
Incremental Algorithms and a

Minimal Graph Representation

for Regular Trees

Matthias Horbach
Sven Woop

Abstract

In this paper we present an efficient way of representing regular trees,
which allows operations such as subtree checking and equality tests to
be computed efficiently. To do so, we represent regular trees as minimal
graphs which are constructed incrementally.

Our work is primarily based on the paper An incremental unique Rep-

resentation for Regular Trees [1] by Laurent Mauborgne, where he studies
an algorithm that incrementally finds a unique, minimized representation
for regular trees in time O(n2).

We refine some of his algorithms to gain better complexity, and give
a proof of correctness. Furthermore we give our work a theoretical base
that allows us to develop useful properties of the trees and graphs we work
on, as well as the possibility to use hashing techniques on regular trees.

November 7, 2002
set with LATEX2ε

email:

horbach@ps.uni-sb.de

woop@ps.uni-sb.de

Contents

1 Trees and Graphs 3

1.1 Trees . 3
1.2 T-Graphs . 4
1.3 Relations on Trees and Graphs 7
1.4 Properties of Minimal Graphs . 10
1.5 Natural Order on Trees . 11
1.6 Hashing Regular Trees . 12

2 The Partitioning Algorithm 15

2.1 Basics . 15
2.2 The Algorithm . 17
2.3 Computing the Refinement . 19
2.4 Runtime Analysis . 20
2.5 Unique Order on the Trees of a Minimal Graph 21

3 Incremental Minimization of Graphs 24

3.1 Adding a Component . 24
3.2 T (C) ⊂ T (R) . 25
3.3 T (C) ⊂ T (M \ R) . 27
3.4 Optimized Hash Key . 28
3.5 Incremental Graph Minimization Algorithm 28
3.6 Runtime Analysis . 30
3.7 Building a Regular Tree Database 31

3.7.1 Equality Testing . 31
3.7.2 Subtree Testing . 31

4 Comparison with Mauborgne’s Work 31

2

1 Trees and Graphs

In this section we will formalize the meaning of trees and graphs and study some
relations between both. We will represent regular trees as special graphs like
the following ones.

b
0 1 b

0
1

I

a a a a

II III

As in automaton theory, where every state corresponds to a regular language,
there is a natural notion of the tree defined by a node in the graphs above. For
Example the trees of the nodes I, II and III of the graphs above are:

...

0 1
b

a
0 1

b

a
0 1

b

a

a

node I node II

0 1
b

a a

node III

On the other hand, some sets of trees can be represented in graph form. E.g.
the sets of trees of the nodes of the example graphs above are represented in
the graphs themselves.

Definition 1.1. Let X be a set. Then P(X) denotes the power set of X. We
consider X∗ to be the set of finite strings over X. The symbol ε ∈ X∗ denotes
the empty string. The concatenation pq of two strings p and q over X∗ is defined
the usual way. If n > 0 then [n] is the set [n] = {0, . . . , n − 1}, and we define
[0] = ∅.

We will now give a precise definition for the notions shown above. For this,
assume that there exists a fixed set Lab of labels (e.g. the set of integers or
strings), and a fixed element ⊥ 6∈ Lab. For later applications, we will require
Lab to be provided with a total order.

1.1 Trees

Definition 1.2. A tree domain is a subset D ⊆ N ∗ with the properties

• ∀p ∈ N
∗, n ∈ N : pn ∈ D =⇒ p ∈ D

• ∀p ∈ N
∗∃n ∈ N : {m ∈ N|pm ∈ D} = [n]

3

Example 1.3. The set X is a tree domain, the sets Y1, . . . , Y3 are not:

X = {ε, 0, 00, 000, 01, 1}

Y1 = {0, 00, 000, 01, 1}

Y2 = {ε, 0, 1, 3}

Y3 = {ε, 0, 1, 2, . . .}

Definition 1.4. A tree is a partial function t ∈ Tree = N
∗ ⇀ Lab such that

Dom(t) is a tree domain. We write L(t) instead of t(ε) to access the root of the
tree. The subtree t|p of t at position p is defined as:

t|p
def
= sub(t, p)

def
= {(q, l)|(pq, l) ∈ t}

The set Sub(t)
def
= {t|p | p ∈ N

∗} is the set of all subtrees of t. A regular tree is
a tree t such that Sub(t) is finite. When we speak of trees, we will always mean
regular trees.

Definition 1.5. Let X be a set of trees. We call X (subtree) closed, if

∀t ∈ X, p ∈ N
∗ : p ∈ Dom(t) =⇒ t|p ∈ X

Example 1.6. The set consisting of the two trees of nodes I and III from above
is subtree closed.

1.2 T-Graphs

Definition 1.7. A T-graph G is a triple (V, L, E), where

1. V is the set of nodes such that ⊥6∈ V ,

2. L ∈ V → Lab is a function,

3. E ∈ V × N ⇀ V is a partial function such that
∀v ∈ V ∃n ∈ N : {m ∈ N|(v, m) ∈ Dom(E)} = [n].

Given a Graph G = (V, L, E), V is the set of nodes of G. The function L assigns
a label to every such node, and the function E works as a transition function
and corresponds to edges between nodes. The arity of a single node u is defined
as:

arity(u)
def
= #{n ∈ N | (u, n) ∈ Dom(E)}

The arity of a set X of nodes is the maximal arity of the nodes within the set:

arity(X)
def
= max{arity(u) | u ∈ X}

Definition 1.8. A finite T-graph G = (V, L, E) is a T-graph, where the set V
of nodes is finite. If nothing else is mentioned, the term graph will always refer
to a finite T-graph.

4

Example 1.9. The following graph is a finite T-graph that we use to illustrate
the concepts all over this paper.

a

a

b

0

V

VI

1

0

0

1

VII

This graph has the following finite representation (V, L, E):

V = {V, V I, V II}

L = {(V, a), (V I, a), (V II, b)}

E = {((V, 0), V), ((V, 1), V I), ((V I, 0), V I), ((V I, 1), V II), ((V II, 0), V)}

When we visualize graphs and there is no danger of ambiguity, we will skip
the number of each egde and assume edges to be numbered left-to-right. Doing
so, the graphs at the beginning of the chapter look like this:

b b

I

a a a a

II III

Definition 1.10. Now we define a total infix written extension . ∈ V × N
∗ →

(V ∪ ⊥) of the transition function E. Let be m ∈ N,p ∈ N
∗:

v.ε = v

v.mp =

{

E(v, m).p if (v, m) ∈ Dom(E)
⊥ otherwise

In other words u.p is the node that we reach, if we follow the path p starting
at u. Note that {p ∈ N

∗|v.p 6= ⊥} is a tree domain for every v ∈ V by the
definition of the graph.

Example 1.11. In the graph of example 1.9 we have V.1 = V.01 = V.001 =
V.0∗1 = V I and V II.0110 = V .

Definition 1.12. Let X ⊆ V be a set of nodes. We call X closed, if

∀u ∈ X, p ∈ N
∗ : u.p 6=⊥ =⇒ t.p ∈ X

Now we can formalize the meaning of the tree defined by a node in any
graph.

5

Proposition 1.13. Let G = (V, L, E) be a graph. The function T ∈ (V ∪ {⊥
}) → Tree defined by

• T (⊥)
def
= ∅ (the empty function)

• T (v)(p)
def
=

{

L(v.p) if v.p 6= ⊥
undefined if v.p = ⊥

associates a tree to every node in G, and the empty tree to ⊥.

If U ⊆ V is a set of nodes, let T (U)
def
= {T (u) |u ∈ U}.

Proof. We have to show that the domain of this function is a tree domain. But
this is clear, because {p ∈ N

∗|v.p 6= ⊥} is a tree domain for every v ∈ V , and ∅
is a tree domain as well.

Example 1.14. The tree on the right is the one of node III in the graph on the
left.

b
0

1

a

III

...

0 1
b

a
0 1

b

a
0 1

b

a

tree of node III

The idea of trees gives a notion of the equivalence of graphs:

Definition 1.15. Two graphs G = (V, L, E) and G′ = (V ′, L′, E′) are equiva-
lent, if the sets of trees defined by the nodes are equal:

T (V) = T (V ′)

Example 1.16. The following graphs are equivalent:

a

b

a

a

b

a

b

The opposite way of finding a graph representation for a set of trees only
works under special circumstances:

6

Proposition 1.17. Let X = t1, . . . , tr be a finite, closed set of trees. Then
there is a graph G = (V, L, E) such that T (V) = X.

Proof. Let

• V = X,

• L : V → Lab; L(v) = v(ε), and

• E : V × N ⇀ V ; E(v, m) =

{

v|m if m ∈ Dom(v)
undefined otherwise

.

Then G = (V, L, E) is a finite T-graph (the defining properties of G are obviously
fulfilled, as well as the finiteness of V). The function E is well defined, as X
is subtree closed. We show T (u) = u by induction on the length of p for each
node:

T (u)(ε) = L(u, ε) = u(ε)

T (u)(mp) = T (E(u, m))(p)
IH
= E(u, m)(p) = (u|m)(p) = u(mp)

The equality T (V) = X follows directly.

These connections between the mathematical structures of trees and the im-
plementable data structures of graphs allows us to develop ideas and algorithms
on an abstract level. The concrete realization will usually be obvious.

1.3 Relations on Trees and Graphs

Within all the possible relations on graphs, there is one relation that takes a very
central role. This relation is the first application of the possibility to connect
concrete and abstract views.

Definition 1.18. Let G = (V, L, .) be a graph. Then there is the canonical
relation ∼T ⊆ V × V defined by

u ∼T v
def
⇐⇒ T (u) = T (v).

It is obvious that ∼T is an equivalence relation. A set X of nodes is minimal
if ∀u, v ∈ X : u ∼T v ⇐⇒ u = v. The graph G is called minimal if the set of
nodes V is minimal.

Note that this notion of minimality corresponds exactly to the one of au-
tomaton or graph minimization, although we avoid playing around with deletion
of nodes or similar actions which strongly depend on implementational details.

We consider relations to be partially ordered by inclusion, and refer to this
ordering when comparing different relations. Be aware that a smaller or finer
relation in fact yields a stronger differentiation and a greater set of equivalence
classes, whereas a greater or coarser relation has less equivalence classes.

We will usually work on one single graph. In what follows, we always assume
that there is one given graph G = (V, L, E).

Definition 1.19. An equivalence relation ∼ ⊆ V × V is a congruence relation
on V iff the following holds for all u, v ∈ V and n ∈ N:

7

• u ∼ v =⇒ L(u) = L(v)

• u ∼ v ∧ u.n 6=⊥ =⇒ v.n 6=⊥ ∧ u.n ∼ v.n

Two nodes u, v ∈ V are called congruent, if there is a congruence relation ∼
such that (u, v) ∈∼.

Definition 1.20. An equivalence relation ∼ ⊆ V × V that contains all congru-
ence relations on V (∀ congruences ∼′ ⊆ V × V : ∼′⊆∼) is called a distinction
relation. The set of all distinction relations on V is called Dist.
Two nodes u, v ∈ V are called distinguishable, if there is a distinction relation
∼ such that (u, v) 6∈ ∼.

Not only among all relations, but especially concerning congruences and
distinctions, the relation ∼T takes a special position:

Proposition 1.21. The equivalence relation ∼T is both the coarsest congruence
relation and the finest distinction relation.

Proof. It is easy to see that ∼T is a congruence relation. Let ∼ be any con-
gruence relation. We have to show that ∼⊆∼T , which means T (u) = T (v)
whenever u ∼ v. We show this by induction on the length of paths p in N

∗.
Let u ∼ v and p ∈ N

∗.
If |p| = 0, then p = ε and T (u)(p) = L(u) = L(v) = T (v)(p).
If |p| > 0, let n ∈ N, q ∈ N

∗ such that p = nq. As u ∼ v, we get (by definition of
a congruence relation) that u.n = v.n =⊥ or u.n ∼ v.n. If u.n = v.n =⊥, then
we are done, since then u.n.q = v.n.q =⊥, and hence T (u)(p) = T (v)(p) =⊥.
Otherwise if u.n ∼ v.n, then we get T (u.n)(q) = T (v.n)(q) by induction hy-
pothesis:

T (u)(p) = L(u.p) = L((u.n).q) = T (u.n)(q)
IH
= T (v.n)(q) = L((v.n).q) = L(v.p)

= T (v)(p).

So we have T (u)(p) = T (v)(p) for all p ∈ N
∗. Hence T (u) = T (v) and u ∼T v.

Since ∼T is the greatest congruence relation, as we just proved, it contains
all congruences; so ∼T is a distinction relation. Any other distinction relation
contains all congruences as well, and it contains in paticular ∼T . Therefore ∼T

is the finest distinction relation.

Proposition 1.22. Let u, v ∈ V , then the following statements are equivalent:

1. u and v are congruent

2. u and v are not distinguishable

3. u ∼T v.

Proof. 1. ⇐⇒ 2.: If u, v are congruent, they are not distinguishable, because
the pair (u, v) is contained in one congruence relation and hence in every dis-
tinction relation.
Otherwise, the pair (u, v) is contained in no congruence relation. So it is not in
∼T , which makes u and v distinguishable.
2. ⇐⇒ 3.: This is clear because ∼T is the finest distinction relation by propo-
sition 1.21.

8

With these propositions in mind, another characterization of distinction re-
lations is often helpful and easier to verify:

Corollary 1.23. An equivalence relation ∼ is a distinction relation iff ∼⊇∼T .

Proof. This follows directly from proposition 1.21.

Corollary 1.24. If an equivalence relation ∼ is both a congruence and a dis-
tinction relation, then ∼=∼T .

Proof. Proposition 1.21 gives ⊆, because ∼T is the largest congurence. Corol-
lary 1.23 yields ⊇.

After all these definitions, we present some basic examples to illustrate the
idea of distinction developed above:

Example 1.25. • The finest congruence relation on any graph is defined
by u ∼ v ⇐⇒ u = v, the coarsest distinction relation by ∼= V × V .

• We will start with some graphs without congruent nodes:

a

a

a

b c

a

a a

None of the nodes in each of the presented graphs are congruent, since they
differ in label and/or arity and thus denote different trees. This aligns with
the intuition that these nodes “mean” something different. Still, for the
non-trivial distinction u ∼ v ⇐⇒ L(u) = L(v), nodes with the same
label are identified. Note that this relation is no congruence relation.

• In both of the following graphs, all nodes with identical label are congru-
ent:

a

b

a

a

b

a

b

A minimal graph equivalent to both is:

9

a

b

1.4 Properties of Minimal Graphs

Proposition 1.26. If G is a minimal graph, then T |V : V → T (V) defines
an isomorphism between nodes and the corresponding trees. So two equivalent
minimal graphs are isomorphic, which means that they are identical up to re-
naming of nodes. Furthermore given a regular tree t, there exists a minimal
graph G = (V, L, E) representing t, as Sub(t) is finite and the graph is isomorph
to it.

Proof. Let u, v ∈ V with u 6= v. Since G is minimal, it follows that u 6∼T v,
and so T (u) 6= T (v). This means that T |V is injective (surjective is trivial).
Furthermore we have T (u.p) = T (u)|p by the following induction on the length
of p:

T (u.ε)(q) = T (u)(q) = (T (u)|ε)(q)

T (u.np)(q) = T (E(u, n).p)(q)
IH
= (T (E(u, n))|p)(q)

= T (E(u, n))(pq) = T (u)(npq) = (T (u)|np)(q)

As the proof didn’t used the minimality of G the equation T (u.p) = T (u)|p also
holds on arbitrary graphs.

Definition 1.27. Two nodes u, v of a graph are called strongly connected, if:

(u, v) ∈ SC
def
⇐⇒ u ∼sc v

def
⇐⇒ ∃p, q ∈ N

∗ : u = v.p ∧ v = u.q

A set X of nodes is a strongly connected component, if for all u, v ∈ X we have
that u and v are strongly connected, and X is maximal with this property. In
other words, there exists a node u such that X = [u]SC .

Definition 1.28. Two trees t, t′ are called (abstract) strongly connected, if:

(t, t′) ∈ ASC
def
⇐⇒ t ∼asc t′

def
⇐⇒ ∃p, q ∈ N

∗ : t = t′|p ∧ t′ = t|q

Let X be a set of trees, then X is an (abstract) strongly connected component,
if for all t, t′ ∈ X we have that t and t′ are (abstract) strongly connected and
X is maximal with this property. In other words, there exists a tree t such that
X = [t]ASC .

Proposition 1.29. Let u, v be nodes of a graph G. Then u ∼sc v implies
T (u) ∼asc T (v). We have an equivalence if G is minimal.

Proof. “ =⇒ ”: Let v ∼sc u. Then there exist p, q ∈ N
∗ such that u = v.p and

v = u.q. But then we also have T (u) = T (v.p) = T (v)|p and T (v) = T (u.q) =
T (u)|q and therefore T (v) ∼asc T (v).
If G is minimal, then the equivalence is clear, as V is isomorphic to T (V) with
isomorphism T |V by proposition 1.26.

10

1.5 Natural Order on Trees

In this chapter we define a total order on the set of trees.

Definition 1.30. We call a path p ∈ N
∗ a separating path for two trees t1 and

t2, if L(t1|p) 6= L(t2|p) ∨ arity(t1|p) 6= arity(t2|p).
If ≤P ⊆ N

∗×N
∗ is total and well founded order on the paths, then we call p the

minimal separating path of t1 and t2 with respect to ≤P , written mspP (t1, t2),
if p is a separating path that is minimal with this property.

Example 1.31. The length lexicographic order ≤llex⊆ N
∗ × N

∗ defined by the
following is a total and well founded order on the set of paths.

ε ≤lex p

np ≤lex mq
def
⇐⇒ n ≤ m ∨ (m = n ∧ p ≤lex q)

p ≤llex q
def
⇐⇒ |p| < |q| ∨ (|p| = |q| ∧ p ≤lex q)

The order ≤lex alone is not well founded, because

. . . <lex 0001 <lex 001 <lex 01 <lex 1.

Definition 1.32. Let ≤L ⊆ Lab×Lab be a total order on the set of labels. This
order can be extended to a partial order ≤LA(L)⊆ Tree × Tree on the set of
trees:

t1 ≤LA(L) t2
def
⇐⇒ L(t1) <L L(t2) ∨ (L(t1) =L L(t2) ∧ arity(t1) ≤ arity(t2))

This order distinguishes trees by label and arity of the root and depends strongly
on ≤L.

Definition 1.33. Let ≤P ⊆ N
∗×N

∗ be a well founded order on the set of paths
and ≤L ⊆ Lab × Lab be a total order on the set of labels.
Furthermore let ≤LA=≤LA(L) ⊆ Tree×Tree be the partial order defined above.
Then ≤LA can be totalized using minimal separating paths. This yields an order
≤T ⊆ Tree × Tree on the set of trees as follows:

t1 ≤T t2
def
⇐⇒ t1 = t2 ∨ (t1 6= t2 ∧ p = mspP (t1, t2) ∧ t1|p ≤LA t2|p)

Note that ≤T = ≤T (≤L,≤P) depends on both ≤L and ≤P . For a better
readability we usually do not explicitly mention this dependency.

Lemma 1.34. The relation ≤T is a total order on the set of trees that is
uniquely determined by ≤P and ≤L.

Proof. 1. reflexive: t1 = t2 =⇒ t1 ≤T t2

2. antisymmetric: Assume t1 ≤T t2 ∧ t2 ≤T t1 and t1 6= t2. Then we have
t1|p ≤LA t2|p ∧ t2|p ≤LA t1|p ⇐⇒ L(t1|p) = L(t2|p) ∧ arity(t1|p) =
arity(t2|p), in contradiction that p is a separating path.

3. transitive: Let t1 ≤T t2 ∧ t2 ≤T t3 and all trees be different (otherwise
it is trivial). Let p12 be the separating path of t1, t2, and p23 be the
one of t2 and t3. The case p12 = p23 is trivial. If p12 <P p23, then p12

11

doesn’t separate t2 and t3, because p23 is minimal. It follows t1|p12 <LA

t2|p12 =LA t3|p12. Furthermore p12 is the minimal separating path of t1
and t3. Otherwise there would be a smaller path p′ such that p′ <P p12 <P

p23 and we would get t1|p
′ 6=LA t3|p

′ p23 minimal
=LA t2|p

′, in contradiction to
the minimality of p23. The case p12 >P p23 is analogous.

4. total: Let t1, t2 be two different trees. Then there exists exaxtly one
minimal separating path p, as ≤P is well founded and total. As p separates
t1 and t2, the partial order ≤LA can compare t1|p and t2|p.

5. unique: Let ≤′
T and ≤′′

T be two orders with the property above. If t1 = t2,
we have t1 ≤′

T t2 and t1 ≤′′
T t2. Otherwise if t1 6= t2, then there is a

minimal separating path p of t1 and t2:

t1 ≤′
T t2 ⇐⇒ t1|p <LA t2|p

⇐⇒ t1 ≤′′
T t2

If ≤P =≤llex, then we call ≤T the natural tree order. This order is not well
founded, like the following example shows:

b<
T

b

a

b

a

a <
T

b

a

a

<
T

a... <
T

separates

separates

separates

1.6 Hashing Regular Trees

In this chapter we analyse a method to hash regular trees. The problem is
that a regular tree may be infinite in general, so we have to compute a finite
representation for it.

Proposition 1.35. The function key defined below is injective and assigns a
finite tree to each regular tree:

cycle(t, p) = ∃q ∈ N
∗ : q <llex p ∧ t|q = t|p

key(t)(p) =

t(p) if ¬cycle(t, p) (1)
q if p = wn ∧ ¬cycle(t, w) ∧ cycle(t, p) (2)

∧ q = min<llex
{q′ ∈ N

∗ | t|q′ = t|p}
undefined if p = wn ∧ cycle(t, w) (3)

12

Proof. Convince yourself that key(t) defines a tree. We show that key is injec-
tive, t1 = t2 ⇐⇒ key(t1) = key(t2).

”=⇒”: trivial
”⇐=”: Let t1, t2 ∈ Tree, and p be the separating path of t1 and t2 which is
minimal with respect to ≤llex and assume key(t1) = key(t2). If key(t1)(p) and
key(t2)(p) are in different cases of the definition of key, then it is clear that we
have the contradiction key(t1) 6= key(t2), as in case (1) the label of the key is
the label of the original tree, in case 2 it is a path and in case 3 it is undefined.
Otherwise consider the different cases:

1. If we are in case 1 of the definition, then key(t1)(p) = key(t2)(p) =⇒
t1(p) = t2(p) ∧ arity(t1|p) = arity(t2|p). But p separates t1 and t2. Con-
tradiction.

2. and 3. If we are in case 2 or 3 of the definition, then let q be the
longest path such that p = qq′, and key(t1)(q) and key(t2)(q) are both
defined. As q is maximal, key(t1)(q) and key(t2)(q) are both in case 2
of the definition. Let l = key(t1)(q) = key(t2)(q). Then l is a path
with l <llex q. Furthermore t1|q = t1|l and t2|q = t2|l. We have
t1(p) = (t1|q)(q

′) = (t1|l)(q
′) = t1(lq

′) and t2(p) = t2(lq
′). But then

lq′ <llex p is a separating path in contradiction to the minimality of p.

Example 1.36. The key on the right of the following picture is the key of the
tree of node V in the left minimal graph. Satisfy yourself that the name of the
nodes of the graph have no effect on the key.

a

a

b

0

V

VI

1

0

0

1

VII

a
0 1

a
0 1

1 b
0

ε

ε

To compute a key to a tree t we use a node u in a minimal graph as rep-
resentation for t. Then the key can be computed using breadth first search.
A property of the breadth-first-search algorithm is, that the path p the algo-
rithm follows to a node v is minimal with respect to ≤llex. Therefore each time
we visit a node v′ that we already visited before, we can guarantee that the
path p of v is the one the algorithm has to put at the place of v′. Breadth-first-
search is in O(|V |+ |E|). Consequently the size of the key is also in O(|V |+ |E|).

It is easy to see that you can compute the original minimal graph represen-
tation out of the key. As the minimal graph is unique for a tree, we defined a
injective function between trees and keys. We can compare two trees by com-
paring the corresponding keys. A key can be easily represented as a finite string

13

and as there exist optimal hashing functions on strings, hashing a tree is no
problem after the computation of the key.

14

2 The Partitioning Algorithm

Since we want to find a unique and efficient representation of trees, we have to
remove all redundancy. In terms of graphs this is equivalent to the problem of
graph minimization. Hence one of our sub-goals is to minimize a given graph
G.

Usually, minimization of graphs (or automata) is done by manipulation of
the nodes. We will use a different approach: Successive refinement of a simple
distinction relation finally yields ∼T .

In this section, we will give two algorithms to achieve a minimization of
graphs, or rather to construct ∼T , a naive and an optimized one, and prove
their correctness. The final algorithm runs in O(n log n), following ideas from
Hopcroft [2, 3].

We will usually work on one single graph G = (V, L, E).

2.1 Basics

Before we can continue to the algorithms, we state some further properties
of congruence relations, which will be needed to prove the correctness of the
algorithms.

Lemma 2.1. Let

∼L = {(u, v) ∈ V × V | L(u) = L(v)}

∼LA = {(u, v) ∈ V × V | L(u) = L(v) ∧ arity(u) = arity(v)}

be the relation dividing V by label (and arity). Both ∼L and ∼LA are distinction
relations.

Proof. Both ∼L and ∼LA are equivalence relations. Furthermore

u ∼T v =⇒ T (u) = T (v)

=⇒ L(u) = L(v) ∧ arity(u) = arity(v)

=⇒ u ∼LA v =⇒ u ∼L v,

and so ∼T ⊆∼LA⊆∼L.

The refinement of distinction relations will be done using the following func-
tion:

Definition 2.2. The function R ∈ P(V × V)×P(V)×N → P(V × V) defined
by

R(∼, X, n) := (∼) ∩ {(u, v) ∈ V × V |u.n ∈ X ⇐⇒ v.n ∈ X}

is called refinement.
Let ∼,∼′ be distinction relations. We write

∼�∼′,

if there are X ∈ V/∼ and n ∈ N such that ∼′= R(∼, X, n) 6= ∼.

Lemma 2.3. If ∼ is a distinction relation, then R(∼, X, n) is an equivalence
relation with the properties

15

1. R(R(∼, X, n), X, n) = R(∼, X, n) (idempotence)

2. ∀Y ⊆ V, ∀m ∈ N : R(R(∼, X, n), Y, m) = R(R(∼, Y, m), X, n)

3. X ∈ V/∼ =⇒ R(∼, X, n) ∈ Dist.

Proof. As the intersection of two equivalence relations, R(∼, X, n) itself is an
equivalence relation. For the rest of the proof let ∼ ∈ Dist and u, v ∈ V be
arbitrary.

1. Idempotence:

(u, v) ∈ R(R(∼, X, n), X, n)

⇐⇒ (u, v) ∈ R(∼, X, n) ∧ (u.n ∈ X ⇐⇒ v.n ∈ X)

⇐⇒ (u, v) ∈ ∼ ∧(u.n ∈ X ⇐⇒ v.n ∈ X)

⇐⇒ (u, v) ∈ R(∼, X, n)

2. Let Y ⊆ V, m ∈ N. Then

(u, v) ∈ R(R(∼, X, n), Y, m)

⇐⇒ (u, v) ∈ R(∼, X, n) ∧ (u.m ∈ Y ⇐⇒ v.m ∈ Y)

⇐⇒ (u, v) ∈ ∼ ∧ (u.m ∈ Y ⇐⇒ v.m ∈ Y)

∧(u.n ∈ X ⇐⇒ v.n ∈ X)

⇐⇒ (u, v) ∈ R(∼, Y, m) ∧ (u.n ∈ X ⇐⇒ v.n ∈ X)

⇐⇒ (u, v) ∈ R(R(∼, Y, m), X, n)

3. Let X ∈ V/∼. Then ∼T ⊆ R(∼, X, n) (remember that T (u.n) = ∅ if
u.n =⊥):

u ∼T v =⇒ T (u) = T (v)

=⇒ T (u) = T (v) ∧ T (u.n) = T (v.n)

=⇒ u ∼ v ∧ u.n ∼ v.n
X∈V/∼
=⇒ u ∼ v ∧ (u.n ∈ X ⇐⇒ v.n ∈ X)

=⇒ (u, v) ∈ R(∼, X, n).

Lemma 2.4. Let ∼⊆∼L be a distinction relation. Then

∼=∼T ⇐⇒ ∀X ∈ V/∼, n ∈ N : R(∼, X, n) =∼ .

Proof. “=⇒”: Let be X ∈ V/∼ and n ∈ N. The inclusion R(∼T , X, n) ⊆∼T is
trivial. According to lemma 2.3, R(∼T , X, n) is a distinction relation, because
∼T is one. Since ∼T is the finest distinction relation by lemma 1.21 we get
∼T ⊆ R(∼T , X, n).
“⇐=”: For the opposite direction let R(∼, X, n) =∼ for all X ∈ V/∼, n ∈ N.
As ∼⊆∼L, we get u ∼ v =⇒ L(u) = L(v), which is the first defining property

16

of a congruence relation. We get the second one the following way: Let u ∼ v
and u.n 6=⊥ then X = [u.n]∼ = [u.n]R(∼,X,n) is defined. We get:

u ∼ v =⇒ (u, v) ∈ R(∼, X, n)

=⇒ (u.n ∈ X ⇔ v.n ∈ X)

=⇒ (u.n ∈ [u.n]∼ ⇔ v.n ∈ [u.n]∼)

=⇒ u.n ∼ v.n

Furthermore we get v.n 6=⊥, since otherwise ⊥= v.n ∈ X. But ⊥6∈ V as it
isn’t a node.
Hence ∼ is a congruence relation, and by corollary 1.24 we get ∼=∼T .

Corollary 2.5. Let
∼0�∼1� . . . �∼n

be a chain of distinction relations with ∼L⊇∼0. This chain is finite, and if there
is no ∼n+1 such that ∼n�∼n+1, then ∼n=∼T .

2.2 The Algorithm

A first algorithm for the computation of ∼T for any given graph G (which is
equivalent to finding the minimization of G) follows directly from corollary 2.5
above. But the naive implementation takes O(n2) time, where n = |V | is the
number of nodes of G.

The most easy-to-find starting relation is ∼L, the distinction relation that
distinguishes nodes by their labels. Starting the algorithm with ∼LA (to include
information on the arity of the nodes) is a simple improvement. In fact, every
distinction relation finer than ∼L can be used as starting relation, so any a
priori information can be taken into account.

An even asymptotically improved runtime is reached by an algorithm dis-
covered by Hopcroft in 1971 [2, 3]. It works on the same principle as the naive
version, but uses as few and small partitions as possible (only those in the
agenda) for the refinement process.

Note that we will also use the term block for the sets of nodes we will work
with, because the relation defining these sets change and so the term equivalence
class might lead to confusions.

Algorithm 2.6. Let a = arity(V) be the maximal arity of a node in V . Com-
pute a chain ∼0⊇∼1⊇ . . . as follows:

i=0: ∼0=∼L

agenda0 = (V/∼0
) × {0, . . . , a − 1}

(all pairs of equivalence classes and edge labels are in the agenda)

i → i+1: if agendai = ∅ then return ∼i.
else There is a pair (Xi, ni) ∈ agendai.

Define ∼i+1= R(∼i, Xi, ni) and update the agenda.

The updating of the agenda is done as follows: Remove the pair (Xi, ni)
from the agenda. Whenever Y1, Y2 ∈ V/∼i+1 with Y = Y1 6= Y2 such that
Y1∪̇Y2 ∈ V/∼i

, assume |Y1| ≤ |Y2| and construct the new agendai+1 as follows.
For all 0 ≤ n < a do:

17

• If (Y, n) 6∈ agendai, then add (Y1, n) to the agenda.

• If (Y, n) ∈ agendai, then remove it, and add (Y1, n) and (Y2, n).

The algorithm works exactly like the naive version, except that we do not
refine using all possible classes. So we only have to show that this suffices, and,
since there is a new break condition, that the algorithm terminates after finitely
many steps. We will do so after some lemmata needed for the proof.

Definition 2.7. Let ∼ be a congruence relation. We call a pair (X, n) ∈ V/∼×N

safe with respect to ∼, iff R(∼, X, n) =∼.

Lemma 2.8. The pair (X, n) is safe with respect to R(∼, X, n).

Proof. We have to show R(∼, X, n) = R(R(∼, X, n), X, n), but this is clear by
the idempotence of the refinement.

Lemma 2.9. Let (X, n) ∈ V/∼ × N be safe with respect to ∼, and (Y, m) ∈
V/∼ × N. Then (X, n) is also safe with respect to R(∼, Y, m).

Proof. Using “commutativity” and then safeness, we get

R(R(∼, Y, m), X, n) = R(R(∼, X, n), Y, m) = R(∼, Y, m).

Now we can prove the correctness of the algorithm:

Proof. We prove that the following invariant holds at each step of the algorithm:

∀(Y, n) 6∈ agendai :
∃(Z1, n),. . . , (Zm, n) ∈ agendai :

(Y ∪ Z1 ∪ . . . ∪ Zm, n) is safe for ∼i

The number m of pairs needed to gain safeness may be 0, in which case (Y, n)
itself is safe for ∼i. When the algorithm stops, the agenda is empty, so m = 0
for all equivalence classes. This means that all classes are save for the final
distinction relation, and so we have reached ∼T by lemma 2.4.

For simplicity, we will write ZY,n := {Z1, . . . , Zm} within this proof and call
it the safety set of (Y, n).

Induction start: At the beginning all pairs (X, n) ∈ V/∼ × N with 0 ≤ n <
arity(V) are in the agenda. As refinement by an edge not occuring in the graph
changes nothing, we are done.

Induction step: Let ∼=∼i be the distinction relation at any further step
of the algorithm, and let (X, n) ∈ agenda be the pair with respect to which
we refine. We need to show that the invariant holds for the (i+1)th step with
∼i+1= R(∼, X, n).

In the proof we need the following construction used later:

Construction 1: Let ZY,n be the safety set of (Y, n) before the refinement
on (X, n). We construct a new Z ′

Y,n by modifing ZY,n in such a way that we

18

replace each Y ′ ∈ ZY,n that was split in Y ′ = Y ′
1 ∪̇Y ′

2 by both Y ′
1 and Y ′

2 . Fur-
thermore we remove X, as (X, n) is no more on the agenda after the refinement.
By the definition of the algorithm it is sure that (Y ′

1 , n) and (Y ′
2 , n) are on the

agenda after the refinement, therefore Z ′
Y,n can be also found there.

Now lets continue the proof. Let be (Y1, n) 6∈ agenda:

• If (Y1, n) is the pair (X, n) we refined on, the invariant is fulfilled as (X, n)
is safe for R(∼, X, n).

• If the equivalence class X we refined on was split itself such that X =
Y1∪̇Y2 and |Y1| ≤ |Y2|, then we can take ZY2

= {Y1}, as (Y1, n) is now in
the agenda.

• If (Y1, n) was not split by the last refinement, then it fulfills the invariant
with the set Z ′

Y1
of construction 1.

• If (Y1, n) is a part of a splitted equivalence class such that Y = Y1∪̇Y2,
then (Y2, n) was put on the agenda. Construction 1 gives us a set Z ′

Y,n that
is on the new agenda. Let ZY1,n = {Y2} ∪ Z ′

Y,n and Z = Y1 ∪
⋃

{Y ′|Y ′ ∈
ZY1,n} = Y ∪

⋃

{Y ′|Y ′ ∈ ZY,n}. As ZY,n is the safety set of (Y, n) we
have, that (Z, n) is safe for ∼ and also for R(∼, X, n). But then ZY1,n is a
valid safety set for (Y1, n) and we get that the invariant holds for (Y1, n).

2.3 Computing the Refinement

Up to now we have no algorithm for computing the refinement, but this is es-
sential to analyse the runtime of the algorithm. Therefore this section will give
an optimized algorithm for computing R(∼, X, n).

First we need a representation for the distinction relations ∼. We represent
the equivalence classes (blocks) V/∼ of ∼ using doubly linked lists. Furthermore
into each node we save a pointer to the equivalence class it corresponds to and
each node has backpointers to its parent nodes accessed by the function parents
defined as parents(u, n) = {v ∈ V |v.n = u}.
The refinement by (X, n) ∈ V/∼ × N splits equivalence classes B of ∼ into
B ∩ {u|u.n ∈ X} and B \ B ∩ {u|u.n ∈ X} if none of both are empty.

Proof.

[u](R(∼,X,n)) = {v|(u, v) ∈∼ ∧(u.n ∈ X ⇐⇒ v.n ∈ X)}

= {v|(u, v) ∈∼} ∩ {v|u.n ∈ X ⇐⇒ v.n ∈ X}

=

{

[u]∼ ∩ {v|v.n ∈ X} if u.n ∈ X
[u]∼ ∩ {v|v.n 6∈ X} if u.n 6∈ X

=

{

[u]∼ ∩ {v|v.n ∈ X} if u.n ∈ X
[u]∼\[u]∼ ∩ {v|v.n ∈ X} if u.n 6∈ X

The following algorithm computes this efficiently:

19

Algorithm 2.10. Refinement

fun refine (X,n)
∀u ∈X : ∀v ∈parents(u, n) :

select the node v

After this you can split each equivalence class in the selected and unselected
part if none of both are empty. This can be done in O(1), if the nodes within
blocks are stored in a list, and if selected nodes within each block are directly
moved into a second list.

2.4 Runtime Analysis

Let k = arity(V). We analyse the number of times the preimage of a fixed
node u is computed. This is only the case if we refine on a pair (X, n) with
u ∈ X. After this the pair is removed from the agenda. If X was split and X ′

is the smaller part, we add maximally k pairs (X ′, n) to the agenda, one for
each label occuring in the graph. As the size of the smaller part is less than half
of the size of the original block, the preimage of an edge n ∈ N of a node can
be maximally computed log2(|V |) times. Let Eu,n be the number of incoming
edges of u labeled with n. Computing the preimage of a node u and egde n
costs O(Eu,n) and is done maximally log2(|V |) times. The refinement must be
done for each edge and node, therefore we get the following work computing the
preimage (visiting nodes is not counted):

∑

u∈V

∑

n∈N

O(Eu,n) · log2|V | = O(|E| · log2|V |)

We visit maximally the following number of nodes:

k
∑

n=0

|V | · log2|V | = k · |V | · log2 |V |

Therefore the algorithm is in O((|E|+k · |V |) · log |V |). But we have |E| ≤ k · |V |,
which yields O(k · |V | · log |V |).

Example 2.11. Now we will minimize the following graph using the partition-
ing algorithm presented above.

a

a

b

0

V

VI

1

0

0

1

VII

a 0

1

IV

The initial partition using ∼L, that separates only by the label, is blocks0 =
[{V II}, {IV, V, V I}]. Now we construct the agenda and get:

blocks0 = [{V II}A, {IV, V, V I}B]

agenda0 = [(B, 1), (B, 0), (A, 1), (A, 0)]

20

We first refine on the pair (A, 0), which changes nothing, as there is no incoming
edge labeled with 0 to the block A. But refinement by (A, 1) splits the block B
into B′ = {V I} and B′′ = {IV, V }. As both (B, 1) and (B, 0) are in the agenda
we remove them and add (B′, 1), (B′′, 1), (B′, 0) and (B′′, 0).

blocks2 = [{V II}A, {IV, V }B′ , {V I}B′′]

agenda2 = [(B′′, 0), (B′, 0), (B′′, 1), (B′, 1)]

Refinements on (B′, 1), (B′′, 1), (B′, 0) and (B′′, 0) have no effect on the blocks.
Therefore we finally get:

blocks6 = [{V II}A, {IV, V }B′ , {V I}B′′]

agenda6 = []

The agenda is empty. So we can assure that no refimenent on a pair (X, n)
changes anything on the blocks (convince yourself of it). We gain the minimal
graph if we replace the node IV by the equivalent node V and get:

a

a

b

0

V

VI

1

0

0

1

VII

2.5 Unique Order on the Trees of a Minimal Graph

Here we present a further application of the partitioning algorithm. The algo-
rithm can be used to compute a unique order on the trees of a minimal graph in
O(|V | · log|V |). The order is not the canonical order on the trees, but it is one,
that can be computed very fast. Be careful that the order depends on the graph
it works on, which means that for two trees t1,t2 it could be t1 ≤ t2 using graph
G1 as representation and t2 ≤ t1 using another graph G2 as representation. For
our application of the algorithm, this property is acceptable.

Algorithm 2.12. Let V/∼L
be the initial partition of the algorithm, A, B ∈

V/∼L
, and let L(X) return the label of the nodes in the block X, which are all

the same. Then the following defines a total order on V/∼L
:

A ≤I B ⇐⇒ L(A) ≤ L(B)

We order the initial blocks by this order. Each such order ≤ on blocks induces
a partial order on the nodes:

u ≤ v ⇐⇒ A ≤I B (where u ∈ A and v ∈ B)

Furthermore we extend ≤I to pairs occuring in the agenda as:

(A, n) ≤′
I (B, m) ⇐⇒ A <I B ∨ (L(A) = L(B) ∧ n ≤ m)

21

We use only set theoretic operations to access the blocks. We call the order of
the blocks at a specific time in the algorithm ≤C . This order is represented as
the order of the blocks in a list. This means that a block occuring on the left
of another block in the list is the smaller one. Each time we split a block B by
a pair (A, n) into B′ and B′′ such that ∀u ∈ B′ : u.n ∈ A we update the order
≤C putting the block B′ directly to the left of B′′ at the place B was. More
exactly if we had A ≤C B ≤C C then we get A ≤′

C B′ ≤′
C B′′ ≤′

C C.
The agenda is implemented as a queue with the special property that old pairs
can be deleted if neccessary. Let a = arity(V) be the maximal arity occuring
in the graph. We get the following algorithm (pop returns and deletes the first
element of a queue):

fun compute order(G) =
Blocks := V/∼L sorted by ≤I

agenda = (V/∼0
) × {0, . . . , a} (initially sorted by ≤′

I)
while (X, n) = pop(agenda) do

Refine the blocks by (X, n) and update the agenda.
return Blocks

Proof. We have to show that the algorithm computes the same order on the
trees of two equivalent minimal graphs G1 and G2. As G1 and G2 are mini-
mal, each node corresponds to exactly one tree. Therefore we can take the set
T (V1) = T (V2) as the set of nodes, such that T (u) = u. But then both graphs
are identical. And since blocks are accessed as sets, there is no difference in
the state of the algorithm after sorting the initial blocks. As the algorithm is
deterministic, it always computes the same order on the nodes, and hence on
the trees of the graph.

Example 2.13. Now we compute the order of the nodes of the minimal graph
gained by the last example.

a

a

b

0

V

VI

1

0

0

1

VII

The initial partition is blocks0 = [{V, V I}, {V II}] using ∼L and sorting by
the label. Now we construct the agenda and get:

blocks0 = [{V, V I}A, {V II}B]

agenda0 = [(B, 1), (B, 0), (A, 1), (A, 0)]

We first refine on the pair (A, 0), which changes nothing. Refinement by (A, 1)
splits the block A into A′ = {V } and A′′ = {V I}. As V.1 = V I ∈ A, we put
the block A′ to the left of A′′. We get:

blocks2 = [{V }A′ , {V I}A′′ , {V II}B]

agenda2 = [(A′, 1), (A′, 0), (B, 1), (B, 0)]

22

As we only have single node blocks, we are done. The node V is the minimal
one in this order.

23

3 Incremental Minimization of Graphs

The goal of this chapter is to show a method to minimize a graph incrementally.
This means to divide the graph into its strongly connected components and then
minimize them independently if possible.

3.1 Adding a Component

Assume we have given a graph G and sets of nodes C ⊂ D, R ⊂ M as in the
figure below. Furthermore D∪̇M = V and C is a strongly connected component
of D at bottom level. Bottom level means that there is no edge (u, v) with u ∈ C
and v ∈ D \C in the graph. R is the set of nodes of M that are reachable from
C. The set C ∪ R is closed and M must be minimal and closed. The set D is
the rest of the graph, to work on any more and the minimal set M we already
worked on.

M

R

C

G D

Our task is to expand the minimal closed set M by the component C, such
that the resulting set M ′ is again minimal and closed. This means to compute
the relation ∼T and then modifiy the graph by means of a minimization of
C ∪ M . By lemma 3.2 only the following cases are possible:

1. T (C) ⊂ T (R)

2. T (C) ⊂ T (M \ R)

3. T (C) 6⊂ T (R) and T (C) 6⊂ T (M \ R)

To handle the different cases, we use different algorithms explained in the
following sections.

The algorithms for the first two cases have to check whether T (C) ⊂ T (R) or
T (C) ⊂ T (M\R), and if so to compute ∼T , as we will want to do a minimization
later. Therefore it suffices for the algorithms to return for each node of C the
equivalent one in M . If we have this information, we can minimize efficiently if
we redirect each incoming edge of a node in C to the equivalent node in M and
then delete all nodes of C from the graph (and of course from the set D).

In the third case we can minimize the component C independently of M in
O(n · log n) using lemma 3.1. We call the minimized component C ′. As in this
case we have T (C) ∩ T (M) = ∅, we can expand M by the minimal component
C ′ and get M ′ = C ′∪M . This set M ′ is minimal and closed again. Furthermore
we define D′ = D \ C ′. As an enhancement we also assign a unique id to each

24

node of C ′. Since we will need some hashing information for the component C ′

later, we compute the minimal node of C ′ and add it to a hashing table. This
provides a way to find the component C ′ later.

We call the operation that increases the minimal set M by C ′

(M, D)
C
−→ (M ′, D′).

The following lemma is basic for the algorithms.

Lemma 3.1. If T (C)∩T (R) = ∅, then C∪R can be minimized in O(|C|·log(|C|)
time. The set C does not have to be strongly connected.

Proof. (algorithmic) We use the partitioning algorithm to minimize C ∪R with
the following initial congruence:

u ∼ v ⇐⇒ (u ∈ C ∧ v ∈ C ∧ L(u) = L(v))

∨ (u ∈ R ∧ v ∈ R ∧ u = v)

The relation ∼ is an equivalence relation. Furthermore it is a distinction re-
lation, because if T (u) = T (v) and u, v ∈ C, then we have L(u) = L(v) and
hence u ∼ v. If T (u) = T (v) and u, v ∈ R, then we have u = v as R is mini-
mal and once more u ∼ v. Otherwise the nodes cannot be equivalent, because
T (C) ∩ T (R) = ∅ and therefore u 6∼ v.
Since we want to use ∼ as the initial partition, we have to show ∼⊆∼L, but
this is clear, as u ∼ v =⇒ L(u) = L(v) ∨ u = v, which implies L(u) = L(v).

Note that the distinction relation puts each node of R into a singleton block
(i.e. a block with only one node).

Now we can start the partitioning algorithm on C ∪ R and realize the fol-
lowing:

Let be K = {v ∈ R | ∃u ∈ C, ∃n ∈ N : v = u.n} (K is the set of nodes of R
which have parent nodes in C). It suffices to start the algorithm on the nodes
C ∪ K and ignore the rest of R. This is possible because of the following:

Let M = R \ K be the remaining nodes (those that we ignore), and let
w ∈ M . Then the parent nodes of w are all in R, as otherwise there would
be a node s ∈ C and n ∈ N such that s.n = w ∈ R, and we would get the
contradiction w ∈ K. Therefore the nodes in M can only split the singleton
blocks of the nodes in R, but these cannot be split. It follows that the algorithm
can be implemented in O(|C ∪ K| · log|C ∪ K|) time, running on C ∪ K. The
size of K is in O(|EC |) if |EC | is the number of edges of C.

Lemma 3.2. Let G be a graph and C, D ⊆ V be two sets of nodes of G such
that C is strongly connected and D is closed. If there are nodes u ∈ C and
v ∈ D such that T (u) = T (v), then there is an equivalent node in D for every
node of C.

Proof. Let w be any node of C. As C is strongly connected, there exists a path
q such that u.q = w. We directly see that T (v.q) = T (u.q) = T (w). And v.q
lies in D, as D is closed.

3.2 T (C) ⊂ T (R)

The first case to check is whether T (C) ⊂ T (R), which can be done in two
different ways. The following lemma shows a property that can be used to
optimize the algorithms.

25

Lemma 3.3. If T (C) ⊂ T (M), then there exists a strongly connected compo-
nent CM in M such that T (C) ⊂ T (CM). Furthermore if M is reachable from
C, then C is directly connected to CM (i.e. there are nodes u ∈ C and v ∈ M ,
and n ∈ N with u.n = v).

Proof. As T (C) ∩ T (M) 6= ∅, we find a tree t ∈ T (C) ∩ T (M), and two nodes
u ∈ C, v ∈ M , such that t = T (u) = T (v). We set CM = [v]∼sc

. Let w be a
node of C and w′ an equivalent one of M , which exists by lemma 3.2. Then we
have:

u ∼sc w
1.29
=⇒ T (u) ∼asc T (w)

=⇒ T (v) ∼asc T (w)
1.29 on M

=⇒ v ∼sc w‘

This implies T (C) ⊂ T (CM).
Let M be reachable from C, and let u, v, C, CM be defined as above. Assume

that C is not connected to CM . Then we find a node w ∈ M \ CM such that
there are paths p, q ∈ N

∗ with u.p = w and w.q = v. But now we have
T (w) = T (u.p) = T (u)|p and T (u) = T (v) = T (w.q) = T (w)|q and therefore
T (v) ∼asc T (w). As M is minimal, we get v ∼sc w by proposition 1.29, but
w 6∈ CM . Contradiction.

The lemma expresses that equivalent nodes of C and R can only be found
in the adjoining strongly connected components of C. This fact is used in the
following two algorithms. Assume the situation of figure 3.1 and let C1, . . . , Cn

be the adjoining strongly connected components of C.

Algorithm 3.4. (first version) Take one node u ∈ C and do a naive equality
test with each node of the C1, . . . , Cn using the following algorithm (let f ∈
C → C1 ∪ · · · ∪ Cn be empty at the beginning):

fun equal(u,v)
begin

if f(u) = v then return true
if u ∈ C1 ∪ · · · ∪ Cn then return u = v

Let u1, . . . , un be the children of u
and v1, . . . , vm be the children of v.

set f(u) = v

if n 6= m ∨ L(u) 6= L(v) then return false
else return equal(u1, v1) ∧ · · · ∧ equal(un, vn)

end

This algorithm has a runtime of O((|C| + |E|) ·
∑

i |Ci|).

Proof. The correctness of the algorithm is clear, as the node comparision in the
second if-clause is allowed, since C1 ∪ · · · ∪ Cn is minimal.

Algorithm 3.5. (second version)

26

1. Apply the algorithm of lemma 3.1 setting Clemma 3.1 = C ∪ C1 ∪ · · · ∪ Cn

and the minimal set Rlemma 3.1 to R \ (C ∪ C1 ∪ · · · ∪ Cn).

2. Take the block B = [u]∼ of a node u ∈ C. Then T (C) ⊂ T (R) iff there is
a node of C1 ∪ · · · ∪ Cn in B. Furthermore for each node of C we find an
equivalent one in R this way.

Let X = C ∪ C1 ∪ · · · ∪ Cn. Then the algorithm works in O(|X| · log(|X|)).

Omitting constants, the first version of the algorithm is in fact the better choice,
if |C| ≤ log2(

∑

i |Ci|). So we use the first version if |C| ≤ log2(
∑

i |Ci|) and the
second one otherwise.

Example 3.6. We will apply the algorithm to the following example graph. As
the set C is very large, we use the second version.

b

a

a

0

VIII

X

0

1

1

IX

a

a

b

0

I

II

1

0

0

1

III

M

C

0

The initial partition is blocks0 = [{I, II, IX, X}A, {III, V III}B] using ∼
of lemma 3.1. The lemma is used setting Clemma 3.1 = C ∪ A if A are the
nodes of the adjoining components of C. But there is only one such com-
ponent, so we have A = {I, II, III}. Furthermore Rlemma 3.1 is the rest of
the set M and therefore empty. Now we refine on the pair (A, 1) and get
blocks1 = [{II, IX}A′ , {I, X}A′′ , {III, V III}B]. Convince yourself that there
is no further pair (X, n) that refines the partition. We investigate block A′′ cor-
responding to node X and find the node I ∈ M in it. Therefore T (C) ⊂ T (M),
and more specifically T (I) = T (X), T (II) = T (IX) and T (III) = T (V III).

3.3 T (C) ⊂ T (M \ R)

We assume not being in the first case, or in other words T (C) 6⊂ T (R). Then
we can compute ∼T on C as described in lemma 3.1 with time complexity
O(|C| · log(|C|). We use this information to minimize the component C of
the graph and obtain a minimal component C ′. Now we can test whether
T (C) = T (C ′) ⊂ T (M \ R). We do this by taking the minimal node of C ′

computed by algorithm 2.12 and then using hashing to find an equivalent one in
M . This works, if we save hashing information for each (abstract) component

27

of M , and as C∪R and M are both minimal and closed. If this equivalent node
exists, then we obviously have the case T (C) ⊂ T (M \ R). Up to now we only
have the equivalent node for exactly one node of C, but it is easy to gain the
other ones using the idea of the proof of lemma 3.2.

3.4 Optimized Hash Key

As we computed id’s for each node in M , we can use a key for the hashing
algorithm, which is more efficient than the one defined in the section 1.6. The
size of this new key is linear in the size of C ′ and not linear in the size of the
graph reachable from C ′.
The idea is to replace the nodes at the frontier of the component with their id.
More precise, we replace each edge (u, v) such that u ∈ C ′ and v ∈ M with
(u, idv). As the ids are unique, it is trivial to see that this defines an injection.
The new key of a node u ∈ C ′ is defined as the key of the corresponding node
in the modified component.

Example 3.7. The following example illustrates the new key.

a

a

b

0

V
1

0

0

1

a
0 1

a
0 1

1 b
0

ε

ε

a b
0

0

M

ID0
ID1

1

original minimal graph

1

ID1

optimized key of node V

a

a

b

0

V
1

0

0

1

1

modified graph

ID1

3.5 Incremental Graph Minimization Algorithm

Our goal is to minimize a graph G. Let M0 = ∅ at the beginning and D0 = V .

We iteratively compute (Mi, Di)
Ci−→ (Mi+1, Di+1) for a remaining strongly

connected component Ci of Di at bottom level. If Di is empty, then we are
done and Mi contains the nodes of a minimal graph equivalent to G.

28

Example 3.8. To illustrate the concepts, we present an example applying the
incremental algorithm to following not connected graph with 10 nodes.

a

a

b

0

I

II

1

0

0

1

III

b

a

a

0

VIII

X

0 0

1

1

IX

a

a

b

0

V

VI

1

0

0

1

VII

a 0

1

IV

The minimal closed set M is empty at the beginning. First we take the
strongly connected component C1 = {I, II, III} at the top left position. From
example 2.11 we know that this component is already minimal. There are no
adjoining components, so we can directly go to step 2. By example 2.13 we know
that the minimal node of this component is the node I, so we have to compute
key(I) (done in example 1.36) and search this key in the hash table. since the
table is empty at the beginning, we find no node. Therefore we proceed to step
3, where we add (key(I), I) to the hash table and set M = {I, II, III}.
The next component we can take is C2 = {IV, V, V I, V II}. As there are once
more no adjoining components, we can minimize C2 (done in example 2.11) and
get C ′

2 = {V, V I, V II}. The minimal node of C ′
2 is V computed in example

2.13. As key(I) = key(IV), we find the previously added node I in the hash
table. We replace all nodes of the component C ′

2 by the equivalent ones in M .

29

The picture now looks that way:

b

a

a

0

VIII

X

0

1

1

IX

a

a

b

0

I

II

1

0

0

1

III

M

C

0

There is only one component C left. Step 1 of the algorithm yields T (C) ⊂
T (R) = T (M) computed in example 3.6. We replace the nodes of C by the
equivalent ones in M and get the following minimal graph as result:

a

a

b

0

I

II

1

0

0

1

III

3.6 Runtime Analysis

For each component C of G, we have to do compute (M, D)
C
−→ (M ′, D′).

Let EC be the number of edges within C, and let C1, . . . , Cn be the adjoining
components of C. Then we have the following worst case complexity for the
single computation steps:

1. Find C: O(|C| + EC)

2. T (C) ⊂ T (R): O((|C| + EC) ·
∑

i |Ci|)

3. T (C) ⊂ T (M \ R): O(|C| · log(|C|))

This yields a total runtime of at most O((|C|+ EC) ·
∑

i |Ci|) for each com-
ponent. The whole algorithm is in O((|V | + |E|)2).

30

3.7 Building a Regular Tree Database

The algorithms above can be used to compute a database for regular trees.
Therefore we only have to save all information of the minimal set M that is
expanded during the computation. This information forms the tree database.
All information means the edges between the nodes in M , the id’s of the nodes,
as well as the hashing table that is used.

With these simple changes we have a powerful tree database which assigns
an id to each tree that is added. The input trees are given as a node in a
finite graph. The resulting id of the tree is the id of the equivalent node in the
minimized graph in the database after the computation.

3.7.1 Equality Testing

It follows that equality of trees (that are already represented as an id of the
database) can be tested in constant time, if we compare the id’s. But observe
that the first representation change from the graph representation for the tree
to the database representation costs quadratic time.

3.7.2 Subtree Testing

The problem is to decide whether t1 ∈ Sub(t2).
The naive algorithm is in O(n log n) in the size of the representations of t1

and t2.

Working with the database, we can do a little bit better. Assume we already
have given the id’s id1 and id2 of the trees t1 and t2. We only have to test,
whether the id id1 is the id of a subtree of t2. This can be done linear in the
size of Sub(t2).

As you can see, some of the operations on the tree database are very fast, for
example equality testing. A problem is that you need to compute the database
representation first, which takes quadratic time. But for applications that very
often compare regular trees it is more efficient to use the database as representa-
tion all over the time. Compilers for example can use the database to represent
recursive types, as type comparision is done very often.

4 Comparison with Mauborgne’s Work

Apart from

• the developed theoretical background and

• the possibility to define hashing on trees,

we also did some enhancements concerning the concrete algorithms:

• We divided the algorithm into three clearly defined, independent parts
(T (C) ⊂ T (R), T (C) ⊂ T (M \ R) and expansion of M).

31

• We refined the algorithm to test T (C) ⊂ T (R), which Mauborgne calls
”ShareWithDone”. Our algorithm works much better than the original
model, if the component C is very large with respect to R. A disadvantage
is, that we have to do much more work if C is very small. But in this case
the naive algorithm is the fastest anyway, because its overhead is only
minimal.

• The last optimization is that, if we test T (C) ⊂ T (M \ R), we compute
only the hash key of the minimal node of C. As the computation of
the minimal node is in O(|C|log|C|), we have the same complexity here.
Mauborgne computes the key of each node of C and gets the worse runtime
of O(|C|2).

References

[1] Laurent Mauborgne. An incremental unique representation for regular trees.
Nordic Journal of Computing, 7(4):290–311, 2000.

[2] John E. Hopcroft. An n · log n algorithm for minimizing states in a finite
automaton. Theory Of Machines And Computations, Academic Press, pages
189–196, 1971.

[3] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures
And Algorithms. Computer Science and Information Processing. Addison-
Wesley, 1982.

[4] Laurent Mauborgne. Representation of Sets of Trees for Abstract Interpre-
tation. PhD thesis, Ecole Polytechnique, 1999.

[5] Kurt Mehlhorn and Stefan Näher. Leda: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[6] A. Cardon and M. Crochemore. Partitioning a graph in O(|A| · log2 |V |).
Theoretical Computer Science, 19:85–98, 1982.

[7] Gert Smolka. Higher order recursive types. Notes, 2000.

32

