = System.getSecurityManager();
sec.checkDelete(file.getName());

‣ If permission is granted, API function deletes file and returns
<delete file>
return true;

• We use a similar principle, but implement it in a different way than Java
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Our Approach: Sample Application

• Consider a browser that can execute programs embedded into websites

• These programs are hosted inside a sandbox

• If a program tries to load a system component, the sandbox may deliver a safe 
counterpart instead. We call this the substitute component

• Inside the substitute component, unsafe operations are wrapped with dynamic 
checks to see if the operation is legal with respect to some ruleset
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Component Managers

• Resources can only be acquired by means of system components

➡ Sufficient to control access to system components

• In Alice ML: Via component managers. These enable easy and elegant 
sandbox creation

• A sandbox is a (suitably defined) component manager

• The sandboxing manager makes use of indirection by rewriting component 
requests
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Policies

• Components become safe by behaving according to certain rules („Never write 
to the file system!“)

• We call sets of these rules policies

• Policies can be defined by (dynamically) creating a Policy component and 
adding rules to it

• Policies are a fundamental part of sandboxing manager creation:
Sandbox.MkManager(structure Policy : POLICY)
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Policy Rules

• Policy rules are always installed for a single resource (e.g. fileHandle)

• They perform two distinct tasks:

‣ Accepting/Rejecting a given value

‣ Rewriting values to guarantee their harmlessness (e.g. prepend a specific 
directory path to a filename to which the unsafe program has write access:
„cookie.txt“ => „~/.safe_storage/cookie.txt“)

• Can use nearly arbitrary, user-defined functions for checking and rewriting 
(return type must be respected)

• How can safe substitute components know which rules to follow?
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Import policies

• Introduce policies for whole system components as well as for single resources

• These perform a decision for each component import request:

‣ Load safe substitute component

‣ Accept the request without modification

‣ Reject the request (realised by throwing a security error)

➡ We don‘t have to insert checks in the API function when they are not needed!
 Just either accept or load safe substitute component for sandboxing.
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Related Work

• Java and .NET offer similar sandboxing approach, but less elegantly

• Oz inspired Alice components:

‣ Oz Module Manager ~ Alice Component Manager

‣ Oz Functors ~ Alice Components

• Similar sandboxing mechanism could in principle be implemented in Oz 
(component manager delegation features would need to be emulated)
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Summary

• Flexible sandboxing mechanism

• Alice ML enables elegant solution by providing component managers

• Safe substitute components perform the work of regular components while 
maintaining safety

• Still just „proof of concept“ - Limitations:

‣ Missing pickle verification 

‣ Language implementation may still contain bugs (e.g. stack overflow)
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Appendix: Permission Checking in Java

• Uses global AccessController class:

FilePermission perm = new FilePermission("path/file",
                                           "read");
AccessController.checkPermission(perm);

• This doesn‘t allow for separation of resources (e.g. "path/file") and policies
(e.g. "read")

• checkPermission uses a thread-local „security context“


