
Designing a Multiprecision
Number Theory Library

Faculty of Computer Science
“Al. I. Cuza” University of Iaşi

6600 Iaşi, România
E-mail: {donald,gi,grm,shiana}@infoiasi.ro

C. Hriţcu I. Goriac R. M. Gordân E. Erbiceanu

Designing a Multiprecision Number Theory Library

Security protocols for Internet applications
• e-commerce
• e-payment
• e-auction

Cryptography
• Public key encryption
• Digital signatures
• Hash functions

Many other domains
• Numerical calculus
• Probabilities and statistics

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Why multiprecision computing?

Designing a Multiprecision Number Theory Library

C and C++ have limited precision
• A “long” has usually only 32 bits
• A “long long” (gcc) typically has 64 bits
• A “long double” uses

• 52 bits for the mantissa
• 11 bits for the exponent

Java has multiprecision capabilities
• Highly portable
• Not so efficient

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Available solutions

Designing a Multiprecision Number Theory Library

Programs like Maple or Mathematica
• Unlimited precision
• Easily prototype algorithms
• Easily compute constants
• Not efficient
• Not portable

Multiprecision libraries
• Most efficient solution
• Many of them are free software (GNU GPL)

• LIP, LiDIA, CLN, NTL, PARI, GMP, MpNT etc.

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Alternatives

Designing a Multiprecision Number Theory Library

Written by Arjen K. Lenstra and later
maintained by Paul Leyland
One of the first
ANSI C
Highly portable
Not efficient

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

LIP (Large Integer Package)

Designing a Multiprecision Number Theory Library

Developed at the Technical University of
Darmstadt (Thomas Papanikolau)
C++ library
Highly optimized implementations
• Multiprecision data types
• Time-intensive algorithms

Can use different integer packages (like
Berkley MP, GMP, CLN, libI, LIP etc.)

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

LiDIA (a library for computational number theory)

Designing a Multiprecision Number Theory Library

Written by Bruno Haible and currently
maintained by Richard Kreckel
C++ library that implements elementary
arithmetical, logical and transcendental functions
Rich set of classes
• Integers
• Rational numbers
• Floating-point numbers
• Complex numbers
• Modular integers
• Univariate polynomials etc.

Memory and speed efficient

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

CLN (a Class Library for Numbers)

Designing a Multiprecision Number Theory Library

Written and maintained mainly by Victor
Shoup
C++ library
High performance
• Polynomial arithmetic
• Lattice reduction

Portable
Can be used in conjunction with GMP for
enhanced performance

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

NTL (a Library for doing Number Theory)

Designing a Multiprecision Number Theory Library

Developed at Bordeaux by a team led by
Henri Cohen
Formal computations on recursive types at
high speed
Primarily aimed at number theorists
Extensive algebraic number theory module
Can be used as a calculator (GP)

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

PARI/GP

Designing a Multiprecision Number Theory Library

Developed by Törbjord Granlund and the GNU
free software group
C library for arbitrary precision arithmetic
General emphasis on speed
Highly optimized ASM
• for the most common inner loops
• for a lot of CPUs

Faster than most multiprecision libraries
Its advantage increases with the operand sizes

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

GMP (GNU Multiple Precision arithmetic library)

Designing a Multiprecision Number Theory Library

Developed at the Faculty of Computer Science,
"Al. I. Cuza" University of Iaşi
ISO C++ library
Cryptographic applications
Integer and modular arithmetic (for now)
Characteristics
• Speed efficient
• Highly portable
• Code structure and clarity were not disregarded

Free software (GNU Lesser GPL)

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

MpNT (a Multi-Precision Number Theory package)

Designing a Multiprecision Number Theory Library

Goals
• Efficiency
• Portability
• Functionality

Choices and tradeoffs
Many products
The user has the opportunity to choose
Certain common lines should be followed while
designing multiprecision number theory library

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Basic Principles

Designing a Multiprecision Number Theory Library

Low-level (assembly)
• Fastest
• Not portable
• Very hard to maintain

High-level
• Easily portable
• Easy to understand and maintain
• Some efficiency loss

The compromise solution is to use both
C++ is probably the best for multiprecision computing
MpNT uses ISO C++ for the main part of the library
ASM is used only for the most frequently called functions
forming a a small machine-dependent kernel.

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Programming Language

Designing a Multiprecision Number Theory Library

Depends on what the hardware provides
• Registers dimensions
• Instructions set
• Cache sizes
• Parallelism level

MpNT uses signed-magnitude representation for its
multiprecision integers (MpInt class)
The current implementation includes
• flags
• size
• allocated size
• pointer to representation

Quick access to members
Easily extendible

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Number representation

flags

msz
sz

rep

Designing a Multiprecision Number Theory Library

The best approach is to group the
functions in layers
• Only low-level functions have direct access to

number representation
• High-level ones have a higher degree of

independence
MpNT has two layers
• The kernel
• The C++ classes

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Library Structure

Designing a Multiprecision Number Theory Library

Contains small routines
• carefully optimized
• easy to rewrite

Most of the functions operate on unsigned
arrays of digits:
• Comparisons
• Bitwise operations
• Basic arithmetical operations

Dangerous to call directly
Optimizations apply for the Intel IA-32 CPUs
MpNT might use the GMP or CLN kernel

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

MpNT Kernel

Designing a Multiprecision Number Theory Library

MpInt
• Multiprecision integer arithmetic
• Basic arithmetical operations (and more)
• All the operators available for int are overloaded
• Hides the functions of the kernel

MpMod
• Multiprecision modular arithmetic
• One modulus can be used at any time
• The numbers are always modularly reduced
• Basic modular operations
• High performance modular reduction, multiplication and

exponentiation – using pre-computed modulus information
(classes MpModulus and MpLimLee)

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

MpNT C++ Classes

Designing a Multiprecision Number Theory Library

In many cases several algorithms may be used
to perform the same operation
• The ones with the best O-complexity are preferred

when dealing with huge numbers
• On smaller numbers simpler, more optimized

algorithms may perform much better
Performance testing is required to find the limits
of applicability
In MpNT we implemented a lot of algorithms but
the interface will use only the routines (or
combination) that proved to be most efficient

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Algorithm selection

Exponentiation techniques

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

operand size (32 bit digits)

re
la

tiv
e

tim
e Sliding window

(Barrett)
Sliding window
(Montgomery)
Lim-Lee

Designing a Multiprecision Number Theory Library

Most frequently on demand allocation
Space may be transparently allocated whenever
a variable needs it
Memory leaks may be prevented by the use of
class destructors
Some libraries
• Offer garbage collection (e.g. CLN)
• Allow the user to chose the memory management

policy (e.g. LiDIA)
MpNT uses explicit allocation of memory
• Frequent reallocation is avoided

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Memory Management

Designing a Multiprecision Number Theory Library

It is desirable to signal the occurred errors, but…
• This is time consuming
• Makes code harder to read and maintain

A frequent approach is to ignore errors
• Involves some risks
• Eliminates the overhead

We chose not to ignore errors
• MpNT uses the throw-try-catch mechanism provided

by C++ to signal errors to the user

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Error Handling

Designing a Multiprecision Number Theory Library

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Comparisons
Library versions
• CLN 1.1.5
• GMP 4.1
• MpNT 0.1 pre-release
• PARI 2.2.4 alpha

Test system
• AMD K6 800MHz
• 256MB RAM
• Mandrake Linux 9.0

Addition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

operand size (32 bit digits)

re
la

tiv
e

tim
e GMP

MpNT
NTL
PARI

Multiplication

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

operand size (32 bit digits)

re
la

tiv
e

tim
e GMP

MpNT
NTL
PARI

Modular reduction

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

operand size (32 bit digits)

re
la

tiv
e

tim
e GMP

MpNT
NTL
PARI

Greatest Common Divisor

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

operand size (32 bit digits)

re
la

tiv
e

tim
e GMP

MpNT
NTL
PARI

Modular exponentiation
(odd modulus)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

operand size (32 bit digits)

re
la

tiv
e

tim
e GMP

MpNT
NTL
PARI

Modular exponentiation
(even modulus)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

operand size (32 bit digits)

re
la

tiv
e

tim
e GMP

MpNT
NTL
PARI

Designing a Multiprecision Number Theory Library

Thank you

Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, România

Questions?

	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library
	Designing a Multiprecision Number Theory Library

