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Previously on theory — streams

s0︸︷︷︸
head

, s1, s2, s3, s4, s5, s6, . . .︸ ︷︷ ︸
tail

Destructors

head (·)0 : Stream→ T

tail (·)′ : Stream→ Stream

Implementation

StreamT := N→ T

Differential equation

s0 = 0
s ′ = s
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Previously on theory — equality

Equality

(a = b) := a0 = b0 ∧ a′ = b′ (↔ ∀n, an = bn)
(a =n b) := a0 = b0 ∧ a′ =n−1 b′ (↔ ∀n′ < n, an′ = bn′)
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Previously on theory — causality

Example differential equations

1 u0 := 0
u′ := u

2 v0 := 0
v ′ := v ′′

3 w0 := 0
w ′ := w ′ + 1

Tail characterization of single stream

tc : Stream→ Stream
tc s = s ′

Causality

∀a1 =n a2 → tc a1 =n tc a2
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Previously on implementation — corec

Tail characterization of operations

tc : X → (X → Stream)→ Stream
tc x o = (o x)′

Causality

∀n, i : ∀a1, a2, (∀x , a1 x =n a2 x)→ tc i a1 =n tc i a2

Corecursion

h : (X → T )
tc : X → (X → Stream)→ Stream
corec h tc : X → Stream

tc causal

(corec h tc x)0 = h x
(corec h tc x)′ = tc x (corec h tc)
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Previously on theory — special streams

Streams

00 := 0 0 = (0, 0, 0, 0, 0, . . .)
0′ := 0
[t]0 := t [t] = (t, 0, 0, 0, 0, . . .)
[t]′ := 0
1 := [1] 1 = (1, 0, 0, 0, 0, . . .)
X0 := 0 X = (0, 1, 0, 0, 0, . . .)
X ′ := 1
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Previously on theory — ring

Addition

(a + b)0 := a0
⊕

b0

(a + b)′ := (a′) + (b′)

Subtraction

(−a)0 := −(a0)
(−a)′ := −(a′)

Multiplication

(a× b)0 := a0
⊗

b0

(a× b)′ := a0 × b′ + a′ × b
s = s0 + X × s ′

Division

(s−1)0 := (s0)−1

(s−1)′ := −s ′ × ([s0]× s)−1
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Corecursion with general input

Type

h : X → T
tc : X︸︷︷︸

input

→ (X → Stream)︸ ︷︷ ︸
recursive input

→ Stream

corec h tc : X → Stream

tc causal
corec converges

(corec h tc x)′ = tc x (corec h tc)

Causality

∀i :

∀a1, a2 : (∀x : a1 x =n a2 x)→
tc i a1 =n tc i a2
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Corecursion with specific Types

Type

h : (I → T )→ T
tc : (I → Stream)︸ ︷︷ ︸

input

→ ((I → Stream)→ Stream)︸ ︷︷ ︸
recursive input

→ Stream

corec h tc : (I → Stream)→ Stream

Causality

∀i1, i2 : (∀y : i1 y =(n+1) i2 y)→
∀a1, a2 : (∀x1, x2 : (∀y : x1 y =n x2 y)→ a1 x1 =n a2 x2)→
tc i1 a1 =n tc i2 a2

tc causal
corec converges

(corec h tc x)′ = tc x (corec h tc)

corec h tc causal
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Framework — Summary

corec h tc

tc causal

(corec h tc x)′ = tc x (corec h tc)
(corec h tc) causal

=n-Rewriting and Properness

Ring tactic familiy
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Squareroot

Characterization

√
s ×
√
s = s

(
√
s)0 =

√
(s0) =: h

(
√
s)′ =

s ′

[
√
s0] +

√
s

=: t

Corecursive definition

√
s = corec h t s
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Catalan numbers

Definition as sequence

C0 = 0
C1 = 1
Cn+2 =

∑n+1
k=1 Ck · Cn+2−k =

∑n
k=0 Ck+1 · Cn−k+1

Definition as stream

cat0 = 0
cat1 = 1 =: h
cat ′′ = cat ′ × cat ′ =: t
cat = corec h t

Closed formular

cat = X + cat × cat
cat = 1−

√
1−4X
2
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Next steps and further work

Shorter proofs: AC-rewriting and more automation

Formalize ring based on shuffle product (multiplication wrt.
exponential generating functions) using corecursion

Make simultaneous use of both ring structures (convolution
and shuffle product).
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Further Reading

I Doron Zeilberger Marko Petkovsek, Herbert S. Wilf.
A=B.
A K Peters/CRC Press, 1996.

I Philippe Flajolet Robert Sedgewick.
Analytic Combinatorics.
Cambridge University Press, 2009.

I Oren Patashnik Ronald L. Graham, Donald E. Knuth.
Concrete Mathematics: A Foundation of Computer Science.
Addison-Wesley, 1994.

I J. J. M. M. Rutten.
A coinductive calculus of streams.
2002.

I Herbert S. Wilf.
generatingfunctionology.
Academic Press, 1990. 15/17



Division revised

Characterization

(1 + X × s)× (1 + X × s)−1 = 1

(1 + X × s)−1
0 = 1

(1 + X × s)−1
1 = −s0 =: h

((1 + X × s)−1)′′ = − s

((1 + X × s)−1)′
− s ′ =: t

Corecursive definition

((1 + X × s)−1)′ = corec h t s

(1 + X × s)−1 = 1 + X × ((1 + X × s)−1)′

v−1 = ([v−1
0 ]× v)−1 × [v−1

0 ]
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Squareroot

Characterization

√
1 + X × s ×

√
1 + X × s = 1 + X × s

(
√

1 + X × s)0 = 1

(
√

1 + X × s)1 =
s0

2
=: h

(
√

1 + X × s)′′ =
s ′

2
− s ×

√
1 + X × s

′

4 + 2X ×
√

1 + X × s
′ =: t

Corecursive definition

√
1 + X × s

′
= corec h t s

√
1 + X × s = 1 + X ×

√
1 + X × s

′

√
v =

√
[v−1

0 ]× v × [
√
v0]
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