
Introduction
Recap

Implementation

Translating a Satallax Refutation to a Tableau
Refutation Encoded in Coq

Bachelor’s Thesis - Final Talk

Andreas Teucke

Advisor: Chad Brown
Supervisor: Gert Smolka

Department of Computer Science
Saarland University

May 6, 2011

Andreas Teucke 1 / 26

Introduction
Recap

Implementation

Goal
Conjecture

The Goal
Verifying the result of Satallax

Satallax reduces higher-order theorem proving
to checking unsatisfiability of SAT problems.
Can we trust the result of Satallax and the SAT-solver?
Goal: Extract a higher-order proof,
where one can easily check correctness.
Solution: A tableau refutation
encoded as a Coq Proof Script.

Andreas Teucke 2 / 26

Introduction
Recap

Implementation

Goal
Conjecture

Outline

1 Introduction
Goal
Conjecture

2 Recap
First Talk
Proposal Talk

3 Implementation
Search
Completion
Output

Andreas Teucke 3 / 26

Introduction
Recap

Implementation

Goal
Conjecture

The Conjecture
The result of Satallax defines a finite tableau calculus

Minisat is able to indirectly prove refutability,
while only knowing the HO formulae and tableau steps
encoded as literals and clauses.
Conjecture: A tableau calculus restricted to these formulae
refutes the HO problem.

Andreas Teucke 4 / 26

Introduction
Recap

Implementation

First Talk
Proposal Talk

Outline

1 Introduction
Goal
Conjecture

2 Recap
First Talk
Proposal Talk

3 Implementation
Search
Completion
Output

Andreas Teucke 5 / 26

Introduction
Recap

Implementation

First Talk
Proposal Talk

First Talk

The restriction to a fixed set of formulae creates some
obstacles:

Analytic cut is in some cases required
The ∃ rule cannot introduce arbitrary new variables,
but we can enforce an ordering such that the witnesses are
fresh.

Andreas Teucke 6 / 26

Introduction
Recap

Implementation

First Talk
Proposal Talk

Proposal Talk

Theorem
If we have an abstract refutation for some problem A
- as a result from Satallax -,
then A is refutable in the restricted tableau calculus T

Andreas Teucke 7 / 26

Introduction
Recap

Implementation

First Talk
Proposal Talk

Abstract Refutation
A formal Definition

Definition (abstract refutation (F ,S))

Let A be an open branch, F a finite set of formulae and
S a function from variables to terms.
Then we call (F ,S) an abstract refutation of A, if

1 <S is acyclic
2 For every x ∈ dom S, x is not free in A
3 For every full expansion B, either

B is refutable in T in one step or
there is an x ∈ dom S such that ∃t ∈ B and ¬[tx] ∈ B
where t = S(x)

Andreas Teucke 8 / 26

Introduction
Recap

Implementation

First Talk
Proposal Talk

Abstract Refutation
An intuitive Definition.

Definition (abstract refutation (F ,S))

Let A be an open branch, F a finite set of formulae and
S the log of existential witnesses.
Then we call (F ,S) an abstract refutation of A, if

1 Existential witnesses are globally fresh, unique variables.
2 There exists an unsatisfiable set of clauses where each

clause is a subset of F and
encodes either A or a tableau step.

Andreas Teucke 9 / 26

Introduction
Recap

Implementation

First Talk
Proposal Talk

Proof
A constructive proof that builds a simple refutation.

Theorem
If (F ,S) is an abstract refutation of A then A is refutable in T

Proof.
1 Apply Cut on ∃t formulae in chronological order of S

and introduce their witnesses with the ∃ rule.
2 Apply Cut on all remaining formulae in F .
3 Close branches with single step in T .

Andreas Teucke 10 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Outline

1 Introduction
Goal
Conjecture

2 Recap
First Talk
Proposal Talk

3 Implementation
Search
Completion
Output

Andreas Teucke 11 / 26

Introduction
Recap

Implementation

Search
Completion
Output

First Phase: Search
An automated HO theorem prover

The core of the implementation is like an automated
higher-order theorem prover.
Common techniques are implemented to improve the result:

Back-jumping
Semantic branching

For the proof script we log the steps the search takes.

Andreas Teucke 12 / 26

Introduction
Recap

Implementation

Search
Completion
Output

First Phase: Search
Difference to a pure automated theorem prover

Using the result of Satallax we know the following in advance:
The search is guaranteed to succeed eventually
All steps neccessary for the refutation
All instantiations for ∀ and ∃ steps

This will make it a lot easier for us.

Andreas Teucke 13 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Preprocessing Steps

The clause set in the result of Satallax already encodes all
tableau steps necessary for a refutation.
The steps are extracted once from the clauses in a
preprocessing phase saving time during the search.
Reducing the set to its unsatisfiable core often drastically
reduces the number of steps.

Andreas Teucke 14 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Static Sorting Heuristic

A common practice in SAT-solving is to statically sort
literals by number of occurrences in the clause set.
We sort steps in ascending order by the number of
alternatives and secondarily in descending order
by occurrences of their formulae in the set of steps.
This static order replaces a dynamic priority queue.

Andreas Teucke 15 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Fixed Instantiations

Due to the fixed set of formulae
∀ and ∃ instantiations are fixed as well.
Especially enumerating over infinite higher-order
instantiations is avoided
The clauses left by the reduction to the UNSAT core
determine the relevant instantiations for the encoded steps.

Andreas Teucke 16 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Outline

1 Introduction
Goal
Conjecture

2 Recap
First Talk
Proposal Talk

3 Implementation
Search
Completion
Output

Andreas Teucke 17 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Second Phase: Completion

Satallax does not solve the original problem
as it rewrites input and intermediate results:

Logical constants are standardised to ⊥,→, ∀ and =,
e.g., ∃x .s rewritten as ¬∀x .¬s
βη-reduction
Double negations are removed
s = t and t = s are mapped to the same literal

These operations (except β) have to be made explicit for Coq.

Andreas Teucke 18 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Rewrites

The solution:
Apply the Leibniz property of precomputed equalities s = t :

∀p.p s → s = t → p t

For this we often need to state p explicitly. For example,

to η-reduce f (λx .g x) using λf .λx .f x = λf .f .

we need to state p := λx .f (x g).

Andreas Teucke 19 / 26

Introduction
Recap

Implementation

Search
Completion
Output

A real example

tab_rew_or H358 H359 (fun (x1:o –> o –> o) => ˜ ((forall
(x2:i) (x3:i), (forall (x4:i), in’ x4 x2 = in’ x4 x3) -> x2 = x3) ->
(forall (x2:i), ˜ in’ x2 emptyset) -> (forall (x2:i) (x3:i) (x4:i), in’ x4
(setadjoin x2 x3) = (˜ x4 = x2 -> in’ x4 x3)) -> (forall (x2:i) (x3:i),
in’ x3 (powerset x2) = (forall (x4:i), in’ x4 x3 -> in’ x4 x2)) ->
(forall (x2:i) (x3:i), in’ x3 (setunion x2) = (˜ (forall (x4:i), in’ x3 x4
-> (˜ in’ x4 x2)))) -> in’ emptyset omega -> (forall (x2:i), in’ x2
omega -> in’ (setadjoin x2 x2) omega) -> (forall (x2:i), ˜ (in’
emptyset x2 -> (˜ (forall (x3:i), ˜ (in’ x3 omega -> (˜ in’ x3 x2))
-> in’ (setadjoin x3 x3) x2))) -> (forall (x3:i), in’ x3 omega -> in’
x3 x2)) -> (forall (x2:i –> i –> o) (x3:i), (forall (x4:i), in’ x4 x3 -> (
˜ (forall (x5:i), x2 x4 x5 -> (˜ (forall (x6:i), x2 x4 x6 -> x5 =
x6))))) -> (˜ (forall (x4:i), ˜ (forall (x5:i), in’ x5 x4 = (˜ (forall
(x6:i), in’ x6 x3 -> (˜ x2 x6 x5))))))) -> (forall (x2:i), ˜ (forall
(x3:i), ˜ in’ x3 x2) ->...

Andreas Teucke 20 / 26

Introduction
Recap

Implementation

Search
Completion
Output

A real example

This would continue for thirty slides...
... for one rewrite in a proof script with over seven hundred
rewrites.
Although this is a worst case example,
it shows that rewrites should be avoided if possible.

Andreas Teucke 21 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Lazy Rewriting

To achieve this the translation tries to apply workarounds:
The refutation from the first phase is modified.
If appropriate we apply alternative rules ,
e.g., T∨ instead of T→ avoids rewriting s ∨ t into ¬s → t .
If nothing works rewrite will be applied.

T→
s → t
¬s | t

T¬→
¬(s → t)

s,¬t

T∨
s ∨ t
s | t

T∧
s ∧ t
s, t

Andreas Teucke 22 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Outline

1 Introduction
Goal
Conjecture

2 Recap
First Talk
Proposal Talk

3 Implementation
Search
Completion
Output

Andreas Teucke 23 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Third Phase: Proof Script
Tableau rules encoded as Coq tactic macros

To encode a tableau rule such as

T
s1, ..., sl

t1,1, ..., t1,m | ... | tn,1, ..., tn,m

we proof the corresponding lemma T

s1 → ...→ sl → (t1,1 → ...→ t1,m → ⊥) → ...

...→ (tn,1 → ...→ tn,m → ⊥) → ⊥.

and refine it in a tactic macro
refine (T s1..sl _.._); intros t1..tm.

Andreas Teucke 24 / 26

Introduction
Recap

Implementation

Search
Completion
Output

An example
Boolean extensionality

TBE
s 6=o t

s , ¬t | ¬s , t

Lemma TBE:

∀s t : o. (s 6= t) → (s → ¬t → ⊥) →
(¬s → t → ⊥) → ⊥

Ltac tab_be H H1 H2 :=
(refine (TBE H _ _) ; intros H1 H2).

Andreas Teucke 25 / 26

Introduction
Recap

Implementation

Search
Completion
Output

Summary

The result of Satallax defines a small finite tableau calculus
that can refute the initial problem.
The implementation uses its own customized higher-order
theorem prover to search in this calculus.
Future work

Learning
Satisfiability case

Andreas Teucke 26 / 26

Appendix References

References I

Julian Backes and Chad E. Brown.
Analytic tableaux for higher-order logic with choice.
In Reiner Hähnle Jürgen Giesl, editor, Automated
Reasoning: 5th International Joint Conference, IJCAR
2010, Edinburgh, UK, July 16-19, 2010, Proceedings,
volume 6173 of LNCS/LNAI, pages 76–90. Springer, 2010.

Chad E. Brown.
Reducing higher-order theorem proving to a sequence of
SAT problems.
In CADE – the 23rd International Conference on Automated
Deduction (To Appear). LNCS, Feb 2011.
To Appear.

Andreas Teucke 27 / 26

Appendix References

References II

Niklas Eén and Niklas Sörensson.
An extensible SAT-solver.
In Enrico Giunchiglia and Armando Tacchella, editors,
Theory and Applications of Satisfiability Testing, volume
2919 of Lecture Notes in Computer Science, pages
333–336. Springer Berlin / Heidelberg, 2004.

Yves Bertot and Pierre Castéran.
Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer Verlag,
2004.

Andreas Teucke 28 / 26

	Introduction
	Goal
	Conjecture

	Recap
	First Talk
	Proposal Talk

	Implementation
	Search
	Completion
	Output

	Appendix

