
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
Bachelor’s Program in Computer Science

Bachelor’s Thesis

Using LEO-II to Prove Properties of an
Explicit Substitution M-set Model

submitted by

Xin Zhang
on October 22, 2008

Supervisor

Prof. Dr. Gert Smolka

Advisor

Dr. Chad E. Brown

Reviewers

Prof. Dr. Gert Smolka
Dr. Chad E. Brown

Statement

Hereby I confirm that this thesis is my own work and that I have documented all
sources used.

Saarbrücken, <day of statement>

<Signature>

Declaration of Consent

Herewith I agree that my thesis will be made available through the library of the
Computer Science Department.

Saarbrücken, <day of statement>

<Signature>

Acknowledgments

I wish to thank all those who have helped and encouraged me during my studies
at Saarland University.

Above all, I am grateful to my supervisor Dr. Chad E Brown for numerous fruit-
ful discussions during the development of my thesis. With his enthusiasm, his
inspiration, and his great efforts to explain things clearly and simply, he helped
to make theorem proving fun for me. I want to thank Prof. Dr. Gert Smolka for
examining my thesis.

A final special word of thanks to my parents for their understanding, endless pa-
tience, love and support when it was most required.

v

vi

Abstract

LEO-II is an extensional higher-order theorem prover based on resolution. It
uses a higher-order logic based upon Church’s simply typed-calculus, so that the
comprehension axioms are implicitly handled. LEO-II employs a higher-order
resolution calculus, where the search for an empty clause and higher-order pre-
unification are interleaved.

In this project, we considered a particular mathematical domain: an M-set model
of elementary type theory. We experimented with using the higher-order theorem
prover LEO-II to verify properties of the model. In particular, we have isolated
14 theorems we would like LEO to prove automatically. Some of the theorems
required intermediate lemmas to be formulated before the theorem can be proven
automatically. These lemmas also needed to be automatically proven. We evalu-
ated LEO based on how many intermediate lemmas are required in each case.

vii

viii

Contents

1 Introduction 1

2 The 14 Problems 3
2.1 M-sets . 3
2.2 λσ-calculus . 4
2.3 M-set Model of HOAS . 6
2.4 The 14 Problems . 8

3 Representation in Higher Order Logic 17
3.1 Representation I . 17
3.2 Representation II . 20
3.3 Hoasap and Hoaslam . 22
3.4 Global and Local Theorems . 23

4 LEO/Results 25
4.1 Basic Results . 25
4.2 Hoaslaminj . 26
4.3 Induction2 . 28
4.4 Hoasinduction . 30
4.5 Pushprop . 39

5 Conclusion and Future Work 41
5.1 Conclusion . 41
5.2 Future Work . 42

A Representation II in THF Format 45

ix

x

Chapter 1

Introduction

In this project, we have used an automated theorem prover LEO-II [3] to verify
properties of a particular M-set model [4]. LEO-II is an extensional higher-order
theorem prover based on resolution. In principle one should be able to formulate
mathematical results in higher-order logic and have LEO help find proofs of the
results.

We consider a particular mathematical domain: an M-set model [4] of elementary
type theory. The λσ-calculus of explicit substitutions induces a monoid M of
explicit substitutions and an M-set of terms. This can be used to construct a model
of elementary type theory in which one can interpret higher-order abstract syntax.
Within this domain, we explore the effectiveness of using LEO to help find proofs.
For example, we will attempt to use LEO to prove soundness of axioms for higher-
order abstract syntax in the M-set model.

In particular, we have isolated 14 theorems we would like LEO to prove automati-
cally. We have already proven these theorems by hand, but we would like to know
how realistic it is to use LEO to prove these theorems automatically. This provides
an evaluation of LEO, as well as an extra level of confidence that our proofs by
hand are correct.

Several constants, definitions, axioms, and theorems were formulated in thf [2]
syntax. Some of these are theorems that we would like to prove using LEO. Each
of the theorems can either be proven assuming every fact that has already been
given or using only some of the human-selected facts that have been given. Part
of the project involves selecting the appropriate facts for a local version of each
theorem.

LEO could prove 9 theorems without any help. We tried to solve the other 5

1

problems. For example, we split the theorem into smaller pieces by creating in-
termediate lemmas. LEO could sometimes prove the intermediate lemmas and
sometimes prove the theorem from the lemmas. We have evaluated LEO based on
how many intermediate lemmas are required in each case.

2

Chapter 2

The 14 Problems

2.1 M-sets

A monoid is a triple < M,op,e > where

• M is set

• op : M×M →M is a function (a binary operation on M)

• e ∈M

satisfying

• op(m,op(n,k)) = op(op(m,n),k) for all m,n,k ∈M (associative law)

• op(m,e) = m = op(e,m) for m ∈M (identity laws)

We will refer to the monoid < M,op,e > as M. We will leave the operation op
implicit and write mn for op(m,n). Using this convention, we write the associative
and identity laws as follows:

• (m(nk)) = ((mn)k)

• me = m = em

Since the operation is associative we can omit parenthesis and write mnk instead
of m(nk) or (mn)k.

Let M be a monoid with identity e. An M-set is a pair < A,α > where

3

• A is a set

• α: A × M −→ A is a function (an action)

satisfying

• α(α(a,m),n) = α(a,op(m,n))

• α(a,e) = a

We will also leave the action α implicit and simply write am instead of α(a,m).
Then, the defining properties of an M-set are written

• (am)n = a(mn)

• ae = a

For each base type β including the type o of truth values, choose an M-set Dβ. We
can extend this to an M-set applicative structure by defining an M-set Dα→β for
function types and defining functions @: Dα→β×Dα →Dβ:

• Set: Dα→β := { f : M×Dα→Dβ|∀k,m∈M∀a∈Dα. f (k,a)m = f (km,am)}

• Action: For f ∈Dα→β and m ∈M, define f m: M×Dα→Dβ by f m(k,a) :=
f (mk,a)

• Application: f @a := f (e,a) where f ∈ Dα→β,a ∈ Dα, and e ∈ M is the
identity of M.

See [4] for details.

2.2 λσ-calculus

We briefly describe the untyped λσ-calculus, using explicit substitutions [1, 5]
and deBruijn indices.

We inductively define the set of terms and the set of explicit substitutions to be the
least freely generated sets satisfying:

• 1 is a term.

4

• (ab) is a term if a and b are terms.

• (λa) is a term if a is a term.

• (a[s]) is a term if a is a term and s is an explicit substitution.

• id is an explicit substitution.

• ↑ is an explicit substitution.

• (a.s) is an explicit substitution if a is a term and s is an explicit substitution.

• (s◦ t) is an explicit substitution if s and t are explicit substitutions.

We often leave out parentheses. Application associates to the left: (ab1 · · · bn)
means (· · ·(ab1) · · · bn). Composition associates to the right: (s1 ◦ s2 ◦ · · · ◦ sn)
means (s1 ◦ (s2 ◦ · · · ◦ sn) · · ·).

We have the following rewrite system for computing σ-normal forms [1, 5] :

• App: (ab)[s]→ (a[s]b[s])

• VarCons: 1[a.s]→ a

• Id: a[id]→ a

• Abs: (λa)[s]→ (λa[1.(s◦ ↑)])

• Clos: (a[s])[t]→ a[s◦ t]

• IdL: id ◦ s→ s

• ShiftCons: ↑ ◦(a.s)→ s

• AssEnv: (s1 ◦ s2)◦ s3 → s1 ◦ (s2 ◦ s3)

• MapEnv: (a.s)◦ t → a[t].(s◦ t)

• IdR: s◦ id → s

• VarShift: 1. ↑→ id

• Scons: 1[s].(↑ ◦s)→ s

A σ-normal term [explicit substitution] is a term [explicit substitution] which can-
not be reduced using one of the rules above. We denote the σ-normal form of a
term or explicit substitution a by a↓σ.

5

2.3 M-set Model of HOAS

We now combine the previous two sections to obtain an interesting M-set model.
This M-set model and the 14 theorems in the next section were the work of Chad
E. Brown (private communication).

There is an M-set model M with

• Dι is the set of σ-normal terms:

1|1[↑ ◦· · ·◦ ↑]|(ab)|(λa)

where a and b are σ-normal terms.
Action: For a ∈Dι and m ∈M,

am := (a[m])↓σ

• Do is set of all subsets of M (X ∈Do iff X ⊆M)
Action: For X ∈Do and m ∈M

Xm := {n ∈M|mn ∈ X}

• Dα→β is the set of functions f : M×Dα →Dβ respecting the M-set actions.

• The application operator takes f ∈ Dα→β and x ∈Dα to

f @x := f (id,x)

Let T be the set of σ-normal terms and M be the set of σ-normal substitutions.
We create an M-set model by choosing Dι := T . The following properties follow
easily from the definitions above.

axapp ((ab)[s])↓σ = ((a[s])↓σ (b[s])↓σ) for a,b ∈ T and s ∈M.

axvarcons (1[a.s])↓σ = a for a ∈ T and s ∈M.

axvarid (a[id])↓σ = a for a ∈ T .

axclos (a[s][t])↓σ = (a[s◦ t])↓σ for a ∈ T and s, t ∈M.

axidl (id ◦ s)↓σ = s for s ∈M.

axshiftcons (↑ ◦(a.s))↓σ = s for a ∈ T and s ∈M.

6

axassoc ((s1 ◦ s2)◦ s3)↓σ = (s1 ◦ (s2 ◦ s3))↓σ for s1,s2,s3 ∈M.

axmap ((a.s)◦ t)↓σ = (a[t].(s◦ t))↓σ for a ∈ T and s, t ∈M.

axidr (s◦ id)↓σ = s for s ∈M.

axvarshift (1. ↑)↓σ = id.

axscons (1[s].(↑ ◦s))↓σ = s for s ∈M.

Let Var be the subset of T consisting of 1 and all the terms of the form 1[↑ ◦· · ·◦ ↑].
The following properties clearly hold:

ulamvar1 1 ∈Var

ulamvarsh If x ∈Var, then (x[↑])↓σ ∈Var.

ulamvarind Let Φ be a property. Suppose 1 satisfies Φ. Suppose for all x ∈Var,
if x satisfies Φ, then (x[↑])↓σ satisfies Φ. Then for all x ∈Var, x satisfies Φ.

Since terms and substitutions are freely generated and σ-reduction is confluent,
we have the following properties:

apinj1 For a,b,c,d ∈ T , if (ac)↓σ = (bd)↓σ, then a = b.

apinj2 For a,b,c,d ∈ T , if (ac)↓σ = (bd)↓σ, then c = d.

laminj For a,b ∈ T , if (λa)↓σ = (λb)↓σ, then a = b.

shinj For a,b ∈ T , if (a[↑])↓σ = (b[↑])↓σ, then a = b.

lamnotap For a,b,c ∈ T , (λa)↓σ *= (bc)↓σ.

apnotvar For a,b ∈ T , (ab)↓σ /∈Var.

lamnotvar For a ∈ T , (λa)↓σ /∈Var.

induction Let Φ be a property. Suppose for all x ∈Var, x satisfies Φ. Suppose
for all a,b ∈ T , if a and b satisfy Φ, then (ab)↓σ satisfies Φ. Suppose for all
a ∈ T , if a satisfies Φ, then (λa)↓σ satisfies Φ. Then for all a ∈ T , a satisfies
Φ.

7

The model M should provide an interpretation of a theory of untyped λ-calculus
using higher-order abstract syntax(HOAS) [6].

To interpret higher-order abstract syntax in the M-set model. We define the fol-
lowing functions:

• hoasap:
hoasap(m,a)(n,b) := (a[n]b)↓σ

where a,b ∈ T and m,n ∈M.

• hoaslam:
hoaslam(m, f) := (λ(f (↑,1)))↓σ

where f : M×T → T is such that f (mn,an) = f (m,a)n (as defined by the
monoid operation and M-set action).

• hoasvar : M → T → P (M):

n ∈ hoasvar(m,a) iff ((a[n])↓σ ∈ Var)

2.4 The 14 Problems

In this project we experimented with using the higher-order theorem prover LEO-
II to verify properties of this M-set model. In particular, we wanted to prove 14
theorems using LEO. We give the 14 theorems informally below.

Theorem 1 (pushprop) Let Φ be a property, a ∈ T and m ∈ M. Assume for all
x ∈ Var, (x[m])↓σ satisfies Φ. Assume a satisfies Φ. Then (x[a.m])↓σ satisfies Φ
for all x ∈Var.

Proof: Use ulamvarind, axvarcons, axclos, axshiftcons. Let Φ′ be the fol-
lowing property: x satisfies Φ′ iff (x[a.m])↓σ satisfies Φ. We apply ulamvarind
with the property Φ′. It remains to prove the two cases:

• We prove 1 satisfies Φ′. By axvarcons, (1[a.m])↓σ = a. Since a satisfies
Φ, 1 satisfies Φ′, as desired.

8

• Assume x ∈ Var satisfies Φ′. That is, (x[a.m])↓σ satisfies Φ. We prove
(x[↑])↓σ satisfies Φ′. That is, we prove (x[↑][a.m])↓σ satisfies Φ. By axclos
and axshiftcons,

(x[↑][a.m])↓σ = (x[↑ ◦(a.m)])↓σ = (x[m])↓σ.

We are done since (x[m])↓σ satisfies Φ.

Theorem 2 (induction2lem) Let Φ be a property such that the following hold:

1. For all a,b ∈ T , if a and b satisfy Φ, then (ab)↓σ satisfies Φ.

2. For all a ∈ T , if (a[b.id])↓σ satisfies Φ whenever b ∈ T satisfies Φ, then
(λa)↓σ satisfies Φ.

Let a ∈ T and m ∈ M be such that (x[m])↓σ satisfies Φ for all x ∈ Var. Then
(a[m])↓σ satisfies Φ.

Proof: Induction over σ - normal terms a.

• Case 1 : a ∈ Var
We prove (a[m])↓σ satisfies Φ. Since (x[m])↓σ satisfies Φ for all x ∈ Var,
(a[m])↓σ satisfies Φ.

• Case 2 : a = bc
We prove ((bc)[m])↓σ satisfies Φ.
((bc)[m])↓σ = ((b[m])↓σ(c[m])↓σ) (axapp)
That is, we prove ((b[m])↓σ(c[m])↓σ) satisfies Φ. This follows from condi-
tion 1, if we prove (b[m])↓σand (c[m])↓σ satisfy Φ. By induction hypothesis,
(b[m])↓σand (c[m])↓σ satisfy Φ. We are done.

• Case 3 : a = λb
Induction hypothesis: If b ∈ T and m ∈M are such that (x[m])↓σ satisfies Φ
for all x ∈Var, then (b[m])↓σ satisfies Φ.
We prove ((λb)[m])↓σ satisfies Φ.
((λb)[m])↓σ = (λb[1.(m◦ ↑)])↓σ (axabs)
That is, we prove (λb[1.(m◦ ↑)])↓σ satisfies Φ. We will use condition 2.
Assume c ∈ T satisfies Φ, we prove ((b[1.(m◦ ↑)])[c.id])↓σ satisfies Φ.

9

We verify this fact by computing

((b[1.(m◦ ↑)])[c.id])↓σ = (b[(1.(m◦ ↑))◦ (c.id)])↓σ (axclos)
= (b[1[c.id].((m◦ ↑)◦ (c.id))])↓σ (axmap)
= (b[c.((m◦ ↑)◦ (c.id))])↓σ (axvarcons)
= (b[c.(m◦ (↑ ◦((c.id))])↓σ (axassoc)
= (b[c.(m◦ id)])↓σ (axshiftcons)
= (b[c.m])↓σ (axidr)

By the induction hypothesis, it is enough to show, (x[c.m])↓σ satisfies Φ.
By pushprop we know assume for all x ∈Var, (x[m])↓σ satisfies Φ.
Assume c satisfies Φ. Then (x[c.m])↓σ satisfies Φ for all x ∈Var. By
assumption we know c satisfies Φ, so (x[c.m])↓σ satisfies Φ, we are done.

Theorem 3 (induction2) Let Φ be a property such that the following hold:

1. For all x ∈Var, x satisfies Φ.

2. For all a,b ∈ T , if a and b satisfy Φ, then (ab)↓σ satisfies Φ.

3. For all a ∈ T , if (a[b.id])↓σ satisfies Φ whenever b ∈ T satisfies Φ, then
(λa)↓σ satisfies Φ.

Then for all a ∈ T , a satisfies Φ.

Proof: By induction2lem and axvarid we know (a[id])↓σ satisfies Φ and (a[id])↓σ

= a, then a satisfies Φ

We would like to verify that M is a monoid and T is an M-set. By a monoid, we
mean a triple (X , ·,e) where X is a set, · is an associative binary operation on X ,
and e is a two sided identity for ·. To be more precise, we would like to prove the
following:

Theorem 4 (substmonoid) (M, ·, id) is a monoid where s · t is (s◦ t)↓σ.

Proof:

10

• (s◦ (t ◦m))↓σ = ((s◦ t)◦m)↓σ (axassoc)

• (id ◦ s)↓σ = s (axidl)
(s◦ id)↓σ = s (axidr)

Given that (M, ·, id) is a monoid, we would like to show T is an M-set. More
precisely, we have:

Theorem 5 (termmset) (T,∗) is an (M, ·, id)-set where a∗ s is (a[s])↓σ for a ∈ T
and s ∈M.

Proof:

• (a[id])↓σ = a (axvarid)

• (a[s][t])↓σ = (a[s◦ t])↓σ (axclos)

From now on we will omit the binary operators · and ∗. That is, we will write mn
for m ·n (i.e., (m◦n)↓σ) when m,n ∈M and an for a∗n (i.e., (a[n])↓σ) when a ∈ T
and n ∈M.

To ensure hoasap and hoaslam are well defined, we must ensure that the given
values are in T . In both cases this fact is trivial, but we include these as theorems
to ensure that the formal versions of the definitions in LEO make sense.

Theorem 6 (hoasap) For m,n ∈ M and a,b ∈ T , we have hoasap(m,a)(n,b) ∈
T .

Proof: Trivial

Theorem 7 (hoaslam) Let f : M×T → T be a function such that

f (m,a)n = f (mn,an)

for all a ∈ T and m,n ∈M. Then hoaslam(id, f) ∈ T .

11

Proof: Trivial

To verify soundness of “axioms” of a theory of higher-order abstract syntax, we
need the following:

Theorem 8 (hoasapinj1) For a,b,c,d ∈ T , if

hoasap(id,a)(id,c) = hoasap(id,b)(id,d), then a = b.

Proof:

(ac)↓σ = (a[id]c)↓σ (axvarid)
= hoasap(id,a)(id,c) (definition)
= hoasap(id,b)(id,d) (condition)
= (b[id]d)↓σ (definition)
= (bd)↓σ (axvarid)

Then (ac)↓σ = (bd)↓σ apin j1→ a = b

Theorem 9 (hoasapinj2) For a,b,c,d ∈ T , if

hoasap(id,a)(id,c) = hoasap(id,b)(id,d), then c = d.

Proof: Same as theorem 8 (except with apinj2).

Theorem 10 (hoaslaminj) Let f ,g : M×T → T be functions such that

f (m,a)n = f (mn,an)

and
g(m,a)n = g(mn,an)

for all a ∈ T and m,n ∈M. If hoaslam(id, f) = hoaslam(id,g), then f = g.

Proof:
hoaslam(id, f) := (λ(f (↑,1)))↓σ

hoaslam(id,g) := (λ(g(↑,1)))↓σ

Since hoaslam(id, f) = hoaslam(id,g), (λ(f (↑,1)))↓σ = (λ(g(↑,1)))↓σ

By laminj we know f (↑,1) = g(↑,1).
We prove f (m,a) = g(m,a) for m ∈M and a ∈ T . Let n be a.m, we compute:
↑ ◦[a.m] = m(axshiftcons)
(1[a.m])↓σ = a (axvarcons)
f (m,a) = f (↑ n,1n) = f (↑,1)n = g(↑,1)n = g(↑ n,1n) = g(m,a)

12

Theorem 11 (hoaslamnotap) Let f : M×T → T be a function such that

f (m,a)n = f (mn,an)

for all a ∈ T and m,n ∈M. For a,b ∈ T , hoaslam(id, f) *= hoasap(id,a)(id,b).

Proof: By the definition of hoaslam and hoasap

• hoaslam(id, f) = (λ(f (↑,1)))↓σ

• hoasap(id,a)(id,b) = (a[id]b)↓σ = (ab)↓σ

Use lamnotap, we know (λ(f (↑,1)))↓σ *= (ab)↓σ.

Theorem 12 (hoaslamnotvar) Let f : M×T → T be a function such that

f (m,a)n = f (mn,an)

for all a ∈ T and m,n ∈M. Then id /∈ hoasvar(id,hoaslam(id, f))

Proof: Use the definition of hoaslam and hoasvar.

id /∈ hoasvar(id,hoaslam(id, f)) ⇔ id /∈ hoasvar(id,(λ(f (↑,1)))↓σ) (hoaslam)
⇔ (((λ(f (↑,1)))[id])↓σ /∈Var (hoasvar)
⇔ (λ(f (↑,1)))↓σ /∈Var (axvarid)

By lamnotvar we know (λ(f (↑,1)))↓σ /∈Var.

Theorem 13 (hoasapnotvar) For a,b∈T , id /∈ hoasvar(id,hoasap(id,a),(id,b))

Proof: Use the definition of hoasvar and hoasap.
id /∈ hoasvar(id,hoasap(id,a),(id,b)) ⇔ id /∈ hoasvar(id,(a[id]b)↓σ) (hoasap)

⇔ id /∈ hoasvar(id,(ab)↓σ) (axvarid)
⇔ ((ab)[id])↓σ /∈Var (hoasvar)
⇔ (ab)↓σ /∈Var (axvarid)

13

By apnotvar we know (ab)↓σ /∈Var.

Theorem 14 (hoasinduction) Let Ψ : M×T → P (M) be a function such that

kn ∈Ψ(m,a) iff n ∈Ψ(mk,ak)

for all a ∈ T and m,n,k ∈M. Suppose we have the following:

1. For all x ∈ T , if id ∈ hoasvar(id,x), then id ∈Ψ(id,x).

2. For all a,b ∈ T , if id ∈Ψ(id,a) and id ∈Ψ(id,b),
then id ∈Ψ(id,hoasap(id,a)(id,b))

3. For all f : M× T → T such that f (m,a)n = f (mn,an) for all a ∈ T and
m,n ∈ M, if id ∈ Ψ(id,a) implies id ∈ Ψ(id, f (id,a)) for all a ∈ T , then
id ∈Ψ(id,hoaslam(id, f)).

Then for all a ∈ T , id ∈Ψ(id,a).

Proof: Use induction2. Define Φ as follows: for all a ∈ T , a satisfies Φ, if and
only if id ∈Ψ(id,a).

• Case 1 : a ∈Var
We prove id ∈Ψ(id,a). That is, we prove id ∈hoasvar(id,a), since condi-
tion 1.
By the definition of hoasvar, we know id ∈ hoasvar(id,a) iff (a[id])↓σ ∈
Var. Since (a[id])↓σ = a ∈ Var, we are done.

• Case 2 : a = bc
We prove id ∈ Ψ(id,bc). Induction hypothesis: b and c satisfy Φ, that is,
id ∈ Ψ(id,b) and id ∈ Ψ(id,c).
(bc)↓σ = (b[id]c)↓σ = hoasap((id,b),(id,c)).
We prove id ∈ Ψ(id,hoasap((id,b),(id,c)). By condition 2 and the induc-
tive hypothesis, we are done.

• Case 3 : a = λb
We prove id ∈ Ψ(id,λb). Induction hypothesis: (b[c.id])↓σ satisfies Φ
whenever c ∈ T satisfies Φ, that is, id ∈ Ψ(id,(b[c.id])↓σ) whenever id ∈

14

Ψ(id,c).
By definition we know

hoaslam(id, f) := (λ(f (↑,1)))↓σ

By condition 3 we know for all f : M×T → T such that

f (m,a)n = f (mn,an).

For all a ∈ T and m,n ∈M, if id ∈Ψ(id,a) implies id ∈Ψ(id, f (id,a)) for
all a ∈ T , then id ∈Ψ(id,hoaslam(id, f)). So we can choose an f to prove
it. Define

f (m,a) = b[a.m]

We check b = f (↑,1). By axvarshift and axvarid we know

f (↑,1) = b[1. ↑] = b[id] = b

Now we check f (m,a)n = f (mn,an).

f (m,a)n = (b[a.m])n = b[an.mn] = f (mn,an)

Finally we check if id ∈ Ψ(id,c) implies id ∈ Ψ(id, f (id,c)) for all c ∈ T ,
that is if id ∈ Ψ(id,c) implies id ∈ Ψ(id,(b[c.id])↓σ) for all c ∈ T . By
induction hypothesis we are done.

15

16

Chapter 3

Representation in Higher Order
Logic

At several places there are different options for how to formally represent mathe-
matical objects. For instance, should the set of terms be a base type, a predicate
on a base type, or an element of a base type? What affect does the representation
have on the behavior of the prover?

In this project we developed two representations.

3.1 Representation I

Let T be the set of σ-normal terms and M be the set of σ-normal substitutions. In
thf syntax [2] we can represent these sets as constants of type ι (using a member-
ship relation to represent set membership)

in is a constant of type ι→ ι→ o.

term is a constant of type ι.

subst is a constant of type ι.

For each constructor above, we can define a corresponding operator on T and M
where we σ- normalize after applying the operator:

• one := 1

• (ap a b) := (ab)↓σ

17

• (lam a) := λa↓σ

• (sub a m) := a[m]↓σ where a ∈ T and m ∈M

• id := id

• sh := ↑

• (push a m) := (a.m)↓σ

• (comp m n) := (m◦n)↓σ

In thf [2] syntax we can declare these constants, along with the information about
the constants, as follows:

one is a constant of type ι

one p is an abbreviation defined by

inoneterm

ap is a constant of type ι→ ι→ ι

ap p is an abbreviation defined by

∀Aι.inAterm⇒∀Bι.inBterm⇒in(apAB)term

lam is a constant of type ι→ ι

lam p is an abbreviation defined by

∀Aι.inAterm⇒in(lamA)term

sub is a constant of type ι→ ι→ ι

sub p is an abbreviation defined by

∀Aι.inAterm⇒∀Mι.inMsubst⇒in(subAM)term

id is a constant of type ι

id p is an abbreviation defined by

inidsubst

18

sh is a constant of type ι

sh p is an abbreviation defined by

inshsubst

push is a constant of type ι→ ι→ ι

push p is an abbreviation defined by

∀Aι.inAterm⇒∀Mι.inMsubst⇒in(pushAM)subst

comp is a constant of type ι→ ι→ ι

comp p is an abbreviation defined by

∀Mι.inMsubst⇒∀Nι.inN subst⇒in(compM N)subst

Several properties clearly hold. We will informally take these as axioms. Below
we give them as definitions. Whenever we want to prove a theorem we must take
each one as an assumption explicitly.

axapp

∀Aι.inAterm⇒∀Bι.inBterm⇒∀Mι.inMsubst⇒sub(apAB)M =

ap(subAM)(subBM)

axvarcons

∀Aι.inAterm⇒∀Mι.inMsubst⇒subone(pushAM) = A

axvarid
∀Aι.inAterm⇒subAid = A

axabs
∀Aι.inAterm⇒∀Mι.inMsubst⇒sub(lamA)M =

lam(subA(pushone(compMsh)))

axclos
∀Aι.inAterm⇒∀Mι.inMsubst⇒∀Nι.inN subst⇒

sub(subAM)N = subA(compM N)

19

axshiftcons

∀Aι.inAterm⇒∀Mι.inMsubst⇒compsh(pushAM) = M

axassoc

∀Mι.inMsubst⇒∀Nι.inN subst⇒∀Kι.inK subst⇒
comp(compM N)K = compM (compN K)

axmap
∀Aι.inAterm⇒∀Mι.inMsubst⇒∀Nι.inN subst⇒
comp(pushAM)N = push(subAN)(compM N)

axidr
∀Mι.inMsubst⇒compMid = M

axvarshift
pushonesh = id

axscons
∀Mι.inMsubst⇒push(suboneM)(compshM) = M

3.2 Representation II

We declared the base type term and subst.

We can also define corresponding operators on T and M:

• one is a constant of type term.

• ap is a constant of type term→ term→ term.

• lam is a constant of type term→ term.

• sub is a constant of type term→ subst→ term.

• id is a constant of type subst.

• sh is a constant of type subst.

• push is a constant of type term→ subst→ subst.

20

• comp is a constant of type subst→ subst→ subst.

Axioms became:

axapp

∀AtermBtermMsubst.sub(apAB)M = ap(subAM)(subBM)

axvarcons
∀AtermMsubst.subone(pushAM) = A

axvarid
∀Aterm.subAid = A

axabs

∀AtermMsubst.sub(lamA)M = lam(subA(pushone(compMsh)))

axclos
∀AtermMsubstNsubst.sub(subAM)N = subA(compM N)

axidl
∀Msubst.compidM = M

axshiftcons
∀AtermMsubst.compsh(pushAM) = M

axassoc

∀MsubstNsubstKsubst.comp(compM N)K = compM (compN K)

axmap

∀AtermMsubstNsubst.comp(pushAM)N = push(subAN)(compM N)

axidr
∀Msubst.compMid = M

axvarshift
pushonesh = id

axscons
∀Msubst.push(suboneM)(compshM) = M

21

3.3 Hoasap and Hoaslam

In chapter 2 we give 14 theorems. Two representations are developed. With the
Representation I all the 14 theorems are encoded and with the Representation II
12 theorems are encoded. The 2 theorems we lost (hoasap and hoaslam) are
simple type checking.

Theorem 6 (hoasap) For m,n ∈ M and a,b ∈ T , we have hoasap(m,a)(n,b) ∈
T .

We encoded this theorem in LEO with Representation I as follow:

• hoasap
λMιAιNιBι.ap(subAN)B

• hoasap p

∀Mι.inMsubst⇒∀Aι.inAterm⇒∀Nι.inN subst⇒∀Bι.inBterm⇒
in(hoasapM AN B)term

We encoded the definition of hoasap in LEO with Representation II as follow:

λMsubstAtermNsubstBterm.ap(subAN)B

Theorem 7 (hoaslam) Let f : M×T → T be a function such that

f (m,a)n = f (mn,an)

for all a ∈ T and m,n ∈M. Then hoaslam(id, f) ∈ T .

We encoded this theorem in LEO with Representation I as follow:

• hoaslam
λMιFι→ι→ι.lam(F shone)

• hoaslam p

∀Mι.inMsubst⇒∀Fι→ι→ι.(∀Nι.inN subst⇒∀Aι.inAterm⇒
in(F N A)term)⇒in(hoaslamM λNιAι.F N A)term

We encoded the definition of hoaslam in LEO with Representation II as follow:

λMsubstFsubst→term→term.lam(F shone)

There is no formula in Representation II corresponding to hoasap p from Repre-
sentation I and no formula in Representation II corresponding to hoaslam p from
Representation I , therefore we lost the both theorems.

22

3.4 Global and Local Theorems

When we want to prove a theorem C, we will actually prove a theorem of the form
Axioms ⇒ C. We will also be interested in localizing the theorems by finding a
subset A of the axioms such that A⇒C can be proven automatically.

Several constants, definitions, axioms, and theorems have already been formulated
in thf syntax [2]. Each of the theorems can either be proven assuming every fact
that has already been given (a global theorem) or using only some of the human-
selected facts that have been given (a local theorem). We selected the appropriate
facts for a local version of each theorem in Representation I.

For example: hoaslamnotap

Theorem 11 (hoaslamnotap) Let f : M×T → T be a function such that

f (m,a)n = f (mn,an)

for all a ∈ T and m,n ∈M. For a,b ∈ T , hoaslam(id, f) *= hoasap(id,a)(id,b).

The gthm is:

one p⇒ap p⇒lam p⇒sub p⇒id p⇒sh p⇒push p⇒
comp p⇒axapp⇒axvarcons⇒axvarid⇒axabs⇒axclos

⇒axidl⇒axshiftcons⇒axassoc⇒axmap⇒axidr⇒axvarshift

⇒axscons⇒ulamvar1⇒ulamvarsh⇒ulamvarind⇒apinj1⇒apinj2

⇒laminj⇒shinj⇒lamnotap⇒apnotvar⇒lamnotvar⇒induction

⇒pushprop⇒induction2lem⇒induction2⇒substmonoid

⇒termmset⇒hoasap p⇒hoaslam p⇒hoasapinj1⇒hoasapinj2

⇒hoaslaminj⇒hoaslamnotap

The lthm is:
lamnotap⇒hoaslamnotap

23

24

Chapter 4

LEO/Results

4.1 Basic Results

There are 14 theorems in Representation I and 12 theorems in Representation II.
LEO could prove 9 theorems of 14 in Rep I and 9 theorems of 12 in Rep II. The
details are in the table below.

Name Rep I Rep II
gthm lthm gthm lthm lthm with lemmas

Substmonoid 11.589s 5.165s 1.324s 0.521s NA
Termmset 3.299s 0.564s 1.354s 0.505s NA

Hoasapinj1 3.573s 0.481s 1.411s 0.515s NA
Hoasapinj2 3.680s 0.479s 1.452s 0.509s NA

Hoaslamnotap 6.194s 0.778s 1.622s 0.508s NA
Hoaslamnotvar 6.495s 0.760s 1.685s 0.509s NA
Hoasapnotvar 6.671s 0.575s 1.762s 0.503s NA

Hoaslap 3.317s 0.437s NA NA NA
Hoaslam 3.343s 0.636s NA NA NA

Hoaslaminj - - 1.556s 0.533s NA
Induction2 - - - 0.581s NA
Pushprop - - - - 0.655s

Hoasinduction - - - - 0.807s
Induction2lem - - - - -

25

LEO could prove theorems much quickly with Rep II.

Table for hoasinduction + lemmas (Rep II lthm)

Name lthm
hoasinduction lem1 1.843s
hoasinduction lem2 1.877s
hoasinduction lem3 0.701s

hoasinduction lemm3a 0.680s
hoasinduction lem3b 1.793s
hoasinduction lem3aa -
hoasinduction lem0 12.359s

hoasinduction lem1v2 1.873s
hoasinduction lem2v2 1.903s
hoasinduction lem3v2 -
hoasinduction lem3v2a -

hoasinduction 0.807s

4.2 Hoaslaminj

LEO could not prove the theorem hoaslaminj in Representation I, but could
prove it in Representation II, i.e. proving the theorem is easier in Representation
II.

26

We want our model to satisfy this axiom:

∀ f∀g(((Lam f) = (Lamg))⇒ (f = g))

We interpret this axiom in our model as:

Theorem 10 (hoaslaminj) Let f ,g : M×T → T be functions such that

f (m,a)n = f (mn,an)

and
g(m,a)n = g(mn,an)

for all a ∈ T and m,n ∈M. If hoaslam(id, f) = hoaslam(id,g), then f = g.

We encoded this theorem in LEO with Representation I as follows:

∀Fι→ι→ι.(∀Mι.inMsubst⇒∀Aι.inAterm⇒in(F M A)term)⇒
(∀Mι.inMsubst⇒∀Aι.inAterm⇒∀Nι.inN subst⇒

sub(F M A)N = F (compM N)(subAN))⇒
∀Gι→ι→ι.(∀Mι.inMsubst⇒∀Aι.inAterm⇒in(GM A)term)⇒

(∀Mι.inMsubst⇒∀Aι.inAterm⇒∀Nι.inN subst⇒
sub(GM A)N = G(compM N)(subAN))⇒

hoaslamid(λMιAι.F M A) = hoaslamid(λMιAι.GM A)⇒
∀Mι.inMsubst⇒∀Aι.inAterm⇒F M A = GM A

hoaslaminj gthm 1 is:

one p⇒ap p⇒lam p⇒sub p⇒id p⇒sh p⇒push p⇒
comp p⇒axapp⇒axvarcons⇒axvarid⇒axabs⇒axclos⇒

axidl⇒axshiftcons⇒axassoc⇒axmap⇒axidr⇒axvarshift⇒
axscons⇒ulamvar1⇒ulamvarsh⇒ulamvarind⇒apinj1⇒

apinj2⇒laminj⇒shinj⇒lamnotap⇒apnotvar⇒lamnotvar⇒
induction⇒pushprop⇒induction2lem⇒induction2⇒

substmonoid⇒termmset⇒hoasap p⇒hoaslam p⇒hoasapinj1⇒
hoasapinj2⇒hoaslaminj

27

hoaslaminj lthm 1 is:

axvarcons⇒axshiftcons⇒laminj⇒hoaslaminj

We encoded this theorem in LEO with Representation II as follow:

∀Fsubst→term→term.

(∀MsubstAtermNsubst.sub(F M A)N = F (compM N)(subAN))⇒
∀Gsubst→term→term.

(∀MsubstAtermNsubst.sub(GM A)N = G(compM N)(subAN))⇒
hoaslamid(λMsubstAterm.F M A) = hoaslamid(λMsubstAterm.GM A)⇒

∀MsubstAterm.F M A = GM A

hoaslaminj gthm 2 is:

axapp⇒axvarcons⇒axvarid⇒axabs⇒axclos⇒axidl⇒
axshiftcons⇒axassoc⇒axmap⇒axidr⇒axvarshift⇒

axscons⇒ulamvar1⇒ulamvarsh⇒ulamvarind⇒apinj1⇒apinj2⇒
laminj⇒shinj⇒lamnotap⇒apnotvar⇒lamnotvar⇒induction

⇒pushprop⇒induction2lem⇒induction2⇒substmonoid⇒
termmset⇒hoasapinj1⇒hoasapinj2⇒hoaslaminj

hoaslaminj lthm 2 is:

axvarcons⇒axshiftcons⇒laminj⇒hoaslaminj

LEO could prove hoaslaminj gthm 2 and hoaslaminj lthm 2 in Representa-
tion II, because using Representation II we have fewer clauses and unification
steps.

4.3 Induction2

We want to prove this axiom in our model.

Theorem 3 (induction2) Let Φ be a property such that the following hold:

28

1. For all x ∈Var, x satisfies Φ.

2. For all a,b ∈ T , if a and b satisfy Φ, then (ab)↓σ satisfies Φ.

3. For all a ∈ T , if (a[b.id])↓σ satisfies Φ whenever b ∈ T satisfies Φ, then
(λa)↓σ satisfies Φ.

Then for all a ∈ T , a satisfies Φ.

We encoded this theorem in LEO with Representation I as follows:

∀Pι→o.(∀Aι.inAterm⇒varA⇒PA)⇒
(∀Aι.inAterm⇒∀Bι.inBterm⇒PA⇒PB⇒P(apAB))⇒

(∀Aι.inAterm⇒(∀Bι.inBterm⇒PB⇒P(subA(pushBid)))⇒P(lamA))⇒
∀Aι.inAterm⇒PA

induction2 gthm 1 is:

one p⇒ap p⇒lam p⇒sub p⇒id p⇒sh p⇒push p⇒comp p⇒
axapp⇒axvarcons⇒axvarid⇒axabs⇒axclos⇒axidl⇒
axshiftcons⇒axassoc⇒axmap⇒axidr⇒axvarshift⇒
axscons⇒ulamvar1⇒ulamvarsh⇒ulamvarind⇒apinj1⇒

apinj2⇒laminj⇒shinj⇒lamnotap⇒apnotvar⇒lamnotvar⇒
induction⇒pushprop⇒induction2lem⇒induction2

By the informal proof in chapter 2 we determined which axioms and previous
results are needed to prove induction2 and added these to induction2 lthm 1.

induction2 lthm 1 is:

axvarid⇒induction2lem⇒induction2

We encoded this theorem in LEO with Representation II as follows:

∀Pterm→o.(∀Aterm.varA⇒PA)⇒
(∀AtermBterm.PA⇒PB⇒P(apAB))⇒

(∀Aterm.(∀Bterm.PB⇒P(subA(pushBid)))⇒P(lamA))⇒
∀Aterm.PA

29

induction2 gthm 2 is:

axapp⇒axvarcons⇒axvarid⇒axabs⇒axclos⇒axidl⇒
axshiftcons⇒axassoc⇒axmap⇒axidr⇒axvarshift⇒axscons⇒
ulamvar1⇒ulamvarsh⇒ulamvarind⇒apinj1⇒apinj2⇒laminj⇒

shinj⇒lamnotap⇒apnotvar⇒lamnotvar⇒induction

⇒pushprop⇒induction2lem⇒induction2

The induction2 lthm 2 is:

axvarid⇒induction2lem⇒induction2

LEO could neither prove the induction2 gthm 1 nor induction2 lthm 1 with
Representation I, but could prove induction2 lthm 2 with Representation II.

Induction2 lthm 2 is the lthm version where we told LEO only to use axvarid
and induction2lem. LEO could prove only induction2 lthm 2 with the Rep-
resentation II, but not induction2 gthm 2. LEO-II is an extensional higher-order
theorem prover based on resolution. The resolution rule is an inference rule that
produces a new clause implied by two clauses containing complementary literals.
After many steps of resolution the system generated thousands of children. Here
by Induction2 lthm 2 we have much fewer clauses than Induction2 gthm 2.
This is the reason why LEO could prove the Induction2 lthm 2 but not the
Induction2 gthm 2.

4.4 Hoasinduction

Some of the theorems required intermediate lemmas to be formulated before the
theorem could be proven automatically. These lemmas also needed to be automat-
ically proven. We evaluated LEO based on how many intermediate lemmas were
required in each case.

In the theory using higher order abstract syntax we have the following induction
axiom
∀p((∀x(Var x⇒ (px)))
∧(∀x∀y(px∧ py⇒ p(Ap xy)))
∧(∀ f ((∀x(px⇒ p(f x)))⇒ p(Lam f)))⇒ (∀x(px))))

We interpret this induction axiom in our model.

30

Theorem 14 (hoasinduction) Let Ψ : M×T → P (M) be a function such that

kn ∈Ψ(m,a) iff n ∈Ψ(mk,ak)

for all a ∈ T and m,n,k ∈M. Suppose we have the following:

1. For all x ∈ T , if id ∈ hoasvar(id,x), then id ∈Ψ(id,x).

2. For all a,b ∈ T , if id ∈Ψ(id,a) and id ∈Ψ(id,b), then
id ∈Ψ(id,hoasap(id,a)(id,b))

3. For all f : M× T → T such that f (m,a)n = f (mn,an) for all a ∈ T and
m,n ∈ M, if id ∈ Ψ(id,a) implies id ∈ Ψ(id, f (id,a)) for all a ∈ T , then
id ∈Ψ(id,hoaslam(id, f)).

Then for all a ∈ T , id ∈Ψ(id,a).

We encoded this theorem in LEO with Representation I as follows:

∀Pι→ι→ι→o.(∀Mι.inMsubst⇒∀Aι.inAterm⇒∀Nι.inN subst⇒
∀Kι.inK subst⇒PM A(compK N)⇒P(compM K)(subAK)N)⇒

(∀Mι.inMsubst⇒∀Aι.inAterm⇒∀Nι.inN subst⇒
∀Kι.inK subst⇒P(compM K)(subAK)N⇒PM A(compK N))⇒

(∀Aι.inAterm⇒hoasvaridAid⇒PidAid)⇒
(∀Aι.inAterm⇒∀Bι.inBterm⇒PidAid⇒PidBid⇒

Pid(hoasapidAidB)id)⇒
(∀Fι→ι→ι.(∀Mι.inMsubst⇒∀Aι.inAterm⇒in(F M A)term)⇒

(∀Mι.inMsubst⇒∀Aι.inAterm⇒∀Nι.inN subst⇒
sub(F M A)N = F (compM N)(subAN))⇒

(∀Aι.inAterm⇒PidAid⇒Pid(F idA)id)⇒
Pid(hoaslamidλMιAι.F M A)id)⇒

∀Aι.inAterm⇒PidAid

31

We encoded this theorem in LEO with Representation II as follows:

∀Psubst→term→subst→o.(∀MsubstAtermNsubstKsubst.

PM A(compK N)⇒P(compM K)(subAK)N)⇒
(∀MsubstAtermNsubstKsubst.

P(compM K)(subAK)N⇒PM A(compK N))⇒
(∀Aterm.hoasvaridAid⇒PidAid)⇒

(∀AtermBterm.PidAid⇒PidBid⇒Pid(hoasapidAidB)id)

⇒(∀Fsubst→term→term.(∀MsubstAtermNsubst.

sub(F M A)N = F (compM N)(subAN))⇒
(∀Aterm.PidAid⇒Pid(F idA)id)⇒

Pid(hoaslamidλMsubstAterm.F M A)id)⇒
∀Aterm.PidAid

hoasinduction gthm is:

axapp⇒axvarcons⇒axvarid⇒axabs⇒axclos⇒axidl

⇒axshiftcons⇒axassoc⇒axmap⇒axidr⇒axvarshift⇒
axscons⇒ulamvar1⇒ulamvarsh⇒ulamvarind⇒apinj1⇒
apinj2⇒laminj⇒shinj⇒lamnotap⇒apnotvar⇒lamnotvar

⇒induction⇒pushprop⇒induction2lem⇒induction2⇒
substmonoid⇒termmset⇒hoasapinj1⇒hoasapinj2⇒

hoaslaminj⇒hoaslamnotap⇒hoaslamnotvar⇒hoasapnotvar

⇒hoasinduction lem1⇒hoasinduction lem2⇒
hoasinduction lem3⇒hoasinduction

hoasinduction lthm 1 is:

induction2⇒axvarid⇒axclos⇒axvarshift⇒axmap⇒axidl

⇒hoasinduction

We have already proven this theorem informally in chapter 2. LEO can not prove
this theorem with both representations. Since Representation II is better than
Representation I, we discuss only Representation II. Now we tried to split this

32

theorem into smaller pieces. We prove this theorem using induction2 by hand
(see chapter 2). So we can match three conditions of hoasinduction with three
condition of induction2. We called these three lemmas:

hoasinduction lem1,hoasinduction lem2,hoasinduction lem3

• hoasinduction lem1

∀Psubst→term→subst→o.(∀MsubstAtermNsubstKsubst.

PM A(compK N)⇒P(compM K)(subAK)N)⇒
(∀MsubstAtermNsubstKsubst.

P(compM K)(subAK)N⇒PM A(compK N))⇒
(∀Aterm.hoasvaridAid⇒PidAid)⇒

∀Aterm.varA⇒PidAid

• hoasinduction lem2

∀Psubst→term→subst→o.(∀MsubstAtermNsubstKsubst.

PM A(compK N)⇒P(compM K)(subAK)N)⇒
(∀MsubstAtermNsubstKsubst.

P(compM K)(subAK)N⇒PM A(compK N))⇒
(∀AtermBterm.PidAid⇒PidBid⇒

Pid(hoasapidAidB)id)⇒
∀AtermBterm.PidAid⇒PidBid⇒Pid(apAB)id

• hoasinduction lem3

∀Psubst→term→subst→o.(∀MsubstAtermNsubstKsubst.

PM A(compK N)⇒P(compM K)(subAK)N)⇒
(∀MsubstAtermNsubstKsubst.

P(compM K)(subAK)N⇒PM A(compK N))⇒
(∀Fsubst→term→term.(∀MsubstAtermNsubst.

sub(F M A)N = F (compM N)(subAN))⇒
(∀Aterm.PidAid⇒Pid(F idA)id)⇒

Pid(hoaslamidλMsubstAterm.F M A)id)⇒
∀Aterm.(∀Bterm.PidBid⇒Pid(subA(pushBid))id)⇒

Pid(lamA)id

33

Then the hoasinduction lthm 2 should be:

induction2⇒hoasinduction lem1⇒hoasinduction lem2⇒
hoasinduction lem3⇒hoasinduction

LEO could prove hoasinduction lem1 gthm and hoasinduction lem2 gthm,
but hoasinduction lem3 gthm (the λ case) was still too hard. We determined
which axioms and previous results are needed to prove hoasinduction lem3 and
add these to hoasinduction lem3 lthm.

• hoasinduction lem3 lthm 1

axvarid⇒axvarshift⇒axclos⇒axmap⇒hoasinduction lem3

LEO could not prove this. After a careful examination of the informal proof, we
notice the proof does not require the condition on Ψ:

kn ∈Ψ(m,a) iff n ∈Ψ(mk,ak)

We modified the hoasinduction lem3 to hoasinduction lem3a by deleting the
the Ψ- condition.

• hoasinduction lem3a

∀Psubst→term→subst→o.(∀Fsubst→term→term.

(∀MsubstAtermNsubst.

sub(F M A)N = F (compM N)(subAN))⇒
(∀Aterm.PidAid⇒Pid(F idA)id)⇒

Pid(hoaslamidλMsubstAterm.F M A)id)⇒
∀Aterm.(∀Bterm.PidBid⇒Pid(subA(pushBid))id)⇒

Pid(lamA)id

• hoasinduction lem3a lthm 1

axvarid⇒axvarshift⇒axclos⇒axmap⇒hoasinduction lem3a

LEO could not prove hoasinduction lem3a lthm 1. In the informal proof for
the λ-case we choose f to be

f (m,a) = b[a.m]

34

so that
λb = λ(f (↑,1)).

To test whether LEO can solve the unification problem, we created a new lemma
hoasinduction lem3b.

• hoasinduction lem3b

∀Bterm.(∃Fsubst→term→term.subB(pushonesh))

= F shone

LEO could not prove this either. There is a flag flag-max-uni-depth in LEO,
the standard setting for this flag is 5.
It is too low for LEO to prove hoasinduction lem3b. When the flag is manually
set to 10, LEO could find the proof, i.e. LEO could find the unifier.

We defined a new version of hoasinduction lem3a lthm 1 that assumes
hoasinduction lem3b and see if LEO can prove it. It should look something
like

• hoasinduction lem3a lthm 2

axvarid⇒axvarshift⇒axclos⇒axmap⇒hoasinduction lem3b

⇒hoasinduction lem3a

LEO could not prove hoasinduction lem3a lthm 2.

LEO could not prove hoasinduction lem3a lthm 1 and
hoasinduction lem3a lthm 2 We tried to modify hoasinduction lem3a so
that it no longer needs to use the sigma-equations.
Currently hoasinduction lem3a needs axvarid, axvarshift, axclos, and axmap.
We should be able to create hoasinduction lem3aa which looks almost the
same as hoasinduction lem3a, but does not need any of axvarid, axvarshift,
axclos, and axmap.

LEO can hopefully prove an hoasinduction lem3a lthm 3 of the form:

axvarid⇒axvarshift⇒axclos⇒
axmap⇒hoasinduction lem3aa⇒hoasinduction lem3a

35

• hoasinduction lem3aa

∀Psubst→term→subst→o.(∀Fsubst→term→term.

(∀MsubstAtermNsubst.sub(F M A)N = F (compM N)(subAN))⇒
(∀Aterm.PidAid⇒Pid(F idA)id)⇒

Pid(hoaslamidλMsubstAterm.F M A)id)⇒
∀Aterm.(∀Bterm.PidBid⇒Pid(subA(pushBid))id)⇒

Pid(lam(subA(pushonesh)))id

With standard f lag-max-uni-depth LEO could not prove
hoasinduction-lem3aa lthm. LEO even could not prove this when the f lag-
max-uni-depth is set as high as 10.

LEO could prove hoasinduction lem3a lthm 3, because from
hoasinduction lem3aa to hoasinduction lem3a is easy. LEO could also prove
hoasinduction lem3 lthm 2 (with ψ-condition):

axvarid⇒axvarshift⇒hoasinduction lem3aa⇒hoasinduction lem3

We want LEO to prove hoasinduction lthm 2 as following:

induction2⇒hoasinduction lem1⇒hoasinduction lem2⇒
hoasinduction lem3⇒hoasinduction

But LEO could not prove this either.

We tried another way to break down the proof of hoasinduction.
We defined hoasinduction lem0, which gives exactly the relationship between
hoasinduction and induction2.

Induction2 Hoasinduction
Property Qterm→o Psubst→term→subst→o

First we define the hoasinduction p and p prime.

• hoasinduction p and p prime

λPQ.∀Xterm.QX ⇔ PidX id

• hoasinduction lem0

∀P.∃Q.hoasinduction p and p primePQ

36

LEO can prove hoasinduction lem0.

Now we match three condition of hoasinduction with three condition of
induction2 using the definition hoasinduction p and p prime.

• hoasinduction lem1v2

∀Psubst→term→subst→oQterm→o.(∀MsubstAtermNsubstKsubst.

PM A(compK N)⇒P(compM K)(subAK)N)⇒
(∀MsubstAtermNsubstKsubst.

P(compM K)(subAK)N⇒PM A(compK N))⇒
(∀Aterm.hoasvaridAid⇒PidAid)⇒

hoasinduction p and p primePQ⇒∀Aterm.varA⇒QA

• hoasinduction lem2v2

∀Psubst→term→subst→oQterm→o.(∀MsubstAtermNsubstKsubst.

PM A(compK N)⇒P(compM K)(subAK)N)⇒
(∀MsubstAtermNsubstKsubst.

P(compM K)(subAK)N⇒PM A(compK N))⇒
(∀AtermBterm.PidAid⇒PidBid⇒

Pid(hoasapidAidB)id)⇒
hoasinduction p and p primePQ⇒∀AtermBterm.QA⇒QB⇒

Q(apAB)

• hoasinduction lem3v2

∀Psubst→term→subst→oQterm→o.(∀MsubstAtermNsubstKsubst.

PM A(compK N)⇒P(compM K)(subAK)N)⇒
(∀MsubstAtermNsubstKsubst.P(compM K)(subAK)N⇒PM A(compK N))

⇒(∀Fsubst→term→term.(∀MsubstAtermNsubst.

sub(F M A)N = F (compM N)(subAN))⇒
(∀Aterm.PidAid⇒Pid(F idA)id)⇒

Pid(hoaslamidλMsubstAterm.F M A)id)⇒
hoasinduction p and p primePQ⇒

∀Aterm.(∀Bterm.QB⇒Q(subA(pushBid)))⇒Q(lamA)

37

As before hoasinduction lem1v2 and hoasinduction lem2v2 were straight-
forward in LEO. We turned our attention to hoasinduction lem3v2. LEO could
not prove it. The hoasinduction lem3v2 lthm should look like:

• hoasinduction lem3v2 lthm

axvarid⇒axvarshift⇒
axclos⇒axmap⇒hoasinduction lem3v2

For the reasons discussed before we modified the hoasinduction lem3v2 to
hoasinduction lem3v2a by deleting the ψ-condition.

• hoasinduction lem3v2a

∀Psubst→term→subst→oQterm→o.(∀Fsubst→term→term.

(∀MsubstAtermNsubst.sub(F M A)N = F (compM N)(subAN))⇒
(∀Aterm.PidAid⇒Pid(F idA)id)⇒

Pid(hoaslamidλMsubstAterm.F M A)id)⇒
hoasinduction p and p primePQ⇒

∀Aterm.(∀Bterm.QB⇒Q(subA(pushBid)))⇒Q(lamA)

The hoasinduction lem3v2a lthm looks like:

• hoasinduction lem3v2a lthm

axvarid⇒
axvarshift⇒axclos⇒axmap⇒hoasinduction lem3v2a

LEO could not prove this. But we hope, if we define the hoasinduction lthm 3
as following, LEO can prove it.

hoasinduction lem0⇒induction2⇒axvarid⇒hoasinduction lem3v2a

⇒hoasinduction

Finally LEO could prove it, i.e. LEO could prove hoasinduction, but could not
prove the sublemma hoasinduction lem3v2a of it. Hoasinduction lem3v2a
is still too hard for LEO.

38

4.5 Pushprop

We want to prove this result in LEO.

Theorem 1 (pushprop) Let Φ be a property, a ∈ T and m ∈ M. Assume for all
x ∈ Var, (x[m])↓σ satisfies Φ. Assume a satisfies Φ. Then (x[a.m])↓σ satisfies Φ
for all x ∈Var.

We encoded this theorem in LEO with Representation II as follows:

∀Pterm→oAtermMsubst.(∀Bterm.varB⇒P(subBM))

⇒PA⇒∀Bterm.varB⇒P(subB(pushAM))

The pushprop lthm is

ulamvar1⇒axvarcons⇒axclos⇒axshiftcons⇒ulamvarind

⇒pushprop

We wanted to get LEO to prove pushprop. We now know that LEO can prove
pushprop if it is given ulamvar1, ulamvarind, axvarcons, axclos, axshiftcons
and the following Lemma:

Theorem 15 (pushprop lem0) For every property φ, term a and
substitution m,there is a property φ′ such that for every term x, x satisfies φ′ iff
(x[a.m])↓σ satisfies φ.

Proof: Just define φ′ in this way.

Originally LEO was not able to prove pushprop lem0. Define:

• pushprop p and p prime

λAtermMsubstPterm→oQterm→o.∀Xterm.QX

⇔ P(subX (pushAM))

• pushprop lem0

39

∀Pterm→oAtermMsubst.∃Qterm→o.pushprop p and p prime

AM PQ

We could write the term pushprop lem0 in ordinary notation as:

∀P∀a∀m∃Q∀x.Qx⇔ P (sub x(push a m))

Here the variables P and Q have type term→ o, the variables a and x have type
term, and the variable m has type subst. Also, the constant sub has type term→
subst→ term, and the constant push has type term→ subst→ subst.

When LEO creates the clauses from the negation of pushprop lem0, there would
be two clauses:

1. QskQ ∨ P(sub skQ (push a m))

2. ¬QskQ ∨ ¬P(sub skQ(push a m))

where P, a and m are skolem constants, skQis a Skolem function of Q, and Q is a
variable to be instantiated.

Solving this problem requires a factoring rule. For example, if we factor the first
clause we should obtain a clause like

P (sub skQ(push a m))

with constraint
Q skQ =? P(sub skQ(push a m))

where the unification constraint could be solved to give the desired value for Q:

λx.P (sub x (push a m))

Since LEO did not have this factoring rule, it could not prove pushprop lem0.
After Chris Benzmüller added the factoring rule to LEO it could prove the
pushprop lem0. Also LEO could prove the following version of pushprop lthm:

pushprop lem0⇒ulamvar1⇒axvarcons⇒axclos⇒axshiftcons

⇒ulamvarind⇒pushprop

40

Chapter 5

Conclusion and Future Work

5.1 Conclusion

LEO is sensitive to the representation. In this project we developed two represen-
tations. We defined only one base type ι in Representation I and two base types
term and subst in Representation II. LEO could prove more theorems in Rep-
resentation II. Using the Representation II LEO could prove the theorems much
more quickly. For example LEO could prove Substmonoid gthm in Representa-
tion I in 11.589s and 1.324s in Representation II.

LEO is sensitive to how many assumptions are given. There is one lthm and
one gthm for each theorem. Sometimes LEO could only prove the lthm not the
gthm, because lthm has much fewer assumptions than the gthm. For example
induction2. There are 26 assumptions for induction2 gthm, but only 2 as-
sumptions for induction2 lthm. LEO could prove induction2 lthm in 0.581s,
but LEO could not prove induction2 gthm.

Instantiation of higher order variables is hard for LEO. Sometimes LEO can find
the instantiation, for example theorem hoaslaminj. Sometimes LEO can not find
the instantiation, for example theorem hoasinduction.

There are four of our 14 theorems, i.e. pushprop, induction2lem, induction2
and hoasinduction which used some induction principle. At the beginning of
our reseach LEO could not prove any of these, Finally LEO could prove pushprop,
induction2 and hoasinduction, but induction2lem is still hard. Induction is
hard for LEO.

41

5.2 Future Work

One task left is to try to prove some intermediate lemmas for hoasinduction.
By hoasinduction we created together 11 intermediate lemmas, 8 of these LEO
was able to prove, hoasinduction lem3aa, hoasinduction lem3v2 and
hoasinduction lem3v2a LEO could not prove.

We will also try to prove induction2lem by creating intermediate lemma. By
informal proof we use induction to prove induction2lem, so we can match
the first condition of induction2lem to first condition of induction, second
condition of induction2lem to second condition of induction, and so on.

As a future project, we could try to build induction into LEO. In principle LEO can
prove theorems which used some induction principle, but it is hard. For example,
we want to prove hoasinduction, using induction2.

Theorem 3 (induction2) Let Φ be a property such that the following hold:

1. For all x ∈Var, x satisfies Φ.

2. For all a,b ∈ T , if a and b satisfy Φ, then (ab)↓σ satisfies Φ.

3. For all a ∈ T , if (a[b.id])↓σ satisfies Φ whenever b ∈ T satisfies Φ, then
(λa)↓σ satisfies Φ.

Then for all a ∈ T , a satisfies Φ.

To use induction2, a theorem prover should:

1. Recognize induction2 is an induction principle.

2. Choose an appropriate Φ.

3. Prove each of 1, 2 and 3 for this Φ.

LEO does not recognize induction2. Currently LEO-II employs a higher-order
resolution calculus, where the search for an empty clause and higher-order pre-
unification are interleaved, but LEO does not recognize the induction principle. It
would be useful to build induction into LEO.

42

Bibliography

[1] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy.
Explicit substitutions. In Conference Record of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages, San Francisco, Cali-
fornia, pages 31–46. ACM, 1990.

[2] Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe. The core tptp lan-
guage for classical higher-order logic. In Fourth International Joint Confer-
ence on Automated Reasoning (IJCAR’06), volume 5195 of LNAI. Springer,
2008.

[3] Christoph Benzmüller, Frank Theiss, Larry Paulson, and Arnaud Fietzke.
LEO-II - a cooperative automatic theorem prover for higher-order logic. In
Fourth International Joint Conference on Automated Reasoning (IJCAR’06),
volume 5195 of LNAI. Springer, 2008.

[4] Chad E. Brown. M-set models. In C. E. Benzmüller, C. E. Brown, J. Siek-
mann, and R. Statman, editors, Reasoning in Simple Type Theory: Festschrift
in Honor of Peter B. Andrews on His 70th Birthday, Studies in Logic and the
Foundations of Mathematics. IFCoLog, 2008. To appear.

[5] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order unification
via explicit substitutions. In D. Kozen, editor, Proceedings of the Tenth An-
nual Symposium on Logic in Computer Science, pages 366–374, San Diego,
California, June 1995. IEEE Computer Society Press.

[6] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceed-
ings of the ACM SIGPLAN ’88 Symposium on Language Design and Imple-
mentation, pages 199–208, Atlanta, Georgia, June 1988.

43

44

Appendix A

Representation II in THF Format

thf(one,constant,(one:term)).

thf(ap,constant,(ap:(term>(term>term)))).

thf(lam,constant,(lam:(term>term))).

thf(sub,constant,(sub:(term>(subst>term)))).

thf(id,constant,(id:subst)).

thf(sh,constant,(sh:subst)).

thf(push,constant,(push:(term>(subst>subst)))).

thf(comp,constant,(comp:(subst>(subst>subst)))).

thf(axapp,definition,(axapp := (![A:term]:(![B:term]:
(![M:subst]:((sub @ (ap @ A @ B) @ M)= (ap @ (sub @
A @ M) @ (sub @ B @ M)))))))).

thf(axvarcons,definition,(axvarcons := (![A:term]:
(![M:subst]:((sub @ one @ (push @ A @ M)) = A))))).

thf(axvarid,definition,(axvarid := (![A:term]:((sub
@ A @ id) = A)))).

45

thf(axabs,definition,(axabs := (![A:term]:(![M:subst]
:((sub @ (lam @ A) @ M) = (lam @ (sub @ A @ (push @
one @ (comp @ M @ sh))))))))).

thf(axclos,definition,(axclos := (![A:term]:(![M:subst]
:(![N:subst]:((sub @ (sub @ A @ M) @ N) = (sub @ A @
(comp @ M @ N)))))))).

thf(axidl,definition,(axidl := (![M:subst]:((comp @
id @ M) = M)))).

thf(axshiftcons,definition,(axshiftcons := (![A:term]
:(![M:subst]:((comp @ sh @ (push @ A @ M)) = M))))).

thf(axassoc,definition,(axassoc := (![M:subst]:(![N:subst]
:(![K:subst]:((comp @ (comp @ M @ N) @ K) = (comp @ M @
(comp @ N @ K)))))))).

thf(axmap,definition,(axmap := (![A:term]:(![M:subst]:(![N:subst]:
((comp @ (push @ A @ M) @ N) = (push @ (sub @ A @ N) @ (comp @ M
@ N)))))))).

thf(axidr,definition,(axidr := (![M:subst]:((comp @ M @ id) = M)))).

thf(axvarshift,definition,(axvarshift := ((push @ one @ sh) = id))).

thf(axscons,definition,(axscons := (![M:subst]:((push @ (sub @ one
@ M) @ (comp @ sh @ M)) = M)))).

thf(var,constant,(var:(term>$o))).

thf(ulamvar1,definition,(ulamvar1 := (var @ one))).

thf(ulamvarsh,definition,(ulamvarsh := (![A:term]:((var @ A) =>
(var @ (sub @ A @ sh)))))).

thf(ulamvarind,definition,(ulamvarind := (![P:(term>$o)]:((P @ one)
=> ((![A:term]:((var @ A) => ((P @ A) => (P @ (sub @ A @ sh)))))

=> (![A:term]:((var @ A) => (P @ A)))))))).

thf(apinj1,definition,(apinj1 := (![A:term]:(![B:term]:(![C:term]:

46

(![D:term]:(((ap @ A @ C) = (ap @ B @ D)) => (A = B)))))))).

thf(apinj2,definition,(apinj2 := (![A:term]:(![B:term]:(![C:term]:
(![D:term]:(((ap @ A @ C) = (ap @ B @ D)) => (C = D)))))))).

thf(laminj,definition,(laminj := (![A:term]:(![B:term]:(((lam @ A)
= (lam @ B)) => (A = B)))))).

thf(shinj,definition,(shinj := (![A:term]:(![B:term]:(((sub @ A @
sh) = (sub @ B @ sh)) => (A = B)))))).

thf(lamnotap,definition,(lamnotap := (![A:term]:(![B:term]:(![C:term]:
(˜ ((lam @ A) = (ap @ B @ C)))))))).

thf(apnotvar,definition,(apnotvar := (![A:term]:(![B:term]:(˜
(var @ (ap @ A @ B))))))).

thf(lamnotvar,definition,(lamnotvar := (![A:term]:(˜ (var @ (lam @ A)
))))).

thf(induction,definition,(induction := (![P:(term>$o)]:((![A:term]:
((var @ A) => (P @ A))) => ((![A:term]:(![B:term]:((P @ A) => ((
P @ B)=> (P @ (ap @ A @ B)))))) => ((![A:term]:((P @ A) => (P @
(lam @ A))))=> (![A:term]:(P @ A)))))))).

thf(pushprop_lem1,definition,(pushprop_lem1 := (![P:(term>$o)]:
(!K:[term.$o]:(![A:term]:((![M:subst]:(![B:term]: (P @ A) =>
(K @ (sub @ A @ (push @ B @ M))))))))))).

thf(pushprop_lem1_gthm,definition,(pushprop_lem1_gthm := (axapp
=> (axvarcons => (axvarid => (axabs => (axclos => (axidl =>
(axshiftcons => (axassoc => (axmap => (axidr => (axvarshift =>
(axscons => (ulamvar1 => (ulamvarsh => (ulamvarind => (apinj1
=> (apinj2 => (laminj => (shinj => (lamnotap => (apnotvar =>
(lamnotvar => (induction => pushprop_lem1)))))))))))))))))))
)))))).

thf(pushprop_lem1_lthm,definition,(pushprop_lem1_lthm :=
(axvarcons => (axclos => (axshiftcons => (ulamvarind =>
pushprop_lem1)))))).

47

thf(pushprop_p_and_p_prime,definition,(pushprop_p_and_p
_prime := (ˆ[A:term]:(ˆ[M:subst]:(ˆ[P:(term>$o)]:
(ˆ[Q:(term>$o)]:![X:$term]:((var @ X) => ((Q @ X) <=>
(P @ (sub @ X @ (push @ A @ M))))))))))).

thf(pushprop_lem1v2,definition,(pushprop_lem1v2 := (![P:
(term>$o)]:(![Q:(term>$o)]:(![A:term]:(![M:subst]:((P @ A) =>
((pushprop_p_and_p_prime @ A @ M @ P @ Q) => (Q @ one))))))))).

thf(pushprop_lem1v2_gthm,definition,(pushprop_lem1v2_gthm :=
(axapp => (axvarcons => (axvarid => (axabs => (axclos => (axidl
=>(axshiftcons =>(axassoc => (axmap => (axidr => (axvarshift =>
(axscons => (ulamvar1 => (ulamvarsh => (ulamvarind => (apinj1
=> (apinj2 => (laminj => (shinj => (lamnotap => (apnotvar =>
(lamnotvar => (induction => pushprop_lem1v2))))))))))))))))))
))))))).

thf(pushprop_lem1v2_lthm,definition,(pushprop_lem1v2_lthm :=
(ulamvar1 => (axvarcons => pushprop_lem1v2)))).

thf(pushprop_p_and_p_prime,definition,(pushprop_p_
and_p_prime := (ˆ[A:term]:(ˆ[M:subst]:(ˆ[P:(term>$o)]
:(ˆ[Q:(term>$o)]:![X:$term]:((Q @ X) <=> (P @
(sub @ X @ (push @ A @ M)))))))))).

thf(pushprop_lem0,definition,(pushprop_lem0 := (![P:(term>
$o)]:(![A:term]:(![M:subst]:(?[Q:(term>$o)]:(pushprop_p_and
_p_prime @ A @ M @ P @ Q))))))).

thf(pushprop_lem0_gthm,definition,(pushprop_lem0_gthm :=
(axapp => (axvarcons => (axvarid => (axabs => (axclos =>
(axidl => (axshiftcons => (axassoc => (axmap => (axidr =>
(axvarshift => (axscons => (ulamvar1 =>(ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>
(lamnotap => (apnotvar => (lamnotvar => (induction =>
pushprop_lem0))))))))))))))))))))))))).

thf(pushprop_lem0_lthm,definition,(pushprop_lem0_lthm :=
pushprop_lem0)).

thf(pushprop_lem1v2,definition,(pushprop_lem1v2 := (![P:

48

(term>$o)]:(![Q:(term>$o)]:(![A:term]:(![M:subst]:((P @ A)
=> ((pushprop_p_and_p_prime @ A @ M @ P @ Q) =>
(Q @ one))))))))).

thf(pushprop_lem1v2_gthm,definition,(pushprop_lem1v2_gthm
:= (axapp => (axvarcons => (axvarid => (axabs => (axclos
=> (axidl => (axshiftcons => (axassoc => (axmap => (axidr
=> (axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>

(lamnotap => (apnotvar => (lamnotvar => (induction =>
pushprop_lem1v2))))))))))))))))))))))))).

thf(pushprop_lem1v2_lthm,definition,(pushprop_lem1v2_lthm :=
(axvarcons => pushprop_lem1v2))).

thf(pushprop_lem2v2,definition,(pushprop_lem2v2 := (![P:
(term>$o)]:(![Q:(term>$o)]:(![A:term]:(![M:subst]:((pushprop
_p_and_p_prime @ A @ M @ P @ Q) => ((![B:term]:((var @ B)
=>(P @ (sub @ B @ M)))) => (![C:term]:((var @ C) => ((Q @ C)
=> (Q @ (sub @ C @ sh))))))))))))).

thf(pushprop_lem2v2_gthm,definition,(pushprop_lem2v2_gthm
:= (axapp => (axvarcons => (axvarid => (axabs => (axclos
=> (axidl => (axshiftcons => (axassoc => (axmap => (axidr
=> (axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>

(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>
(lamnotap => (apnotvar => (lamnotvar => (induction =>
pushprop_lem2v2))))))))))))))))))))))))).

thf(pushprop_lem2v2_lthm,definition,(pushprop_lem2v2_lthm
:= (axclos =>
(axshiftcons => pushprop_lem2v2)))).

thf(pushprop_lem3v2,definition,(pushprop_lem3v2 := (![P:
(term>$o)]:(![Q:(term>$o)]:(![A:term]:(![M:subst]:((pushprop
_p_and_p_prime @ A @ M @ P @ Q) => ((![B:term]:((var @ B)
=> (Q @ B))) => (![B:term]:((var @ B) => (P @ (sub @ B @
(push @ A @ M))))))))))))).

thf(pushprop_lem3v2_lthm,definition,(pushprop_lem3v2_lthm
:= pushprop_lem3v2)).

49

thf(pushprop,definition,(pushprop := (![P:(term>$o)]:(![A:
term]:(![M:subst]:((![B:term]:((var @ B) => (P @ (sub @ B
@ M)))) => ((P @ A) => (![B:term]:((var @ B) => (P @ (sub
@ B @ (push @ A @ M)))))))))))).

thf(pushprop_gthm,definition,(pushprop_gthm := (axapp =>
(axvarcons => (axvarid => (axabs => (axclos => (axidl =>
(axshiftcons => (axassoc => (axmap => (axidr => (axvarshift
=> (axscons => (ulamvar1 => (ulamvarsh => (ulamvarind =>
(apinj1 => (apinj2 => (laminj => (shinj => (lamnotap =>

(apnotvar => (lamnotvar => (induction => pushprop)))))))))
)))))))))))))))).

thf(pushprop_lthm,definition,(pushprop_lthm := (pushprop_
lem0 => (pushprop_lem1v2 => (pushprop_lem2v2 => (pushprop
_lem3v2 => (ulamvarind => pushprop))))))).

thf(pushprop_lthm,definition,(pushprop_lthm := (pushprop
_lem0 => (ulamvar1 => (axvarcons => (axclos => (axshiftcons
=> (ulamvarind => pushprop)))))))).

thf(induction2lem,definition,(induction2lem := (![P:(term
>$o)]:((![A:term]:(![B:term]:((P @ A) => ((P @ B) => (P @
(ap @ A @ B))))))=> ((![A:term]:((![B:term]:((P @ B) =>
(P @ (sub @ A @ (push @ B @ id))))) => (P @ (lam @ A))))
=> (![A:term]:(![M:subst]:((![B:term]:((var @ B) => (P @
(sub @ B @ M)))) => (P @ (sub @ A @ M)))))))))).

thf(induction2lem_gthm,definition,(induction2lem_gthm :=
(axapp => (axvarcons => (axvarid => (axabs => (axclos =>
(axidl => (axshiftcons => (axassoc => (axmap => (axidr
=> (axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj

=> (lamnotap => (apnotvar => (lamnotvar => (induction =>
(pushprop =>induction2lem)))))))))))))))))))))))))).

thf(induction2lem_lthm,definition,(induction2lem_lthm :=
(axapp => (axvarcons => (axabs => (axclos => (axshiftcons
=> (axassoc => (axmap=> (axidr => (induction => (pushprop

50

=> induction2lem)))))))))))).

thf(induction2,definition,(induction2 := (![P:(term>$o)]:
((![A:term]:((var @ A) => (P @ A))) => ((![A:term]:(![B:
term]:((P @ A) => ((P @ B)=> (P @ (ap @ A @ B)))))) => (
(![A:term]:((![B:term]:((P @ B) => (P @ (sub @ A @ (push
@ B @ id))))) => (P @ (lam @ A)))) => (![A:term]:(P @ A)
))))))).

thf(induction2_gthm,definition,(induction2_gthm := (axapp
=> (axvarcons => (axvarid => (axabs => (axclos => (axidl =>
(axshiftcons => (axassoc => (axmap => (axidr => (axvarshift
=> (axscons => (ulamvar1 => (ulamvarsh => (ulamvarind =>
(apinj1 => (apinj2 => (laminj => (shinj=> (lamnotap =>
(apnotvar => (lamnotvar => (induction => (pushprop =>

(induction2lem => induction2))))))))))))))))))))))))))).

thf(induction2_lthm,definition,(induction2_lthm := (axvarid
=> (induction2lem => induction2)))).

thf(substmonoid,definition,(substmonoid := (((![M:subst]:
(![N:subst]:(![K:subst]:((comp @ (comp @ M @ N) @ K) =
(comp @ M @ (comp @ N @ K)))))) & (![M:subst]:((comp @
id @ M) = M))) & (![M:subst]:((comp @ M @ id) = M))))).

thf(substmonoid_gthm,definition,(substmonoid_gthm :=
(axapp =>(axvarcons => (axvarid => (axabs => (axclos =>
(axidl => (axshiftcons => (axassoc => (axmap => (axidr
=> (axvarshift => (axscons => (ulamvar1 => (ulamvarsh
=> (ulamvarind => (apinj1 => (apinj2 => (laminj =>
(shinj => (lamnotap => (apnotvar => (lamnotvar =>

(induction => (pushprop => (induction2lem => (induction2
=> substmonoid)))))))))))))))))))))))))))).

thf(substmonoid_lthm,definition,(substmonoid_lthm :=
(axidl => (axassoc => (axidr => substmonoid))))).

thf(termmset,definition,(termmset := ((![A:term]:(
![M:subst]:(![N:subst]:((sub @ (sub @ A @ M) @ N) = (sub
@ A @ (comp @ M @ N)))))) & (![A:term]:((sub @ A @ id)
= A))))).

51

thf(termmset_gthm,definition,(termmset_gthm := (axapp =>
(axvarcons => (axvarid => (axabs => (axclos => (axidl =>
(axshiftcons => (axassoc => (axmap => (axidr => (axvarshift
=> (axscons => (ulamvar1 => (ulamvarsh => (ulamvarind =>
(apinj1 => (apinj2 => (laminj => (shinj => (lamnotap =>
(apnotvar => (lamnotvar => (induction => (pushprop =>
(induction2lem => (induction2 => (substmonoid =>
termmset))))))))))))))))))))))))))))).

thf(termmset_lthm,definition,(termmset_lthm := (axvarid =>
(axclos => termmset)))).

thf(hoasap,definition,(hoasap := (ˆ[M:subst]:(ˆ[A:term]:
(ˆ[N:subst]:(ˆ[B:term]:(ap @ (sub @ A @ N) @ B))))))).

thf(hoaslam,definition,(hoaslam := (ˆ[M:subst]:(ˆ[F:
(subst>(term>term))]:(lam @ (F @ sh @ one)))))).

thf(hoasvar,definition,(hoasvar := (ˆ[M:subst]:
(ˆ[A:term]:(ˆ[N:subst]:(var @ (sub @ A @ N))))))).

thf(hoasapinj1,definition,(hoasapinj1 := (![A:term]
:(![B:term]:(![C:term]:(![D:term]:(((hoasap @ id @ A @
id @ C) = (hoasap @ id @ B @ id @ D)) => (A = B)))))))).

thf(hoasapinj1_gthm,definition,(hoasapinj1_gthm := (axapp
=>(axvarcons => (axvarid => (axabs => (axclos => (axidl =>
(axshiftcons => (axassoc => (axmap => (axidr => (axvarshift
=>(axscons => (ulamvar1 => (ulamvarsh => (ulamvarind =>
(apinj1 => (apinj2 => (laminj => (shinj => (lamnotap =>
(apnotvar => (lamnotvar => (induction => (pushprop =>
(induction2lem => (induction2 => (substmonoid => (termmset
=> hoasapinj1)))))))))))))))))))))))))))))).

thf(hoasapinj1_lthm,definition,(hoasapinj1_lthm := (axvarid
=>(apinj1 => hoasapinj1)))).

thf(hoasapinj2,definition,(hoasapinj2 := (![A:term]:(
![B:term]:(![C:term]:(![D:term]:(((hoasap @ id @ A @ id @
C) = (hoasap @ id @ B @ id @ D)) => (C = D)))))))).

52

thf(hoasapinj2_gthm,definition,(hoasapinj2_gthm := (axapp =>
(axvarcons => (axvarid => (axabs => (axclos => (axidl =>
(axshiftcons => (axassoc => (axmap => (axidr => (axvarshift
=> (axscons => (ulamvar1 => (ulamvarsh => (ulamvarind =>
(apinj1=> (apinj2 => (laminj => (shinj => (lamnotap =>
(apnotvar => (lamnotvar => (induction => (pushprop =>
(induction2lem => (induction2 => (substmonoid => (termmset
=> (hoasapinj1 => hoasapinj2))))))))))))))))))))))))))))))).

thf(hoasapinj2_lthm,definition,(hoasapinj2_lthm := (apinj2 =>
hoasapinj2))).

thf(hoaslaminj,definition,(hoaslaminj := (![F:(subst>(term>
term))]:((![M:subst]:(![A:term]:(![N:subst]:((sub @ (F @ M
@ A) @ N) = (F @(comp @ M @ N) @ (sub @ A @ N)))))) => (
![G:(subst>(term>term))]:((![M:subst]:(![A:term]:(![N:subst]
:((sub @ (G @ M @ A) @ N) = (G @ (comp @ M @ N) @ (sub @ A
@ N)))))) => (((hoaslam @ id @ (ˆ[M:subst]:(ˆ[A:term]:(F @
M @ A)))) = (hoaslam @ id @ (ˆ[M:subst]:(ˆ[A:term]:(G @ M
@ A))))) => (![M:subst]:(![A:term]:((F @ M @ A)= (G @ M @
A))))))))))).

thf(hoaslaminj_gthm,definition,(hoaslaminj_gthm := (axapp =>
(axvarcons => (axvarid => (axabs => (axclos => (axidl =>
(axshiftcons => (axassoc => (axmap => (axidr => (axvarshift =>
(axscons => (ulamvar1 => (ulamvarsh => (ulamvarind => (apinj1
=> (apinj2 => (laminj => (shinj => (lamnotap => (apnotvar =>
(lamnotvar => (induction => (pushprop => (induction2lem =>
(induction2 => (substmonoid => (termmset => (hoasapinj1 =>
(hoasapinj2 => hoaslaminj)))))))))))))))))))))))))))))))).

thf(hoaslaminj_lthm,definition,(hoaslaminj_lthm := (axvarcons
=> (axshiftcons => (laminj => hoaslaminj))))).

thf(hoaslamnotap,definition,(hoaslamnotap := (![F:(subst>
(term>term))]:((![M:subst]:(![A:term]:(![N:subst]:((sub @
(F @ M @ A) @ N) = (F @ (comp @ M @ N) @ (sub @ A @ N))))))
=> (![A:term]:(![B:term]:(˜ ((hoaslam @ id @ (ˆ[M:subst]:

(ˆ[C:term]:(F @ M @ C)))) = (hoasap @ id @ A @ id @ B))))))))).

53

thf(hoaslamnotap_gthm,definition,(hoaslamnotap_gthm :=
(axapp=> (axvarcons => (axvarid => (axabs => (axclos =>
(axidl =>(axshiftcons => (axassoc => (axmap => (axidr =>
(axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj
=> (lamnotap => (apnotvar => (lamnotvar => (induction =>
(pushprop => (induction2lem => (induction2 => (substmonoid
=> (termmset => (hoasapinj1 => (hoasapinj2 => (hoaslaminj
=> hoaslamnotap))))))))))))))))))))))))))))))))).

thf(hoaslamnotap_lthm,definition,(hoaslamnotap_lthm :=
(lamnotap => hoaslamnotap))).

thf(hoaslamnotvar,definition,(hoaslamnotvar := (![F:
(subst>(term>term))]:((![M:subst]:(![A:term]:(![N:subst]:
((sub @ (F @ M @ A) @ N) = (F @ (comp @ M @ N) @ (sub @
A @ N)))))) => (˜ (hoasvar @ id @ (hoaslam @ id @
(ˆ[M:subst]:(ˆ[A:term]:(F @ M @ A)))) @ id)))))).

thf(hoaslamnotvar_gthm,definition,(hoaslamnotvar_gthm :=
(axapp => (axvarcons => (axvarid => (axabs => (axclos =>
(axidl => (axshiftcons => (axassoc => (axmap => (axidr =>
(axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>
(lamnotap => (apnotvar => (lamnotvar => (induction =>
(pushprop => (induction2lem => (induction2 => (substmonoid
=> (termmset => (hoasapinj1 => (hoasapinj2 => (hoaslaminj
=> (hoaslamnotap => hoaslamnotvar)))))))))))))))))
))))))))))))))))).

thf(hoaslamnotvar_lthm,definition,(hoaslamnotvar_lthm :=
(axvarid => (lamnotvar => hoaslamnotvar)))).

thf(hoasapnotvar,definition,(hoasapnotvar := (![A:term]:
(![B:term]:(˜ (hoasvar @ id @ (hoasap @ id @ A @ id @ B)
@ id)))))).

thf(hoasapnotvar_gthm,definition,(hoasapnotvar_gthm :=
(axapp => (axvarcons => (axvarid => (axabs => (axclos =>
(axidl => (axshiftcons => (axassoc => (axmap => (axidr
=> (axvarshift => (axscons => (ulamvar1 => (ulamvarsh

54

=> (ulamvarind => (apinj1 => (apinj2 => (laminj =>
(shinj => (lamnotap => (apnotvar => (lamnotvar =>
(induction => (pushprop => (induction2lem =>
(induction2 => (substmonoid => (termmset => (hoasapinj1
=> (hoasapinj2 => (hoaslaminj => (hoaslamnotap =>
(hoaslamnotvar => hoasapnotvar)))))))))))))))))))))
)))))))))))))).

thf(hoasapnotvar_lthm,definition,(hoasapnotvar_lthm :=
(axvarid => (apnotvar => hoasapnotvar)))).

thf(hoasinduction_p_and_p_prime,definition,
(hoasinduction_p_and_p_prime := (ˆ[P:(subst>(term>(subst>
$o)))]:(ˆ[Q:(term>$o)]:![X:term]:((Q @ X) <=> (P @ id @ X
@ id)))))).

thf(hoasinduction_lem0,definition,(hoasinduction_lem0 :=

(![P:(subst>(term>(subst>$o)))]:(?[Q:(term>$o)]:
(hoasinduction_p_and_p_prime @ P @ Q))))).

thf(hoasinduction_lem0_lthm,definition,(hoasinduction_lem0
_lthm := hoasinduction_lem0)).

thf(hoasinduction_lem1v2,definition,(hoasinduction_lem1v2 :=
(![P:(subst>(term>(subst>$o)))]:(![Q:(term>$o)]:((![M:subst]:
(![A:term]:(![N:subst]:(![K:subst]:((P @ M @ A @ (comp @ K @
N)) => (P @ (comp @ M @ K) @ (sub @ A @ K) @ N)))))) =>
((![M:subst]:(![A:term]:(![N:subst]:(![K:subst]:((P @ (comp
@ M @ K) @ (sub @ A @ K) @ N) => (P @ M @ A @ (comp @ K @
N))))))) => ((![A:term]:((hoasvar @ id @ A @ id) => (P @
id @ A @ id))) => ((hoasinduction_p_and_p_prime @ P @ Q)
=> ![A:term]:((var @ A) => (Q @ A)))))))))).

thf(hoasinduction_lem1v2_gthm,definition,(hoasinduction_
lem1v2_gthm := (axapp => (axvarcons => (axvarid => (axabs
=> (axclos => (axidl => (axshiftcons => (axassoc =>
(axmap => (axidr =>(axvarshift => (axscons =>(ulamvar1 =>

(ulamvarsh => (ulamvarind => (apinj1 => (apinj2 =>
(laminj => (shinj =>(lamnotap => (apnotvar => (lamnotvar
=>(induction => (pushprop => (induction2lem => (induction2

55

=> (substmonoid => (termmset => (hoasapinj1 => (hoasapinj2
=> (hoaslaminj=> (hoaslamnotap => (hoaslamnotvar =>
(hoasapnotvar => hoasinduction_lem1v2)))))))))))))))))
))))))))))))))))))).

thf(hoasinduction_lem2v2,definition,(hoasinduction_lem2v2 :=
(![P:(subst>(term>(subst>$o)))]:(![Q:(term>$o)]:((![M:subst]:

(![A:term]:(![N:subst]:(![K:subst]:((P @ M @ A @ (comp @ K @
N)) => (P @ (comp @ M @ K) @ (sub @ A @ K) @ N)))))) =>
((![M:subst]:(![A:term]:(![N:subst]:(![K:subst]:((P @ (comp
@ M @ K) @ (sub @ A @ K) @ N) => (P @ M @ A @ (comp @ K @
N))))))) =>(![A:term]:(![B:term]:((P @ id @ A @ id) =>
((P @ id @ B @ id) => (P @ id @ (hoasap @ id @ A @ id @ B)
@ id))))) =>((hoasinduction_p_and_p_prime @ P @ Q) =>
(![A:term]:(![B:term]:((Q @ A) => ((Q @ B) => (Q @ (ap
@ A @ B))))))))))))).

thf(hoasinduction_lem2v2_gthm,definition,(hoasinduction_
lem2v2_gthm := (axapp => (axvarcons => (axvarid => (axabs
=> (axclos => (axidl => (axshiftcons => (axassoc => (axmap
=> (axidr => (axvarshift => (axscons =>(ulamvar1 =>

(ulamvarsh => (ulamvarind => (apinj1 => (apinj2 => (laminj
=> (shinj => (lamnotap => (apnotvar => (lamnotvar =>
(induction => (pushprop => (induction2lem => (induction2
=> (substmonoid => (termmset => (hoasapinj1 => (hoasapinj2
=> (hoaslaminj => (hoaslamnotap => (hoaslamnotvar =>
(hoasapnotvar =>hoasinduction_lem2v2)))))))))))))))))))
))))))))))))))))).

thf(hoasinduction_lem3v2_f,definition,(hoasinduction_lem3v2_f
:= (![B:term]:(?[F:(subst>(term>term))]:(![A:term]:(![M:subst]
:((F @ M @ A) = (sub @ B @ (push @ A @ M))))))))).

thf(hoasinduction_lem3v2_f_lthm,definition,(hoasinduction_
lem3v2_f_lthm := hoasinduction_lem3v2_f)).

thf(hoasinduction_lem3v2,definition,(hoasinduction_lem3v2 :=
(![P:(subst>(term>(subst>$o)))]:(![Q:(term>$o)]:((![M:subst]:
(![A:term]:(![N:subst]:(![K:subst]:((P @ M @ A @ (comp @ K @
N))=> (P @ (comp @ M @ K) @ (sub @ A @ K) @ N)))))) => ((
![M:subst]:(![A:term]:(![N:subst]:(![K:subst]:((P @ (comp

56

@ M @ K) @ (sub @ A @ K) @ N) => (P @ M @ A @ (comp @ K @
N))))))) => ((![F:(subst>(term>term))]:((![M:subst]:(
![A:term]:(![N:subst]:((sub @ (F @ M @ A) @ N) = (F @
(comp @ M @ N) @ (sub @ A @ N)))))) => ((![A:term]:((P @
id @ A @ id) => (P @ id @ (F @ id @ A) @ id))) => (P
@ id @ (hoaslam @ id @ (ˆ[M:subst]:(ˆ[A:term]:(F @ M @ A)
))) @ id)))) => ((hoasinduction_p_and_p_prime @ P @ Q) =>
(![A:term]:((![B:term]:((Q @ B) => (Q @ (sub @ A @ (push @
B @ id)))) => (Q @ (lam @ A))))))))))))).

thf(hoasinduction_lem3v2_gthm,definition,(hoasinduction_
lem3v2_gthm := (axapp => (axvarcons => (axvarid => (axabs
=> (axclos => (axidl => (axshiftcons => (axassoc => (axmap
=> (axidr => (axvarshift => (axscons =>(ulamvar1 =>
(ulamvarsh => (ulamvarind => (apinj1 => (apinj2 => (laminj
=> (shinj => (lamnotap => (apnotvar => (lamnotvar =>

(induction => (pushprop => (induction2lem => (induction2
=> (substmonoid => (termmset =>hoasapinj1 => (hoasapinj2
=> (hoaslaminj => (hoaslamnotap=> (hoaslamnotvar =>
(hoasapnotvar => hoasinduction_lem3v2))))))))))))))))))
)))))))))))))))))).

thf(hoasinduction_lem3v2_lthm,definition,(hoasinduction_
lem3v2_lthm := (axvarid => (axvarshift => (hoasinduction_
lem3aa =>hoasinduction_lem3v2))))).

thf(hoasinduction_lem3v2_lthm,definition,(hoasinduction_
lem3v2_lthm := (axvarid => (axvarshift => (axclos => (axmap
=> hoasinduction_lem3v2)))))).

thf(hoasinduction_lem3v2a,definition,(hoasinduction_lem3v2a
:= (![P:(subst>(term>(subst>$o)))]:(![Q:(term>$o)]:((![F:
(subst>(term>term))]:((![M:subst]:(![A:term]:(![N:subst]:
((sub @ (F @ M @ A) @ N) = (F @ (comp @ M @ N) @ (sub @ A
@ N)))))) => ((![A:term]:((P @ id @ A @ id) => (P @ id @
(F @ id @ A) @ id))) => (P @ id @ (hoaslam @ id @ (ˆ[M:

subst]:(ˆ[A:term]:(F @ M @ A)))) @ id)))) => ((hoasinduction
_p_and_p_prime @P @ Q) => (![A:term]:((![B:term]:((Q @ B)
=> (Q @ (sub @ A @ (push @ B @ id)))) => (Q @ (lam @ A)))))
)))))).

57

thf(hoasinduction_lem3v2a_lthm,definition,(hoasinduction_
lem3v2a_lthm:= (hoasinduction_lem3v2_f => (axvarid =>
(axvarshift => (axclos => (axmap => hoasinduction_lem3v2a))
))))).

thf(hoasinduction_lem1,definition,(hoasinduction_lem1 :=
(![P:(subst>(term>(subst>$o)))]:((![M:subst]:(![A:term]:
(![N:subst]:(![K:subst]:((P @ M @ A @ (comp @ K @ N)) =>
(P @ (comp @ M @ K) @ (sub @ A @ K) @ N)))))) => ((
![M:subst]:(![A:term]:(![N:subst]:(![K:subst]:((P @
(comp @ M @ K) @ (sub @ A @ K) @ N) => (P @ M @ A @
(comp @ K @ N))))))) => ((![A:term]:((hoasvar @ id @
A @ id) => (P @ id @ A @ id))) => ![A:term]:((var @ A)
=> (P @ id @ A @ id)))))))).

thf(hoasinduction_lem1_gthm,definition,(hoasinduction
_lem1_gthm := (axapp => (axvarcons => (axvarid => (axabs
=> (axclos => (axidl => (axshiftcons => (axassoc => (axmap
=> (axidr => (axvarshift => (axscons => (ulamvar1 =>
(ulamvarsh => (ulamvarind => (apinj1 => (apinj2 => (laminj
=> (shinj => (lamnotap => (apnotvar => (lamnotvar =>
(induction => (pushprop => (induction2lem => (induction2
=> (substmonoid => (termmset => (hoasapinj1 =>
(hoasapinj2 => (hoaslaminj => (hoaslamnotap =>
(hoaslamnotvar => (hoasapnotvar => hoasinduction_lem1)))
))))))))))))))))))))))))))))))))).

thf(hoasinduction_lem1_lthm,definition,(hoasinduction_lem1
_lthm:= (axapp => (axvarcons => (axvarid => (axabs => (axclos
=> (axidl => (axshiftcons => (axassoc => (axmap => (axidr =>
(axvarshift => (axscons =>(ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>
(lamnotap => (apnotvar => (lamnotvar => (induction =>
(pushprop => (induction2lem => (induction2 => (substmonoid
=> (termmset => (hoasapinj1 => (hoasapinj2 => (hoaslaminj =>
(hoaslamnotap => (hoaslamnotvar => (hoasapnotvar =>
hoasinduction_lem1)))))))))))))))))))))))))))))))))))).

thf(hoasinduction_lem2,definition,(hoasinduction_lem2 :=
(![P:(subst>(term>(subst>$o)))]:((![M:subst]:(![A:term]:
(![N:subst]:(![K:subst]:((P @ M @ A @ (comp @ K @ N)) =>

58

(P @ (comp @ M @ K) @ (sub @ A @ K) @ N)))))) => ((![M:subst]
:(![A:term]:(![N:subst]:(![K:subst]:((P @ (comp @ M @ K) @
(sub @ A @ K) @ N) => (P @ M @ A @ (comp @ K @ N))))))) =>

(![A:term]:(![B:term]:((P @ id @ A @ id) => ((P @ id @ B
@ id) => (P @ id @ (hoasap @ id @ A @ id @ B) @ id)))))

=>
(![A:term]:(![B:term]:((P @ id @ A @ id) => ((P @ id @ B @
id) => (P @ id @ (ap @ A @ B) @ id)))))))))).

thf(hoasinduction_lem2_gthm,definition,(hoasinduction_lem2_gthm
:= (axapp => (axvarcons => (axvarid => (axabs => (axclos =>
(axidl => (axshiftcons => (axassoc => (axmap => (axidr =>
(axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>
(lamnotap => (apnotvar => (lamnotvar => (induction =>
(pushprop => (induction2lem => (induction2 => (substmonoid

=> (termmset => (hoasapinj1 => (hoasapinj2 => (hoaslaminj =>
(hoaslamnotap => (hoaslamnotvar => (hoasapnotvar =>

hoasinduction_lem2)))))))))))))))))))))))))))))))))))).

thf(hoasinduction_lem2_lthm,definition,(hoasinduction_lem2_lthm
:= (axapp => (axvarcons => (axvarid => (axabs => (axclos =>
(axidl => (axshiftcons => (axassoc => (axmap => (axidr =>
(axvarshift => (axscons =>(ulamvar1 => (ulamvarsh => (ulamvarind
=> (apinj1 => (apinj2 => (laminj => (shinj => (lamnotap =>
(apnotvar => (lamnotvar => (induction => (pushprop =>
(induction2lem => (induction2 => (substmonoid => (termmset
=> (hoasapinj1 => (hoasapinj2 => (hoaslaminj =>
(hoaslamnotap => (hoaslamnotvar => (hoasapnotvar =>
hoasinduction_lem2)))))))))))))))))))))))))))))))))))).

thf(hoasinduction_lem3aa,definition,(hoasinduction_lem3aa
:= (![P:(subst>(term>(subst>$o)))]:((![F:(subst>(term>
term))]:((![M:subst]:(![A:term]:(![N:subst]:((sub @ (F @
M @ A) @ N) = (F @ (comp @ M @ N) @ (sub@ A @ N)))))) =>
((![A:term]:((P @ id @ A @ id) => (P @ id @ (F @ id @ A)
@ id))) => (P @ id @ (hoaslam @ id @ (ˆ[M:subst]:(ˆ
[A:term]:(F @ M @ A)))) @ id)))) => (![A:term]:((
![B:term]:((P @ id @ B @ id) =>(P @ id @ (sub @ A @
(push @ B @ id)) @ id))) =>(P @ id @ (lam @ (sub @ A
@ (push @ one @ sh)))@ id))))))).

59

thf(hoasinduction_lem3aa_lthm,definition,(hoasinduction_lem3aa
_lthm:= (axclos => (axmap => hoasinduction_lem3aa)))).

thf(hoasinduction_lem3aaa,definition,(hoasinduction_lem3aaa
:= (![P: (subst>(term>(subst>$o)))]:((![F:(subst>(term>term))]
:(?[C:term]:(![M:subst]:(![A:term]:(![N:subst]:(((sub @ (F @
M @ A) @ N) = (sub @ (sub @C @ (push @ A @ M)) @ N)) & ((sub
@ C @ (push @ (sub @ A @ N) @ (comp @ M @ N))) = (F @ (comp @
M @ N) @ (sub@ A @ N)))))))) => ((![A:term]:((P @ id @ A @ id)
=> (P @ id @ (F @ id @ A) @ id))) => (P @ id @ (hoaslam @ id
@ (ˆ[M:subst]:(ˆ[A:term]:(F @ M @ A)))) @ id)))) =>
(![A:term]:((![B:term]:((P @ id @ B @ id) =>(P @ id @ (sub
@ A @ (push @ B @ id)) @ id))) =>(P @ id @ (lam @ (sub @
A @ (push @ one @ sh)))@ id)))))).

thf(hoasinduction_lem3,definition,(hoasinduction_lem3 :=
(![P:(subst>(term>(subst>$o)))]:((![M:subst]:(![A:term]:
(![N:subst]:(![K:subst]:((P @ M @ A @ (comp @ K @ N)) =>
(P @ (comp @ M @ K) @ (sub @ A @ K) @ N)))))) => ((![M:subst]
:(![A:term]:(![N:subst]:(![K:subst]:((P @ (comp @ M @ K) @
(sub @ A @ K) @ N) => (P @ M @ A @ (comp @ K @ N))))))) =>
((![F:(subst>(term>term))]:((![M:subst]:(![A:term]:
(![N:subst]:((sub @ (F @ M @ A) @ N) = (F @ (comp @ M @ N) @
(sub @ A @ N)))))) => ((![A:term]:((P @ id @ A @ id) =>
(P @ id @ (F @ id @ A) @ id))) => (P @ id @ (hoaslam @ id @
(ˆ[M:subst]:(ˆ[A:term]:(F @ M @ A)))) @ id)))) =>
(![A:term]:((![B:term]:((P @ id @ B @ id) => (P @ id @
(sub @ A @ (push @ B @ id)) @ id))) =>(P @ id @ (lam @ A)
@ id))))))))).

thf(hoasinduction_lem3_gthm,definition,(hoasinduction_lem3_
gthm := (axapp => (axvarcons => (axvarid => (axabs => (axclos
=> (axidl => (axshiftcons => (axassoc => (axmap => (axidr =>
(axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>
(lamnotap => (apnotvar => (lamnotvar => (induction =>
(pushprop => (induction2lem => (induction2 => (substmonoid
=> (termmset => (hoasapinj1 => (hoasapinj2 => (hoaslaminj
=> (hoaslamnotap => (hoaslamnotvar => (hoasapnotvar =>
(hoasinduction_lem1 => (hoasinduction_lem2 =>

60

hoasinduction_lem3)))))))))))))))))))))))))))))))))))))).

thf(hoasinduction_lem3_lthm,definition,(hoasinduction_lem3_lthm
:= (axvarid => (axvarshift => (hoasinduction_lem3aa =>
hoasinduction_lem3))))).

thf(hoasinduction_lem3a,definition,(hoasinduction_lem3a :=
(![P:(subst>(term>(subst>$o)))]:((![F:(subst>(term>term))]:
((![M:subst]:(![A:term]:(![N:subst]:((sub @ (F @ M @ A) @ N)
= (F @ (comp @ M @ N) @ (sub @ A @ N)))))) => ((![A:term]:
((P @ id @ A @ id) => (P @ id @ (F @ id @ A) @ id))) =>
(P @ id @ (hoaslam @ id @ (ˆ[M:subst]:(ˆ[A:term]:(F @ M @
A)))) @ id)))) => (![A:term]:((![B:term]:((P @ id @ B @
id) => (P @ id @ (sub @ A @ (push @ B @ id)) @ id))) =>
(P @ id @ (lam @ A) @ id))))))).

thf(hoasinduction_lem3a_gthm,definition,(hoasinduction_lem3a
_gthm := (axapp => (axvarcons => (axvarid => (axabs => (axclos
=> (axidl => (axshiftcons => (axassoc => (axmap => (axidr =>
(axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>
(lamnotap => (apnotvar => (lamnotvar => (induction =>
(pushprop => (induction2lem => (induction2 => (substmonoid
=> (termmset => (hoasapinj1 => (hoasapinj2 => (hoaslaminj
=> (hoaslamnotap => (hoaslamnotvar => (hoasapnotvar =>
(hoasinduction_lem1 => (hoasinduction_lem2 =>

hoasinduction_lem3a)))))))))))))))))))))))))))))))))))))).

thf(hoasinduction_lem3a_lthm,definition,(hoasinduction_lem3a
_lthm := (axvarid => (axvarshift => (axclos => (axmap =>
hoasinduction_lem3a)))))).

thf(hoasinduction_lem3a_lthm,definition,(hoasinduction_lem3a
_lthm := (axvarid => (axvarshift => (hoasinduction_lem3aa =>
hoasinduction_lem3a))))).

thf(hoasinduction_lem3b,definition,(hoasinduction_lem3b :=
(![B:term]:(?[F:(subst>(term>term))]:(sub @ B @ (push @ one
@ sh))= (F @ sh @ one))))).

thf(hoasinduction_lem3b_gthm,definition,(hoasinduction_lem3b

61

_gthm := (axapp => (axvarcons => (axvarid => (axabs => (axclos
=> (axidl => (axshiftcons => (axassoc => (axmap => (axidr =>

(axvarshift => (axscons => (ulamvar1 => (ulamvarsh =>
(ulamvarind => (apinj1 => (apinj2 => (laminj => (shinj =>
(lamnotap => (apnotvar => (lamnotvar => (induction =>
(pushprop => (induction2lem => (induction2 => (substmonoid
=> (termmset => (hoasapinj1 => (hoasapinj2 => (hoaslaminj
=> (hoaslamnotap => (hoaslamnotvar => (hoasapnotvar =>

(hoasinduction_lem1 => (hoasinduction_lem2 => hoasinduction_
lem3b)))))))))))))))))))))))))))))))))))))).

thf(hoasinduction_lem3b_lthm,definition,(hoasinduction_lem3b_
lthm := hoasinduction_lem3b)).

thf(hoasinduction_lem3b,definition,(hoasinduction_lem3b :=
((![F:(subst>(term>term))]:((![M:subst]:(![A:term]:(![N:subst]
:((sub @ (F @ M @ A) @ N) = (F @ (comp @ M @ N) @ (sub @ A @
N))))))))) => (![B:term]:(?[F:(subst>(term>term))]:(sub @ B
@ (push @ one @ sh)) = (F @ sh @ one))))).

thf(hoasinduction_lem3b,definition,(hoasinduction_lem3b :=
(![P:(subst>(term>(subst>$o)))]:((![F:(subst>(term>term))]:
((![M:subst]:(![A:term]:(![N:subst]:((sub @ (F @ M @ A) @ N)
= (F @ (comp @ M @ N) @ (sub @ A @ N)))))) => (![B:term]:
(?[F:(subst>(term>term))]:(sub @ B @ (push @ one @ sh)) =
(F @ sh @ one))))))))).

thf(hoasinduction_lem3bb,definition,(hoasinduction_lem3bb
:=(![P:(subst>(term>(subst>$o)))]:((![F:(subst>(term>term))]
:((![M:subst]:(![A:term]:(![N:subst]:((sub @ (F @ M @ A) @ N)
= (F @ (comp @ M @ N) @ (sub@ A @ N))))))))) => (![B:term]
:(?[F:(subst>(term>term))]:(sub @ B @ (push @ one @ sh)) =
(F @ sh @ one)))))).

thf(hoasinduction_lem3bb_lthm,definition,(hoasinduction_lem3
bb_lthm :=(axvarid => (axvarshift => (axclos => (axmap =>
hoasinduction_lem3bb)))))).

thf(hoasinduction,definition,(hoasinduction :=
(![P:(subst>(term>(subst>$o)))]:((![M:subst]:(![A:term]:
(![N:subst]:(![K:subst]:((P @ M @ A @ (comp @ K @ N)) =>

62

(P @ (comp @ M @ K) @ (sub @ A @ K) @ N)))))) =>
((![M:subst]:(![A:term]:(![N:subst]:(![K:subst]:((P @
(comp @ M @ K) @ (sub @ A @ K) @ N) => (P @ M @ A @
(comp @ K @ N))))))) => ((![A:term]:((hoasvar @ id @
A @ id) => (P @ id @ A @ id))) => ((![A:term]:(![B:term]
:((P @ id @ A @ id) => ((P @ id @ B @ id) => (P @ id @
(hoasap @ id @ A @ id @ B) @ id))))) => ((![F:(subst>
(term>term))]:((![M:subst]:(![A:term]:(![N:subst]:
((sub @ (F @ M @ A) @ N) = (F @ (comp @ M @ N) @ (sub
@ A @ N)))))) => ((![A:term]:((P @ id @ A @ id) => (P
@ id @ (F @ id @ A) @ id))) => (P @ id @ (hoaslam @
id @ (ˆ[M:subst]:(ˆ[A:term]:(F @ M @ A)))) @ id))))
=> (![A:term]:(P @ id @ A @ id)))))))))).

thf(hoasinduction_gthm,definition,(hoasinduction_gthm :=
(axapp => (axvarcons => (axvarid => (axabs => (axclos =>
(axidl => (axshiftcons => (axassoc => (axmap => (axidr
=> (axvarshift => (axscons => (ulamvar1 => (ulamvarsh
=> (ulamvarind => (apinj1 => (apinj2 => (laminj =>
(shinj => (lamnotap => (apnotvar => (lamnotvar =>
(induction => (pushprop => (induction2lem =>
(induction2 => (substmonoid => (termmset => (hoasapinj1
=> (hoasapinj2 => (hoaslaminj => (hoaslamnotap =>
(hoaslamnotvar => (hoasapnotvar => (hoasinduction_lem0
=> (hoasinduction_lem1 => (hoasinduction_lem2 =>
(hoasinduction_lem3 => hoasinduction))))))))))))))
)))))))))))))))))))))))))).

thf(hoasinduction_lthm,definition,(hoasinduction_lthm :=(
induction2 => (hoasinduction_lem1 => (hoasinduction_lem2
=> (hoasinduction_lem3 => hoasinduction)))))).

thf(hoasinduction_lthm,definition,(hoasinduction_lthm :=
(induction2 => (hoasinduction_lem1 => (hoasinduction_lem2
=> (hoasinduction_lem3a => hoasinduction)))))).

thf(hoasinduction_lthm,definition,(hoasinduction_lthm :=
(induction2 => (hoasinduction_lem1v2 => (hoasinduction_lem2v2
=> (hoasinduction_lem3v2 => hoasinduction)))))).

thf(hoasinduction_lthm,definition,(hoasinduction_lthm :=

63

(hoasinduction_lem0 => (induction2 => (hoasinduction_lem1v2
=> (hoasinduction_lem2v2 => (hoasinduction_lem3v2 =>
hoasinduction))))))).

thf(hoasinduction_lthm,definition,(hoasinduction_lthm :=
(hoasinduction_lem0 => (induction2 => (axvarid =>
(hoasinduction_lem3v2 => hoasinduction)))))).

thf(hoasinduction_lthm,definition,(hoasinduction_lthm :=
(hoasinduction_lem0 => (induction2 => (axvarid =>
(hoasinduction_lem3v2a => hoasinduction)))))).

thf(hoasinduction_no_psi_cond,definition,(hoasinduction_no_
psi_cond := (![P:(subst>(term>(subst>$o)))]:((![A:term]:(
![B:term]:((P @ id @ A @ id) => ((P @ id @ B @ id) => (P @
id @ (hoasap@ id @ A @ id @ B) @ id))))) => ((![F:(subst>
(term>term))]:((![M:subst]:(![A:term]:(![N:subst]:((sub @
(F @ M @ A) @ N)= (F @ (comp @ M @ N) @ (sub @ A @ N))))))
=> ((![A:term]:((P @ id @ A @ id) => (P @ id @ (F @ id @
A) @ id))) => (P@ id @ (hoaslam @ id @ (ˆ[M:subst]:(ˆ
[A:term]:(F @ M @ A)))) @ id)))) => (![A:term]:(P @ id @
A @ id))))))).

thf(hoasinduction_no_psi_cond_lthm,definition,(hoasinduction_
no_psi_cond_lthm:= (hoasinduction_lem0 => (induction2 =>
(axvarid => (hoasinduction_lem3v2a => hoasinduction_no_psi_
cond)))))).

64

	Introduction
	The 14 Problems
	M-sets
	-calculus
	M-set Model of HOAS
	The 14 Problems

	Representation in Higher Order Logic
	Representation I
	Representation II
	Hoasap and Hoaslam
	Global and Local Theorems

	LEO/Results
	Basic Results
	Hoaslaminj
	Induction2
	Hoasinduction
	Pushprop

	Conclusion and Future Work
	Conclusion
	Future Work

	Representation II in THF Format

