
Formalizing Classical Modal Logic in Constructive Logic

Christian Doczkal Gert Smolka

Programming Systems Lab, Saarland University

Coq-3 Workshop, Nijmegen, August 26, 2011

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 1 / 24

Outline

How to faithfully represent classical modal logic in the constructive meta
theory of Coq and prove decidability of satisfiability?

Quick Review: Decidability in Coq

Representation of classical modal logic in Coq

Formalization of the decidability proof

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 2 / 24

Decidability in Coq

Coq term normalization defines a model of computation

Any term of type

forall x:X, { P x } + { ∼ P x }

is a decision procedure for the predicate P : X → Prop

Equivalently one can show

forall x, P x ↔ p x = true

for some p : X → bool

To employ this simple notion of decidability we are
confined to an axiom free setting

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 3 / 24

Modal Logic K*

Models: Graphs, Nodes labeled with predicates (p, q, . . .)

2
p

1 3
q

4
p, q

Formulas: s ::= p | ¬p | s ∨ s | s ∧ s | ♦s | �s | ♦∗s | �∗s

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 4 / 24

Modal Logic K*

Formulas are evaluated at a particular state of a model

M, a |= ♦s ≈ some successor of a satisfies s

M, a |= �s ≈ all successors of a satisfy s

M, a |= ♦∗s ≈ some node reachable from a satisfies s

M, a |= �∗s ≈ all nodes reachable from a satisfy s

A formula is satisfiable if it holds at some state in some model

Interpreted classically: Every state of every model satisfies s ∨ ¬s

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 5 / 24

Related work

K ∗ ≈ basic modal logic + eventualities (♦∗) ≈ stripped down PDL

Eventualities cause non-compactness

K ∗ has the small model property [Fischer Ladner ’79]

EXPTIME decision procedure for satisfiability [Pratt ’79]

This work: based on recent account of Pratt-style decision procedures
for extensions of PDL [Kaminski, Schneider, Smolka 2011]

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 6 / 24

Representation in Coq

A faithful representation consists of:
◮ Syntax (trivial)
◮ Models
◮ Evaluation relation

Defines a satisfiability relation

Faithful if equivalent to external (set threoretic) satisfiability relation

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 7 / 24

Models and Evaluation of Formulas

Naive representation:

Record model := Model {
state :> Type ;
trans : state → state → Prop ;
label : var → state → Prop }

Direct evaluation into Prop does not capture classical logic

Design decision: evaluate formulas to bool :

eval : forall M : model , form → pred M

pred M ≈ boolean predicates on (states of) M

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 8 / 24

Formulas as Boolean Predicates

Formulas: s ::= p | ¬p | s ∨ s | s ∧ s | ♦s | �s | ♦∗s | �∗s

Need: boolean logical operators:
∧,∨ : forall M, pred M → pred M → pred M

¬,♦,�,♦∗,�∗ : forall M, pred M → pred M

Use boolean labeling function:

Record model := Model {
state :> Type
...
label : var → pred state }

Propositional connectives are definable

Modal operators do not preserve decidability of predicates.

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 9 / 24

Interpreting Modalities

Simple specification of modalities (in Prop)

DIA trans p w ≡ ∃v . trans w v ∧ p v

DSTAR trans p w ≡ ∃v . trans∗ w v ∧ p v

Neither ∃ nor ∗ preserve decidability

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 10 / 24

Interpreting Modalities

Simple specification of modalities (in Prop)

DIA trans p w ≡ ∃v . trans w v ∧ p v

DSTAR trans p w ≡ ∃v . trans∗ w v ∧ p v

Neither ∃ nor ∗ preserve decidability

Require models to provide boolean modal operators

Record model := Model {
...
DIAb : pred state → pred state ;
DIAbP (p:pred state) w : (DIA trans p w) ↔ (DIAb p w = true);

DSTARb : pred state → pred state;
DSTARbP (p:pred state) w : (DSTAR trans p w) ↔ (DSTARb p w = true)

}.

Boolean modal operators for � and �∗ are definable

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 10 / 24

Faithful Representation in Coq

Allows the definition of a boolean evaluation function

Fixpoint eval (M:model) (s:form) : (pred M) :=
match s with
Var v => label v | ... | Box s => BOXb (eval M s) | ...

end.
Notation ”M , w |= s” := (eval M s w).

Evaluation satisfies the usual classical equivalences:

p ∨ ¬p ≡ ⊤

♦∗s ≡ s ∨ ♦♦∗s

�∗s ≡ s ∧��∗s

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 11 / 24

Localized Classical Assumptions

If we were to assume

Axiom IXM : forall P, { P } + { ∼ P }

DIAb and DSTARb would be definable

Boolean logical operators regarded as localized classical assumptions

Here: Assume what is needed to obtain a boolen evaluation

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 12 / 24

Satisfiability and Demos

Theorem

Satisfiability of formulas is decidable

We define syntactic models called demos such that:
1 The states of a demo are sets of formulas
2 Every state of a demo satisfies all formulas it contains

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 13 / 24

Satisfiability and Demos

Theorem

Satisfiability of formulas is decidable

We define syntactic models called demos such that:
1 The states of a demo are sets of formulas
2 Every state of a demo satisfies all formulas it contains

A formula is satisfiable iff it is contained in demo built from its
subformulas

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 13 / 24

Satisfiability and Demos

Theorem

Satisfiability of formulas is decidable

We define syntactic models called demos such that:
1 The states of a demo are sets of formulas
2 Every state of a demo satisfies all formulas it contains

A formula is satisfiable iff it is contained in demo built from its
subformulas

For every formula there are only finitely many demos to consider

Yields decidability of satisfiability

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 13 / 24

Example Demo

Demos are sets of sets of formulas

♦♦p,�¬p, p

♦p,¬p

1
p

2

Every demo D can be seen as a model MD

states: elements of D

transitions: H →D H ′ iff {s | �s ∈ H} ⊆ H ′

labels: H is labeled with p iff p ∈ H

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 14 / 24

Consistency Conditions

Need conditions that ensure:

Lemma (Model Existence)

If D is a demo and t ∈ H ∈ D, then MD,H |= t.

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 15 / 24

Consistency Conditions

Need conditions that ensure:

Lemma (Model Existence)

If D is a demo and t ∈ H ∈ D, then MD,H |= t.

Local consistency - The states of a demo are Hintikka sets:
1 If ¬p ∈ H, then p /∈ H.
2 If s ∧ t ∈ H, then s ∈ H and t ∈ H.
3 If s ∨ t ∈ H, then s ∈ H or t ∈ H.
4 If �∗s ∈ H, then s ∈ H and ��∗s ∈ H.
5 If ♦∗s ∈ H, then s ∈ H or ♦♦∗s ∈ H.

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 15 / 24

Consistency Conditions

Need conditions that ensure:

Lemma (Model Existence)

If D is a demo and t ∈ H ∈ D, then MD,H |= t.

Local consistency - The states of a demo are Hintikka sets:
1 If ¬p ∈ H, then p /∈ H.
2 If s ∧ t ∈ H, then s ∈ H and t ∈ H.
3 If s ∨ t ∈ H, then s ∈ H or t ∈ H.
4 If �∗s ∈ H, then s ∈ H and ��∗s ∈ H.
5 If ♦∗s ∈ H, then s ∈ H or ♦♦∗s ∈ H.

Global consistency - All diamonds are realized:

(D♦) If ♦s ∈ H ∈ D, then H →D H ′ and s ∈ H ′ for some H ′ ∈ D.
(D♦∗) If ♦∗s ∈ H ∈ D, then H →∗

D
H ′ and s ∈ H ′ for some H ′ ∈ D.

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 15 / 24

Decidability of Satisfiability

Fix some formula s0 and let F denote the syntactic closure of s0

Solve the satisfiability problem for formulas in F

Lemma (Model Existence)

If D ∈ 22
F

is a demo and t ∈ H ∈ D, then MD,H |= t.

Theorem (Small Model Theorem)

Let s ∈ F and M,w |= s.

There exists a demo D ∈ 22
F

and H ∈ D such that s ∈ H

Satisfiability for all formulas follows from s0 ∈ F

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 16 / 24

Formalization Setup

Can fix a formula s0 throughout the proof.

We only require Hintikka sets H ⊆ F (F is finite)

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 17 / 24

Formalization Setup

Can fix a formula s0 throughout the proof.

We only require Hintikka sets H ⊆ F (F is finite)

Required data-structures:
◮ Models: boolean functions reflecting predicates, . . .
◮ Decidability proof: finite syntactic closure, finite sets,

sets of finite sets, boolean quantifiers, . . .

Little support for these structures in the Coq Standard Library

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 17 / 24

Formalization Setup

Can fix a formula s0 throughout the proof.

We only require Hintikka sets H ⊆ F (F is finite)

Required data-structures:
◮ Models: boolean functions reflecting predicates, . . .
◮ Decidability proof: finite syntactic closure, finite sets,

sets of finite sets, boolean quantifiers, . . .

Little support for these structures in the Coq Standard Library

The Ssreflect extension provides all this (and much more)

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 17 / 24

Formalization

Representation:

fixed formula s0 Section variable

syntactic closure of s0 finite type F

Hintikka sets over F boolean predicate on {set F}

Demos over F boolean predicate on {set {set F}}

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 18 / 24

Formalization

Representation:

fixed formula s0 Section variable

syntactic closure of s0 finite type F

Hintikka sets over F boolean predicate on {set F}

Demos over F boolean predicate on {set {set F}}

Lemma (Model Existence)

If D ∈ 22
F

is a demo and t ∈ H ∈ D, then MD,H |= t.

Requires the construction of a finite model

Interpretations for modalities (DIAb, . . .) definable for finite carriers

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 18 / 24

Demo construction

Theorem (Small Model Theorem)

Let s ∈ F and M,w |= s.

There exists a demo D ∈ 22
F

and H ∈ D such that s ∈ H

Construct largest demo with pruning algorithm [Pratt ’79]

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 19 / 24

Pruning

Pruning Algorithm:

S := {H ⊆ F | H is a Hintikka set}

while S is not a demo,
remove some H violating (D♦) or (D♦∗)

Lemma
1 All pruned sets are unsatisfiable

2 Pruning terminates with demo containing exactly the satisfiable

Hintikka sets

Definition largest demo := prune [H | hintikka H]
Theorem decidability (s :F) :
sat s ↔ existsb H : {set F}, H \in largest demo && s \in H = true

︸ ︷︷ ︸

boolean predicate over s

Corresponds to worst-case optimal exponential decision procedure
Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 20 / 24

Models and Satisfiability

Every class of models defines a satisfiability relation

We have seen three variants:

Models Demos

Largest Demo

All three are constructively equivalent

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 21 / 24

Summary

Constructive formalization of classical modal logic
◮ Syntax
◮ Models (boolean logical operations)
◮ Boolean evaluation of formulas
◮ Formalized small model theorem
◮ Formal proof of decidability

forall s : form , { sat s } + { ∼ sat s }

Design space for the representation of models:
◮ Allows definition of two-valued evaluation relation
◮ Finite models need to be constructible

⇒ Many other possibilities

Future Work:
◮ Scale to richer logics like PDL/CTL
◮ Consider other logics with the small model property

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 22 / 24

The Model Based Proof

The classical proof of the small model theorem is model based:

Theorem (Small Model Theorem)

Let s ∈ F and M,w |= s.

There exists a demo D ∈ 22
F

and H ∈ D such that s ∈ H

Proof Idea:
◮ Define Hw := {t ∈ F | M,w |= t}
◮ The set {Hw | w ∈ |M|} is a demo containing s

This expands to: {H | ∃w ∈ |M|. Hw = H
︸ ︷︷ ︸

not a boolean statement

}

finite sets ≈ extensional boolean predicates over finite domain

Cannot define the set {Hw | w ∈ |M|} as a finite set in Coq

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 23 / 24

The Model Based Proof

Extend the model with a boolean existential quantifier:

Record model := Model {
...
exb : (pred state) → bool ;
exbP (p:pred state) : (exists x , p x) ↔ (exb p = true) }.

{Hw | w ∈ |M|} definable as {H | exb w : M,H == Hw}

Theorem decidability (s : F) :
sat s ↔ (existsb D : {set {set F}},

demo D && existsb H, H \in D && s \in H) = true
︸ ︷︷ ︸

boolean statement

Corresponds to the naive double exponential decision procedure

Christian Doczkal (Saarland University) Classical Modal Logic in Constructive Logic Coq-3 Workshop 24 / 24

