Models for Intuitionistic Propositional Logic

Hai Dang

08 October, 2015

Abstract

This report discusses two models for intuitionistic propositional logic - Heyting algebras and Kripke structures - and their properties. The relation between Kripke structures and Heyting algebras, and their relation with the natural deduction system and the Fitting's tableau systems are also discussed.

1 Heyting algebras

Definition 1 (Heyting algebra). A *Heyting algebra* is a *preorder* (H, \leq) with a smallest element \perp and a largest element \top and three operations \land , \lor , and \rightarrow satisfying the following conditions for all $x, y, z \in H$:

(i) $x \leq \top$ (ii) $\perp \leq x$ (iii) $z \leq x \land y$ iff $z \leq x$ and $z \leq y$ (iv) $x \lor y \leq z$ iff $x \leq z$ and $y \leq z$ (v) $z \leq x \rightarrow y$ iff $z \land x \leq y$.

We write $x \cong y$ if $x \leq y$ and $y \leq x$.

Fact 2. For any Heyting algebra H and $x, y \in H$, we have the following facts:

- (i) $x \wedge y \leq x$ and $x \wedge y \leq y$
- (ii) $x \wedge y \cong y \wedge x$
- (iii) $x \leq x \lor y$ and $y \leq x \lor y$
- (iv) $x \lor y \cong y \lor x$
- $(\mathbf{v}) \ (x \to y) \land x \leq y$
- (vi) $x \leq y$ iff $x \lor y \cong y$.

Definition 3 (Valuation on a Heyting algebra). A valuation of a Heyting algebra H is a function $V : P \mapsto H$ that assigns to each propositional variable a specific element of the algebra, where P is the infinite set of propositional variables. The valuation is extended to formulas recursively:

$$V(\perp) = \perp$$
$$V(s \to t) = V(s) \to V(t)$$
$$V(s \land t) = V(s) \land V(t)$$
$$V(s \lor t) = V(s) \lor V(t)$$

Note that \land , \lor , \rightarrow , and \perp on the left-hand side are the connectives and Falsehood constant of the logic, while on the right-hand side are the operations and smallest element of the Heyting algebra, respectively.

A valuation of a list of formulas $V(\Gamma)$ is defined as the valuation of the conjunction of the formulas in that list:

$$V(nil) = \top$$
$$V(s, \Gamma) = V(s) \land V(\Gamma)$$

Definition 4 (Heyting entailment). We say that s is H-entailed by Γ , denoted $\Gamma \vDash_H s$, if $V(\Gamma) \leq V(s)$ for all valuations V of H.

Lemma 5 (Soundness for Ni). Given H an arbitrary Heyting algebra, if $\Gamma \vdash^{i} s$, then $\Gamma \vDash_{H} s$.

Proof. By induction on the derivation $\Gamma \vdash^{i} s$.

Collorary 6 (Semantics Equivalence). If $\vdash^i s \leftrightarrow t$, then for any Heyting algebra H and its valuation $V, V(s) \cong V(t)$.

Proof. By the soundness lemma we have $\vDash_H s \leftrightarrow t$, therefore $V(nil) = \top \leq V(s \leftrightarrow t) = V(s \rightarrow t) \land V(t \rightarrow s)$. Then we have $\top \leq V(s \rightarrow t)$ and $\top \leq V(t \rightarrow s)$, which lead to $V(s) \leq V(t)$ and $V(t) \leq V(s)$.

Lemma 7. If $\top \leq V(s)$ for any Heyting algebra H and any valuation V of H, then $\vdash^{i} s$.

Proof. We construct a Heyting algebra H_s of *formulas* where $s \leq t = \vdash^i s \to t$. The bottom element \bot and operations \land, \lor, \to of H_s are respectively the constant \bot and connectives \land, \lor, \to of formulas. It is easy to see that H_s is a Heyting algebra. We use the valuation V(x) = x. By induction V(s) = s. Now, if $\top \leq V(s)$, then $\top \leq s$, which means that $\vdash^i \top \to s$. Therefore $\vdash^i s$.

Lemma 8 (Completeness for Ni). If $\Gamma \vDash_H s$ for any Heyting algebra H, then $\Gamma \vdash^i s$.

Proof. Follows from Lemma 7.

Remark 1. In the original definition of Heyting algebra, the order is a partial order while here we use a preorder, since the soundness proof does not need antisymmetry. This is also observed by Brown [2014]. If antisymmetry is accepted, then we can replace $V(s) \cong V(t)$ with V(s) = V(t).

Remark 2. Here we have only formalized the completeness proof for preordered Heyting algebras basing on Troelstra and Dalen [1988], in which a stronger proof for partial-ordered Heyting algebras is provided. The authors also observe that completeness holds for finite Heyting algebras.

2 Kripke structures

Definition 9 (Kripke model). A Kripke model is a tuple (K, \leq, α) where \leq is a preorder on the set of states K, and $\alpha : P \mapsto \mathcal{P}K$ is a monotonic mapping from propositional variables to subsets of K, where monotonicity means that if $p \in \alpha(x)$ and $p \leq q$ then $q \in \alpha(x)$.

Definition 10 (Valuation on a Kripke model). The valuation of a formula *s* on a Kripke model (K, \leq, α) is defined recursively as:

$$\begin{split} \hat{K}x &:= \alpha(x) \\ \hat{K} \bot &:= \emptyset \\ \hat{K}(s \wedge t) &:= \hat{K}s \cap \hat{K}t \\ \hat{K}(s \vee t) &:= \hat{K}s \cup \hat{K}t \\ \hat{K}(s \to t) &:= \{p \in K \mid (p \uparrow) \cap \hat{K}s \subseteq \hat{K}t\} \end{split}$$

where $(p \uparrow) := \{q \in K \mid p \leq q\}.$

The valuation for list of formulas is defined as:

$$\begin{split} K \emptyset &:= K \\ \hat{K}(s, \Gamma) &:= \hat{K} s \cap \hat{K}(\Gamma) \end{split}$$

Fact 11 (\hat{K} is monotonic). If $p \in \hat{K}s$ and $p \leq q$ then $q \in \hat{K}s$.

Proof. By induction on s.

Definition 12 (Forcing relation). The forcing relation \vDash between states of a Kripke model (K, \leq, α) and formulas is defined as:

- (i) $p \vDash x$ iff $p \in \alpha(x)$
- (ii) $p \vDash \bot$ never holds
- (iii) $p \vDash s \land t$ iff $p \vDash s$ and $p \vDash t$
- (iv) $p \vDash s \lor t$ iff $p \vDash s$ or $p \vDash t$

(v)
$$p \vDash s \to t \text{ iff } \forall q \ge p, \ q \vDash s \longrightarrow q \vDash t.$$

We say p forces s or p satisfies s to mean $p \vDash s$. We write $[s]_K := \{p \in K \mid p \vDash s\}$.

Fact 13. $[s]_K = \hat{K}s$.

Proof. By induction on s.

Lemma 14 (Soundness for Ni). If $\Gamma \vdash^{i} s$ then $\hat{K}(\Gamma) \subseteq \hat{K}s$.

Proof. By induction on the derivation $\Gamma \vdash^{i} s$. Fact 11 and the properties of the preorder are needed.

Definition 15 (Upward-closed sets). A set A is called upward-closed, if for any $p \in A$, $(p \uparrow) \subseteq A$. We write $\overline{K} := \{A \mid A \subseteq K \land A \text{ is upward-closed}\}.$

Fact 16. Upward-closed sets are closed under intersection and union. That is, if A and B are in \overline{K} , then so are $A \cap B$ and $A \cup B$.

Lemma 17 (Kripke models to Heyting algebras). \overline{K} with set inclusion is a Heyting algebra, where $\top = K$, $\perp = \emptyset$, and the operations are:

$$A \wedge B := A \cap B$$
$$A \vee B := A \cup B$$
$$A \to B := \{ p \in K \mid (p \uparrow) \cap A \subseteq B \}$$

The valuation for the algebra is $V(x) = \hat{K}x = [x]_K = \alpha(x) \in \overline{K}$.

Fact 18. If \overline{K} and V are respectively the Heyting algebra and its valuation built from K, then $V(s) = [s]_K$.

Proof. By induction on s.

Fact 19. If K is finite then \overline{K} is a finite distributive lattice and we can define $A \to B := \bigvee \{ C \in \overline{K} \mid C \land A \leq B \}$: the join is finite.

3 Countermodels

We demonstrate several counter-models for some propositionally underivable formulas. The counter-models are given as Kripke models (K, \leq, α) , whose states represent α : each state p is a set of (labeled by) variables whose mapping by α contains p. The models are visualized in form of lattices of Heyting algebras. These models are from unpublished notes by Prof. Gert Smolka.

Fact 20 (Countermodel for \bot , x, and $x \lor y$). $\nvdash^i \bot$, and $\nvdash^i x$, and $\nvdash^i x \lor y$.

Proof. Let $K := \{\emptyset\}$. We have $\overline{K} = \{\emptyset, K\}$, then $\hat{K} \perp = \hat{K}x = \hat{K}(x \lor y) = \emptyset$, that is $K = \top \nleq V(\perp) = V(x) = V(x \lor y)$.

Fact 21 (Countermodel for $\neg x$). $\nvDash^i \neg x$.

 $\textit{Proof. Let } K := \{\{x\}\}. \text{ Then } \overline{K} = \{\emptyset, K\}. \text{ We have } \hat{K}x = K \text{ and } \hat{K}(\neg x) = \emptyset.$

K
Ø

Fact 22 (Countermodel for **XM** and **DN**). $\nvdash^i x \vee \neg x$ and $\nvdash^i \neg \neg x \to x$.

Proof. Let $K := \{\emptyset, \{x\}\}$. Then $\overline{K} = \{\emptyset, \{\{x\}\}, K\}$. We have

$$\hat{K}x = \{\{x\}\}\$$

$$\hat{K}(\neg x) = \emptyset$$

$$\hat{K}(x \lor \neg x) = \hat{K}x$$

$$\hat{K}(\neg \neg x) = K$$

$$\hat{K}(\neg \neg x \to x) = \hat{K}x$$

$$K$$

$$|$$

 $\hat{K}x$

Ø

Fact 23 (Countermodel for **Peirce**). \nvDash^i $((x \to y) \to x) \to x$.

Proof. Let
$$K := \{\emptyset, \{x\}, \{x, y\}\}$$
. Then $\overline{K} = \{\emptyset, \{\{x, y\}\}, \{\{x\}, \{x, y\}\}, K\}$. We have
 $\hat{K}y = \{\{x, y\}\}$
 $\hat{K}x = \{\{x\}, \{x, y\}\}$
 $\hat{K}(x \to y) = \hat{K}y$
 $\hat{K}((x \to y) \to x) = K$
 $\hat{K}(((x \to y) \to x) \to x) = \hat{K}x$

4 Demos

Definition 24 (Hintikka pairs). A pair of lists of formulas (Γ, Δ) is called a Hintikka pair if it satisfies all of the following conditions:

- (i) $\bot \notin \Gamma$
- (ii) if $x \in \Gamma$ then $x \notin \Delta$
- (iii) if $s \to t \in \Gamma$ then $s \in \Delta$ or $t \in \Gamma$
- (iv) if $s \wedge t \in \Gamma$ then $s \in \Gamma$ and $t \in \Gamma$
- (v) if $s \lor t \in \Gamma$ then $s \in \Gamma$ or $t \in \Gamma$
- (vi) if $s \wedge t \in \Delta$ then $s \in \Delta$ or $t \in \Delta$
- (vii) if $s \lor t \in \Delta$ then $s \in \Delta$ and $t \in \Delta$.

Definition 25 (Demos). A demo, or a Hintikka collection, is a finite set \mathcal{D} of pairs (Γ, Δ) such that any $(\Gamma, \Delta) \in \mathcal{D}$ is a Hintikka pair and if $s \to t \in \Delta$ then there exists $(\Gamma', \Delta') \in \mathcal{D}$ such that $s, \Gamma \subseteq \Gamma'$ and $t \in \Delta'$.

Definition 26 (Positive set inclusion). A pair (Γ, Δ) is a positive subset of (Γ', Δ') , written $(\Gamma, \Delta) \subseteq^+ (\Gamma', \Delta')$, if $\Gamma \subseteq \Gamma'$.

Fact 27. If \mathcal{D} is a finite set of pairs of lists of formulas and $\alpha(x) := \{(\Gamma, \Delta) \in \mathcal{D} \mid x \in \Gamma\}$, then $(\mathcal{D}, \subseteq^+, \alpha)$ is a finite Kripke model.

Proof. It is clear that \subseteq^+ is a preorder. If $(\Gamma, \Delta) \in \alpha(x)$ and $(\Gamma', \Delta') \subseteq^+ (\Gamma', \Delta')$, then $x \in \Gamma \subseteq \Gamma'$ and therefore $(\Gamma', \Delta') \in \alpha(x)$. Thus we have showed that α is monotonic. \Box

Lemma 28. Let \mathcal{D} a demo and $(\Gamma, \Delta) \in \mathcal{D}$, and $(\mathcal{D}, \subseteq^+, \alpha)$ is the Kripke model of \mathcal{D} . Then:

- (i) $(\Gamma, \Delta) \in \hat{\mathcal{D}}s$ for every $s \in \Gamma$ and
- (ii) $(\Gamma, \Delta) \notin \hat{\mathcal{D}}s$ for every $s \in \Delta$.

Proof. By induction on s.

Definition 29. A demo \mathcal{D} falsifies (Γ, Δ) if \mathcal{D} contains a pair (Γ', Δ') such that $\Gamma \subseteq \Gamma'$ and $\Delta \subseteq \Delta'$.

Theorem 30. If (Γ, Δ) is falsified by a demo, then $\Gamma \nvDash^i \bigvee \Delta$.

Proof. We have for the demo \mathcal{D} that falsifies (Γ, Δ) a pair (Γ', Δ') such that $\Gamma \subseteq \Gamma'$ and $\Delta \subseteq \Delta'$.

By definition we have

$$\hat{\mathcal{D}}(\Gamma) = \bigcap \{ \hat{\mathcal{D}}s \mid s \in \Gamma \}$$
$$\hat{\mathcal{D}}(\bigvee \Delta) = \bigcup \{ \hat{\mathcal{D}}s \mid s \in \Delta \}$$

From Lemma 28, we have for all $s \in \Gamma \subseteq \Gamma'$, $(\Gamma', \Delta') \in \hat{\mathcal{D}}s$, and for all $s \in \Delta \subseteq \Delta'$, $(\Gamma', \Delta') \notin \hat{\mathcal{D}}s$. Therefore $(\Gamma', \Delta') \in \hat{\mathcal{D}}(\Gamma)$ and $(\Gamma', \Delta') \notin \hat{\mathcal{D}}(\bigvee \Delta)$, i.e. $\hat{\mathcal{D}}(\Gamma) \not\subseteq \hat{\mathcal{D}}(\bigvee \Delta)$. By the soundness lemma 14 we finally have $\Gamma \nvDash^i \bigvee \Delta$.

Lemma 31. $\Gamma \Rightarrow_F \Delta$ is decidable.

We call a pair (Γ, Δ) consistent if $\Gamma \Rightarrow_F \Delta$.

Fact 32. If (Γ, Δ) is consistent and $\Gamma' \subseteq \Gamma$ and $\Delta' \subseteq \Delta$, then (Γ', Δ') is also consistent.

Definition 33 (Maximal consistent extension). (Γ_m, Δ_m) is a maximal consistent extension of (Γ, Δ) if (Γ_m, Δ_m) is consistent and contains only subformulas of Γ or Δ , and for any other (Γ', Δ') that satisfies the same properties, if $\Gamma_m \subseteq \Gamma'$ and $\Delta_m \subseteq \Delta'$, then $\Gamma' \subseteq \Gamma_m$ and $\Delta' \subseteq \Delta_m$.

We write $\mathcal{D}(\Gamma, \Delta)$ to denote the set of all maximal consistent extensions of (Γ, Δ) .

Lemma 34. $\mathcal{D}(\Gamma, \Delta)$ is a demo. We call $\mathcal{D}(\Gamma, \Delta)$ the **canonical demo** of (Γ, Δ) .

Lemma 35. For any consistent (Γ', Δ') that contains only subformulas of Γ or Δ , there exists a pair $(\Gamma_m, \Delta_m) \in \mathcal{D}(\Gamma, \Delta)$ such that $\Gamma' \subseteq \Gamma_m$ and $\Delta' \subseteq \Delta_m$.

Collorary 36. If (Γ, Δ) is consistent, then $\mathcal{D}(\Gamma, \Delta)$ falsifies (Γ, Δ) .

Lemma 37. Either $\Gamma \Rightarrow_F \Delta$ or $\mathcal{D}(\Gamma, \Delta)$ falsifies (Γ, Δ) .

Lemma 38. $\Gamma \vdash^{i} s$ iff $\Gamma \Rightarrow_{F} s$ and $\Gamma \vdash^{i} \bigvee \Delta$ iff $\Gamma \Rightarrow_{F} \Delta$.

Lemma 39. If s is a subformula of (Γ, Δ) , and (Γ_m, Δ_m) is a maximal consistent extension of (Γ, Δ) , and $s \notin \Gamma_m \cup \Delta_m$, then both $((s, \Gamma_m), \Delta_m)$ and $(\Gamma_m, (s, \Delta_m))$ are inconsistent.

Collorary 40. If s is a subformula of (Γ, Δ) , and (Γ_m, Δ_m) is a maximal consistent extension of (Γ, Δ) , then either $s \in \Gamma_m$ or $s \in \Delta_m$.

Theorem 41 (Maximal consistent extension identity). If (Γ_1, Δ_1) and (Γ_2, Δ_2) are both maximal consistent extensions of (Γ, Δ) , and Γ_1 and Γ_2 have the same set of propositional variables, and Δ_1 and Δ_2 have the same set of implications, then $(\Gamma_1, \Delta_1) \equiv (\Gamma_2, \Delta_2)$, i.e. $\Gamma_1 \equiv \Gamma_2$ and $\Delta_1 \equiv \Delta_2$. **Lemma 42.** If (Γ_1, Δ_1) and (Γ_2, Δ_2) are both maximal consistent extensions of (Γ, Δ) , and $\Gamma_1 \equiv \Gamma_2$, then $\Delta_1 \equiv \Delta_2$.

Collorary 43. $(\mathcal{D}(\Gamma, \Delta), \subseteq^+)$ is a partial order.

References

- C. E. Brown. Semantics of intuitionistic propositional logic: Heyting algebras and Kripke models. 2014. URL https://www.ps.uni-saarland.de/HeytingKripke/description.html.
- Melvin Fitting. Intuitionistic Logic, Model Theory and Forcing. Amsterdam, North-Holland Pub. Co., 1969.
- A.S. Troelstra and D. Dalen. *Constructivism in Mathematics: An Introduction*, volume 2. North-Holland, 1988. ISBN 9780444703583.