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Programming Languages

• Syntax (how programs look like)

• Context-free grammars

• Abstract syntax trees

• Semantics (the meaning of programs)

• Operational, denotational, axiomatic semantics

• Type systems

• Step-indexed semantics
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Object Calculi

• Object-oriented programming languages

• Idealized models

• Rigorously defined semantics

• Simple - only one primitive: objects

• Expressive

• can encode: classes and inheritance

• but also functions (the lambda calculus)
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The object calculi are object-oriented programming languages. They are abstractions 
(idealized morels) which capture the essence of object-oriented programming languages.

They have rigorously defined formal semantics

They are simple since only objects are considered as primitives.

At the same time, they are expressive enough to encode all common features of practical 
object-oriented programming languages like classes and inheritance.

They can also encode functions - the lambda calculus can be easily encoded.



Object Calculi

• Object-based (not class-based)

• Strongly-typed 

• A Theory of Objects [Abadi & Cardelli ‘96]

• Object-based in practice: JavaScript, Self, etc.
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Since the object calculi only have objects as primitives they are called object-based
in contrast to the much more widely used class-based programming languages like Java or 
C#.

They are typed. For example you cannot update a boolean field with a numeric value.

These calculi are described in the book by Abadi and Cardelli - A Theory of Objects

Not very popular in practice:
Quote by Backes: “Nice construction, very nice theoretical properties ... never used in 
practice”.

With only one exception: JavaScript
-> the J in AJAX is for JavaScript - so there is still hype about object-based object-oriented 
programming languages in the context of rich web applications (also ActionScript - Flash)
-> in the upcoming 2.0 version JavaScript will also get classes, still just as an encoding

[Mention Scala? Not here]



Imperative Object Calculus

• Variant of the object calculus [Abadi & Leino, ‘04]

• Syntax

• More syntactic sugar used in examples

a, b ::= x variable
| let x = a in b variable binding
| [fi = xi,mj = ς(yj)bj ]i∈I,j∈J object construction
| x.f field selection
| x.f := y field update
| x.m method call
| true | false boolean constants
| if x then a else b conditional
| 0 | succ | . . . numbers
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In this I will talk about a ariant of Abadi and Cardelli's imperative object calculus, as presented 
by Abadi and Leino. So what is imperative?
- computations are described in terms of a program state (we will call store) 
- statements can read and from the store and write to the store
[- side effects are the rule (C) not the exception (ML)]

Programs are flat -> this makes evaluation order explicit - given by the let constructs.

The self reference can be used used for direct recursion - same role as this in Java, C++, 
C#
Methods don’t have arguments, but we can use the fields (in a similar way to the encoding 
of lambda calc.)
We have update for fields but not for methods [-> method updates can be easily be 
simulated]

Other than the objects we also have booleans and numbers which we will use in the 
examples.
In the examples we will also use a lot of syntactic sugar.



Example Programs

• Factorial

[fac = ς(y)λn.if n = 0 then 1 else n× y.fac(n− 1)]

• Euclid’s gcd algorithm

[gcd = ς(y)λx.λz.if x < z then y.gcd x (z − x)
else if z < x then y.gcd (x− z) z else x]

6



Operational Semantics

• Evaluate the program to get its meaning

• Abstract machine

• E.g. states of the machine = program + store

• Suffices for building a simple interpreter

• Simple, flexible and widely used

• Verification by testing, cannot be complete
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What is the operational semantics of a programming language?
- As already said, a semantics is a way to assign a meaning to programs.
- In the case of operational semantics the meaning of a program is the result obtained by 
running (evaluating) it.

Defining an operational semantics means defining a simple abstract machine, for which the 
language you want to investigate is the machine code.

The states of the abstract machine could be for example a program together with the current 
store.

An operational semantics alone suffices for building a simple interpreter for a language.

It is also probably the most widely used kind of semantics, because of its simplicity and 
flexibility.

When you only have an interpreter for the language the only verification you can do is by 
testing, and while testing can show the presence of bugs it cannot show their absence, so 
testing can never be complete.



Operational Semantics
• Small-step:       evaluation = 

• Reduction Relation:

• Configurations:

• Reduction defined by rules

〈σ, a〉 ∈ Config = Store× LProg

→ ⊆ Config× Config

→∗

(Red-Let1)
〈σ, a〉 → 〈σ′, a′〉

〈σ, let x = a in b〉 → 〈σ′, let x = a′ in b〉

(Red-Let2) 〈σ, let x = v in b〉 → 〈σ, b[x $→ v]〉

(Rel-Obj)
l %∈ dom σ o = [fi = vi,mj = bj [yj $→ l]]i∈I,j∈J

〈σ, [fi = vi,mj = ς(yj)bj ]i∈I,j∈J〉 → 〈σ[l $→ o], l〉
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Let us discuss the operational semantics of our imperative object calculus.

In particular what you see is a small-step semantics. In a small-step semantics evaluation is 
defined with respect to a reduction relation which define transitions (steps) between two 
configurations of the abstract machine.

The configurations of our abstract machine are just pairs formed by a store and a partially 
evaluated program.

Reduction relation is inductively defined by rules.



Example Reduction

〈∅, let y = [m = ς(x)x.m] in y.m〉 →
〈l = [m = l.m], let y = l in y.m〉 →
〈l = [m = l.m], l.m〉 →
〈l = [m = l.m], l.m〉 → . . .

Nonterminating evaluation
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This program defines an object with a method that calls itself and then calls that method.



Type Systems

• Static program analysis technique

• Conservative (sound but incomplete)

• In general:

• Limited to safety properties

• Limited form of reasoning about programs

• Efficiently decidable (syntax driven)

• We will see an exception soon

• Types and Programming Languages [Pierce, ‘02]
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What are type systems? A static program analysis technique

Conservative (sound but incomplete) - contrast to other techniques like model checking.
In general limited to safety properties.

They also provide a limited way of reasoning about programs - the type of a procedure gives 
you some information about what the procedure does.

We usually have these limitations because we want type checking to be efficiently decidable 
(actually most type checking algorithms are syntax driven so they are extremely fast).

However we will soon see an exception, a type system for program correctness (very strong 
property) that is undecidable.

The best reference for type systems is the book of Benjamin Pierce: Types and Programming 
Languages.



Types of Objects

• Simple types:

• Types of objects can be extended to specifications

Variables
E, x:A,E′ ! "

E, x:A,E′ ! x : A

Constants
E ! "

E ! false : Bool
E ! "

E ! true : Bool

Conditional

E ! x : Bool E ! a0 : A E ! a1 : A

E ! if x then a0 else a1 : A

Let
E ! a : A E, x:A ! b : B

E ! let x = a in b : B

Object construction for A
syn= [fi:Ai

i∈1..n, mj :Bj
j∈1..m]

E ! " E ! xi : Ai
i∈1..n E, yj :A ! bj : Bj

j∈1..m

E ! [fi = xi
i∈1..n, mj = ς(yj)bj

j∈1..m] : A

Field selection
E ! x : [f:A]
E ! x.f : A

Method invocation
E ! x : [m:B]
E ! x.m : B

Field update for A
syn= [fi:Ai

i∈1..n, mj :Bj
j∈1..m]

E ! x : A k ∈ 1..n E ! y : Ak

E ! x.fk := y : A

This type system is much like those of common programming languages in
that it is independent of verification rules. In particular, types are not auto-
matically associated with specifications, and subtyping does not impose any
“behavioral” constraints (as in the work of Liskov and Wing [23], for example).
However, as the next section explains, specifications are a generalization of types.

3 Verification

In this section, which is the core of the paper, we give rules for verifying object-
oriented programs written in the language of Section 2. We start with an informal
explanation of our approach.

A,B ::= Bool | Nat | [f : A,m : B]
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Simple types: Booleans,
The types of objects can be extended to specifications of program correctness - which 
brings us to our next kind of semantics: axiomatic semantics.



Axiomatic Semantics

• Program meaning is what can be proved about it

• Focus on reasoning about program behavior

• Program logic

• Deduction system for program correctness

• E.g. Hoare logic [Floyd, ‘67] [Hoare, ‘69]

• Widely used in program verification (E.g. Verisoft)

! {p ∧ b}S1{q} ! {p ∧ ¬b}S2{q}
! {p}if b then S1 else S2{q}
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In an axiomatic semantics the meaning of a program is whatever can be proved about it.

The focus is on reasoning about program behavior [expressed as an input output behavior] 
using a program logic. A program logic is a deduction system for program correctness. 
The best example for a program logic is Hoare logic.

Explain rule: read from bottom up, triples: precondition, statement, postcondition

Program logics are still widely used in program verification, for example the Verisoft project 
uses Hoare logic.



The Logic of Objects

• [Abadi & Leino, ‘04]

• A (undecidable) refinement of the type system

• Specifications generalize types

• φ is a first-order logic formula

• Seems hard to partially mechanize [Tang, ‘01]

• Soundness hard to prove
[Schwinghammer & Reus, ‘06]

E ! b : A ! E ! b : A :: ϕ
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The Logic of Objects defined by Abadi and Leino is a refinement of the type system we have 
seen. But since we are now talking about program correctness in the logic type checking no 
longer decidable.

Specifications generalize types.

where phi is a first-order logic formula talking about the store.

The logic seems hard to partially mechanize - building a verification condition generator was 
done by [Tang, ‘01].

And soundness for the proof rules is hard to prove [Schwinghammer, ‘06]

Soundness for it was hard to prove



Higher-order Store

• Executable code can be stored 

• Pointers to functions in C

• Callbacks in Java

• General references in ML

• Recursion by “tying a knot in the store”

• Example (factorial through a field)

let x = [f = ς(y)λn.n] in
let z = [f = x, fac = ς(y)λn.if n = 0 then 1

else n× y.f.fac(n− 1)] in
z.f := z
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What makes the imperative object calculus particularly interesting from a theoretical point ow 
view, is that it combines objects with higher-order store.

Higher-order store = executable code can be stored

Higher-order store is present in different forms in almost all practical programming 
languages:
-> pointers to functions in C/C++
-> callbacks in Java
-> or general references in ML

And it’s easy to check that you have higher order store by implementing recursion through 
the store. Also called, tying a knot in the store.



Higher-order Store

• Imperative object calculus

• Dynamically allocated, higher-order store

• Challenge: finding good semantic models

• Reasoning about the behavior of programs

• Program correctness (using a program logic)

• Operational Semantics

• Useful for proving safety(progress&preservation)

• Not suitable as the basis for a program logic
[Benton, ‘05] [Benton, ‘06] [Schwinghammer, ‘06]
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The imperative object calculus features: dynamically allocated, higher-order store.

Challenging to find good semantic models in which one can reason about the behavior of 
programs.

Syntactic arguments, based solely on the operational semantics, are surelly enough to 
prove properties such as type safety, but are not suitable as a basis for program logics like 
the one we just discussed.

We believe that specifications should have a meaning independent of the particular proof 
system.



Denotational Semantics

• The meaning of a program is a mathematical object

• E.g. denotation of a lambda abstraction = function

• Higher-order store

• Solving recursive domain equations

• Dynamic Allocation

• Possible-world model =
category of functors over cpos

• Domain theory, category theory, order theory

• More abstract - reasoning about program behavior
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What is a denotational semantic? The meaning of a program is a mathematical object.

For example in the simply typed lambda calculus the meaning of a lambda abstraction is a 
function. However, once one starts to study more realistic programing languages things are 
not so simple any more.

A denotational semantics for dynamically-allocated higher-order store tends to become 
rather complex.

For higher-order store the semantic domain is defined as mixed-variant recursive equation 
one has to solve (find fixed point?).

Also only for modeling dynamic allocation means one has to move to a possible-world 
model, formalized as a category of functors over cpos.

The major advantage of a denotational semantics is that it abstracts away from evaluation, 
so it is can be used to derive much more powerful laws for reasoning about the behavior of 
programs.



Denotational Semantics

• For the imperative object calculus

• Complex [Reus & Schwinghammer, ‘06]

• Separates logical validity from derivability

• Specification = predicate on programs

• Current models are still not abstract enough

• Many natural equivalences do not hold
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Since the imperative object calculus has dynamically-allocated higher order store, its 
denotational semantics is of course complex - Jan just finished his Ph.D. thesis on this topic.

This approach is nice since separates the notion of logical validity from derivability
and so it clarifies the meaning of specifications of the logic:
-> A specification is a predicate over [the denotation of] programs

However, even so the known models are still not abstract enough in that many natural 
equivalences involving state do not hold.



Step-indexed Semantics

• Foundational proof-carrying code by Appel et. all.

• Lambda calculus

• Recursive types [Appel & McAllester, ‘01]

• General references and polymorphism
[Ahmed et. all., ‘03]

• Also for (very) low-level languages [Benton, ‘06]

• Based on a small-step operational semantics

• Type = set of indexed values

• “e :k T if e behaves like an element of T for k steps”
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So what could be an alternative to using a denotational semantics here?
Step-indexed semantics,might be one. Step-indexed semantics was was developed Appel 
and his collaborators in the context of foundational proof-carrying code.

It was first introduced for a lambda calculus with recursive and polymorphic types in 2001. 
Later this has been successfully extended to an imperative language with general references 
and impredicative polymorphism, [substructural state],
and has also been used for low-level languages.

Based on a small-step operational semantics,
and here types are just sets of indexed values - set-theoretical model. Informally, an 
expression has a certain type if it behaves like an element of that type for a fixed number of 
steps.

[The usual type inference rules then become derived lemmas, and type safety of the 
operational semantics is an immediate consequence of this interpretation of types.]



What We Are Working On

• Main goal: Develop a step-indexed semantics for the 
imperative object calculus with simple object types

• Small-step semantics (done)

• Safety for k steps

• Types and store typings

• Use indexing to solve cardinality paradoxes

• Proving soundness of the typing rules
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The main goal of my thesis is to develop a step-indexed semantics for the imperative 
object calculus with simple object types.

What we need to do in order to achieve this is?:
-> We have already defined a small-step operational semantics for this calculus.
-> We need to define the notion of safety - a term does not get “stuck” in k steps.
-> Then we define types and store typings - make the definition well-founded by using 
indexing to solve the cardinality paradoxes.
-> Last and most important, prove the usual typing rules sound.



Possible Extensions

• Enriching the type system with:

• Subtyping

• Recursive object types [Schwinghammer, ‘06]

• Impredicative polymorphism
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Once this has been achieved, there are several extensions of the construction that can be 
investigated. I will present two. The first one would be:

->Enriching the type system with features such as
subtyping - should be simple
recursive object types - like in Jan’s thesis
impredicative polymorphism - to our knowledge this was never done for the imperative 
object calculus before.



• Defining a program logic extending types

• Construct a sound deduction system

• FOL assertions about the store
[Abadi & Leino, ‘04] [Benton ‘05]

• Dependent types+shallow embedding to HOL
- e.g. Hoare Type Theory [Nanevski et all., ‘06]

• Local and modular reasoning

• Separation Logic [Reynolds, ‘02]

• Idealized ML [Krishnaswami et all., ‘06]

Possible Extensions
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-> One further extension would be defining a program logic for the imperative object 
calculus, as an extension of the type system and using the step-indexed semantics we are 
currently developing.

Alternatives
-> Augment the type systems with FOL assertions about the store - like we have seen in the 
logic of Abadi and Leino
-> Extend the type systems with dependent types and use a shallow embedding to HOL (HTT)

And then, well ... there is the original question we had when I started reading about this 
thesis:
Can we have local and modular reasoning the imperative object calculus object.
Can we build a separation logic like the ones developed by Reynolds and O’Hearn? (sep logic 
eases reasoning about aliasing, pointer programs)
Can we reason about abstract data structures, similarly to the very recent results of 
Krishnaswami for Idealized ML?

Those area all still open questions and will be subject to further investigation.



Advertising

More in-depth discussion
Master Honors Program Seminar

Monday 13th Nov. starting at 18:00
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If you are interested or just curious about what I presented today, especially of a more in 
depth discussion of the research topics I quickly presented at the end of this talk, 

then you are invited to come to my talk in the Master Honors Program Seminar.

That is on Monday the 13th from 6PM.



Thank you!
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