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Example

A\aAc
A\aBc
B\BB
B\b

What is a Context-Free Grammar?

» Describe context-free languages
e.g. {a"b"c" | m,n >0}

» Are used to describe (programming) languages
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Example

A\aAc
A\aBc
B\BB
B\b
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Important Terms

Grammar G consists of:
» symbols s
characters a, b, c, ...
variables A, B, C, ...
» phrases u, v, w,...
> rules A\u

Words are phrases containing only characters

u derives a word wby rewriting rules of the
grammar

A language of a grammar is the set of all words we
can derive starting with some variable (£ or £LZ)
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Example

A\aAc
A\aBc
B\BB
B\b

Derivations

Example

Derivation of aaabccc

A = aAc A\aAc € G
= aaAcc A\aAc € G
= aaaBccc A\aBc € G

= aaabccc B\be G
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Decidability Problems

. LA
1. Empty language problem: L7 = 07
2. Word problem: w € Eé? decidable
3. Finiteness: Is Eé finite?

: . A — pA
4. Equallt)f problem: L7 = L¢,? undecidable
5. Regularity: Is £7 regular?
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Chomsky Normal Form (CNF)

A grammar G is in CNF, if for all rules A\u € G holds:
> uFfe

> u=aor

> |u| <2 and all symbols in u are variables

All grammars can be transformed into CNF

Serves as basis for CYK algorithm to decide the word problem
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Contributions

Decidability results
» Decidability of word problem (w € £27?)
» Decidability of emptiness problem (Eé = (7)

Grammar transformations

» Elimination of e-rules (A\¢)

» Elimination of unit-rules (A\B) yield grammar in CNF
» Binarization (every rule of the form A\s;s)
» Separation (every rule of the form A\a or A\Bj ... B))

+ Elimination of deterministic variables
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Definitions

We use lists for grammars and derivations

var
char

symbol

phrase
rule

grammar

= n neN
= n neN
:= var | char

= Z(symbol)

:= var X phrase
= ZL(rule)

10



Formalization
[o] le]e}

Definitions

We use lists for grammars and derivations

The notion of derivability can be defined inductively:

A\veG AL uBw B v

A=A Aéu A%uvw

Languages of a grammar are defined in terms of derivability:

G .
,CéWZ:A:>W A wis a word

11
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Alternative Derivation Predicates

AueG AS uBw B3y

A=A Aéu Aéuvw

» Give several derivation predicates for different purposes

» Heart of the work

= is a right-linear variant of =

A uBw B\veG

A=, A Aéguvw

PR
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Alternative Derivation Predicates

AueG AS uBw B v

A=A Aéu Aéuvw

» Give several derivation predicates for different purposes

» Heart of this work

= r is symmetric and resembles a derivation tree

G, G G,
AuveG u=rv S=ru V=rw

G, G,
u=ru A=rv SV =r uw

13
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Finite Fixed Point Iteration (FFPI) (ICL 2014)

f: X=X

x: X x is a fixed point of a
function f, if f x = x.

Is f"x a fixed point of f?
Lemma (Fixed Point)
Let o : X — N such that for every number n either o(f" x) > o(f"*1 x) or f" x is a

fixed point of f. Then f°* x is a fixed point of f.

ax>a(fx)>cr(f2x)>--->g(f”x):

. N

.
max. o x times \ N
=n=o0 X N

14
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Finite Fixed Point Iteration (FFPI) (ICL 2014)

f:X—-X

x: X x is a fixed point of a
function f, if f x = x.

Is f"x a fixed point of f?

Lemma (Induction)

Let p: X — Prop and x € X such that p x and Vz. p z — p(f z). Then p(f" x) for
every number n.

15
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Finite Closure Iteration (FCI) (ICL 2014)

N : list X
step : list X — X — Prop (decidable)

Wanted: M C N s.t. M is closed with respect to step

x1 €N —~ — nil
step

X2€N“\>l

step

@

@
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Finite Closure Iteration (FCI) (ICL 2014)

N : list X
step : list X — X — Prop (decidable)

Lemma
If step is decidable, then we can construct a list M, s.t.
1. Closure: If step M x and x € N, then x € M.

2. Induction: Let p : X — Prop such that step xs x — p x for all xs C p and x € N.
Then M C p.

17
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Decidability of Word Problem
w € C’é?
More general: A Lo

Existing solutions: CYK algorithm (bottom-up), Earley algorithm (top-down)
We give a generalized CYK-algorithm (bottom-up chart parsing algorithm)

Example
Let G and u be given as A
G = A\aBA B\BB B
u = abba
a b b a

18
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Decidability of Word Problem

Let G and u be fixed. We define:
> item : Type := symbol x phrase
» Segments: v 3 v = duy Up. U= Vi

Aim: Construct D : list item, such that

(s,v)eD vz UNs 2y

~S

We use FCI:
» N = items (G,u) (~

"all symbols of G x all segments of u")
> step M (s,v) =v=sV s=AA

M C M. A\(m1 M') € G A\ v = concat(m, M')
» D :=FCI N step

19
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Decidability of Word Problem

We use FCl:
> N = jtems (G, u) (~ "all symbols of G x all segments of u")

> step M (s,v) = v=s5V s=AA
M C M. A\(m1 M) € G A v = concat(ma M")

» D := FCl N step

Example

Let G and u be given as (aa) (b.b)
G = A\aBA B\BB

A\a B\b
u = abba (A abba)

20
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Decidability of Word Problem

Lemma (FCI)
L If step is decidable, then we can
€émma construct a list M, s.t.
< G
(s,v)eD<visunhs=v 1. Closure: If step M x and
x € N, then x € M.
Proof 2. Induction: Let p: X — Prop

such that step xs x — p x
forall xs C pand x € N.
<+ Using the closure lemma of FCI. Then M C p.

— Using the induction lemma of FCI.

Theorem (The word problem of context-free languages is decidable)

Let G and w be given. YA. (A,w) € Dg,w iff A S

21



Example

G = A\aBCa
B\b
C\c

We use FFPI to compute G*

Binarization

Binarization
@00
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Binarization

We use FFPI to compute G*

step’ : grammar — grammar — grammar
step’ G’ ] =

step’ G’ (A\[] :: G)
step’ G’ (A\[s0] :: G)
step’ G’ (A\[s0;s1] == G)
step’ G’ (A\(so::v) == G)

Lemma (FFPI - Fixed Point)

Let o : X — N such that for every number n
either o(f" x) > o(f"™ x) or f" x is a fixed
point of f. Then 7% x is a fixed point of f.

= A\[] :: step’ G’ G

= A\[so] :: step’ G’ G
= A\[so;s1] iz step’ G’ G
:= let B := fresh G’

step function

in A\[s0;B] :: B\u :: G

step G =step' G G

count : grammar — N
count |] =0

count (A\u :: G) :=if |u] < 2 then count G

else |u| + count G

G? = FFPI step count

size function

23
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Binarization

Lemma

1. G*is binary

2. For every (non fresh) A: L3 = L2,
Proof

Lemma (FFPI - Fixed Point)

Let o0 : X — N such that for every number n
either o(f" x) > o(f"™ x) or f" x is a fixed
point of f. Then 7% x is a fixed point of f.

Lemma (FFPI - Induction)

Let p : X — Prop and x € X such that p x
and Vz. p z — p(f z). Then p(f" x) for every
number n.

1. G*is a fixed point of step (FFPI fixed point lemma) and every fixed point of step

is binary.

2. (FFPI induction lemma) prove: For every (non fresh) A: L2 = L

A
step G

24



Conclusion

Conclusion

What we did

» Decidability results
» Decidability of word problem (w € £47)
» Decidability of emptiness problem (L2 = 07)

» Grammar transformations
» Elimination of e-rules (A\¢)
» Elimination of unit-rules (A\B)
» Binarization (every rule of the form A\s;s;)
» Separation (every rule of the form A\a or A\B; ... B),)
+ Elimination of deterministic variables

yield grammar in CNF

Future Work
» Decidability of finiteness of context-free languages
» Elimination of useless symbols

» Closure properties of CFLs

25
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Closure Properties

Let C, Gy, G, be a context-free and R a regular language
» (1 U G is context-free
» C; N G is in general not context-free
» CU R is context-free

C is not context-free

v



Alternative Derivation Predicates

AueG AS uBw B v

A=A Aéu Aéuvw

AN

/N

» Give several derivation predicates for different purposes

» Heart of this work

=7 is a symmetric variant of =

G, G,
AveG U= thVly V=T W

G, G,
u=Tu A=T1u U =7 uipwup

/ N\
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Use of Derivation Predicates

Decidability of Emptiness Problem
Decidability of Word Problem
Elimination of Epsilon Rules
Elimination of Unit Rules

Elimination of Deterministic Variables
Separation of Grammars

Binarization of Grammars

=, =L
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Use of FFPI and FClI

Decidability of Emptiness Problem
Decidability of Word Problem
Elimination of Epsilon Rules
Elimination of Unit Rules

Elimination of Deterministic Variables
Separation of Grammars

Binarization of Grammars

FCl
FCI

FCI

FFPI
FFPI
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