
Constructive Formalization of Regular Languages
Jan-Oliver Kaiser

Advisors: Christian Doczkal, Gert Smolka

Supervisor: Gert Smolka

Contents

1.Motivation

2.Quick Recap

3.Previous work

4.Our development

5.Roadmap

Constructive Formalization of Regular Languages

Contents

Motivation
We want to develop an elegant formalization of regular languages in
Coq based on finite automata.

There are several reasons for choosing this topic and our specific
approach:

•Strong interest in formalizations in this area.

•Few formalizations of regular languages in Coq, most of them very
long or incomplete.

•Most formalizations avoid finite automata in favor of regular
expressions. Regular expressions (with Brzozowski derivatives) lead
to more complex but also more performant algorithms.

Constructive Formalization of Regular Languages

Motivation

Quick Recap
We use extended regular expressions (regexp):

•

•

•

•

•

•

•

•

Constructive Formalization of Regular Languages

Quick Recap

Derivatives of Regular Expressions (1964), Janusz Brzozowski:

•der a =

•der a =

•der a b = if a = b then else

•der a (r s) = if then (der a s) + ((der a r) s) else (der a r) s

with . (easily decidable by recursion on r)

...

Theorem 1: if and only if the derivative of r with respect to
accepts .

Theorem 2: The set of derivatives of r is closed under derivation and
finite up to similarity.

Constructive Formalization of Regular Languages

Quick Recap

Regular languages are also exactly those languages accepted by
finite automata (FA).

Our definition of FA over an alphabet :

•The finite set of states Q

•The initial state Q

•The (decidable) transition relation (Q, , Q)

Deterministic FA: is functional and total.

•The set of finite states F, F Q

Let A be a FA:

Constructive Formalization of Regular Languages

Quick Recap

Finally, regular languages are also characterized by the Myhill-Nerode
theorem (MH).

First, we define an equivalence relation on L (MH relation):

Myhill-Nerode theorem: L is regular if and only if divides L into a
finite number of equivalence classes.

Constructive Formalization of Regular Languages

Quick Recap

Previous work

•The first constructive formalization of MH.

Based on FA.

Implemented in Nuprl.

Focus on clear formalization.

Close to what we want to do.

(Constable, Jackson, Naumov, Uribe, 1997)

•Decision procedure for regexp equivalence.

Based on Brzozowski derivatives.

Only soundness proof, no proof of termination or completeness.

Implemented in Isabelle.

Focus on simplicity, small regexps.

(Krauss, Nipkow, 2011)

Constructive Formalization of Regular Languages

Previous work

•Decision procedure for regexp equivalence.

Based on FA, matrices.

Implemented in Coq.

Focus on performance. Outperforms every other solution so far.

(Braibant, Pous, 2011)

•Decision Procedure for regexp equivalence.

Based on Brzozowski derivatives.

Implemented in Coq.

Proof of termination given.

Introduces the notion of inductively finite sets.

(Coquand, Siles, 2011)

Constructive Formalization of Regular Languages

Previous work

•First formalization of MH based on regexp.

Based on Brzozowski derivatives.

Implemented in Isabelle.

The first formalization of MH in Isabelle.

(Wu, Zhang, Urban, 2011)

•Decision Procedure for regexp equivalence.

Based on Brzozowski derivatives.

Implemented in Coq.

Translation of the work done by Krauss and Nipkow to Coq.

Adds proof of termination.

(Moreira, Pereira, de Sousa, 2011)

Constructive Formalization of Regular Languages

Previous work

Our Development

•We want to focus on elegance, not performance.

•Our main goals are MH and the decidability of regexp equivalence.

•We use finite automata.

They are not at all impractical. (Partly thanks to Ssreflect's finType)

Constructive Formalization of Regular Languages

Our Development

Quick examples

Record dfa : Type :=
 dfaI {
 dfa_state :> finType;
 dfa_s0: dfa_state;
 dfa_fin: pred dfa_state;
 dfa_step: dfa_state -> char -> dfa_state
 }.

Fixpoint dfa_accept A (x: A) w :=
match w with
 | [::] => dfa_fin A x
 | a::w => dfa_accept A (dfa_step A x a) w
end.

Record nfa : Type :=
 nfaI {
 nfa_state :> finType;
 nfa_s0: nfa_state;
 nfa_fin: pred nfa_state;
 nfa_step: nfa_state -> char -> pred nfa_state
 }.

Fixpoint nfa_accept A (x: A) w :=
match w with
 | [::] => nfa_fin A x
 | a::w => existsb y, (nfa_step A x a y) && nfa_accept A y w
end.

Constructive Formalization of Regular Languages

Our Development

50% of NFA DFA (powerset construction)

Lemma nfa_to_dfa_correct2 (X: nfa_to_dfa) w:
 dfa_accept nfa_to_dfa X w -> existsb x, (x \in X) && nfa_accept A x w.
Proof. elim: w X => [| a w IHw] X.
 by [].
move/IHw => /existsP [] y /andP [].
rewrite /dfa_step /nfa_to_dfa /= cover_imset.
move/bigcupP => [] x H0 H1 H2.
apply/existsP. exists x. rewrite H0 andTb.
apply/existsP. exists y. move: H1. rewrite in_set => ->.
exact: H2.
Qed.

Constructive Formalization of Regular Languages

Our Development

Roadmap

1. regexp FA: closure of FA under , , , , . (Done)

2.Emptiness test on FA. ()

3.Dedicedability of regexp equivalence:

4. FA regexp.

Constructive Formalization of Regular Languages

Roadmap

5.Finally, we want to prove the Myhill-Nerode theorem.

Constable et al. establish a direct equivalence between MH and FA.

This requires proof of:

•FA induce an equivalence relation on words

•This relation is invariant under extension.

•This relation is a refinement of the MH relation.

•A finite number of equivalence classes under the MH relation
induce a set of states for a FA which accepts exactly the union of
these equivalence classes.

Constructive Formalization of Regular Languages

Roadmap

Thank you for your attention.

Constructive Formalization of Regular Languages

Roadmap

References

Constructively formalizing automata theory (1997)

 Robert L. Constable, Paul B. Jackson, Pavel Naumov, Juan C. Uribe

Proof Pearl: Regular Expression Equivalence and Relation Algebra (2011)

 Alexander Krauss, Tobias Nipkow

Deciding Kleene Algebras in Coq (2011)

 Thomas Braibant, Damien Pous

A Decision Procedure for Regular Expression Equivalence in Type Theory (2011)

 Thierry Coquand, Vincent Siles

A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions (Proof Pearl) (2011)

 Chunhan Wu, Xingyuan Zhang, Christian Urban

Deciding Regular Expressions (In-)Equivalence in Coq (2011)

 Nelma Moreira, David Pereira, Simão Melo de Sousa

Constructive Formalization of Regular Languages

Roadmap

Extras

Constructive Formalization of Regular Languages

Extras

With Theorem 2, we can formulate a system of equations:

...

where

,

is the set of derivatives of

and

.

Constructive Formalization of Regular Languages

Extras

	Contents
	Motivation
	Quick Recap
	Previous work
	Our Development
	Roadmap
	Extras

