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Recap from the first
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Simply typed higher order logic
and tableaux
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BasIcs: Syntax/Semantics

Context: Simply typed higher order logic

Syntax:
e Types (O, T, M): T:=L|o]|TT
e Terms (s, t, u, v): t=x|c|tt|Ax.t

e | ogical constants: -, A, v, V1, 31, =1, —, T, L
Typed terms as usual, we only consider well-typed terms

Semantics:
e 0 boolean sort, containing 1/true/top/T and O/false/bottom/_L
¢ L non-empty set of individuals

e T set of all total functions (standard interpretation) or subset of all total total functions
(Henkin/non standard interpretation)




5asics: Tableau systems

e General idea: Proof by contradiction

¢ Instead of proving the validity of a formula, we show that the negation of the
formula is unsatisfiable / refutable / yields L

e Tableau rules:

A ACA C 4
C A; LOSED —
A | ] A, 1

e For simplicity: We only write what is needed in A to apply a rule and what is
added in the A




Three fragments

e Three fragments of simply typed higher order logic by Brown and Smolka:

e "Basic": No higher-order equations, no quantifiers, no A\; proof system is
terminating and complete wrt standard models

e "EFO": No higher-order equations, quantifiers at base types, supports A;
proof system not terminating but cut-free and complete wrt standard

models

e "Full": Higher-order equations, supports A; proof system not terminating
but cut-free and complete wrt non-standard models

e Goal of my thesis: Extend these fragments with more powerful logical
constants while maintaining the existing properties (completeness, cut-
freeness, termination)




First talk

e | already presented tablau rules for If-Then-Else which can be added to all
three fragments while preserving all of their properties; proof straight forward
Slides: http://www.ps.uni-sb.de/~julian/master

e Difference between Choice/Description and other well-known logical
constants: There are several possible interpretations

e | presented rules for Choice based on a paper by Mints. Let Csand C s
occur as subterms on the branch:

CHOICE (s1) | s(Cs) t term of suitable type

a fresh

CHOICEE ¢ -

sa,—(s'a) | —(sa),s'a | Cs=Cs

, Q81 ...8y, aty...T, .
MAT « variable or some C s

Sl#tl ‘ ’ Sn#tn
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Problems with Mints' rules

CHOICE (s0) | s(Cs) t term of suitable type

CHOICE fresh
et sa,—(s'a) | —(sa),s'a | Cs=Cs L

7 AS1 ...8y, "ty ...ty .
MAT o variable or some C s

8175751 ‘ ‘ Sn#tn
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CHOICE (s0) | s(Cs) t term of suitable type

CHOICE fresh
e sa,—(s'a) | —(sa),s'a | Cs=Cs L
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e There were four problems with these rules:
e Something was missing: Not all unsatisfiable branches could be refuted
e Choiceext causes an exponential blow-up in the number of branches
e |[s C s at the "head" in MAT' not too restrictive?

e C s and C s' must occur as subterms on the branch. What about the
subterm Ax.C x?
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Unrefutable, unsatistiable branch

e Consider the following unsatisfiable branch/set:

.{S:Lot,CS!:LCt}

e Using Choiceext and Confrontation yields
¢ [s=p1,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

¢ this branch cannot be refuted

e \We need "MAT' at type L": DEC®

aS1...S8 ati...1
DEC’ ! i #L ! " & variable or some Cs

Sl#tl ‘ ‘ Sn%tn
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Unrefutable, unsatisfiable branch ctd

¢ {s=01,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

e One question remaining: Is C s not too restrictive?

e Answer: probably not :-) We don't know...
e But remember: Choiceext is not a nice rule (exponential blow-up)

¢ \We showed: Relaxing the C s restriction and just require C in MAT' and DEC'

QaS1...8 aty ...t 81 ...8p, by ...0
DEC’ ! n 70 0h o variable or C  MAT’ . - ! " & variable or C

Sl#tl ‘ ‘Sn#tn Sl#tl ‘ ‘ Sn#tn

makes Choiceext unnecessary




4 Problems, 3 Solutions
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Accessibility and the subterm problem

e Def: Let E be a branch. A term s is discriminating in E if and only if there is a
termtsuchthat(s#t)eEor(t#s)ekE

e Def: Let E be a branch. A term s is accessible in E if and only if there is a
context C =[] t1 ... tn such that

s] is discriminating in E for C[s] of type L or

s] € E or =CJs] € E for C[s] of type o

e Solution to our subterm problem: "is accessible in E" instead of "is a subterm
In E" does the job




Comparison of the rules

e These were the rules we started with:

CHOICE tt f suitable type
ﬂ(st) ‘ S(CS) erm of suita VP

CHOICE fresh
et sa,—(s'a) | —(sa),s’a | Cs=Cs °E

’ QS1...8p, 0ty ...1y .
MAT o variable or some (C's

Sl#tl ’ ‘ Sn#tn

e And these are the new rules:
CHOICE (’'s accessible

—(st) | s(Cs)

aS1...S8 atq...1
DEC’ ! n 7 0t " & variable or C

Sl#tl | ‘ Sn#tn

QaS1...8p, by ...0
MAT’ ! ° ! N variable or C

Sl#tl | | Sn#tn
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Completeness proof

e | will not explain the whole completeness proof here

e The hard part reduces to the Model Existence Theorem:

e Def: A set E of formulas (representing a branch) is called evident if it does
not contain L and is closed under the tablau rules

e Model Existence Theorem: If a set E is evident, then there exists an
interpretation which satifies all formulas in E

e The proof of this Theorem is long, | only present the general ideas here

e But first, we need one more definition....




Model existence theorem




Model existence theorem

e Given an evident set E, define possible values relation by induction on types:
esbDo0:<=>[s]gE
esbDol1:<=>-[s]gE
® s Dot f:<=> st by fa whenevert ds a

e (We skip > here, it is defined using discriminants)
e Fact: Any term has a possible value (proof uses MAT' and DEC')

* For the proof of the model existence theorem, we need to show that for any
term s, s b 3 s (Where 3 is a corresponding interpretation); proof is done by

iInduction on s

e Question: For the case C » 3 C, what is 3 C? We said that the
interpretation of C is not unique so we have to give one...




Interpretation of C

Goal: Prove C > 3 C
Problem 1: This is not enough, the proof requires accessible terms
Now, we can prove C > 3 C but....
Problem 2: 3 C is not a choice function: what if the set is empty?
This interpretation does the job!

e The proof that 3 C is a choice function requires the Choice rule

e And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types
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Results/Recap

¢ \We have proven completeness
e for "EFO" together with Choice at base types wrt standard models

e for "Full" together with Choice at any type wrt non-standard models

e \We have not proven completeness for "Basic" with Choice at type L:
® The problem: Preserve termination

e Possible solution: Only instantiate discriminating terms

e \What about description?
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Description

e Given the tableau rule for Choice, it is easy to give one for Description:

DESc D ible; a, b fresh
—|(3t) ‘ a#b, sa, Sb ‘ S(Ds) S acCcesslble; a res

e Using this rule, the completeness proof works analogously to the
completeness proof with Choice

e This includes the non-standardness at functional types

e Chad suspects that it is possible to add Description at any type to EFO while
maintaining completeness

e Actually, we don't know...
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Bonus: Independence results

¢ |n the first talk, at least Prof. Smolka wanted to know:

¢ |s |[f-Then-Else really more powerful, i.e. is it not possible to express If-
Then-Else using other logical constants?

e Result: If-Then-Else is more powerful

e Proof works by constructing a (non-standard) model which contains all well-
known logical constants but not If-Then-Else

e Construction uses a binary logical relation: Equality

¢ \We also constructed a model which containts all well-known logical
constants, including If-Then-Else, but not Description

e Construction uses an infinitary logical relation




Thank you!

And stay tuned for Sigurd's talk...
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