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Security protocols for Internet applications
• e-commerce
• e-payment
• e-auction

Cryptography
• Public key encryption
• Digital signatures
• Hash functions

Many other domains
• Numerical calculus
• Probabilities and statistics
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Why multiprecision computing?
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C and C++ have limited precision
• A “long” has usually only 32 bits
• A “long long” (gcc) typically has 64 bits
• A “long double” uses

• 52 bits for the mantissa
• 11 bits for the exponent

Java has multiprecision capabilities
• Highly portable
• Not so efficient
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Available solutions
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Programs like Maple or Mathematica
• Unlimited precision
• Easily prototype algorithms
• Easily compute constants
• Not efficient
• Not portable

Multiprecision libraries
• Most efficient solution
• Many of them are free software (GNU GPL)

• LIP, LiDIA, CLN, NTL, PARI, GMP, MpNT etc.
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Alternatives 
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Written by Arjen K. Lenstra and later 
maintained by Paul Leyland
One of the first
ANSI C
Highly portable
Not efficient
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LIP (Large Integer Package)
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Developed at the Technical University of 
Darmstadt (Thomas Papanikolau)
C++ library
Highly optimized implementations
• Multiprecision data types
• Time-intensive algorithms

Can use different integer packages (like 
Berkley MP, GMP, CLN, libI, LIP etc.)
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LiDIA (a library for computational number theory)
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Written by Bruno Haible and currently 
maintained by Richard Kreckel
C++ library that implements elementary 
arithmetical, logical and transcendental functions
Rich set of classes
• Integers
• Rational numbers
• Floating-point numbers
• Complex numbers
• Modular integers
• Univariate polynomials etc.

Memory and speed efficient
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CLN (a Class Library for Numbers)
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Written and maintained mainly by Victor 
Shoup
C++ library
High performance
• Polynomial arithmetic
• Lattice reduction

Portable
Can be used in conjunction with GMP for 
enhanced performance
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NTL (a Library for doing Number Theory)
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Developed at Bordeaux by a team led by 
Henri Cohen
Formal computations on recursive types at 
high speed
Primarily aimed at number theorists
Extensive algebraic number theory module
Can be used as a calculator (GP)
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PARI/GP
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Developed by Törbjord Granlund and the GNU 
free software group
C library for arbitrary precision arithmetic
General emphasis on speed
Highly optimized ASM
• for the most common inner loops
• for a lot of CPUs

Faster than most multiprecision libraries
Its advantage increases with the operand sizes
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GMP (GNU Multiple Precision arithmetic library)



Designing a Multiprecision Number Theory Library

Developed at the Faculty of Computer Science, 
"Al. I. Cuza" University of Iaşi
ISO C++ library
Cryptographic applications
Integer and modular arithmetic (for now)
Characteristics
• Speed efficient
• Highly portable
• Code structure and clarity were not disregarded

Free software (GNU Lesser GPL)
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MpNT (a Multi-Precision Number Theory package)
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Goals
• Efficiency
• Portability
• Functionality

Choices and tradeoffs
Many products
The user has the opportunity to choose
Certain common lines should be followed while 
designing multiprecision number theory library
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Basic Principles
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Low-level (assembly)
• Fastest
• Not portable
• Very hard to maintain

High-level
• Easily portable
• Easy to understand and maintain
• Some efficiency loss

The compromise solution is to use both
C++ is probably the best for multiprecision computing
MpNT uses ISO C++ for the main part of the library
ASM is used only for the most frequently called functions 
forming a a small machine-dependent kernel.
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Programming Language
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Depends on what the hardware provides
• Registers dimensions
• Instructions set
• Cache sizes
• Parallelism level

MpNT uses signed-magnitude representation for its 
multiprecision integers (MpInt class)
The current implementation includes
• flags
• size
• allocated size
• pointer to representation

Quick access to members
Easily extendible 
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Number representation

flags

msz
sz

rep
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The best approach is to group the 
functions in layers
• Only low-level functions have direct access to 

number representation
• High-level ones have a higher degree of 

independence
MpNT has two layers
• The kernel
• The C++ classes
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Library Structure
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Contains small routines
• carefully optimized 
• easy to rewrite 

Most of the functions operate on unsigned 
arrays of digits:
• Comparisons
• Bitwise operations
• Basic arithmetical operations 

Dangerous to call directly
Optimizations apply for the Intel IA-32 CPUs 
MpNT might use the GMP or CLN kernel
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MpNT Kernel
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MpInt
• Multiprecision integer arithmetic
• Basic arithmetical operations (and more)
• All the operators available for int are overloaded
• Hides the functions of the kernel

MpMod
• Multiprecision modular arithmetic
• One modulus can be used at any time
• The numbers are always modularly reduced
• Basic modular operations
• High performance modular reduction, multiplication and 

exponentiation – using pre-computed modulus information 
(classes MpModulus and MpLimLee)
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MpNT C++ Classes



Designing a Multiprecision Number Theory Library

In many cases several algorithms may be used 
to perform the same operation
• The ones with the best O-complexity are preferred 

when dealing with huge numbers
• On smaller numbers simpler, more optimized 

algorithms may perform much better
Performance testing is required to find the limits 
of applicability
In MpNT we implemented a lot of algorithms but 
the interface will use only the routines (or 
combination) that proved to be most efficient
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Algorithm selection



Exponentiation techniques
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Most frequently on demand allocation
Space may be transparently allocated whenever 
a variable needs it
Memory leaks may be prevented by the use of 
class destructors
Some libraries
• Offer garbage collection (e.g. CLN)
• Allow the user to chose the memory management 

policy (e.g. LiDIA)
MpNT uses explicit allocation of memory
• Frequent reallocation is avoided
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Memory Management
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It is desirable to signal the occurred errors, but…
• This is time consuming
• Makes code harder to read and maintain

A frequent approach is to ignore errors
• Involves some risks
• Eliminates the overhead

We chose not to ignore errors
• MpNT uses the throw-try-catch mechanism provided 

by C++ to signal errors to the user
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Error Handling
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Comparisons
Library versions
• CLN 1.1.5
• GMP 4.1
• MpNT 0.1 pre-release
• PARI 2.2.4 alpha

Test system
• AMD K6 800MHz
• 256MB RAM
• Mandrake Linux 9.0
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Multiplication
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Modular reduction
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Greatest Common Divisor
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Modular exponentiation
(odd modulus)
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Modular exponentiation
(even modulus)
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Thank you
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Questions?
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