Constructive Formalization of Regular Languages

Jan-Oliver Kaiser
Advisors: Christian Doczkal, Gert Smolka
Supervisor: Gert Smolka

UdS

November 7, 2012
Table of Contents

1 Motivation

2 Recap
 Regular Expressions
 Finite Automata
 Finite Automata
 Regular Expression to Finite Automaton

3 Previous Talk
 Finite Automaton to Regular Expression

4 Myhill-Nerode Theorem
 Formalization of Equivalence Classes
 Myhill Relations and Nerode Relations
 Minimizing Equivalence Classes

5 Summary
Motivation

• **Goal:** Build an extensive, elegant, constructive formalization of regular languages that includes
 1. regular expressions,
 2. the decidability of equivalence of regular expressions,
 3. finite automata,
 4. and the Myhill-Nerode theorem.

• **How:** Coq with SSReflect. No sacrifices for performance.
Regular Expressions

Definition

- We use extended Regular Expressions (RE) over an alphabet Σ:

\[r; s ::= \emptyset | \varepsilon | a | rs | r + s | r \& s | r^* | \neg r \]

\[
\begin{align*}
\mathcal{L}(\emptyset) &= \emptyset & \mathcal{L}(r^*) &= \mathcal{L}(r)^* \\
\mathcal{L}(\varepsilon) &= \{\varepsilon\} & \mathcal{L}(r + s) &= \mathcal{L}(r) \cup \mathcal{L}(s) \\
\mathcal{L}(.) &= \Sigma & \mathcal{L}(r \& s) &= \mathcal{L}(r) \cap \mathcal{L}(s) \\
\mathcal{L}(a) &= \{a\} & \mathcal{L}(rs) &= \mathcal{L}(r) \cdot \mathcal{L}(s) \\
\mathcal{L}(\neg r) &= \Sigma^* \setminus \mathcal{L}(r)
\end{align*}
\]

- Implementation taken from Coquand and Siles\(^1\). This saved us quite a bit of work.

- \approx 200 lines of code including an implementation of regular languages and lots of useful lemmas.

\(^1\)Thierry Coquand and Vincent Siles. “A Decision Procedure for Regular Expression Equivalence in Type Theory”. In: \textit{CPP}. 2011, pp. 119–134.
Finite Automata

Definition

• Our Finite Automata (FA) over an alphabet Σ consist of
 1. a set of states Q,
 2. a starting state $s \in Q$,
 3. a set of final states $F \subseteq Q$,
 4. a transition relation $\delta \in Q \times \Sigma \times Q$.

• Two types: one for non-deterministic FA (δ may be non-functional), one for deterministic FA (δ is functional).

• For our deterministic FA, δ is also total and, thus, a function. This helped, but maybe not a lot.
Finite Automata

Formalization

- Our definition is very close to the textbook definition.
- \(\approx 120 \) lines of code including some general lemmas for later proofs.

```ocaml
Record nfa : Type :=
{ nfa_state :> finType;
  nfa_s : nfa_state ;
  nfa_fin : pred nfa_state ;
  nfa_step : nfa_state -> char
            -> pred nfa_state }.

Record dfa : Type :=
{ dfa_state :> finType;
  dfa_s : dfa_state ;
  dfa_fin : pred dfa_state ;
  dfa_step : dfa_state -> char
            -> dfa_state }.
```
RE \iff FA

- Structure of proof given by inductive definition of RE.
- **Plan:** Construct FA for every RE constructor.
- Sounds simple enough..
- .. ≈ 800 lines of code.
- ≈ 100 lines of that needed for equivalence of DFA and NFA.
- Another ≈ 100 lines of code for **extended** regular expressions.
- This is a candidate for improvement.
• We use the “Transitive Closure method”, Kleene’s original proof\(^2\).

• This method recursively builds a regular expression \(R^X_{x,y} \) that recognizes words whose runs starting in \(x \) only pass through states in \(X \) and end in \(y \).

• The previous version constructed \(R^k_{x,y} \) which translates to \(R^\{z | \#(z) < k\}_x,y \) where \(\# \) is an ordering on \(Q \).

• Instead of \texttt{nat}, we now recurse on the size of a \textbf{finite subset} of \(Q \).\(^3\)

• This also avoids cumbersome conversions from \texttt{nat} to \texttt{SSReflect}’s ordinals and, finally, to states.

We introduce a decidable language $L^X_{x,y}$ that directly encodes the idea behind $R^X_{x,y}$ as a boolean predicate.

The proof of $FA \implies RE$ consists of three steps:

1. We show that $L^X_{x,y}$ respects the defining recursive equation of $R^X_{x,y}$.
2. We show that for all $w \in \Sigma^*$, $w \in L^X_{x,y} \iff w \in R^X_{x,y}$.
3. We show that $\bigcup_{f \in F} L^Q_{s,f} = \mathcal{L}(A)$ and thus $\sum_{f \in F} R^Q_{s,f} = \mathcal{L}(A)$.
After some restructuring: \(\approx 550 \) lines of code, \(\approx 150 \) of which are general infrastructure.

Previous version: \(\approx 800 \) lines of code, much harder to read.

Lemma \(L_\text{split} \): \(k' \ i \ j \ a \ w: \)

\[
\begin{align*}
& \text{let } k := k_\text{ord} \ k' \ \text{in} \\
& (a \::\: w) \in L^{k'+1} i \ j \quad \rightarrow \\
& (a \::\: w) \in L^{k'} i \ j \quad \backslash
\end{align*}
\]

\[
\begin{align*}
& \exists w_1, \exists w_2, \\
& a \::\: w = w_1 ++ w_2 \quad \backslash
\end{align*}
\]

\[
\begin{align*}
& w_1 \neq [::] \quad \backslash
\end{align*}
\]

\[
\begin{align*}
& w_1 \in L^{k'} i (\text{enum_val} \ k) \quad \backslash
\end{align*}
\]

\[
\begin{align*}
& w_2 \in L^{k'+1} (\text{enum_val} \ k) \ j .
\end{align*}
\]

Lemma \(L_\text{split} \): \(X \times y \ z \ w: \)

\[
\begin{align*}
& w \in L^{(z \mid: X) \times y} \quad \rightarrow \\
& w \in L^X \times y \quad \backslash
\end{align*}
\]

\[
\begin{align*}
& \exists w_1, \exists w_2, \\
& w = w_1 ++ w_2 \quad \backslash
\end{align*}
\]

\[
\begin{align*}
& \text{size } w_2 < \text{size } w \quad \backslash
\end{align*}
\]

\[
\begin{align*}
& w_1 \in L^X \times z \quad \backslash
\end{align*}
\]

\[
\begin{align*}
& w_2 \in L^{(z \mid: X) \ z \ y}
\end{align*}
\]

Figure: Previous and current version of the same lemma
Myhill-Nerode Theorem

• It turns out that there are two different concepts: Myhill relations and the Nerode relation.
• We also consider a related characterization: weak Nerode relations.
• All these are equivalence relations which we require to be of finite index, i.e. to have a finite number of equivalence classes.
• However, CoQ has no notion of quotient types.
Myhill-Nerode Theorem
Equivalence Relations of Finite Index

- We use functions of finite domain to represent equivalence relations of finite index.
- Think of the domain as the set of equivalence classes.
- We also need to have a representative of every equivalence class. Thus, we require surjectivity.

Record \text{Fin_Eq_Cls} :=
\begin{align*}
\{ & \text{fin_type} : \text{finType}; \\
& \quad \text{fin_func} : \rightarrow \text{word} \rightarrow \text{fin_type}; \\
& \quad \text{fin_surjective} : \text{surjective} \text{ fin_func} \}
\end{align*}

- With constructive choice, we can then give a canonical representative of every equivalence class.

Definition \text{cr} (f : \text{Fin_Eq_Cls}) x := \text{xchoose} (\text{fin_surjective} f x).
Myhill-Nerode Theorem

Myhill relations, weak Nerode relations, Nerode relation

- An equivalence relation \(\equiv \) of finite index is a **Myhill relation**\(^4\) for \(L \) iff

 \(\equiv \) is **right-congruent**, i.e. \(\forall u, v \in \Sigma^*. \forall a \in \Sigma. u \equiv v \implies ua \equiv va \),

 and \(\equiv \) **refines** \(L \), i.e. \(\forall u, v \in \Sigma^*. u \equiv v \implies (u \in L \iff v \in L) \).

- An equivalence relation \(\equiv \) of finite index is a **weak Nerode relation** for \(L \) iff

 \(\forall u, v \in \Sigma^*. u \equiv v \implies \forall w \in \Sigma^*. (uw \in L \iff vw \in L) \).

- The **Nerode relation**\(^5\) \(\equiv_L \) for \(L \) is defined such that

 \(\forall u, v \in \Sigma^*. u \equiv_L v \iff \forall w \in \Sigma^*. (uw \in L \iff vw \in L) \).

Myhill-Nerode Theorem
Formalization of Myhill, weak Nerode and Nerode relation

• For all three relations, we build a record that consists of an
equivalence relation of finite index and proofs of the properties of the
respective relation.

• Example:

Record Myhill_Rel :=
{ myhill_func :> Fin_Eq_Cls;
 myhill_congruent : right_congruent myhill_func;
 myhill_refines : refines myhill_func }.
Myhill-Nerode Theorem

• Our version of the Myhill-Nerode theorem states that the following are equivalent
 1. language L is accepted by a DFA,
 2. we can construct a Myhill relation for L,
 3. we can construct a weak Nerode relation for L,
 4. the Nerode relation for L is of finite index.

• $(1) \implies (2)$ is easy. (Map word w to the last state of its run on the automaton.)

• $(2) \implies (3)$ is a trivial inductive proof.

• $(4) \implies (1)$ is also straight-forward. (Use equivalence classes as states.)
Myhill-Nerode Theorem

(3) \implies (4)

- A weak Nerode relation (given as a function \(f \)) has at least as many equivalence classes as the Nerode relation.
- Some of them are redundant w.r.t. to \(L \), i.e. we may have equivalence classes s.t.

\[\forall uv \in \Sigma^*. fu \neq fu \land \forall w \in \Sigma^*. (uw \in L \iff vw \in L). \]

- Our goal is to merge these equivalence classes.
- In fact, we construct an equivalence relation on these equivalence classes.
- Equivalence classes are contained in that relation iff they are equivalent w.r.t. to \(L \).
Myhill-Nerode Theorem
Finding equivalent equivalence classes

- We use the table-filling algorithm\(^6\) for minimizing DFA.
- Our fixed-point algorithm finds all equivalence classes whose representatives are distinguishable w.r.t. to L.
- The remaining equivalence classes are then equivalent w.r.t. to L.
- Start: \(\{(x, y) \mid cr(x) \notin L \iff cr(y) \in L\}\).
- Step: if the previous result is \(d\), the new result is \(d \cup \{(x, y) \mid \exists a. (f(cr(x)a), f(cr(y)a)) \in d\}\).
- Due to finiteness of the domain and monotonicity of the algorithm, it has a fixed point which we can compute.

Myhill-Nerode Theorem

Proof Outline

• We construct a function \(f_{\text{min}} \) that maps every equivalence class to the set of equivalence classes equivalent to it w.r.t. \(L \).
• We then show that \(f_{\text{min}} \) is surjective and encodes an equivalence relation of finite index.
• Finally, we show that \(f_{\text{min}} \) is equivalent to the Nerode relation.
Myhill-Nerode Theorem

- The lemmas of this chapter are rather abstract, which makes for nice and short statements.
- The proofs also received more refinement than the other chapters. They are very concise.
- The entire chapter consists of ≈ 430 lines of code.
Summary

• All in all we have \(\approx 2100 \) lines of code.
• Mostly very close to the mathematical definitions.
• Code produced in the beginning of the project might be improved quite a bit.
Thank you for your attention!