Translating a Satallax Refutation to a Tableau Refutation Encoded in Coq

Bachelor Seminar - proposal talk

Andreas Teucke

Advisor: Chad Brown Supervisor: Gert Smolka

Department of Computer Science Saarland University

January 7, 2011

Andreas Teucke

1/21

Goal Summary of the first talk

Presentation of the Goal

- Higher-order problem given to Satallax
- Satallax normalizes the problem and turns it into a sequence of Sat-problems
- Most Sat-solvers don't provide proofs for unsatisfiability
- Goal: Extract a higher-order proof, where one can easily check correctness
- Solution: A tableau refutation encoded as a Coq Proof Script

Goal Summary of the first talk

Outline

- Goal
- Summary of the first talk

2 Simple Proof

- Definitions
- Proof

- Search
- Translation
- Coq

SAARLAND

Goal Summary of the first talk

Satallax

- Satallax is an automated higher-order theorem prover
- It reduces a problem to a sequence of SAT problems
- If the SAT problem is unsatisfiable, the HO problem is refutable
- The clauses correspond to rules in the tableau calculus

Goal Summary of the first talk

The Idea

- While showing unsatisfiability, Minisat indirectly refutes the problem
- ...only using the formulas and tableau steps corresponding to the literals and clauses
- Refuting with this finite tableau calculus terminates and requires no backtracking

Goal Summary of the first talk

Obstacles

- Analytic cut is in some cases required
- The ∃ rule can't introduce arbitrary fresh names, but an acyclic relation can assure soundness

Definitions Proof

Outline

- Goal
- Summary of the first talk
- 2 Simple Proof
 - Definitions
 - Proof

- Search
- Translation
- Coq

Theorem

If we have an abstract refutation for some problem *A* - as a result from Satallax -, then *A* is refutable

Definitions Proof

Definitions

Definition (abstract refutation (F,S))

Let *A* be an open branch, *F* a finite set of formulas and *S* a function from variables to terms. Then we call (F, S) an abstract refutation of A, if

- $<_{S}$ is acyclic
- Sor every $x \in dom S, x$ is not free in A
- For every full expansion *B*, either *B* is refutable in *T* in one step or
 there is an *x* ∈ dom *S* such that ∃*t* ∈ *B* and ¬[*tx*] ∈ *B*where *t* = *S*(*x*)

SAARLAND

Definitions Proof

Definitions

Definition (full expansion)

Open branch *A* and formula-set *F*. *B* is a full expansion of *A*, if $A \subseteq B \subseteq F$, *B* is open and $\forall s \in F$, $s \in B$ or $B \cup \{s\}$ is closed.

Definition (relation $<_{S}$)

For a function from variables to terms S, $<_S$ is the binary relation on variables in *dom* Swhere for every $x, y \in dom S, x <_S y \Leftrightarrow x$ is free in S(y).

SAARLAND

Andreas Teucke

Definitions Proof

Lemma

Lemma

 (F, \emptyset) abstract refutation of $A \Rightarrow A$ refutable in \mathcal{T}

Proof.

Induction on distance of *A* from a full expansion Base: A is a full expansion \Rightarrow A is refutable in one step. Step: Apply Cut on some $t \notin A$ and use I.H. on *A*, *t* and *A*, $\neg t$.

11/21

Definitions Proof

Theorem

Theorem

(F,S) abstract refutation of $A \Rightarrow A$ refutable in \mathcal{T}

Proof.

Induction on the size of *dom S* Base: *S* is empty \Rightarrow apply Lemma. Step: Apply Cut and \exists rules on $\exists t$, where t = S(x) of a $<_S$ -minimal x and use I.H. on $A, \exists t, [tx]$ and $A, \neg \exists t$ with (F, S^{-x}) , where S^{-x} does not contain *x*.

SAARLAND

12/21

《曰》《圖》《曰》《曰》 드님

(日)

13/21

Connection between abstract refutation and Satallax

abstract refutation	\leftrightarrow	unsatisfiable set of clauses
F	\leftrightarrow	set of all literals
S	\leftrightarrow	log of existential witnesses
full expansion	\leftrightarrow	model
refutation step	\leftrightarrow	clause

As every model has at least one unsatisfied clause, every full expansion is refutable in one step, where *S* replaces the freshness condition for the \exists rule.

Search Translation Coq

Outline

Introduction

- Goal
- Summary of the first talk
- 2 Simple Proof
 - Definitions
 - Proof

- Search
- Translation
- Coq

- Construction of a refutation for the normalized problem.
- Iranslation to a refutation for the original problem.
- Outputting the refutation encoded as a Coq Proof Script.

Search Translation Coq

Recursive search divided into two parts:

OR-search	AND-search
Input: branch B	Input: branch B, rule t
if B closed then done	apply t on B
else choose a tableau rule t	for every subbranch B'
and call AND-search(B,t)	call OR-search(B')

Start with OR-search(A)

Translation

Satallax rewrites input and normalizes intermediate results:

17/21

- Logical constants are reduced to ⊥, →, ∀ and = e.g. ∃x.s rewritten as ¬∀x.¬s
- Double negations are removed
- η -reduction
 - $\lambda x.f x$ normalized to f

Can be applied anywhere in formulas

Search Translation Coq

Translation

1. Problem: Normalizations have to be translated into explicit rewrites for Coq.

2. Problem:The solution should refute the original problem.Apply matching tableau rules instead of rewriting the problem.

18/21

Search Translation Coq

An example

normalized problem

$$\forall x.\neg p x a \\ \forall x.p a x \\ \mathcal{T}_{\forall} \neg p a a \\ \mathcal{T}_{\forall} p a a \\ \frac{1}{2} \end{cases}$$

original problem

$$\neg(\exists x.p \ x \ a) \\ \neg(\exists x.\neg p \ a \ x) \\ \mathcal{T}_{\neg\exists} \neg p \ a \ a \\ \mathcal{T}_{\neg\exists} \neg(\neg p \ a \ a) \\ \frac{\ell}{2}$$

Definition of special tactics for tableau rules and rewrite

Creating names for bound variables and hypotheses

- Heuristic for choosing tableau rules
- Learning solved refutations of subbranches
- Proof Script module

References I

C. Brown, G. Smolka

"Analytic Tableaux for Simple Type Theory and its First-Order Fragment" (2010).

J. Backes, C. Brown

"Analytic Tableaux for Higher-Order Logic with Choice" (2010)

C. Brown

" Reducing Theorem Proving to a Sequence of SAT Problems" (September 10, 2010)

N. Eén, N. Sörensson " An Extensible SAT-solver"

(日)

References II

🔋 F. Pfenning

" Analytic and non-analytic proofs"

In R.E. Shostak, editor, Proceedings of the 7th Conference on Automated Deduction, pages 394-413, Napa, California, May 1984. Springer-Verlag LNCS 170.

