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Outline

How to faithfully represent classical modal logic in the constructive meta
theory of Coq and prove decidability of satisfiability?

Quick Review: Decidability in Coq

Representation of classical modal logic in Coq

Formalization of the decidability proof
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Decidability in Coq

Coq term normalization defines a model of computation

Any term of type

forall x:X, { P x } + { ∼ P x }

is a decision procedure for the predicate P : X → Prop

Equivalently one can show

forall x, P x ↔ p x = true

for some p : X → bool

To employ this simple notion of decidability we are
confined to an axiom free setting
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Modal Logic K*

Models: Graphs, Nodes labeled with predicates (p, q, . . . )
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q

4
p, q

Formulas: s ::= p | ¬p | s ∨ s | s ∧ s | ♦s | �s | ♦∗s | �∗s
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Modal Logic K*

Formulas are evaluated at a particular state of a model

M, a |= ♦s ≈ some successor of a satisfies s

M, a |= �s ≈ all successors of a satisfy s

M, a |= ♦∗s ≈ some node reachable from a satisfies s

M, a |= �∗s ≈ all nodes reachable from a satisfy s

A formula is satisfiable if it holds at some state in some model

Interpreted classically: Every state of every model satisfies s ∨ ¬s
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Related work

K ∗ ≈ basic modal logic + eventualities (♦∗) ≈ stripped down PDL

Eventualities cause non-compactness

K ∗ has the small model property [Fischer Ladner ’79]

EXPTIME decision procedure for satisfiability [Pratt ’79]

This work: based on recent account of Pratt-style decision procedures
for extensions of PDL [Kaminski, Schneider, Smolka 2011]
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Representation in Coq

A faithful representation consists of:
◮ Syntax (trivial)
◮ Models
◮ Evaluation relation

Defines a satisfiability relation

Faithful if equivalent to external (set threoretic) satisfiability relation
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Models and Evaluation of Formulas

Naive representation:

Record model := Model {
state :> Type ;
trans : state → state → Prop ;
label : var → state → Prop }

Direct evaluation into Prop does not capture classical logic

Design decision: evaluate formulas to bool :

eval : forall M : model , form → pred M

pred M ≈ boolean predicates on (states of) M

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 8 / 24



Formulas as Boolean Predicates

Formulas: s ::= p | ¬p | s ∨ s | s ∧ s | ♦s | �s | ♦∗s | �∗s

Need: boolean logical operators:
∧,∨ : forall M, pred M → pred M → pred M

¬,♦,�,♦∗,�∗ : forall M, pred M → pred M

Use boolean labeling function:

Record model := Model {
state :> Type
...
label : var → pred state }

Propositional connectives are definable

Modal operators do not preserve decidability of predicates.
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Interpreting Modalities

Simple specification of modalities (in Prop)

DIA trans p w ≡ ∃v . trans w v ∧ p v

DSTAR trans p w ≡ ∃v . trans∗ w v ∧ p v

Neither ∃ nor ∗ preserve decidability
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Interpreting Modalities

Simple specification of modalities (in Prop)

DIA trans p w ≡ ∃v . trans w v ∧ p v

DSTAR trans p w ≡ ∃v . trans∗ w v ∧ p v

Neither ∃ nor ∗ preserve decidability

Require models to provide boolean modal operators

Record model := Model {
...
DIAb : pred state → pred state ;
DIAbP (p:pred state) w : (DIA trans p w) ↔ (DIAb p w = true);

DSTARb : pred state → pred state;
DSTARbP (p:pred state) w : (DSTAR trans p w) ↔ (DSTARb p w = true)

}.

Boolean modal operators for � and �∗ are definable
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Faithful Representation in Coq

Allows the definition of a boolean evaluation function

Fixpoint eval (M:model) (s:form) : (pred M) :=
match s with
Var v => label v | ... | Box s => BOXb (eval M s) | ...

end.
Notation ”M , w |= s” := (eval M s w).

Evaluation satisfies the usual classical equivalences:

p ∨ ¬p ≡ ⊤

♦∗s ≡ s ∨ ♦♦∗s

�∗s ≡ s ∧��∗s
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Localized Classical Assumptions

If we were to assume

Axiom IXM : forall P, { P } + { ∼ P }

DIAb and DSTARb would be definable

Boolean logical operators regarded as localized classical assumptions

Here: Assume what is needed to obtain a boolen evaluation
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Satisfiability and Demos

Theorem

Satisfiability of formulas is decidable

We define syntactic models called demos such that:
1 The states of a demo are sets of formulas
2 Every state of a demo satisfies all formulas it contains
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Satisfiability and Demos

Theorem

Satisfiability of formulas is decidable

We define syntactic models called demos such that:
1 The states of a demo are sets of formulas
2 Every state of a demo satisfies all formulas it contains

A formula is satisfiable iff it is contained in demo built from its
subformulas
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Satisfiability and Demos

Theorem

Satisfiability of formulas is decidable

We define syntactic models called demos such that:
1 The states of a demo are sets of formulas
2 Every state of a demo satisfies all formulas it contains

A formula is satisfiable iff it is contained in demo built from its
subformulas

For every formula there are only finitely many demos to consider

Yields decidability of satisfiability
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Example Demo

Demos are sets of sets of formulas

♦♦p,�¬p, p

♦p,¬p

 

1
p

2

Every demo D can be seen as a model MD

states: elements of D

transitions: H →D H ′ iff {s | �s ∈ H} ⊆ H ′

labels: H is labeled with p iff p ∈ H
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Consistency Conditions

Need conditions that ensure:

Lemma (Model Existence)

If D is a demo and t ∈ H ∈ D, then MD,H |= t.
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Consistency Conditions

Need conditions that ensure:

Lemma (Model Existence)

If D is a demo and t ∈ H ∈ D, then MD,H |= t.

Local consistency - The states of a demo are Hintikka sets:
1 If ¬p ∈ H, then p /∈ H.
2 If s ∧ t ∈ H, then s ∈ H and t ∈ H.
3 If s ∨ t ∈ H, then s ∈ H or t ∈ H.
4 If �∗s ∈ H, then s ∈ H and ��∗s ∈ H.
5 If ♦∗s ∈ H, then s ∈ H or ♦♦∗s ∈ H.
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Consistency Conditions

Need conditions that ensure:

Lemma (Model Existence)

If D is a demo and t ∈ H ∈ D, then MD,H |= t.

Local consistency - The states of a demo are Hintikka sets:
1 If ¬p ∈ H, then p /∈ H.
2 If s ∧ t ∈ H, then s ∈ H and t ∈ H.
3 If s ∨ t ∈ H, then s ∈ H or t ∈ H.
4 If �∗s ∈ H, then s ∈ H and ��∗s ∈ H.
5 If ♦∗s ∈ H, then s ∈ H or ♦♦∗s ∈ H.

Global consistency - All diamonds are realized:

(D♦) If ♦s ∈ H ∈ D, then H →D H ′ and s ∈ H ′ for some H ′ ∈ D.
(D♦∗) If ♦∗s ∈ H ∈ D, then H →∗

D
H ′ and s ∈ H ′ for some H ′ ∈ D.
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Decidability of Satisfiability

Fix some formula s0 and let F denote the syntactic closure of s0

Solve the satisfiability problem for formulas in F

Lemma (Model Existence)

If D ∈ 22
F

is a demo and t ∈ H ∈ D, then MD,H |= t.

Theorem (Small Model Theorem)

Let s ∈ F and M,w |= s.

There exists a demo D ∈ 22
F

and H ∈ D such that s ∈ H

Satisfiability for all formulas follows from s0 ∈ F
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Formalization Setup

Can fix a formula s0 throughout the proof.

We only require Hintikka sets H ⊆ F (F is finite)
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Formalization Setup

Can fix a formula s0 throughout the proof.

We only require Hintikka sets H ⊆ F (F is finite)

Required data-structures:
◮ Models: boolean functions reflecting predicates, . . .
◮ Decidability proof: finite syntactic closure, finite sets,

sets of finite sets, boolean quantifiers, . . .

Little support for these structures in the Coq Standard Library
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Formalization Setup

Can fix a formula s0 throughout the proof.

We only require Hintikka sets H ⊆ F (F is finite)

Required data-structures:
◮ Models: boolean functions reflecting predicates, . . .
◮ Decidability proof: finite syntactic closure, finite sets,

sets of finite sets, boolean quantifiers, . . .

Little support for these structures in the Coq Standard Library

The Ssreflect extension provides all this (and much more)
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Formalization

Representation:

fixed formula s0  Section variable

syntactic closure of s0  finite type F

Hintikka sets over F  boolean predicate on {set F}

Demos over F  boolean predicate on {set {set F}}
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Formalization

Representation:

fixed formula s0  Section variable

syntactic closure of s0  finite type F

Hintikka sets over F  boolean predicate on {set F}

Demos over F  boolean predicate on {set {set F}}

Lemma (Model Existence)

If D ∈ 22
F

is a demo and t ∈ H ∈ D, then MD,H |= t.

Requires the construction of a finite model

Interpretations for modalities (DIAb, . . . ) definable for finite carriers
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Demo construction

Theorem (Small Model Theorem)

Let s ∈ F and M,w |= s.

There exists a demo D ∈ 22
F

and H ∈ D such that s ∈ H

Construct largest demo with pruning algorithm [Pratt ’79]
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Pruning

Pruning Algorithm:

S := {H ⊆ F | H is a Hintikka set}

while S is not a demo,
remove some H violating (D♦) or (D♦∗)

Lemma
1 All pruned sets are unsatisfiable

2 Pruning terminates with demo containing exactly the satisfiable

Hintikka sets

Definition largest demo := prune [ H | hintikka H ]
Theorem decidability (s :F) :
sat s ↔ existsb H : {set F}, H \in largest demo && s \in H = true

︸ ︷︷ ︸

boolean predicate over s

Corresponds to worst-case optimal exponential decision procedure
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Models and Satisfiability

Every class of models defines a satisfiability relation

We have seen three variants:

Models Demos

Largest Demo

All three are constructively equivalent

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 21 / 24



Summary

Constructive formalization of classical modal logic
◮ Syntax
◮ Models (boolean logical operations)
◮ Boolean evaluation of formulas
◮ Formalized small model theorem
◮ Formal proof of decidability

forall s : form , { sat s } + { ∼ sat s }

Design space for the representation of models:
◮ Allows definition of two-valued evaluation relation
◮ Finite models need to be constructible

⇒ Many other possibilities

Future Work:
◮ Scale to richer logics like PDL/CTL
◮ Consider other logics with the small model property
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The Model Based Proof

The classical proof of the small model theorem is model based:

Theorem (Small Model Theorem)

Let s ∈ F and M,w |= s.

There exists a demo D ∈ 22
F

and H ∈ D such that s ∈ H

Proof Idea:
◮ Define Hw := {t ∈ F | M,w |= t}
◮ The set {Hw | w ∈ |M|} is a demo containing s

This expands to: {H | ∃w ∈ |M|. Hw = H
︸ ︷︷ ︸

not a boolean statement

}

finite sets ≈ extensional boolean predicates over finite domain

Cannot define the set {Hw | w ∈ |M|} as a finite set in Coq
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The Model Based Proof

Extend the model with a boolean existential quantifier:

Record model := Model {
...
exb : (pred state ) → bool ;
exbP (p:pred state ) : (exists x , p x) ↔ (exb p = true) }.

{Hw | w ∈ |M|} definable as {H | exb w : M,H == Hw}

Theorem decidability (s : F) :
sat s ↔ (existsb D : {set {set F}},

demo D && existsb H, H \in D && s \in H) = true
︸ ︷︷ ︸

boolean statement

Corresponds to the naive double exponential decision procedure
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