Master's thesis - second talk:

Tableaux for -

igher-Order

Description and Choice

by Julian Backes on August 28, 2009

ogic with [f-Then-

Advisor: Dr. Chad E. Brown
Supervisor: Prof. Dr. Gert Smolka

Contents

e Recap from the first talk

e Basics

* Three Fragments

e Extending the fragments
e Choice
e Completeness with Choice

¢ Bonus: Independence results

Recap from the first
talk

Simply typed higher order logic
and tableaux

manufacturer.com

BasIcs: Syntax/Semantics

Context: Simply typed higher order logic

Syntax:
e Types (O, T, M): T:=L|o]|TT
e Terms (s, t, u, v): t=x|c|tt|Ax.t

e | ogical constants: -, A, v, V1, 31, =1, —, T, L
Typed terms as usual, we only consider well-typed terms

Semantics:
e 0 boolean sort, containing 1/true/top/T and O/false/bottom/_L
¢ L non-empty set of individuals

e T set of all total functions (standard interpretation) or subset of all total total functions
(Henkin/non standard interpretation)

5asics: Tableau systems

e General idea: Proof by contradiction

¢ Instead of proving the validity of a formula, we show that the negation of the
formula is unsatisfiable / refutable / yields L

e Tableau rules:

A ACA C 4
C A; LOSED —
A |] A, 1

e For simplicity: We only write what is needed in A to apply a rule and what is
added in the A

Three fragments

e Three fragments of simply typed higher order logic by Brown and Smolka:

e "Basic": No higher-order equations, no quantifiers, no A\; proof system is
terminating and complete wrt standard models

e "EFO": No higher-order equations, quantifiers at base types, supports A;
proof system not terminating but cut-free and complete wrt standard

models

e "Full": Higher-order equations, supports A; proof system not terminating
but cut-free and complete wrt non-standard models

e Goal of my thesis: Extend these fragments with more powerful logical
constants while maintaining the existing properties (completeness, cut-
freeness, termination)

First talk

e | already presented tablau rules for If-Then-Else which can be added to all
three fragments while preserving all of their properties; proof straight forward
Slides: http://www.ps.uni-sb.de/~julian/master

e Difference between Choice/Description and other well-known logical
constants: There are several possible interpretations

e | presented rules for Choice based on a paper by Mints. Let Csand C s
occur as subterms on the branch:

CHOICE (s1) | s(Cs) t term of suitable type

a fresh

CHOICEE ¢ -

sa,—(s'a) | —(sa),s'a | Cs=Cs

, Q81 ...8y, aty...T, .
MAT « variable or some C s

Sl#tl ‘ ’ Sn#tn

http://www.ps.uni-sb.de/~julian/master
http://www.ps.uni-sb.de/~julian/master

Choice

Were the rules ok? Moon

384.400 Kms.

v J

Mars
1,340,000 Kms.

> .

4 /"gnv.. Ba“

g Kms:
4 3,199
Y,

- mSs

sydnev

ggregersen.eu

Problems with Mints' rules

CHOICE (s0) | s(Cs) t term of suitable type

CHOICE fresh
et sa,—(s'a) | —(sa),s'a | Cs=Cs L

7 AS1 ...8y, "ty ...ty .
MAT o variable or some C s

8175751 ‘ ‘ Sn#tn

e There were four problems with these rules:

Problems with Mints' rules

CHOICE (s0) | s(Cs) t term of suitable type

CHOICE fresh
e sa,—(s'a) | —(sa),s'a | Cs=Cs L

7 AS1 ...8y, "ty ...ty _
MAT o variable or some C s

8175751 ‘Sn#tn

e There were four problems with these rules:

e Something was missing: Not all unsatisfiable branches could be refuted

Problems with Mints' rules

CHOICE (s0) | s(Cs) t term of suitable type

CHOICE fresh
e sa,—(s'a) | —(sa),s'a | Cs=Cs L

7 AS1 ...8y, "ty ...ty .
MAT o variable or some C s

8175751 ‘Sn#tn

e There were four problems with these rules:
e Something was missing: Not all unsatisfiable branches could be refuted

e Choiceext causes an exponential blow-up in the number of branches

Problems with Mints' rules

CHOICE (s0) | s(Cs) t term of suitable type

CHOICE fresh
e sa,—(s'a) | —(sa),s'a | Cs=Cs L

7 AS1 ...8y, "ty ...ty .
MAT o variable or some C s

8175751 ‘ ‘ Sn#tn

e There were four problems with these rules:
e Something was missing: Not all unsatisfiable branches could be refuted
e Choiceext causes an exponential blow-up in the number of branches

¢ |s C s at the "head" in MAT' not too restrictive?

Problems with Mints' rules

CHOICE (s0) | s(Cs) t term of suitable type

CHOICE fresh
e sa,—(s'a) | —(sa),s'a | Cs=Cs L

7 AS1 ...8y, "ty ...ty .
MAT o variable or some C s

8175751 ‘ ‘ Sn#tn

e There were four problems with these rules:
e Something was missing: Not all unsatisfiable branches could be refuted
e Choiceext causes an exponential blow-up in the number of branches
e |[s C s at the "head" in MAT' not too restrictive?

e C s and C s' must occur as subterms on the branch. What about the
subterm Ax.C x?

Unrefutable, unsatistiable branch

e Consider the following unsatisfiable branch/set:

.{S:Lot,CS!:LCt}

Unrefutable, unsatistiable branch

e Consider the following unsatisfiable branch/set:

.{S:Lot,CS!:LCt}

e Using Choiceext and Confrontation yields
¢ [s=p1,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

¢ this branch cannot be refuted

Unrefutable, unsatistiable branch

e Consider the following unsatisfiable branch/set:

.{S:Lot,CS!:LCt}

e Using Choiceext and Confrontation yields
¢ [s=p1,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

¢ this branch cannot be refuted

e \We need "MAT' at type L": DEC®

aS1...S8 ati...1
DEC’ ! i #L ! " & variable or some Cs

Sl#tl ‘ ‘ Sn%tn

Unrefutable, unsatisfiable branch ctd

¢ {s=01,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

Unrefutable, unsatisfiable branch ctd

¢ {s=01,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

e One question remaining: Is C s not too restrictive?

Unrefutable, unsatisfiable branch ctd

¢ {s=01,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

e One question remaining: Is C s not too restrictive?

e Answer: probably not :-) We don't know...

Unrefutable, unsatisfiable branch ctd

¢ {s=01,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

e One question remaining: Is C s not too restrictive?

e Answer: probably not :-) We don't know...

e But remember: Choiceext is not a nice rule (exponential blow-up)

Unrefutable, unsatisfiable branch ctd

¢ {s=01,Cs#Ct,Cs=Ct,Cs#Cs,Ct#Ct}

e One question remaining: Is C s not too restrictive?

e Answer: probably not :-) We don't know...
e But remember: Choiceext is not a nice rule (exponential blow-up)

¢ \We showed: Relaxing the C s restriction and just require C in MAT' and DEC'

QaS1...8 aty ...t 81 ...8p, by ...0
DEC’ ! n 70 0h o variable or C MAT’ . - ! " & variable or C

Sl#tl ‘ ‘Sn#tn Sl#tl ‘ ‘ Sn#tn

makes Choiceext unnecessary

4 Problems, 3 Solutions

e There were four problems with these rules:
e Something was missing: Not all unsatisfiable branches could be refuted
e Choiceext causes an exponential blow-up in the number of branches
e |s C s at the "head" in MAT'/DEC' not too restrictive?

e C s and C s' must occur as subterms on the branch. What about the
subterm Ax.C x?

e [For the last problem, we need some definitions...

4 Problems, 3 Solutions

e There were four problems with these rules:
We need DEC'!

. alaave --- A -. - " [\ r - -)
\J \/ W, L/ \J U/ \A NS W \

-a)
vV O \A =

-a AaANva
N \J @ L/ @ LA NS

e Choiceext causes an exponential blow-up in the number of branches
¢ |s C s at the "head" in MAT'/DEC' not too restrictive?

e C s and C s' must occur as subterms on the branch. What about the
subterm Ax.C x?

e [For the last problem, we need some definitions...

4 Problems, 3 Solutions

e There were four problems with these rules:
We need DEC'!

We don't need it!

L] |]
. aVaa¥Va alla¥Ya s Y a¥a LEN\
\J _/ JV CJ ‘A = A

-V a Y A\ A 7 N\ W N -~ -_
\J U A \NJsI\J VV AN U NS \J \J 1 C

¢ |s C s at the "head" in MAT'/DEC' not too restrictive?

e C s and C s' must occur as subterms on the branch. What about the
subterm Ax.C x?

e [For the last problem, we need some definitions...

4 Problems, 3 Solutions

e There were four problems with these rules:
We need DEC'!

We don't need it!

L] |]
. aVaa¥Va alla¥Ya s Y a¥a LEN\
\J _/ JV CJ ‘A = A

-V a Y A\ A 7 N\ W N -~ -~
\J U A \NJsI\J VV AN U NS \J \J 1 C

¢ |5 Csatthe “headinMAT/DEG nottoorestrictive? Now, it is!

e C s and C s' must occur as subterms on the branch. What about the
subterm Ax.C x?

e [For the last problem, we need some definitions...

4 Problems, 3 Solutions

e There were four problems with these rules:
We need DEC'!

We don't need it!

L] |]
. aVaa¥Va alla¥Ya s Y a¥a LEN\
\J _/ JV CJ ‘A = A

-V a Y A\ A 7 N\ W N -~ -~
\J U A \NJsI\J VV AN U NS \J \J 1 C

¢ |5 Csatthe “headinMAT/DEG nottoorestrictive? Now, it is!

e C s and C s' must occur as subterms on the branch. What about the
subterm Ax.C x?

e [For the last problem, we need some definitions...

Accessibility and the subterm problem

e Def: Let E be a branch. A term s is discriminating in E if and only if there is a
termtsuchthat(s#t)eEor(t#s)ekE

Accessibility and the subterm problem

e Def: Let E be a branch. A term s is discriminating in E if and only if there is a
termtsuchthat(s#t)eEor(t#s)ekE

e Def: Let E be a branch. A term s is accessible in E if and only if there is a
context C =[] t1 ... tn such that

Accessibility and the subterm problem

e Def: Let E be a branch. A term s is discriminating in E if and only if there is a
termtsuchthat(s#t)eEor(t#s)ekE

e Def: Let E be a branch. A term s is accessible in E if and only if there is a
context C =[] t1 ... tn such that

e CJ[s] is discriminating in E for CJ[s] of type L or

Accessibility and the subterm problem

e Def: Let E be a branch. A term s is discriminating in E if and only if there is a
termtsuchthat(s#t)eEor(t#s)ekE

e Def: Let E be a branch. A term s is accessible in E if and only if there is a
context C =[] t1 ... tn such that

s] is discriminating in E for C[s] of type L or

s] € E or =CJs] € E for C[s] of type o

Accessibility and the subterm problem

e Def: Let E be a branch. A term s is discriminating in E if and only if there is a
termtsuchthat(s#t)eEor(t#s)ekE

e Def: Let E be a branch. A term s is accessible in E if and only if there is a
context C =[] t1 ... tn such that

s] is discriminating in E for C[s] of type L or

s] € E or =CJs] € E for C[s] of type o

e Solution to our subterm problem: "is accessible in E" instead of "is a subterm
In E" does the job

Comparison of the rules

e These were the rules we started with:

CHOICE tt f suitable type
ﬂ(st) ‘ S(CS) erm of suita VP

CHOICE fresh
et sa,—(s'a) | —(sa),s’a | Cs=Cs °E

’ QS1...8p, 0ty ...1y .
MAT o variable or some (C's

Sl#tl ’ ‘ Sn#tn

e And these are the new rules:
CHOICE (’'s accessible

—(st) | s(Cs)

aS1...S8 atq...1
DEC’ ! n 7 0t " & variable or C

Sl#tl | ‘ Sn#tn

QaS1...8p, by ...0
MAT’ ! ° ! N variable or C

Sl#tl | | Sn#tn

i
et
=
p,
P,
D
C
O
)
L
Q.
-
®,
O

A proof sketch

Photo: myspacegeek.net

Completeness proof

e | will not explain the whole completeness proof here

e The hard part reduces to the Model Existence Theorem:

e Def: A set E of formulas (representing a branch) is called evident if it does
not contain L and is closed under the tablau rules

e Model Existence Theorem: If a set E is evident, then there exists an
interpretation which satifies all formulas in E

e The proof of this Theorem is long, | only present the general ideas here

e But first, we need one more definition....

Model existence theorem

Model existence theorem

e Given an evident set E, define possible values relation by induction on types:
esbDo0:<=>[s]gE
esbDol1:<=>-[s]gE
® s Dot f:<=> st by fa whenevert ds a

e (We skip > here, it is defined using discriminants)
e Fact: Any term has a possible value (proof uses MAT' and DEC')

* For the proof of the model existence theorem, we need to show that for any
term s, s b 3 s (Where 3 is a corresponding interpretation); proof is done by

iInduction on s

e Question: For the case C » 3 C, what is 3 C? We said that the
interpretation of C is not unique so we have to give one...

Interpretation of C

Goal: Prove C > 3 C
Problem 1: This is not enough, the proof requires accessible terms
Now, we can prove C > 3 C but....
Problem 2: 3 C is not a choice function: what if the set is empty?
This interpretation does the job!

e The proof that 3 C is a choice function requires the Choice rule

e And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

Goal: Prove C > 3 C
Problem 1: This is not enough, the proof requires accessible terms
Now, we can prove C > 3 C but....
Problem 2: 3 C is not a choice function: what if the set is empty?
This interpretation does the job!

e The proof that 3 C is a choice function requires the Choice rule

e And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|spPflba

Goal: Prove C > 3 C
Problem 1: This is not enough, the proof requires accessible terms
Now, we can prove C > 3 C but....
Problem 2: 3 C is not a choice function: what if the set is empty?
This interpretation does the job!

e The proof that 3 C is a choice function requires the Choice rule

e And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|spPflba

e Goal: ProveC > 3 C

* Problem 1: This is not enough, the proof requires accessible terms

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|Csisaccessibleands > f}>a

e Goal: ProveC > 3 C

* Problem 1: This is not enough, the proof requires accessible terms

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|Csisaccessibleands > f}>a

e Goal: Prove C » 3 C
* Problem 1: This is not enough, the proof requires accessible terms

e Now, we can prove C > 3 C but....

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|Csisaccessibleands > f}>a

Goal: Prove C » 3 C

Problem 1: This is not enough, the proof requires accessible terms

Now, we can prove C > 3 C but....

Problem 2: 3 C is not a choice function: what if the set is empty?

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|Csisaccessibleands > f}>a

e someb ffb=1

Goal: Prove C » 3 C

Problem 1: This is not enough, the proof requires accessible terms

Now, we can prove C > 3 C but....

Problem 2: 3 C is not a choice function: what if the set is empty?

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|Csisaccessibleands > f}>a
esomeb iffb="1
e somec otherwise

Goal: Prove C » 3 C

Problem 1: This is not enough, the proof requires accessible terms

Now, we can prove C > 3 C but....

Problem 2: 3 C is not a choice function: what if the set is empty?

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|Csisaccessibleands > f}>a
esomeb iffb="1
e somec otherwise

Goal: Prove C » 3 C

Problem 1: This is not enough, the proof requires accessible terms

Now, we can prove C > 3 C but....

Problem 2: 3 C is not a choice function: what if the set is empty?

This interpretation does the job!

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|Csisaccessibleands > f}>a
esomeb iffb="1
e somec otherwise

Goal: Prove C » 3 C

Problem 1: This is not enough, the proof requires accessible terms
Now, we can prove C > 3 C but....

Problem 2: 3 C is not a choice function: what if the set is empty?
This interpretation does the job!

e The proof that 3 C is a choice function requires the Choice rule

Interpretation of C

e \We define 3 C to be a function such that (3 C) fis

esomea if{Cs|Csisaccessibleands > f}>a
esomeb iffb="1
e somec otherwise

Goal: Prove C » 3 C

Problem 1: This is not enough, the proof requires accessible terms
Now, we can prove C > 3 C but....
Problem 2: 3 C is not a choice function: what if the set is empty?
This interpretation does the job!

e The proof that 3 C is a choice function requires the Choice rule

e And we need to know that any value is a possible value for some term
=> we need non-standard models for Choice at functional types

Results/Recap

¢ \We have proven completeness
e for "EFO" together with Choice at base types wrt standard models

e for "Full" together with Choice at any type wrt non-standard models

Results/Recap

¢ \We have proven completeness
e for "EFO" together with Choice at base types wrt standard models

e for "Full" together with Choice at any type wrt non-standard models

e \We have not proven completeness for "Basic" with Choice at type L:
® The problem: Preserve termination

e Possible solution: Only instantiate discriminating terms

Results/Recap

¢ \We have proven completeness
e for "EFO" together with Choice at base types wrt standard models

e for "Full" together with Choice at any type wrt non-standard models

e \We have not proven completeness for "Basic" with Choice at type L:
® The problem: Preserve termination

e Possible solution: Only instantiate discriminating terms

e \What about description?

Description

e Given the tableau rule for Choice, it is easy to give one for Description:

DESc D ible; a, b fresh
—|(5t) ‘ a#b, sa, Sb ‘ S(Ds) S acCcesslble; a res

Description

e Given the tableau rule for Choice, it is easy to give one for Description:

DESc D ible; a, b fresh
—|(3t) ‘ a#b, sa, Sb ‘ S(Ds) S acCcesslble; a res

e Using this rule, the completeness proof works analogously to the
completeness proof with Choice

e This includes the non-standardness at functional types

Description

e Given the tableau rule for Choice, it is easy to give one for Description:

DESc D ible; a, b fresh
—|(3t) ‘ a#b, sa, Sb ‘ S(Ds) S acCcesslble; a res

e Using this rule, the completeness proof works analogously to the
completeness proof with Choice

e This includes the non-standardness at functional types

e Chad suspects that it is possible to add Description at any type to EFO while
maintaining completeness

Description

e Given the tableau rule for Choice, it is easy to give one for Description:

DESc D ible; a, b fresh
—|(3t) ‘ a#b, sa, Sb ‘ S(Ds) S acCcesslble; a res

e Using this rule, the completeness proof works analogously to the
completeness proof with Choice

e This includes the non-standardness at functional types

e Chad suspects that it is possible to add Description at any type to EFO while
maintaining completeness

e Actually, we don't know...

Bonus: Independence results

¢ |n the first talk, at least Prof. Smolka wanted to know:

¢ |s |[f-Then-Else really more powerful, i.e. is it not possible to express If-
Then-Else using other logical constants?

Bonus: Independence results

¢ |n the first talk, at least Prof. Smolka wanted to know:

¢ |s |[f-Then-Else really more powerful, i.e. is it not possible to express If-
Then-Else using other logical constants?

e Result: If-Then-Else is more powerful

Bonus: Independence results

¢ |n the first talk, at least Prof. Smolka wanted to know:

¢ |s |[f-Then-Else really more powerful, i.e. is it not possible to express If-
Then-Else using other logical constants?

e Result: If-Then-Else is more powerful

e Proof works by constructing a (non-standard) model which contains all well-
known logical constants but not If-Then-Else

e Construction uses a binary logical relation: Equality

Bonus: Independence results

¢ |n the first talk, at least Prof. Smolka wanted to know:

¢ |s |[f-Then-Else really more powerful, i.e. is it not possible to express If-
Then-Else using other logical constants?

e Result: If-Then-Else is more powerful

e Proof works by constructing a (non-standard) model which contains all well-
known logical constants but not If-Then-Else

e Construction uses a binary logical relation: Equality

¢ \We also constructed a model which containts all well-known logical
constants, including If-Then-Else, but not Description

e Construction uses an infinitary logical relation

Thank you!

And stay tuned for Sigurd's talk...

References

e Chad E. Brown, G. Smolka: "Terminating Tableaux for the Basic Fragment of
Simple Type Theory". TABLEAUX 2009:138-151, Springer LNCS 5607 .

e Chad E. Brown, G. Smolka: "Extended First-Order Logic". TPHOLSs 2009,
Springer LNCS 5674.

e Chad E. Brown, G. Smolka: "Complete Cut-Free Tableaux for Equational
Simple Type Theory". 2009.

e G. Mints: Cut-Elimination for Simple Type Theory with an Axiom of Choice.
The Journal of Symbolic Logic, Vol. 64, No. 2., pp. 479-485. 1999.

e G. Takeuti: "Proof Theory (Studies in Logic and the Foundations of
Mathematics)". Elsevier Science Ltd, 2 Rev Sub edition. 1987.

