A formal set-theoretic model for the (extended) Calculus of Constructions

Jonas Kaiser

UdS, Graduate School of Computer Science

Feb 3, 2012

Outline

Background

Related Work Tarski-Grothendieck set theory Luo's Extended Calculus of Constructions

Model Construction

Developing the set theory First steps towards the model Framework, pt. 1

Relating to Barras' work

Sets in Coq, Coq in Sets Framework, pt. 2

Research Questions

Goals

Step 1 Formally develop Tarski-Grothendieck set theory in Coq.

Goals

Step 1

Formally develop Tarski-Grothendieck set theory in Coq.

Step 2

Construct classical TG models for ECC where PI, PE, DN and related properties hold.

Goals

Step 1

Formally develop Tarski-Grothendieck set theory in Coq.

Step 2

Construct classical TG models for ECC where PI, PE, DN and related properties hold.

Step 3

Investigate further properties, mainly $\text{Prop} \leq \text{Type}_0$ and later Inductive Propositions.

Background

Related work

- Set theoretic semantics since Church, 1940
- ▶ Polymorphism is not Set-Theoretic (Reynolds, 1984): PI-models
- large body of work by Werner, Lee & Miquel on issues of impredicativity, cumulativity and the conversion rule. (various type and set theories, mostly not formalised in Coq) [5, 3]
- Barras: Fully formalised IZF / HFDS models for CC_{ω} [2]

Tarski-Grothendieck set theory: ZF & GU

$$\begin{array}{l} \forall x, x \notin \emptyset \\ x \in \{a, b\} \iff x = a \lor x = b \\ x \in \bigcup A \iff \exists X \in A, x \in X \\ y \in \{Fx \mid x \in X\} \iff \exists z, z \in X \land y = Fz \\ X \in \mathscr{P}(A) \iff X \subseteq A \\ X = Y \iff X \subseteq Y \land Y \subseteq X \\ (\forall X, (\forall x \in X, Px) \longrightarrow PX) \longrightarrow \forall X, PX \end{array}$$

Tarski-Grothendieck set theory: ZF & GU

$$\begin{array}{l} \forall x, x \notin \emptyset \\ x \in \{a, b\} \iff x = a \lor x = b \\ x \in \bigcup A \iff \exists X \in A, x \in X \\ y \in \{F \mid x \in X\} \iff \exists z, z \in X \land y = F z \\ X \in \mathscr{P}(A) \iff X \subseteq A \\ X = Y \iff X \subseteq Y \land Y \subseteq X \\ \forall X, (\forall x \in X, P x) \longrightarrow P X) \longrightarrow \forall X, P X \end{array}$$

Grothendieck Universes

- a transitive set $(X \in G, x \in X \Longrightarrow x \in G)$
- ▶ closed under above operators (e.g. $x \in G \implies \mathscr{P}(x) \in G$)
- ▶ for every set *X* there is a least universe G_X such that $X \in G_X$
- implies infinity

Luo's Extended Calculus of Constructions [4]

Term structure

- the kinds Prop and Type_{*j*}, $j \in \omega$ are terms
- variables (x, y, \ldots) are terms
- ▶ let *M*, *N*, *A* and *B* be terms, then

 $\Pi x : A, B | \lambda x : A. N | M N |$ $\Sigma x : A, B | \mathbf{pair}_{\Sigma x: A, B}(M, N) | \pi_1(M) | \pi_2(M)$

are terms

Properties

- strongly normalizing
- kinds are cumulative:

 $Prop \le Type_0$ $Type_n \le Type_{n+1}$

Model Construction

We need a *useful* set theory

Singleton sets:

$$\{x\} ::= \{x, x\}$$

$$y \in \{x\} \iff y = x$$

We need a *useful* set theory

Singleton sets:

$$\{x\} ::= \{x, x\}$$

$$y \in \{x\} \iff y = x$$

Ordered Pairs a lá Kuratowski

$$\begin{aligned} (x, y) &\coloneqq \{\{x\}, \{x, y\}\}\\ (a, b) &= (c, d) \iff a = c \land b = d \end{aligned}$$

We need a *useful* set theory

Singleton sets:

$$\{x\} ::= \{x, x\}$$

$$y \in \{x\} \iff y = x$$

Ordered Pairs a lá Kuratowski

$$(x, y) ::= \{\{x\}, \{x, y\}\}$$
$$(a, b) = (c, d) \iff a = c \land b = d$$

The 'Axiom' of Separation

$$y \in \{x \in X \mid Px\} \iff y \in X \land Py$$

First steps towards the model

For starters, this should give us PI, PE and DN:

[[Prop]] ::= 2 = {
$$\emptyset$$
, { \emptyset }}
[[Type₀]] ::=? G₂(= G _{\emptyset})

First steps towards the model

For starters, this should give us PI, PE and DN:

[[Prop]] ::= 2 = {
$$\emptyset$$
, { \emptyset }}
[[Type₀]] ::=? G₂(= G _{\emptyset})

Prop should be closed under function spaces:

$$0: \operatorname{Prop}, \ 1: \operatorname{Prop}$$
$$\Rightarrow^{?} \begin{cases} 0 \longrightarrow 0: \operatorname{Prop}, \quad 0 \longrightarrow 1: \operatorname{Prop}, \\ 1 \longrightarrow 0: \operatorname{Prop}, \quad 1 \longrightarrow 1: \operatorname{Prop} \end{cases}$$

First steps towards the model

For starters, this should give us PI, PE and DN:

[[Prop]] ::= 2 = {
$$\emptyset$$
, { \emptyset }}
[[Type₀]] ::=? G₂(= G _{\emptyset})

Prop should be closed under function spaces:

$$0: \operatorname{Prop}, 1: \operatorname{Prop} \\ \Rightarrow^{?} \begin{cases} 0 \longrightarrow 0: \operatorname{Prop}, & 0 \longrightarrow 1: \operatorname{Prop}, \\ 1 \longrightarrow 0: \operatorname{Prop}, & 1 \longrightarrow 1: \operatorname{Prop} \end{cases}$$

For this we need Aczel's non-standard encoding of functions [1]:

$$[[ap f x]] ::= \{y | (x, y) \in f\}$$

$$[[lam X F]] ::= \{(x, y) | x \in X \land y \in F x\}$$

$$[[Pi X Y]] ::= \{[[lam X F]] | \forall x \in X, F x \in Y x\}$$

Overall Framework (part 1)

Relating to Barras' work

Overview of Barras' work [2]

- IZF / HFDS models for CC / CC $_{\omega}$ (called ECC in his Coq devl.)
- provides model specifications for CC & CC_{ω}
- changes from ECC to CC_{ω} :
 - no Σ-Types
 - no Prop \leq Type₀ (dropped to allow for flexible interpretations)
- claims some form of soundness result for models satisfying his specifications (requires judgmental equality in place of conversion rule)

Overall Framework with Barras (part 2)

Research Questions

Research Questions

- Can we extend the model to support inductive Propositions, or, respectively, why was this omitted from previous developments? (Inductive True : Prop := I : True.)
- ► Having Prop ≤ Type₀ and conversion seems to be problematic in some regards (e.g. PI). Why, and can we get around it?
- Does our interpretation of Type₀ contain infinite types?
- Our models should satisfy a large batch of axioms. Is it possible to simultaneously satisfy *all* the axioms in the Coq Standard Library, i.e. is the Library mutually consistent?

Q & A

Thank you

References

Peter Aczel.

On Relating Type Theories and Set Theories. In *TYPES*, pages 1–18, 1998.

Bruno Barras.

Sets in Coq, Coq in Sets. Formalized Reasoning, 3(1), 2010.

Gyesik Lee and Benjamin Werner. Proof-Irrelevant Model of CC with Predicative Induction and Judgmental Equality. Logical Methods in Computer Science, 7(4), 2011.

Zhaohui Luo.

ECC, an Extended Calculus of Constructions. In *Logic in Computer Science (LICS)*, pages 386–395, 1989.

Alexandre Miquel and Benjamin Werner. The Not So Simple Proof-Irrelevant Model of CC. In *TYPES*, pages 240–258, 2002.

Backup

Infinite Type in Type₀, e.g. nat

$$\exists X : \text{Type}_0, \ \exists f : X \longrightarrow X, (\exists x : X, \ \forall y : X, \ fy \neq x) \land$$
$$(\forall y z : X, \ fy = fz \longrightarrow y = z)$$

What's wrong with the standard function encoding?

- ► The function space 1 → 1 contains exactly one element, the function mapping Ø to Ø.
- in the standard graph-encoding: $\{(\emptyset, \emptyset)\}$
- however, we want $\llbracket 1 \longrightarrow 1 \rrbracket = 1 = \{\emptyset\}$
- but $\emptyset \neq \{(\emptyset, \emptyset)\}$!
- with the alternative function encoding, the two sides match up.