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Abstract

We give a constructive formalization of the equivalence between regular expressions,
finite automata and the Myhill-Nerode characterization. We give procedures to convert
between these characterizations and prove their correctness. Our development is done
in the proof assistant Coq. We make use of the SSReflect plugin which provides
support for finite types and other useful infrastructure for our purpose. Our goal was
to make the formalization as concise as possible. The entire development consists of
approximately 2,700 lines of code.
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1 Introduction

Our goal is to give a concise formalization of the theory of regular languages. We include
several different characterizations of regular languages and prove them equivalent. These
include regular expressions, finite automata and the characterizations usually combined
in the Myhill-Nerode theorem. All our proofs are constructive and, thus, constitute
procedures to convert between these characterizations. Our formalization also includes
decision procedures for the equivalence of finite automata and regular expressions.

Regular languages are a well-studied class of formal languages. In their current form,
they were first studied by Kleene [23], who introduced regular expressions. The concept
of deterministic finite automata was introduced before Kleene’s invention of regular
expressions by Huffman [21] and Moore [27]. Rabin and Scott later introduced the
concept of non-deterministic finite automata [29], for which they were given the Turing
award [4].

We take classical proofs from [24] and translate them to our constructive setting. We
employ the proof assistant Coq [26] for our formalization. Additionally, we make use
of the SSReflect plugin [18]. SSReflect offers an extended scripting language and
provides support for finite types, which we use for formalizing finite automata. It also
comes with a lot of general infrastructure useful for our purpose. For every lemma
and theorem proven in this thesis, we provide corresponding statements from the Coq
development. Our development does not depend on axioms.

One of the most interesting parts of the formalization was to find a suitable represen-
tation of quotient types in Coq, which has no notion of quotient types. Our approach
seems to work very well for our purpose.

1.1 Related work

There have been many publications on formalizations of the theory of regular languages
in recent years. Most of them investigate decidability of equivalence of regular expres-
sions, often with a focus on automatically deciding Kleene algebras.

Coquand and Siles develop a decision procedure for equivalence of regular expressions
[16] on the basis of Brzozowski derivatives [14] in Coq (using SSReflect) with the
goal of providing a practically executable tactic on top of the decision procedure. Their
development weighs in at 7,500 lines of code, 700 of which serve as the basis of our
formalization.

Krauss and Nipkow give a decision procedure for equivalence of regular expressions in
Isabelle/HOL [25]. Their development is very concise with just over 1,000 lines of code.
Being interested only in a correct (and efficient) tactic for deciding equivalences, they
did not prove completeness and termination.
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1 Introduction

Another decision procedure for equivalence of regular expressions is developed by
Braibant and Pous [12], with the goal of deciding Kleene algebras in Coq. Their formal-
ization is based on matrices and comprises 19,000 lines of code. It encompasses finite
automata, regular expressions and the Myhill-Nerode theorem.

Moreira, Pereira and Sousa give a decision procedure for equivalence of regular ex-
pressions in Coq [28]. Their development is based on Antimirov’s partial derivatives of
regular expressions [2] and contains a refutation step to speed up inequality checking. It
consists of 19,000 lines of code.

Asperti formalizes a decision procedure for equivalence of regular expressions [5] based
on the notion of pointed regular expressions [6]. This development was done in the Matita
proof assistant [7]. It weighs in at 3,400 lines of code.

There is also a paper by Wu, Zhang and Urban on formalizing the Myhill-Nerode
theorem using only regular expressions and not, as is commonly done, finite automata
[31]. The authors state that this unusual choice stems, at least partly, from the restric-
tions of Isabelle/HOL (and similar HOL-based theorem provers). In particular, the fact
that Isabelle/HOL does not allow for quantification over types prevents straight-forward
formalizations of finite automata. Their development consists of roughly 2,000 lines of
code.

1.2 Contributions

Our formalization is done in constructive type theory. Thus, all our proofs are algorithms
that are, in theory, executable. However, our focus is solely on clarity and simplicity.
As a result, the algorithms and procedures given in this thesis are very close to the
mathematical definitions in [24], but not executable in practice.

Our development shows that Coq (particularly with SSReflect) is well suited for
this kind of formalization. Furthermore, we have also developed a new characterization
derived from the Nerode relation and proven it equivalent to all other characterizations.
Our development weighs in at about 2,700 lines of code.

1.3 Outline

In Chapter 2 we give a brief introduction to Coq and SSReflect and introduce concepts
that are relevant to our formalization.

In Chapter 3 we give basic definitions (words, languages, etc.). We also introduce
decidable languages, regular languages, and regular expressions. Furthermore, we prove
the decidability of regular languages.

In Chapter 4 we introduce finite automata. We prove the equivalence of deterministic
and non-deterministic finite automata. We also give a procedure to remove unreachable
states from deterministic finite automata. Furthermore, we prove decidability of empti-
ness and equivalence of finite automata. Finally, we prove that regular expressions and
finite automata are equally expressive.

9



1 Introduction

In Chapter 5 we introduce the Myhill-Nerode theorem. We give three different char-
acterizations of regular languages based on the Myhill-Nerode theorem and prove them
all equally expressive to finite automata.
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2 Coq and SSReflect

We decided to employ the Small Scale Reflection Extension [18] (SSReflect1) for the
Coq2 proof assistant [26]. The most important factors in this decision were SSRe-
flect’s excellent support for finite types, list operations and graphs. SSReflect also
introduces an alternative scripting language that can often be used to shorten the book-
keeping overhead of proofs considerably.

2.1 Coq

The Coq manual [26] states the following about Coq: The Coq system is designed
to develop mathematical proofs, and especially to write formal specifications, programs
and to verify that programs are correct with respect to their specification. It provides
a specification language named Gallina. Terms of Gallina can represent programs as
well as properties of these programs and proofs of these properties. Using the so-called
Curry-Howard isomorphism, programs, properties and proofs are formalized in the same
language, which is a λ-calculus with a rich type system called Calculus of Inductive
Constructions. All logical judgments in Coq are typing judgments. The very heart of
the Coq system is the type-checking algorithm that checks the correctness of proofs,
i.e that a program complies to its specification. Coq also provides an interactive proof
assistant to build proofs using specific programs called tactics.

2.2 SSReflect

SSReflect is a set of extensions to the proof scripting language of the Coq proof
assistant. They were originally developed to support small-scale reflection. However,
most of them are of quite general nature and improve the functionality of Coq in
most basic areas such as script layout and structuring, proof context management and
rewriting [18].
SSReflect comes with an extensive library [17] covering many mathematical con-

cepts leading up to finite group theory. In fact, we barely scratch the surface of the
library in this development. The interested reader may convince herself/himself of the
sheer size of the library3.

1http://www.msr-inria.inria.fr/Projects/math-components
2http://coq.inria.fr/
3http://coqfinitgroup.gforge.inria.fr/
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2 Coq and SSReflect

2.2.1 Boolean Reflection

SSReflect offers boolean reflections for decidable propositions, so called “small-scale
reflection”. A term of type reflect P b is a proof of the equivalence of the boolean
statement b and the proposition P. SSReflect has built-in support to change from
boolean to propositional statements if they are equivalent. This allows us to always
assume the most convenient perspective in our proofs.

2.2.2 Boolean Predicates

SSReflect has special type for boolean predicates, pred T := T −> bool, where T is
a type. We make use of SSReflect’s syntax to specify boolean predicates. This
allows us to specify predicates in a way that resembles set-theoretic notation, e.g.
[pred x | <boolean expression in x> ]. Furthermore, we can use the functions pred1 and
pred0 to specify the singleton predicate and the empty predicate, respectively. The com-
plement of a predicate can be written as [predC p]. The syntax for combining predicates
is [pred? p1 & p2 ], with ? being one of U (union), I (intersection) or D (difference). For
predicates given in such a way, we write y \in p to express that y fulfills p. There is
also syntax for the preimage of a predicate under a function which can be written as
[preim f of p].

There are also applicative (functional) versions of of predC, predU, predI, predD, which
are functions that take predicates as arguments and return predicates. pred1 x represents
the predicate [pred y | y == x].

2.2.3 Finite Types

The most important feature of SSReflect for our purpose are finite types. Finite
types are types that have a finite number of elements. The type of finite types is finType.
SSReflect offers a number of important operations on finite types. Finite types are
closed under basic operations such as option and sum. SSReflect provides boolean
versions of the universal and existential quantifiers on finite types, [ forall x, p x] and
[ exists x, p x], where p is a boolean predicate. We compute the number of elements for
which a predicate p on a finite type returns true with #|p|. enum p gives a list of these
elements. A finite type in the position of a predicate coerces to a predicate that is always
true.

We can also create finite types from lists. Instances of these types can be specified
with the SeqSub constructor, which takes as arguments an element of the list and a proof
that this element is contained in the list.

2.2.4 Finite Sets

SSReflect also supports finite sets, which are sets over finite types. Finite sets them-
selves are finite types, which allows us to use them in the construction of finite automata.
Additionally, they come with the same syntax for counting and enumerating their ele-
ments that we introduced for finite types. The type of a finite set is {set T}, where T is

12



2 Coq and SSReflect

a finite type. The function set1 constructs a singleton set containing its first argument.
The type of the resulting finite set can be inferred from the argument. The union over
finite sets can be expressed by \bigcup (x | P x) F, which corresponds to the mathemat-
ical notation

⋃
x∈X,Px F , with X being the (finite) type of x. More information about

these so-called “big operators” can be found in [10].

2.2.5 Equality

We can use f =1 g to express that the functions f and g agree in all arguments. If we
regard f and g as sets, we can write f =i g, which is defined as forall x, x \in f = x \in g.
We need to do this because Coq’s equality = is intensional, which means that even if we
have f =1 g, we are not, in general, able to prove f = g. Thus, we use =1 or =i in Coq,
when we write = mathematically. This expresses the notion of extensional equality of
classical mathematics.

13



3 Decidable Languages

We give basic definitions for languages, operators on languages and, finally, regular
languages. We provide the corresponding formalizations from our development and
prove their correctness.

3.1 Definitions

We closely follow the definitions from [20]. An alphabet Σ is a finite set of symbols. A
word w is a finite sequence of symbols chosen from some alphabet. We use |w| to denote
the length of a word w. ε denotes the empty word. Given two words w1 = a1 · · · an
and w2 = b1 · · · bm, the concatenation of w1 and w2 is defined as a1 · · · anb1 · · · bm and
denoted w1 · w2 or just w1w2. A language is a set of words. The residual language
of a language L with respect to symbol a is the set of words u such that av is in L. The
residual is denoted resa(L). We define Σk to be the set of words of length k. The
set of all words over an alphabet Σ is denoted Σ∗, i.e.,Σ∗ =

⋃
k∈N Σk. A language L

is decidable if and only if there exists a boolean predicate that decides membership in
L. We will only deal with decidable languages from here on. Throughout the remaining
document, we will assume a fixed alphabet Σ.

We employ finite types to formalize alphabets. In most definitions, alphabets will not
be made explicit. However, the same name and type will be used throughout the entire
development. Words are formalized as sequences over the alphabet. Decidable languages
are represented by functions from word to bool.

Variable char : finType.

Definition word := seq char .

Definition language := pred word.

Definition residual x L : language := [preim cons x of L ].

3.1.1 Operations on Languages

We will later introduce a subset of the decidable language that is based on the following
operations. For every operator, we will prove the decidability of the resulting language.

The concatenation of two languages L1 and L2 is denoted L1 · L2 and is defined as
the set of words w = w1w2 such that w1 is in L1 and w2 is in L2. The Kleene closure
of a language L is denoted L∗ and is defined as the set of words w = w1 · · ·wk such
that w1 . . . wk are in L. Note that ε ∈ L∗ (k = 0). We define the complement of a
language L as Σ∗\L, which we write as ¬L. Furthermore, we make use of the standard
set operations union and intersection.

14



3 Decidable Languages

For our Coq development, we take Coquand and Siles’s [16] implementation of these
operators. plus and prod refer to union and intersection, respectively. Additionally,
we also introduce the singleton languages (atom), the empty language (void) and the
language containing only the empty word (eps).

Definition conc L1 L2 : language :=
fun v => [ exists i : ’ I ( size v).+1, L1 (take i v) && L2 (drop i v) ].

Definition star L : language :=
fix star v := if v is x :: v’ then conc ( residual x L) star v’ else true .

Definition compl L : language := predC L.

Definition plus L1 L2 : language := [predU L1 & L2].

Definition prod L1 L2 : language := [ predI L1 & L2].

Definition atom x : language := pred1 [:: x ].

Definition void : language := pred0.

Definition eps : language := pred1 [::].

The definition of conc is based on a characteristic property of the concatenation of two
languages. The following lemma proves this property.

Lemma 3.1.1. Let L1, L2, w = a1 · · · ak be given. We have that

w ∈ L1 · L2 ⇐⇒ ∃n ∈ N.0 < n ≤ k ∧ a1 · · · an−1 ∈ L1 ∧ an · · · ak ∈ L2.

Proof. “⇒” From w ∈ L1 ·L2 we have w1, w2 such that w = w1w2 ∧w1 ∈ L1 ∧w2 ∈ L2.
We choose n := |w1|+ 1. We then have that a1 · · · an−1 = a1 · · · a|w1| = w1 and w1 ∈ L1

by assumption. Similarly, an · · · ak =a|w1|+1 · · · ak = w2 and w2 ∈ L2 by assumption.
“⇐” We choose w1 := a1 · · · an−1 and w2 := an · · · ak. By assumption we have that
w = w1w2. We also have that a1 · · · an−1 ∈ L1 and an · · · ak ∈ L2. It follows that
w1 ∈ L1 and w2 ∈ L2.

Lemma concP : forall {L1 L2 v},
reflect (exists2 v1, v1 \in L1 & exists2 v2, v2 \in L2 & v = v1 ++ v2)

(v \in conc L1 L2).

The implementation of star makes use of a property of the Kleene closure, which is
that any nonempty word in L∗ can be seen as the concatenation of a nonempty word
in L and a (possibly empty) word in L∗. This property allows us to implement star as
a structurally recursive predicate. The following lemma proves the correctness of this
property.

Lemma 3.1.2. Let L,w = a1 · · · ak be given. We have that

w ∈ L∗ ⇐⇒
{
a2 · · · ak ∈ resa1(L) · L∗, if |w| > 0;
w = ε, otherwise.

Proof. “⇒” We do a case distinction on |w| = 0.

1. |w| = 0. It follows that w = ε.

15



3 Decidable Languages

2. |W | 6= 0, i.e. |w| > 0. From w ∈ L∗ we have w = w1 · · ·wl such that w1 · · ·wl are
in L. There exists a minimal n such that |wn| > 0 and for all m < n, |wm| = 0.
Let wn = b1 · · · bp. We have that b2 · · · ap ∈ resb1(L). Furthermore, we have that
wn+1 · · ·wl ∈ L∗. We also have a1 = b1 and w = a1 · · · ak = wn · · ·wl. Therefore,
we have a2 · · · ak ∈ resa1(L) · L∗.

“⇐” We do a case distinction on the disjunction.

1. w = ε. Then w ∈ L∗ by definition.

2. a2 · · · ak ∈ resa1(L)·L∗. By Lemma 3.1.1 we have n such that a2 · · · an−1 ∈ resa1(L)
and an · · · ak ∈ L∗. By definition of res, we have a1 · · · an−1 ∈ L. Furthermore,
we also have an · · · ak = w1 · · ·wl such that w1 . . . wl are in L. We choose w0 :=
a1 · · · an−1. It follows that w = w0w1 · · ·wl with w0, w1, · · ·wl in L. Therefore,
w ∈ L∗.

The formalization of Lemma 3.1.2 connects the formalization of star to the mathemat-
ical definition. The propositional formula given here appears slightly more restrictive
than our mathematical definition as it requires all words from L to be nonempty. Math-
ematically, however, this is no restriction.

Lemma starP : forall {L v},
reflect (exists2 vv, all [predD L & eps] vv & v = flatten vv)

(v \in star L).

Theorem 3.1.3. The decidable languages are closed under concatenation, Kleene star,
union, intersection and complement.

Proof. We have already given algorithms for all operators. It remains to show that they
are correct. For concatenation and the Kleene star, we have shown in Lemma 3.1.1
and Lemma 3.1.2 that the formalizations are equivalent to the mathematical definitions.
The remaining operators (union, intersection, complement) can be applied directly to
the result of the languages’ boolean decision functions.

3.2 Regular Languages

Definition 3.2.1. The set of regular languages REG is defined to be exactly those
languages generated by the following inductive definition:

∅ ∈ REG {ε} ∈ REG
a ∈ Σ

{a} ∈ REG
L ∈ REG
L∗ ∈ REG

L1 ∈ REG L2 ∈ REG
L1 ∪ L2 ∈ REG

L1 ∈ REG L2 ∈ REG
L1 · L2 ∈ REG

16



3 Decidable Languages

3.2.1 Regular Expressions

Regular expressions mirror the definition of regular languages very closely.

Definition 3.2.2. We will consider extended regular expressions that include nega-
tion (Not), intersection (And) and a single-symbol wildcard (Dot). Therefore, we have
the following syntax for regular expressions:

r, s := ∅ | ε | . | a | r∗ | r + s | r&s | rs | ¬r

The language of an extended regular expression is defined as follows:

L(∅) = ∅ L(r∗) = L(r)∗

L(ε) = {ε} L(r + s) = L(r) ∪ L(s)

L(.) = Σ L(r&s) = L(r) ∩ L(s)

L(a) = {a} L(rs) = L(r) · L(s)

Definition 3.2.3. We say that two regular expressions r and s are equivalent if and
only if

L(r) = L(s).

We will later show that equivalence of regular expressions is decidable. We take the
implementation of regular expressions from Coquand and Siles’s development [16], which
is also based on SSReflect and comes with helpful infrastructure for our proofs. The
semantics defined in Definition 3.2.2 can be given as a boolean function.

Inductive regular expression :=
| Void
| Eps
| Dot
| Atom of symbol
| Star of regular expression
| Plus of regular expression & regular expression
| And of regular expression & regular expression
| Conc of regular expression & regular expression
| Not of regular expression .

Fixpoint mem reg e :=
match e with
| Void => void
| Eps => eps
| Dot => dot
| Atom x => atom x
| Star e1 => star (mem reg e1)
| Plus e1 e2 => plus (mem reg e1) (mem reg e2)
| And e1 e2 => prod (mem reg e1) (mem reg e2)
| Conc e1 e2 => conc (mem reg e1) (mem reg e2)
| Not e1 => compl (mem reg e1)
end.

17



3 Decidable Languages

We will later prove that extended regular expressions are equivalent to the inductive
definition of regular languages in 3.2.1. In order to do that, we introduce a predicate on
regular expressions that distinguishes standard regular expressions from extended
regular expressions (as introduced above). The grammar of standard regular expres-
sion is as follows:

r, s := ∅ | ε | a | r∗ | r + s | rs

Note that standard regular expressions are equivalent to regular languages. We realize
standard regular expressions as a predicate on extended regular expressions.

Fixpoint standard (e: regular expression char) :=
match e with
| Not => false
| And => false
| Dot => false
| => true

end.
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4 Finite Automata

Another way of characterizing regular languages are finite automata. We will show that
the languages of finite automata are exactly those recognized by regular expressions.
Furthermore, we will also derive a decision procedure for emptiness of an automaton’s
language. Based on that, we will give a decision procedure for equivalence of regular
expressions. Finally, we prove that extended regular expressions and standard regular
expressions are equally expressive and, thereby, that extended regular expressions are
equivalent to regular languages.

4.1 Definition

A finite automaton [20] consists of

1. finite set of states Q,

2. a starting state s ∈ Q,

3. a set of final states F ⊆ Q

4. and a state-transition relation δ.

We define a run of a word w ∈ Σ∗ on an automaton A = (Q, s, F, δ) as a sequence of
states σ such that for every two consecutive positions i, i+1 in σ we have (σi, wi, σi+1) ∈
δ. A word w is accepted by A in state x if and only if there exists a run σ of w on
A such that σ0 = x ∧ σ|σ|−1 ∈ F . The resulting set of accepted words is denoted by
Lx(A). The language of A is exactly Ls(A) and is denoted L(A).

4.1.1 Non-Deterministic Finite Automata

Finite automata can be non-deterministic (NFA) in the sense that there may exist
multiple distinct runs for a word.

Record nfa : Type :=
{ nfa state :> finType;

nfa s : nfa state ;
nfa fin : pred nfa state ;
nfa step : nfa state −> char −> pred nfa state }.

Fixpoint nfa accept (x: A) w :=
match w with
| [::] => nfa fin A x
| a :: w => [ exists y, ( nfa step A x a y) && nfa accept y w ]

end.
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Definition nfa lang := [pred w | nfa accept ( nfa s A) w].

The acceptance criterion given here avoids the matter of runs. In many cases, this
will help us with proofs by induction on the accepted word. However, we will need runs
in some of the proofs. Due to the fact that runs are not unique on NFAs, we give a
predicate that decides if a sequence of states is a run on A for a word w. We then show
that the acceptance criterion given above corresponds to the mathematical definition in
terms of runs.

Fixpoint nfa run x (xs : seq A) (w: word) { struct xs} :=
match xs,w with
| y :: xs ’, a :: w’ => nfa step A x a y && nfa run y xs’ w’
| [::] , [::] => true
| , => false

end.

Lemma nfa run accept x w:
reflect (exists2 xs , nfa run x xs w & last x xs \in nfa fin A)

(nfa accept x w).

ε-Transitions

Non-deterministic finite automata with ε-transitions are based on the non-deterministic
automata described above. In addition to all possible transitions of a normal NFA, they
also allow for transitions that can be taken regardless of the input. These transitions
are marked with the ε character. They do not “consume” a character of the input
and can be taken arbitrarily often. The main disadvantage is that the properties of
ε-transitions do not warrant a one-to-one correspondence between run length and word
length. Specifically, runs may be much longer than their corresponding words. Thus,
induction on runs no longer directly translates to induction on the size of the word. To
avoid nested inductions, we decided not to include ε-transitions in our formalization.

Note that finite automata ε-transitions and finite automata without these transitions
are equally expressive.

4.1.2 Deterministic Finite Automata

For functional δ, we speak of deterministic finite automata (DFA). In this case, we
write δ as a function in our Coq development.

Record dfa : Type :=
{ dfa state :> finType;

dfa s : dfa state ;
dfa fin : pred dfa state ;
dfa step : dfa state −> char −> dfa state }.

Fixpoint dfa accept x w :=
match w with
| [::] => dfa fin A x
| a :: w => dfa accept (dfa step A x a) w

end.
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Definition dfa lang := [pred w | dfa accept ( dfa s A) w].

Again, we avoid runs in our formalization of the acceptance criterion in favor of an
acceptance criterion that is easier to work with in proofs. In this case, however, we can
give a function that computes the unique run of a word on A. This allows us to give an
alternative acceptance criterion that is closer to the mathematical definition. We also
prove that both criteria are equivalent.

Fixpoint dfa run ’ (x: A) (w: word) : seq A :=
match w with
| [::] => [::]
| a :: w => (dfa step A x a) :: dfa run ’ ( dfa step A x a) w

end.

Lemma dfa run accept x w: last x (dfa run ’ x w) \in dfa fin A = (w \in dfa accept x).

Equivalence of Automata

Definition 4.1.1. We say that two automata are equivalent if and only if their lan-
guages are equal.

4.2 Equivalence of DFA and NFA

Deterministic and non-deterministic finite automata are equally expressive. One direc-
tion is trivial since every DFA can be seen as an NFA.

Theorem 4.2.1. Let A = (Q, s, F, δ) be a DFA. Then A is also an NFA.

Proof. (Q, s, F, δ) fulfills the definition of an NFA. Thus, A is an NFA.

Formally, we have to construct an equivalent NFA, since DFAs and NFAs are different
types. The construction is straight-forward.

Definition dfa to nfa : nfa :=
{| nfa s := dfa s A;

nfa fin := dfa fin A;
nfa step := fun x a y => y == dfa step A x a |}.

Lemma dfa to nfa correct : dfa lang A =i nfa lang dfa to nfa .

We prove the other direction using the powerset construction.

Definition 4.2.2. Given NFA A, we construct an equivalent DFA Adet in the following
way:

Qdet := {P | P ⊆ Q}
sdet := {s}
Fdet := {P ∈ Qdet | P ∩ F 6= ∅}
δdet := {(P, a,

⋃
p∈P
{q ∈ Q | (p, a, q) ∈ δ}) | P ∈ Qdet, a ∈ Σ}.

Adet := (Qdet, sdet, Fdet, δdet).
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The formalization of Adet is straight-forward. The set of states is an implicit argument
of the DFA constructor and thus not shown.

Definition nfa to dfa :=
{| dfa s := set1 ( nfa s A);

dfa fin := [ pred X: {set A} | [ exists x: A, (x \in X) && nfa fin A x] ];
dfa step := [ fun X a => \bigcup (x | x \in X) finset ( nfa step A x a) ] |}.

Lemma 4.2.3. For all powerset states X and for all states x with x ∈ X we have that

Lx(A) ⊆ LX(Adet).

Proof. Let w ∈ Lx(A). We prove by induction on w that w ∈ LX(Adet).

• For w = ε and ε ∈ Lx(A) we get x ∈ F from ε ∈ Lx(A). From x ∈ X we get
X ∩ F 6= ∅ and therefore ε ∈ LX(Adet).

• For w = aw′ and aw′ ∈ Lx(A) we get y such that w′ ∈ Ly(A) and (x, a, y) ∈ δ.
The latter gives us y ∈ Y where Y is such that (X, a, Y ) ∈ δdet. With y ∈ Y and
w′ ∈ Ly(A) we get w′ ∈ LY (Adet) by inductive hypothesis. With (X, a, Y ) ∈ δdet
we get aw′ ∈ LX(Adet).

Lemma 4.2.4. For all powerset states X and all words w ∈ LX(Adet) there exists a
state x such that

x ∈ X ∧ w ∈ Lx(A).

Proof. By induction on w.

• For w = ε and ε ∈ LX(Adet) we get X ∩F 6= ∅. Therefore, there exists x such that
x ∈ X and x ∈ F . Thus, we have ε ∈ Lx(A).

• For w = aw′ and aw′ ∈ LX(Adet) we get Y such that w′ ∈ LY (Adet) and (X, a, Y ) ∈
δdet. From the inductive hypothesis we get y such that y ∈ Y and w′ ∈ Ly(A).
From y ∈ Y and (X, a, Y ) ∈ δdet we get x such that x ∈ X and (x, a, y) ∈ δ. Thus,
aw′ ∈ Lx(A).

Theorem 4.2.5. The powerset automaton Adet accepts the same language as A, i.e.

L(A) = L(Adet).

Proof. “⊆” This follows directly from Lemma 4.2.3 with x := s and X := sdet.
“⊇” From Lemma 4.2.4 with X = sdet we get Lsdet(Adet) ⊆ Ls(A), which proves the

claim.

22



4 Finite Automata

The formalization of this proof is straight-forward and follows the plan laid out above.
The corresponding Lemmas are:

Lemma nfa to dfa aux2 (x: A) w (X: nfa to dfa ):
x \in X −> nfa accept A x w −> dfa accept nfa to dfa X w.

Lemma nfa to dfa aux1 (X: nfa to dfa) w:
dfa accept nfa to dfa X w −> [ exists x, (x \in X) && nfa accept A x w ].

Lemma nfa to dfa correct : nfa lang A =i dfa lang nfa to dfa .

4.3 Connected Components

Finite automata can have isolated subsets of states that are not reachable from the
starting state. Removing these states does not change the language. It will later be
useful to have automata that only contain reachable states. Therefore, we define a
procedure to extract the connected component containing the starting state from a
given automaton.

Definition 4.3.1. Let A = (Q, s, F, δ) be a DFA. We define reachable1 such that for all
x and y, (x, y) ∈ reachable1 ⇐⇒ ∃a, (x, a, y) ∈ δ. We define reachable := {y | (s, y) ∈
reachable1∗}, where reachable1∗ denotes the transitive closure of reachable1. With this,
we can define the connected automaton Ac:

Qc := Q ∩ reachable
sc := s

Fc := F ∩ reachable
δc := {(x, a, y) | (x, a, y) ∈ δ ∧ x, y ∈ Qc}
Ac := (Qc, sc, Fc, δc).

We make use of SSReflect’s connect predicate to extract a sequence of all states
reachable from s. From this, we construct a finite type and use that as the new set of
states. These new states carry a proof of reachability. We also have to give a transition
function which ensures that transitions always end in reachable states.

Definition reachable1 := [ fun x y => [ exists a, dfa step A1 x a == y ] ].

Definition reachable := enum (connect reachable1 (dfa s A1)).

Lemma reachable0 : dfa s A1 \in reachable .

Lemma reachable step x a: x \in reachable −> dfa step A1 x a \in reachable .

Definition dfa connected :=
{| dfa s := SeqSub reachable0;

dfa fin := fun x => match x with SeqSub x => dfa fin A1 x end;
dfa step := fun x a => match x with
| SeqSub Hx => SeqSub (reachable step a Hx)
end |}.
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Lemma 4.3.2. For every state x ∈ reachable we have that

Lx(Ac) = Lx(A).

Proof. “⊆” Trivial. “⊇” By induction on w.

• For w = ε we have ε ∈ Lx(A) and therefore x ∈ F . With x ∈ reachable we get
x ∈ Fc. Thus, ε ∈ Lx(Ac).

• For w = aw′ we have y ∈ Q such that (x, a, y) ∈ δ and w′ ∈ Ly(A). From
x ∈ reachable we get y ∈ reachable by transitivity. Therefore, (x, a, y) ∈ δc. The
inductive hypothesis gives us w′ ∈ Ly(Ac). Thus, aw′ ∈ Lx(Ac).

Theorem 4.3.3. The language of the connected automaton Ac is identical to that of the
original automaton A, i.e.

L(A) = L(Ac).

Proof. By reflexivity, we have s ∈ reachable. We use Lemma 4.3.2 with x := s to prove
the claim.

The formalization of Lemma 4.3.2 and Theorem 4.3.3 is straight-forward.

Lemma dfa connected correct’ x (Hx: x \in reachable) :
dfa accept dfa connected (SeqSub Hx) =i dfa accept A1 x.

Lemma dfa connected correct: dfa lang dfa connected =i dfa lang A1.

To make use of the fact that Ac is fully connected, we will prove a characteristic
property of Ac. We will need this property of Ac in Chapter 5.

Definition 4.3.4. A representative of a state x is a word w such that the unique run
of w on Ac ends in x.

Lemma 4.3.5. There is a representative for every state x ∈ Qc.

Proof. x carries a proof of reachability. From this, we get a path through the graph of
reachable1 that ends in x. We build the representative by extracting the edges of the
path and building a word from those.

Lemma dfa connected repr x :
exists w, last ( dfa s dfa connected) (dfa run dfa connected w) = x.

4.4 Emptiness

Given an automaton A, we can check if L(A) = ∅. We simply obtain the connected
automaton of A and check if there are any final states left.
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Theorem 4.4.1. The language of the connected automaton Ac is empty if and only if
its set of final states Fc is empty, i.e.

L(A) = ∅ ⇐⇒ Fc = ∅.

Proof. By Theorem 4.3.3 we have L(A) = L(Ac). Therefore, it suffices to show

L(Ac) = ∅ ⇐⇒ Fc = ∅.

“⇒” We have L(Ac) = ∅ and have to show that for all x ∈ Qc, x /∈ Fc. Let x ∈ Qc. By
Lemma 4.3.5 we get w such that the unique run of w on Ac ends in x. We use L(Ac) = ∅
to get w /∈ L(Ac), which implies that the run of w on Ac ends in a non-final state. By
substituting the last state of the run by x we get x /∈ Fc.

“⇐” We have Fc = ∅ and have to show that for all words w, w /∈ L(Ac). We use
Fc = ∅ to show that the last state of the run of w on Ac is non-final. Thus, w /∈ L(Ac).

Thus, emptiness is decidable.

Definition dfa lang empty := #|dfa fin dfa connected | == 0.

Lemma dfa lang empty correct:
reflect ( dfa lang A1 =i pred0)

dfa lang empty.

4.5 Deciding Equivalence of Finite Automata

Given finite automata A1 and A2, we construct DFA A such that the language of A is
the symmetric difference of the languages of A1 and A2, i.e.,

L(A) := L(A1)	 L(A2) = L(A1) ∩ ¬L(A2) ∪ L(A2) ∩ ¬L(A1).

Theorem 4.5.1. The equivalence of A1 and A2 is decidable, i.e.

L(A1) = L(A2) if and only if L(A) is empty.

Proof. The correctness of this procedure follows from the properties of the symmetric
difference operator, i.e.

L(A1)	 L(A2) = ∅ ⇔ L(A1) = L(A2).

Thus, equivalence is decidable.

Definition dfa sym diff A1 A2 :=
dfa disj ( dfa conj A1 (dfa compl A2)) (dfa conj A2 (dfa compl A1)).

Definition dfa equiv A1 A2 := dfa lang empty (dfa sym diff A1 A2).

Lemma dfa equiv correct A1 A2:
dfa equiv A1 A2 <−> dfa lang A1 =i dfa lang A2.
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4.6 Regular Expressions to Finite Automata

We prove that there exists an equivalent automaton for every extended regular expres-
sion. The structure of this proof is given by the inductive nature of regular expressions.

Theorem 4.6.1. Let r be an extended regular expression on Σ. Then we can give DFA
A such that

L(r) = L(A).

Depending on the constructor of the regular expression, we will construct a corre-
sponding operation on DFAs or NFAs. Void, Eps, Dot, Atom, Plus, And and Not are very
easy to implement on DFAs, whereas Star and Conc lend themselves well to NFAs.

We show our implementation for Void, Not, and Conc. We also give a short overview
of the automaton corresponding to Star.

4.6.1 Void

Definition 4.6.2. We define an empty DFA with a single, non-accepting state, i.e.

A∅ := ({t}, t, ∅, {(t, a, t) | a ∈ Σ}).

Lemma 4.6.3. The language of the empty DFA is empty, i.e.

L(E) = ∅.

Proof. A∅ has no final states, i.e. no run can end in a final state.

Definition dfa void :=
{| dfa s := tt ;

dfa fin := pred0;
dfa step := [fun x a => tt] |}.

Lemma dfa void correct x w: ∼∼ dfa accept dfa void x w.

4.6.2 Not

Definition 4.6.4. Given DFA A = (Q, s, F, δ), the complement automaton A¬ is con-
structed by swapping accepting and non-accepting states, i.e.

A¬ := (Q, s,Q\F, δ).

Lemma 4.6.5. For every state x ∈ Q, we have that w ∈ Σ∗ is accepted in x by A¬ if
and only if it is not accepted in x by A, i.e. Lx(A¬) = Σ∗\Lx(A)

Proof. By induction on w. For w = ε we have ε ∈ Lx(A¬) ⇐⇒ ε ∈ Lx(A) from
x ∈ F ⇐⇒ x /∈ Q\F . For w = aw′ we get (y, a, x) ∈ δ. By inductive hypothesis,
w′ ∈ Lx(A¬) ⇐⇒ w′ /∈ Lx(A). Thus, aw′ ∈ Ly(A¬) ⇐⇒ aw′ /∈ Ly(A).

Lemma 4.6.6. A¬ accepts the complement language of A, i.e. L(A¬) = Σ∗\L(A).

Proof. This follows directly from Lemma 4.6.5 with x := s.
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4.6.3 Conc

The most common approach to build the concatenation automaton is to connect the
final states of the first automaton to the starting state of the second automaton by an
ε-transition. We do not allow ε-transitions in our automata. The reason for this is that
we do not want to lose the direct correspondence of the length of the word to the length
of its run on an automaton. Thus, in order to build the concatenation automaton, we
duplicate all edges from the starting state of the second automaton and add them to all
final states of the first automaton. Since the final states may already have edges with
the same labels, we chose to implement this operation on NFAs.

Definition 4.6.7. Given two NFAs A1 = (Q1, s1, F1, δ1) and A2 = (Q2, s2, F2, δ2) we
construct the concatenation automaton in the following way:

QConc := Q1 ·∪ Q2

sConc := s1

FConc :=

{
F2 if s2 /∈ F2

F2 ∪ F1 if s2 ∈ F2

δConc := δ1 ∪ δ2 ∪ {(x, a, y) | x ∈ Q1, y ∈ Q2, (s2, a, y) ∈ δ2}
AConc := (QConc, sConc, FConc, δConc).

Definition nfa conc : nfa :=
{| nfa s := inl ( nfa s A1);

nfa fin := [fun x =>
match x with
| inl x => nfa fin A1 x && nfa fin A2 (nfa s A2)
| inr x => nfa fin A2 x

end];
nfa step := fun x a y =>

match x,y with
| inl x, inl y => nfa step A1 x a y
| inl x, inr y => nfa fin A1 x && nfa step A2 (nfa s A2) a y
| inr x, inr y => nfa step A2 x a y
| inr x, inl y => false

end |}.

Before we prove the correctness of AConc, we need a number of auxiliary lemmas.

Lemma 4.6.8. Every run of A2 can be mapped to a run in AConc.

Proof. Let σ be a run starting in x for w ∈ Σ∗ on A2. By induction on σ.

1. For σ = x we have w = ε. Therefore, we have that σ is also a run starting in x for
ε on AConc.

2. For σ = xyσ′ we have w = aw′, (x, a, y) ∈ δ2. By definition of δConc we also have
(x, a, y) ∈ δConc. By inductive hypothesis, we have that yσ′ is a run for w′ starting
in y on AConc. Thus, xyσ′ is a run for aw′ starting in x on AConc.
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Lemma nfa conc cont x xs w:
nfa run A2 x xs w
−> nfa run nfa conc (inr x) (map (@inr A1 A2) xs) w.

The next lemma shows that, in AConc, the final states of A1 have all transitions that
the starting state of A2 also has. Consequently, they accept the same words.

Lemma 4.6.9. Let x ∈ F1. Let w ∈ L(A2). Then w ∈ Lx(AConc).

Proof. By induction on w.

1. For w = ε we have get s ∈ F2 by ε ∈ L(A2) and, thus, x ∈ FConc by definition.

2. For w = aw′ we have y ∈ Q2 such that (s, a, y) ∈ δ2 and thus (x, a, y) ∈ δConc.
We also have w′ ∈ Ly(A2) and thus, by Lemma 4.6.8, w′ ∈ Ly(AConc). Thus,
aw′ ∈ Lx(AConc).

Lemma nfa conc fin1 x1 w:
nfa fin A1 x1 −>
nfa lang A2 w −>
nfa accept nfa conc ( inl x1) w.

The following lemma is one direction of the proof of correctness of AConc.

Lemma 4.6.10. Let x ∈ Q1, w1 ∈ Lx(A1), and w2 ∈ L(A2). Then w1w2 ∈ Lx(AConc).

Proof. By induction on w1.

1. For w1 = ε we get x ∈ F1 and thus, by Lemma 4.6.9, the claim follows.

2. For w1 = aw′1 we get (x, a, y) ∈ δ1 and thus (x, a, y) ∈ δConc. By inductive
hypothesis, the claim follows.

Lemma nfa conc aux2 x w1 w2:
nfa accept A1 x w1 −>
nfa lang A2 w2 −>
nfa accept nfa conc ( inl x) (w1 ++ w2).

The next lemma constitutes the other direction. Its statement is very general, even
though we will only need one of the two cases for the proof of correctness of AConc.
However, with the second case, there is no straight-forward inductive proof.

Lemma 4.6.11. Let x ∈ QConc. Let w ∈ Lx(AConc). Then, either

x ∈ Q1 ∧ ∃w1. ∃w2. w = w1w2 ∧ w1 ∈ Lx(A1) ∧ w2 ∈ L(A2), (*)

or
x ∈ Q2 ∧ w ∈ Lx(A2). (**)
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Proof. By induction on w.

1. For w = ε we get either x ∈ F1 and s2 ∈ F2 or x ∈ F2. In the first case, we need
to prove (*), which we do by choosing w1 := ε and w2 := ε. In the second case,
we need to prove ε ∈ Lx(A2) and thus x ∈ F2 which we have by assumption.

2. For w = aw′ we get y such that (x, a, y) ∈ δConc and w′ ∈ Ly(AConc). We are left
with four cases, depending on the origin of x and y.

a) For x, y ∈ Q2 we have (x, a, y) ∈ Q2 and claim (**) follows.

b) For x, y ∈ Q1 we prove (*). By inductive hypothesis we get w1 and w2 such
that (*) holds for y.

c) For x ∈ Q1 and y ∈ Q2 the claim follows with w1 := ε and w2 := aw′ by
inductive hypothesis.

d) For x ∈ Q2 and y ∈ Q1 we have (x, a, y) ∈ δConc, which is a contradiction.

Lemma nfa conc aux1 X w :
nfa accept nfa conc X w −>
match X with
| inl x => exists w1, exists w2, (w == w1 ++ w2) && (nfa accept A1 x w1) && nfa lang A2 w2
| inr x => nfa accept A2 x w

end.

Corollary 4.6.12. The language of AConc is the concatenation of the languages of A1

and A2, i.e. L(AConc) = L(A1) · L(A2).

Proof. Follows directly from Lemma 4.6.10 and Lemma 4.6.11.

Lemma nfa conc correct: nfa lang nfa conc =i conc ( nfa lang A1) (nfa lang A2).

4.6.4 Star

The most common construction for the star automaton works by adding the starting
state to the set of final states and connecting all final states to the starting state by
ε-transitions.

Again, our construction differs from this. First, we construct an automaton that
accepts the Kleene closure of the language of the given automaton, excluding the empty
word, which we call nfa repeat . The reason for this is that we can easily construct this
automaton much in the same way we constructed the concatenation automaton.

We duplicate all edges from the starting state and add them to the final states. The
resulting automaton accepts the Kleene closure of the language of the given automaton,
but not the empty word. Since we have already constructed an automaton that accepts
the empty word, and a disjunction operation on automata, we simply combine those
with our newly constructed automaton to form the star automaton.
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Definition nfa star := ( dfa disj dfa eps ( nfa to dfa nfa repeat )).

Lemma nfa star correct: dfa lang nfa star =i star ( nfa lang A1).

We give a procedure to build an equivalent DFA for every extended regular expression
and prove it correct. Note that the operations are named after the type of arguments
they take, regardless of their return types. Thus, nfa star takes an NFA but returns a
DFA, whereas nfa conc expects and returns NFAs.

Fixpoint re to dfa (r : regular expression char ): dfa char :=
match r with
| Void => dfa void char
| Eps => dfa eps char
| Dot => dfa dot char
| Atom a => dfa char char a
| Star s => nfa star ( dfa to nfa ( re to dfa s))
| Plus s t => dfa disj ( re to dfa s) ( re to dfa t)
| And s t => dfa conj ( re to dfa s) ( re to dfa t)
| Conc s t => nfa to dfa (nfa conc ( dfa to nfa ( re to dfa s)) ( dfa to nfa ( re to dfa t )))
| Not s => dfa compl (re to dfa s)
end.

Lemma re to dfa correct r: dfa lang ( re to dfa r) =i r .

4.7 Deciding Equivalence of Regular Expressions

Based on our procedure to construct an equivalent automaton from a regular expression,
we can decide equivalence of regular expressions. Given r1 and r2, we construct equiva-
lent DFAs A1 and A2 as above. Based on our decision procedure for the equivalence of
DFAs, we only need to check if A1 and A2 are equivalent.

Theorem 4.7.1. Let r, s be regular expressions on Σ and A1, A2 their corresponding,
equivalent automata. We then have that

L(r) = L(s) ⇐⇒ L(A1) = L(A2).

Proof. Follows directly from 4.6.1 and 4.5.1.

Thus, equivalence is decidable.

Definition re equiv r s := dfa equiv ( re to dfa r) ( re to dfa s ).

Lemma re equiv correct r s : re equiv r s <−> r =i s.

4.8 Finite Automata to Regular Expressions

We prove that there is an equivalent standard regular expression for every finite automa-
ton. There are three ways to prove this.
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The first one is a method called “state removal” [13] (reformulated in [19]), which
works by sequentially building up regular expressions on the edges between states. In
every step, one state is removed and its adjacent states’ edges are updated to incorporate
the missing state into the regular expression. Finally, only two states remain. The
resulting edges can be combined to form a regular expression that recognizes the language
of the initial automaton.

The formalization of this method is rather complicated, due to the fact that we need
generalized finite automata, i.e., finite automata whose edges are labeled by regular
expressions. Thus, we decided against this method.

The second method is known as “Brzozowski’s method” [14] and builds upon Brzo-
zowski derivatives of regular expressions. This method is algebraic in nature and arrives
at a regular expression by solving a system of linear equations on regular expressions.
Every state is assigned an unknown regular expression. The intuition of these unknown
regular expressions is that they recognize the words accepted in their associated state.
The system is solved by substitution and Arden’s lemma [3]. The regular expression
associated with the starting state recognizes the language of the automaton.

Brzozowski’s method requires infrastructure for algebraic equations and term rewrit-
ing, which we estimated to be a considerable overhead. Thus, we decided against this
method.

The third method, which we chose for our development, is due to Kleene [23]. It is
known as the “transitive closure method”. This method recursively constructs a
regular expression that is equivalent to the given automaton. For the remainder of this
chapter, we assume that we are given a DFA (Q, s, F, δ).

The idea of the transitive closure method is that we can give a regular expression to
describe the path between any two states x and y. This regular expression accepts every
word whose run σ on A starting in x ends in y. In fact, we can even give such a regular
expression if we limit the set of paths through which the run is allowed to pass. We will
call this set X. Here, passing through means that the restriction applies only to states
that are traversed, i.e. not to the beginning or end of the run.

If we take X to be the empty set, we only consider two types of runs. First, if x 6= y,
every transition from x to y constitutes one (singleton) word. Conversely, if there is a
word which does not pass through a state and whose run on A starts in x and ends
in y, it can only be a singleton word consisting of one of the transitions from x to y.
Therefore, the corresponding regular expression is the disjunction of all transitions from
x to y. These transitions constitute all possible words that lead from x to y without
passing through any state.

If x = y, we also have to consider the empty word, since its run on A starts in x and
ends in y. Thus, the corresponding regular expression is the disjunction of all transitions
from x to y and ε.

In the case of a non-empty X, we make the following observation. If we pick an
element z ∈ X, then any run σ from x to y either passes through z, or does not pass
through z. If it does, we can split it into three parts.

(i) The first part contains the prefix of σ which contains all states up to the first
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occurrence of z that is not the starting state.

(ii) The second part contains that part of the remainder of σ which contains all further
occurrences of z with the exception of the last state if that is z.

(iii) The third part contains the remainder.

Parts (i) and (iii) can easily be expressed in terms of X\{z}. Part (ii) can be further
decomposed into runs from z to z that do not pass through z. Thus, part (ii) can also
be expressed in terms of X\{z} with the help of the ∗ operator.

If σ does not pass through z, it is covered by the regular expression for paths from x
to y restricted to X\{z}.

In order to define R recursively, we need to pick an element z ∈ X if X 6= ∅. For
this purpose, we assume an ordering on Q. We will then pick z ∈ X such that z is the
smallest element in X with respect to this ordering.

Definition 4.8.1. Let X ⊆ Q. Let x, y ∈ Q. We define R recursively on |X|:

RXx,y :=



∑
a∈Σ

(x,a,y)∈δ

a if X = ∅ ∧ x 6= y;

∑
a∈Σ

(x,a,y)∈δ

a+ ε if X = ∅ ∧ x = y;

R
X\{z}
x,z (R

X\{z}
z,z )∗R

X\{z}
z,y +R

X\{z}
x,y if X 6= ∅ ∧ z minimal in X.

The formalization of R is more involved than its mathematical definition. We give
some auxiliary definitions to keep the definition of R as compact and readable as possible.
nPlus is

∑
on regular expressions. dfa step any is the list chars of that contains all

transitions from x to y. R0 covers the case of X = ∅.
Definition nPlus rs := foldr (@Plus char) (Void ) rs .

Definition dfa step any x y := enum ( [pred a | dfa step A x a == y] ).

Definition R0 x y := let r := nPlus (map (@Atom ) (dfa step any x y)) in
if x == y then Plus r (Eps ) else r .

Function R (X: {set A}) (x y: A) {measure [fun X => #|X|] X} :=
match [pick z in X] with
| None => R0 x y
| Some z => let X’ := X :\ z in

Plus (Conc (R X’ x z) (Conc (Star (R X’ z z)) (R X’ z y))) (R X’ x y)
end.

We now express L(A) using R. Based on the observation that every accepted word has
a run from s to some state f ∈ F , we only have to combine the corresponding regular
expressions RQs,f to form a regular expression for L(A). The goal of this chapter is to
prove the following theorem.
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Theorem 4.8.2. L(A) is recognizable by a regular expression, i.e.

L(
∑
f∈F

RQs,f ) = L(A).

In order to prove this theorem, we will first define a predicate on words that corre-
sponds to L(RXx,y). We call this predicate LXx,y and define it such that it includes those
words whose runs on A starting in x only pass through states in X and end in y.

Definition 4.8.3. Let w ∈ Σ∗. Let X ⊆ Q, and x, y ∈ X. Let σ be the run of w on A
starting in x. We define LXx,y such that

w ∈ LXx,y ⇐⇒ σ|σ|−1 = y ∧ ∀i ∈ [1, |σ| − 2]. σi ∈ X.

The formalization of L requires some infrastructure. To check the second condition of
L, we want to be able to state properties of all but the last items in a run. We define a
function belast to remove the last element from a sequence. Note that, mathematically,
runs include the starting state. In our formalization, this is not the case. Thus, we do
not need to remove the first state from a run to retrieve all states the run passes through.

Definition allbutlast xs := all p ( belast xs ).

Definition L (X: {set A}) (x y: A) :=
[pred w | ( last x (dfa run ’ A x w) == y)

&& allbutlast (mem X) (dfa run’ A x w) ].

We now prove properties of L that we will need for our proof of Theorem 4.8.2.

Lemma 4.8.4. L is monotone in X, i.e.

∀X ⊆ Q, z ∈ X,x, y ∈ Q. LXx,y ⊆ LX∪{z}xy.

Proof. This follows directly from X ⊂ X ∪ {z}.

Lemma L monotone (X: {set A}) (x y z: A): {subset LˆX x y <= Lˆ(z |: X) x y}.

Lemma 4.8.5. The empty word is contained in LXx,y if and only if x = y.

Proof. This follows immediately from the definition of L.

Lemma L nil X x y: reflect (x = y) ([::] \in LˆX x y).

Next, we will prove that words whose run passes through a state z can be split into
two words. The run of the first word will end in z, i.e. not pass through z.

Lemma 4.8.6. Let w ∈ Σ∗. Let x, z ∈ Q. Let σ be the run of w on A starting in x.
Let z ∈ σ1 . . . σ|σ|−1. Then there exist w1, w2 ∈ Σ∗ such that

w = w1w2 ∧ |w2| < |w| ∧ z /∈ σ1 . . . σ|w1|−1 ∧ σ|w1| = z.
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Proof. Let i be the first occurrence of z in σ1 . . . σ|σ|−1 such that σi = z and i > 0. Let
w1 := w0 . . . wi−1 and w2 := wi . . . w|w|−1. The claim follows.

Lemma run split x z w: z \in dfa run ’ A x w −>
exists w1, exists w2,

w = w1++w2 /\
size w2 < size w /\
z \notin belast (dfa run ’ A x w1) /\
last x (dfa run ’ A x w1) = z.

We will make use of this fact in the next lemma, which splits words in LX into two
parts, the first of which is again in LX . This will be quintessential later, when we split
words in LX into three parts that correspond to the recursive definition of RX .

Lemma 4.8.7. Let X ⊆ Q and x, y, z ∈ Q. Let w ∈ LX∪{z}x,y . We have that either

w ∈ LXx,y
or there exist w1 and w2 such that

w = w1w2 ∧ |w2| < |w| ∧ w1 ∈ LXx,z ∧ w2 ∈ LX∪{z}z,y .

Proof. We first eliminate the case of z ∈ X, which is solved trivially. Let σ be the run
of w on A starting in x. We do a case distinction on z ∈ σ1 . . . σ|σ|−1.

1. For z /∈ σ1 . . . σ|σ|−1 we can easily show w ∈ LXx,y.

2. For z ∈ σ1 . . . σ|σ|−1 we use Lemma 4.8.6 to split w in w1 and w2. From w ∈ LX∪{z}x,y

and σ|w1| = z we immediately get w2 ∈ LX∪{z}z,y . We have z /∈ σ1 . . . σ|σ|−1. We also

have that X = (X∪{z})\{z} from z /∈ X. Thus, we get w1 ∈ LXx,z. The remainder
of the claim follows directly from Lemma 4.8.6.

Before we show that LX respects the defining equation of RX , we have to show that

we can combine words from LXx,z, (LXz,z)
∗, and LXz,y to form a word in L

X∪{z}
x,y . We prove

a general concatenation lemma for LX .

Lemma 4.8.8. Let X ⊆ Q, x, y ∈ Q, and z ∈ X. Let w1 ∈ LXx,z and w2 ∈ LXz,x. Then
we have

w1w2 ∈ LXx,y.

Proof. By z ∈ X, w1 ∈ LXx,y, and σ|w1| = z we get σ1, . . . , σ|w1| ∈ X. We also have

σ|w1|+1, . . . , σ|σ|−2 ∈ X and σ|σ|−1 = y. Thus, w1w2 ∈ LXx,y.

Lemma L cat (X: {set A}) x y z w1 w2:
z \in X −>
w1 \in LˆX x z −>
w2 \in LˆX z y −>
w1++w2 \in LˆX x y.
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Lemma 4.8.9. Let n ∈ N. Let w0, . . . , wn−1 ∈ LXz,z. We have that

w0 . . . wn−1 ∈ LX∪{z}z,z .

Proof. By induction on n.

1. For n = 0 we have to prove ε ∈ LX∪{z}z,z which holds by Lemma 4.8.5.

2. For n = n′ + 1 we have w0 . . . wn−2 ∈ LX∪{z}z,z by inductive hypothesis. We also
have w0, . . . , wn−1 ∈ LXz,z by assumption, and, thus, wn−1 ∈ LXz,z. By Lemma 4.8.8

we get w0 . . . wn−1 ∈ LX∪{z}z,z .

Lemma L flatten (X: {set A}) z vv: all (LˆX z z) vv −>
flatten vv \in Lˆ(z |: X) z z.

Finally, we can show that LX respects the defining equation of RX . With all the
lemmas we have in place now, this can now be shown with relative ease.

Lemma 4.8.10. Let X ⊆ Q, x, y ∈ Q, and z ∈ X. We have that

LX∪{z}x,y = LXx,z(L
X
z,z)
∗LXz,y + LXx,y.

Proof. “⇒” By induction on |w|.

1. For |w| = 0 we get w ∈ LXx,y by Lemma 4.8.5.

2. For |w| > 0 we get w1 and w2 such that w = w1w2, w1 ∈ LXx,z and w2 ∈ LX∪{z}z,y .
By inductive hypothesis we get

w2 ∈ LXz,z(LXz,z)∗LXz,y ∨ w2 ∈ LXz,y

The latter gives us w ∈ LX∪{z}x,y by Lemma 4.8.8. With the former, we have w3,
w4, and w4 such that w2 = w3w4w5, w3 ∈ LXz,z, w4 ∈ (LXz,z)∗ and w5 ∈ LXz,y. We

merge w3 and w4 such that w3w4 ∈ (LXz,z)
∗. This gives us w2 ∈ (LXz,z)

∗LXz,y. Thus,

w1w2 ∈ LXx,z(LXz,z)∗LXz,y.

“⇐” We have w1 ∈ LXx,z, w2 ∈ (LXz,z)
∗, and w3 ∈ LXz,y. By Lemma 4.8.9 we get

w2 ∈ LX∪{z}z,z . Thus, w1w2w3 ∈ LX∪{z}x,y by Lemma 4.8.8.

Lemma L rec (X: {set A}) x y z:
Lˆ(z |: X) x y =i plus (conc (LˆX x z) (conc ( star (LˆX z z)) (LˆX z y)))

(LˆX x y).

All that remains to complete the proof of Lemma 4.8.2 is a proof of LXx,y = L(RXx,y).
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Lemma 4.8.11. Let X ⊆ Q. Let x, y ∈ Q. We have that

LXx,y = RXx,y.

Proof. By induction on |X|.

1. For |X| = 0, the claim follows immediately from the definitions of L and R.

2. For |X| = n+ 1 for some n ∈ N we get ∃z ∈ X and thus

RXx,y = RX\{z}x,z (RX\{z}z,z )∗RX\{z}z,y +RX\{z}x,y .

By Lemma 4.8.10 we also know that

LXx,y = LX\{z}x,z (LX\{z}z,z )∗LX\{z}z,y + LX\{z}x,y .

The claim follows by inductive hypothesis.

Lemma L R n (X: {set A}) x y: #|X| = n −> LˆX x y =i RˆX x y.

This concludes the proof of Theorem 4.8.2.

Definition dfa to re : regular expression char :=
nPlus (map (RˆsetT (dfa s A)) (enum (dfa fin A))).

Lemma dfa to re correct: dfa lang A =i dfa to re .

In preparation of the final result of this chapter, we prove that R is a standard regular
expression.

Lemma 4.8.12. Let X ⊆ Q and x, y ∈ Q. RXx,y is a standard regular expression.

Proof. All regular expressions used in R are standard.

Lemma R standard (X: {set A}) x y: standard char (RˆX x y).

The proof of Theorem 4.8.2 was by far the most technically involved proof presented in
this thesis. The mathematical content is rather straight-forward and intuitive. However,
especially due to the need for the allbutlast predicate, the implementation contains a lot
of quite general infrastructure. In fact, a little more than one third of the implementation
(150 out of 550 lines) is taken up by allbutlast .

4.8.1 Extended Regular Expressions to Regular Languages

We can now prove that extended regular expressions are equivalent to regular languages.
We show that R is a standard regular expression, which are a subset of extended regular
expression which corresponds to the definition of regular languages.

Theorem 4.8.13. Extended regular expressions and regular languages are equally ex-
pressive, i.e. for all L, we have L is a regular language if and only if there exists an
extended regular expression that recognizes L.
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Proof. “⇒” Let L be regular. Then, by definition of regular languages, there is an
equivalent standard regular expression.

“⇐” Let r be an extended regular expression. By Theorem 4.6.1 we have DFA A
such that L(A) = L(r). By Theorem 4.8.2 we have regular expression s such that
L(s) = L(A). By Lemma 4.8.12, s is a standard regular expression. Thus, by definition
of standard regular expressions, L(r) is a regular language.

Definition ext re to std re (r : regular expression char) := dfa to re ( re to dfa r ).

Lemma ext re to std re standard r : standard char ( ext re to std re r ).

Lemma ext re to std re correct r : ( ext re to std re r) =i r .

Remarks

All in all, our formalization of the results presented in this chapter add up to 1,400
lines of code. More than one half of that is due to the construction of finite automata.
Although most of these constructions are straight-forward, proving them correct requires
a lot of attention to detail. Additionally, we opted to give a corresponding automaton
for every extended regular expression, which, of course, adds to the expected size of the
development.
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In this chapter, we consider three additional characterizations of regular languages:

1. Myhill relations,

2. weak Nerode relations,

3. and Nerode relations.

We will show that these three characterizations can be used to characterize regular
languages by proving them equivalent to the existence of a (deterministic) finite automa-
ton.

5.1 Definitions

Before we can state the Myhill-Nerode theorem, we need a number of auxiliary defini-
tions. We roughly follow [24].

Definition 5.1.1. Let ≡ be an equivalence relation. The equivalence class of u ∈ Σ∗

with respect to ≡ is the set of all v such that u ≡ v. It is denoted by [u]≡.

Definition 5.1.2. Let ≡ be an equivalence relation. ≡ is of finite index if and only if
the set of {[u]≡ | u ∈ Σ∗} is finite.

Due to the lack of native support for quotient types in Coq, we formalize equivalence
relations of finite index as surjective functions from Σ∗ to a finite type X.

Definition 5.1.3. Let X be finite. Let f : Σ∗ 7→ X be surjective. Let u, v ∈ Σ∗. f is an
equivalence relation of finite index. u and v are equivalent with respect to f if and
only if f(u) = f(v). f(u) is the equivalence class of u with respect to f .

Record Fin Eq Cls :=
{ fin type : finType;

fin func :> word −> fin type;
fin surjective : surjective fin func }.

Definition 5.1.4. Let f be as above. Let x ∈ X. w ∈ Σ∗ is a representative of x
if and only if f(w) = x. Since f is surjective, every w has a representative. We write
cr(x) to denote the canonical representative of x, which we obtain by constructive
choice.

Definition cr (f : Fin Eq Cls) x := xchoose ( fin surjective f x).
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5.1.1 Myhill Relations

Definition 5.1.5. Let ≡ be an equivalence relation of finite index. ≡ is a Myhill
relation [24] for L if and only if

(i) ≡ is right congruent, i.e. for all u, v ∈ Σ∗ and a ∈ Σ,

u ≡ v ⇒ u · a ≡ v · a.

(ii) ≡ refines L, i.e. for all u, v ∈ Σ∗,

u ≡ v ⇒ (u ∈ L ⇐⇒ v ∈ L).

Myhill relations are commonly referred to as “Myhill-Nerode relations”. In this thesis,
it makes sense to split the concept of a Myhill relation from that of the Nerode relation.
Apart from the Nerode relation, which can be seen as the coarsest Myhill relation, we
also define weak Nerode relations that have no direction connection to Myhill relations.
Thus, we strictly separate the characterizations.

Mathematically, Myhill relations are required to be of finite index. We only formalize
equivalence relations of finite index. Thus, proving that a Myhill relation is of finite index
mathematically corresponds to constructing a Myhill relation in our formalization.

Definition right congruent {X} (f: word −> X) :=
forall u v a, f u = f v −> f (rcons u a) = f (rcons v a).

Definition refines {X} (f: word −> X) :=
forall u v, f u = f v −> u \in L = (v \in L).

Record Myhill Rel :=
{ myhill func :> Fin Eq Cls ;

myhill congruent : right congruent myhill func ;
myhill refines : refines myhill func }.

Myhill relations correspond to the equivalence relations defined as the pairs of words
(u, v) whose runs on a DFA A end in the same state. These relations are right congruent,
refine L(A) and are of finite index as A has finitely many states. We will later give a
formal proof of this.

5.1.2 Nerode Relations

Definition 5.1.6. Let u, v ∈ Σ∗. Let L be a language. We define the Nerode relation
.
=L for L such that

u
.
=L v ⇐⇒ ∀w ∈ Σ∗. uw ∈ L⇔ vw ∈ L.

The Nerode relation given above is a propositional statement in Coq. To prove that
the Nerode relation is of finite index, we require an equivalence relation, i.e. a function
f from words to a finite type, such that f is equivalent to

.
=L.
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Definition equiv suffix {X} (f: word −> X) :=
forall u v, f u = f v <−> suffix equal u v.

Record Nerode Rel :=
{ nerode func :> Fin Eq Cls ;

nerode equiv : equiv suffix nerode func }.

Definition 5.1.7. Let L be a language and let ≡ be an equivalence relation. We say
that ≡ is a weak Nerode relation for L if and only if

∀u, v ∈ Σ∗. u ≡ v =⇒ u
.
=L v.

Definition suffix equal u v :=
forall w, u++w \in L = (v++w \in L).

Definition imply suffix {X} (f: word −> X) :=
forall u v, f u = f v −> suffix equal u v.

Record Weak Nerode Rel :=
{ weak nerode func :> Fin Eq Cls;

weak nerode imply: imply suffix weak nerode func }.

It appears that the notion of a weak Nerode relation is not found in the literature.
We will later prove them weaker than Myhill relations, in the sense that every Myhill
relation is also a weak Nerode relation.

5.1.3 Myhill-Nerode Theorem

We can now move on to the statement of the Myhill-Nerode theorem [24].

Theorem 5.1.8. (Myhill-Nerode) Let L be a language. The following four statements
are equivalent:

1. there exists a deterministic finite automaton that accepts L;

2. there exists a Myhill relation for L;

3. there exists a weak Nerode relation for L;

4. the Nerode relation for L is of finite index.

Our proof of equivalence will have the following structure:

︸ ︷︷ ︸
a

DFA =⇒

b︷ ︸︸ ︷
Myhill =⇒ ︸ ︷︷ ︸

c

weak Nerode =⇒

d︷ ︸︸ ︷
Nerode =⇒ DFA.

We will first show a , b , and d . We will then give a proof of c , which is the most
challenging proof and formalization in this chapter.
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5.2 Finite Automata to Myhill relations

We assume we are given a DFA A. We will be using the states of A as equivalence classes.
Our goal is to construct a Myhill relation, for which we will need an equivalence relation
of finite index. Therefore, we first need to ensure that the mapping from words to
equivalence classes is surjective. Thus, we consider the equivalent, connected automaton
Ac = (Qc, sc, Fc, δc) (Definition 4.3.1), which has only reachable states. This enables us
to construct a surjective function from words to the states of Ac.

Definition 5.2.1. Let u ∈ Σ∗. Let σ be the run of u on Ac. We define fM : Σ∗ 7→ Qc
such that fM (U) is the last state in σ, i.e.

fM (u) := σ|σ|−1.

Note that fM is surjective (follows directly from Lemma 4.3.5) and, thus, an equivalence
relation of finite index.

Definition f M := fun w => last (dfa s A c) (dfa run A c w).

Lemma f M surjective: surjective f M.

Definition f fin : Fin Eq Cls :=
{| fin func := f M;

fin surjective := f M surjective |}.

In order to show that fM is a Myhill relation, we prove that it fulfills Definition 5.1.5.

Lemma 5.2.2. fM is right congruent.

Proof. Let u, v ∈ Σ∗ such that fM (u) = fM (v). Let a ∈ Σ. Since A is deterministic, we
get fM (ua) = fM (va).

Lemma 5.2.3. fM refines L(Ac).

Proof. Let u, v ∈ Σ∗ such that fM (u) = fM (v). By definition of fM , the runs u and
v on A end in the same state. Thus, either u and v are both accepted, or both not
accepted.

Theorem 5.2.4. fM is a Myhill relation for L(A).

Proof. By Lemma 4.3.3, we have L(Ac) = L(A). Thus, it suffices to show that fM is a
Myhill relation for L(Ac). This follows with Lemma 5.2.2 and Lemma 5.2.3.

We only have extensional equality on L(Ac) and L(A) in Coq. Thus, we first show
that fM is a Myhill relation for L(Ac). Then, we show that we can get a Myhill relation
for L(A) from a Myhill relation for L(Ac).

Definition dfa to myhill ’ : Myhill Rel ( dfa lang A c) :=
{| myhill func := f fin ;

myhill congruent := f M right congruent ;
myhill refines := f M refines |}.

Lemma myhill lang eq L1 L2: L1 =i L2 −> Myhill Rel L1 −> Myhill Rel L2.

Lemma dfa to myhill : Myhill Rel ( dfa lang A).
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This concludes the proof of step a .

5.3 Myhill relations to weak Nerode relations

We show that if we are given a Myhill relation for a language, we can also give a weak
Nerode relation for that language. In fact, we will prove that any Myhill relation is a
weak Nerode relation.

Theorem 5.3.1. Let f be a Myhill relation for a language L. Then f is a weak Nerode
relation for L.

Proof. Let u, v ∈ Σ∗ such that u =f v. We have to show that for all w ∈ Σ∗, uw ∈ L⇔
vw ∈ L. By induction on w.

1. For w = ε, we get u ∈ L⇔ v ∈ L as f refines L.

2. For w = aw′, we get ua =f va by congruence of f and thus, by inductive hypo-
thesis, uaw′ ∈ L⇔ vaw′ ∈ L.

Lemma myhill suffix: imply suffix L f .

Lemma myhill to weak nerode: Weak Nerode Rel L.
Proof. exact
{| weak nerode func := f ;

weak nerode imply := myhill suffix |}.
Defined.

This concludes step b of Theorem 5.1.8.

5.4 Nerode relations to Finite Automata

We prove step d of Theorem 5.1.8. If the Nerode relation for a language L is of
finite index, we can construct a DFA that accepts L. The construction is very straight-
forward and uses the equivalence classes of the Nerode relation as the set of states for
the automaton.

Definition 5.4.1. Let L be a language. Let X be a finite type. Let f : Σ∗ 7→ X be the
equivalence relation which proves that the Nerode relation for L is of finite index. We
construct DFA A such that

s := f(ε)

F := {x|x ∈ X ∧ cr(x) ∈ L}
δ := {(x, a, f(cr(x)a)) | x ∈ X, a ∈ Σ}
A := (X, s, F, δ).
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Definition nerode to dfa :=
{| dfa s := f [::];

dfa fin := [pred x | cr f x \in L ];
dfa step := [fun x a => f (rcons (cr f x) a)] |}.

In order to show that A accepts the language L, we first need to connect runs on
A to the equivalence classes, i.e. the range of f . The following lemma gives a direct
connection.

Lemma 5.4.2. Let w ∈ Σ∗. Let σ be the run of w on A starting in s. We have that the
last state of σ is the equivalence class of w, i.e.

σ|σ|−1 = f(w).

Proof. We proceed by induction on w from right to left.

1. For w = ε we have s = f(ε).

2. For w = w′a we know that the run of w′ on A starting in s ends in f(w′). It remains
to show that (f(w′), a, f(w)) ∈ δ. We have cr(f(w′))a =f w, i.e. f(cr(f(w′))a) =
f(w) by definition of f . Thus, it suffices to show (f(w′), a, f(cr(f(w′))a)) ∈ δ,
which holds by definition of δ.

Theorem 5.4.3. A accepts L, i.e. L(A) = L.

Proof. Let w ∈ Σ∗. Let σ be the run of w on A starting in s. w is accepted if and only
if σ|σ|−1 ∈ F , i.e. if and only if cr(σ|σ|−1) ∈ L. We have w =f cr(σ|σ|−1) and therefore
w ∈ L⇔ cr(σ|σ|−1) ∈ L. Thus w is accepted if and only if w ∈ L.

The resulting automaton is minimal, i.e. there exists no other automaton that accepts
the same language and has less states than A.

This concludes step d of Theorem 5.1.8.

5.5 Minimizing Equivalence Classes

Finally, we prove that if there is a weak Nerode relation for a language L, the Nerode
relation is of finite index. For this purpose, we employ a table-filling algorithm [21]
to find states indistinguishable under the Myhill-Nerode relation. This algorithm was
originally intended to be used on automata. It identifies (un)distinguishable states based
on their successors. We use the finite type X, i.e. the equivalence classes, instead of
states.

For the remainder of this section, we assume we are given a language L and a weak
Nerode relation f0.

43



5 Myhill-Nerode

We employ a fixed-point construction to find equivalence classes that are
.
=L-equivalent.

In each step, we add those equivalence classes that are distinguishable based on equi-
valence classes that were distinguishable in the previous step. The initial set of dis-
tinguishable equivalence classes are distinguishable by the inclusion of their canonical
representative in L. We denote this initial set dist0 .

dist0 := {(x, y) ∈ F × F | cr(x) ∈ L⇔ cr(y) /∈ L}.

Definition distinguishable := [ fun x y => (cr f 0 x) \in L != ((cr f 0 y) \in L) ].

Definition dist0 := [ set x | distinguishable x.1 x.2 ].

To find more distinguishable equivalence classes, we have to identify equivalence classes
that “lead to” distinguishable equivalence classes. In analogy to the minimization pro-
cedure on automata, we define successors of equivalence classes with respect to a single
character. The intuition is that two states are distinguishable if they are succeeded by
a pair of distinguishable states. Conversely, if a pair of states is not distinguishable,
then their predecessors can not be distinguished by those states. Thus, two states are
indistinguishable if none of their succeeding pairs of states are distinguishable.

Definition 5.5.1. Let x, y ∈ X and a ∈ Σ. We define succa and psucca . succa(x) :=
f0(cr(x) · a) and psucca(x, y) := (succa(x), succa(y)).

Definition succ := [ fun x a => f 0 ((cr f 0 x) ++ [::a]) ].

Definition psucc := [ fun x y => [ fun a => (succ x a, succ y a) ] ].

The fixed-point algorithm tries to extend the set of distinguishable equivalence classes
by looking for a pair of equivalence classes that transitions to a pair of distinguishable
equivalence classes. Given a set of pairs of equivalence classes dist , we define the set of
pairs of distinguishable equivalence classes that have successors in dist as

distS (dist) := {(x, y) | ∃a. psucca(x, y) ∈ dist}.

Definition distS ( dist : {set X∗X}) :=
[ set (x,y) | x in X, y in X & [ exists a, psucc x y a \in dist ] ].

Definition 5.5.2. Let dist be a subset of X ×X. We define one-step-dist such that

one-step-dist(dist) := dist0 ∪ dist ∪ distinctS (dist).

Definition one step dist dist := dist0 :|: dist :|: ( distS dist ).

Lemma 5.5.3. one-step-dist is monotone and has a fixed-point.

Proof. Monotonicity follows directly from the monotonicity of ∪. The number of sets
in X ×X is finite. Therefore, one-step-dist has a fixed point. We iterate one-step-dist
|X ∗X|+1 = |X|2 +1 times on the empty set. Since there can only ever be |X ∗X| items
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in the result of one-step-dist , we will find the fixed point in no more than |X ∗X| + 1
steps.

Let distinct be the fixed point of one-step-dist and let it be denoted by 6∼=. We write
equiv for the complement of distinct and denote it ∼=.

Definition lfp := iter #|T|.+1 F set0.

Definition distinct := lfp one step dist .

We now show that ∼= is equivalent to the Nerode relation. Formally, this means
constructing a function that fulfills our definition of an equivalence relation of finite
index. Then, we prove that this equivalence relation is equivalent to the the Nerode
relation. First, we will prove that ∼= is an equivalence relation. Then, we will prove it
equivalent to the Nerode relation in two separate steps, since the two directions require
different strategies.

Lemma 5.5.4. ∼= is an equivalence relation.

Proof. We first state transitivity of ∼= in terms of 6∼=:

∀x, y, z ∈ X. ¬(x 6∼= y) =⇒ ¬(y 6∼= z) =⇒ ¬(x 6∼= z). (*)

It suffices to show that distinct is anti-reflexive, symmetric and fulfills (*). Note that
complementary transitivity, anti-reflexivity and symmetry are closed under union. We
proceed by fixed-point induction.

1. For one-step-dist(dist) = ∅ we have anti-reflexivity, symmetry and (*) by the
properties of ∅.

2. For one-step-dist(dist) = dist ′ we have dist anti-reflexive, symmetric and (*). It
remains to show that dist0 and distinctS (dist) are anti-reflexive, symmetric and
fulfill (*).

dist0 is anti-reflexive, symmetric and fulfills (*) by definition.

distinctS (dist) can be seen as an intersection of a symmetric subset of X × X
defined by psucca and dist , the latter of which is anti-reflexive, symmetric and
fulfills (*). Thus, distinctS (dist) is anti-reflexive, symmetric and fulfills (*).

Therefore, dist ′ is anti-reflexive, symmetric and fulfills (*).

Lemma equiv refl x: x ∼= x.

Lemma equiv sym x y: x ∼= y −> y ∼= x.

Lemma equiv trans x y z: x ∼= y −> y ∼= z −> x ∼= z.

Lemma 5.5.5. Let u, v ∈ Σ∗. f0(u) ∼= f0(v) =⇒ u
.
=L v.
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Proof. Let w ∈ Σ∗. We then show the contraposition of the claim:

uw ∈ L 6⇔ vw ∈ L =⇒ f0(u) 6∼= f0(v).

By induction on w.

1. For w = ε we have u ∈ L 6⇔ v ∈ L which gives us (f0(u), f0(v)) ∈ dist0. Thus,
f0(u) 6∼= f0(v).

2. For w = aw′ we have uaw ∈ L 6⇔ vaw ∈ L. We have to show f0(u) 6∼=
f0(v), i.e. (f0(u), f0(v)) ∈ distinct . By definition of distinct , it suffices to show
(f0(u), f0(v)) ∈ one-step-dist(distinct).

For this, we prove (f0(u), f0(v)) ∈ distinctS (distinct). By uaw ∈ L 6⇔ vaw ∈ L we
have (f0(cr(u)a), f0(cr(v)a)) ∈ dist0.

It remains to show that f0(cr(u)a) 6∼= f0(cr(v)a) which we get by inductive hypo-
thesis. For this, we need to show that cr(u)aw ∈ L 6⇔ cr(v)aw ∈ L.

By the properties of f , we get cr(u)aw ∈ L⇔ uaw ∈ L and cr(v)aw ∈ L⇔ vaw ∈
L. Thus, cr(u)aw ∈ L 6⇔ cr(v)aw.

Lemma 5.5.6. Let u, v ∈ Σ∗. If f0(u) 6∼= f0(v), then u and v are not equivalent with
respect to the Nerode relation, i.e. f0(u) 6∼= f0(v) =⇒ u 6 .=L v.

Proof. We do a fixed-point induction.

1. For one-step-dist(dist) = ∅ we have (f0(u), f0(v)) ∈ ∅ and thus a contradiction.

2. For one-step-dist(dist) = dist ′ we have (f0(u), f0(v)) ∈ dist ′. We do a case dis-
tinction on dist ′.

a) (f0(u), f0(v)) ∈ dist0 . We have u ∈ L 6⇔ v ∈ L. Thus, u 6 .=L v as witnessed
by w = ε.

b) (f0(u), f0(v)) ∈ dist . By inductive hypothesis, u 6 .=L v.

c) (f0(u), f0(v)) ∈ distinctS (dist). We have a ∈ Σ with psucca(f0(u), f0(v))) ∈
dist . By inductive hypothesis, we get cr(u)a 6 .=L cr(v)a as witnessed by
w ∈ Σ∗ such that cr(u)aw ∈ L 6⇔ cr(v)aw ∈ L.

By the properties of f , we get cr(u)aw ∈ L ⇔ uaw ∈ L and cr(v)aw ∈ L ⇔
vaw ∈ L. Thus, we have u 6 .=L v as witnessed by aw.

Corollary 5.5.7. Let u, v ∈ Σ∗. We have that

f0(u) ∼= f0(v) ⇐⇒ u
.
=L v.

Proof. Follows immediately with Lemma 5.5.5 and Lemma 5.5.6.
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Lemma equiv suffix equal u v: u ∼= f 0 v −> suffix equal L u v.

Lemma distinct not suffix equal u v:
u ∼!= f 0 v −>
exists w, u ++ w \in L != (v ++ w \in L).

Lemma equivP u v:
reflect ( suffix equal L u v)

(u ∼= f 0 v).

Definition 5.5.8. Let w ∈ Σ∗. We define

fmin(w) := {x | x ∈ X, f0(w) ∼= x}.

Note that the range of fmin is finite (since X is finite) and does not contain the empty
set (due to reflexivity of ∼=).

Lemma 5.5.9. fmin is surjective.

Proof. Let s ∈ range(fmin). Since s 6= ∅, there exists x ∈ X such that x ∈ s. We
have f0(x) = f0(cr(x)) and therefore f0(x) ∼= f0(cr(x)) by reflexivity of ∼=. Thus,
f0(cr(x)) = s since fmin(x) = fmin(cr(x)) = s.

Lemma 5.5.10. For all u, v ∈ Σ∗ we we have

fmin(u) = fmin(v) ⇐⇒ f0(u) ∼= f0(v).

Proof. “⇒” We have fmin(u) = fmin(v) and thus f0(u) ∼= f0(v).
“⇐” We have f0(u) ∼= f0(v). Let x ∈ X. It suffices to show that f0(u) ∼= x if and only

if f0(v) ∼= x. This follows with symmetry and transitivity of ∼=.

Lemma 5.5.11. fmin is equivalent to the Nerode relation, i.e. fmin is surjective and for
all u, v ∈ Σ∗ we have

fmin(u) = fmin(v) ⇐⇒ u
.
=L v.

Proof. We have proven surjectivity in Lemma 5.5.9. By Lemma 5.5.10 we have fmin(u) =
fmin(v) if and only if f0(u) ∼= f0(v). By corollary 5.5.7 we have f0(u) ∼= f0(v) if and only
if u

.
=L v. Thus, fmin(u) = fmin(v) if and only if u

.
=L v.

The formalization of fmin is slightly more involved than the mathematical construction.
We first need to define the finite type of fmin ’s range, which we do by enumerating all
possible values of fmin .

Definition equiv repr x := [ set y | x ∼= y].

Definition X min := map equiv repr (enum (fin type f 0 )).

Definition f min w := SeqSub (equiv repr mem (f 0 w)).

We then prove lemmas 5.5.9, 5.5.10 and Theorem 5.5.11 which are consequential and
straight-forward.
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Lemma f min surjective: surjective f min.

Lemma f minP u v:
reflect (f min u = f min v)

(u ∼= f 0 v).

Lemma f min correct: equiv suffix L f min.

Definition f min fin : Fin Eq Cls :=
{| fin surjective := f min surjective |}.

We can now state the result of this section.

Theorem 5.5.12. The Nerode relation is of finite index.

Proof. This follows directly from Lemma 5.5.4 and Lemma 5.5.11.

Lemma weak nerode to nerode: Nerode Rel L.

This concludes step c of Theorem 5.1.8 and, thus, this chapter.

Remarks

The characterizations presented here are very compact, mathematically. Interestingly,
they also lend themselves very well to formalization. Even with the fixed-point algorithm,
this entire chapter is formalized in less than 530 lines of code. This is a very reasonable
size, considering that we introduce three different characterizations and prove them all
equally expressive to finite automata.
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6 Conclusion

We give a short overview of the theorems presented in this thesis and their corresponding
statements in the Coq development. We then evaluate our choice of the SSReflect
plugin. Finally, we discuss opportunities for future work.

6.1 Results

Theorem 4.2.1 and Theorem 4.2.5 show that deterministic and non-deterministic finite
automata are equally expressive. For this, we construct two functions dfa to nfa and
nfa to dfa to convert between the two characterizations.

Lemma dfa to nfa correct (A: dfa ): dfa lang A =i nfa lang ( dfa to nfa A).

Lemma nfa to dfa correct (A: nfa ): nfa lang A =i dfa lang ( nfa to dfa A).

We show in Theorem 4.6.1 that there is an equivalent DFA for every extended regular
expression. For this, we construct a function re to dfa to compute an equivalent DFA
from an extended regular expressions.

Lemma re to dfa correct (r : regular expression char) : dfa lang ( re to dfa r) =i r .

Building on that, we prove the decidability of equivalence of regular expressions in
Theorem 4.7.1 with the help of a decision procedure for equivalence of finite automata.
We give a function re equiv to decide the equivalence of regular expressions.

Lemma re equiv correct (r s : regular expression char ): re equiv r s <−> r =i s.

Theorem 4.8.2 shows that we can give an equivalent regular expression for every
automaton. We construct a function dfa to re to compute the regular expression.

Lemma dfa to re correct (A: dfa ): dfa lang A =i ( dfa to re A).

Based on this and the results from previous chapters, we also show that extended
and standard regular expressions are equally expressive and, thus, that extended reg-
ular expressions and regular languages are equally expressive. We give a function
ext re to std re which constructs an equivalent standard regular expression for every

extended regular expression.

Lemma ext re to std re standard (r : regular expression char ): standard char ( ext re to std re r ).

Lemma ext re to std re correct (r : regular expression char ): ( ext re to std re r) =i r .

With Theorem 5.2.4, we prove that we can construct a Myhill relation for a language
from a DFA for that language.

Lemma dfa to myhill (A: dfa): Myhill Rel ( dfa lang A). .
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We prove in Theorem 5.3.1 that every Myhill relations is also a weak Nerode relation.

Lemma myhill to weak nerode (L: language char): Myhill Rel L −> Weak Nerode Rel L.

Theorem 5.5.12 shows that, if there is a weak Nerode relation, the Nerode relation is
of finite index.

Lemma weak nerode to nerode (L: language char): Weak Nerode Rel L −> Nerode Rel L.

Finally, we prove in Theorem 5.4.1 that, if we are given a Nerode relation of finite
index for a language, we can construct a DFA that accepts this language.

Lemma nerode to dfa correct (L: language char) (f N: Nerode Rel L):
L =i dfa lang (nerode to dfa f N).

6.2 SSReflect

We make extensive use of SSReflect’s features in our development. The formalization
of finite automata depends crucially on finite types (and, to a lesser extent, finite sets).

We also employ the reflect paradigm whenever possible. It offers a very convenient
way of working with propositional and boolean predicates at the same time. The built-in
support for changing from propositional to boolean statements lets us choose the most
appropriate representation for the task at hand.

Furthermore, the very extensive library of general purpose lemmas in SSReflect
enables us to focus on high-level proofs. The sole exception to this is the allbutlast

predicate we need for Theorem 4.8.2. However, even in this case, we can mostly rely on
the lemmas for all provided by SSReflect. All we need to do is provide a thin layer
between the two predicates.

Additionally, the scripting language offered by SSReflect leads to very concise proof
scripts. It succeeds in removing some of the bookkeeping overhead.

There are several disadvantages to SSReflect. One is that it is not as widely used as
Coq itself. This means that the group of people who can understand the proof scripts
is relatively small. However, in some cases, it might be sufficient to explain a small
subset of SSReflect in order to give an understandable presentation of the formalized
statements.

We also lose practical executability. Specifically, the implementation underlying finite
types does not lend itself to computation. Since practical executability is not always a
requirement, this restriction may not be relevant to some projects, as is the case with
our development.

Based on these considerations, we believe that the use of SSReflect is very beneficial
to formalizations that do not require executability, especially if there is algorithmic
content.

6.3 Future Work

There are several possible extensions to our development. Additionally, there are some
topics that are not quite extensions but rather candidates for future formalizations.
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6.3.1 ε-Transitions

We have avoided ε-transitions in our formalization. Non-deterministic finite automata
with ε-transitions and regular expressions are equally expressive. They are, as we have
shown, unnecessary in order to derive the results proven in this thesis. Nonetheless,
it would be very interesting to add them to the list of formalized characterizations of
regular languages.

6.3.2 Pumping Lemma

The Pumping Lemma [8] gives a sufficient condition for the non-regularity of a language.
It is a well-known part of the theory of regular languages and, thus, a good candidate
for an extension to our development.

6.3.3 Regular Grammars

Another characterization of regular languages is given by regular grammars. Regular
grammars seem to enjoy less popularity than other characterizations. A formalization of
formal grammars in general would also be a good starting point to formalize other parts
of the Chomsky Hierarchy [15]. The context-free languages could be a good candidate
for a formalization. We speculate that pushdown automata could be formalized similarly
to how we formalized finite automata.

6.3.4 ω-regular languages

A possible next step after the formalization of regular languages is a formalization of ω-
regular languages. There does not seem much literature on formalizing this topic. Such
a development could include all commonly used acceptance criteria on ω-automata. This
would also make for a good opportunity to study Coq’s co-inductive definitions.
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