
Master's thesis - final talk:

Tableaux for Higher-Order Logic with If-Then-Else,
Description and Choice

by Julian Backes on April 9, 2010

Advisor: Dr. Chad E. Brown
Supervisor: Prof. Dr. Gert Smolka

1

Thank you!

2

2

Contents

• Introduction

• A Signature Dependent Tableau System

• Generic Completeness Result

• Standard Completeness

• Extensions

3

3

Introduction & Basics

Syntax & Semantics

 manufacturer.com

4

4

Three Papers

• Three papers about fragments of simply typed higher order logic by Brown
and Smolka:

• "Extended First-Order Logic":
No higher-order equations, quantifiers at base types; proof system cut-free
and complete wrt standard models

• "Complete Cut-Free Tableaux for Equational Simple Type Theory":
Full higher-order logic, proof system cut-free and complete wrt general
models

• "Analytic Tableaux for Simple Type Theory and its First-Order Fragment":
Essentially combines the two papers from above

• Goal of my thesis: Extend these fragments with more powerful logical
constants while maintaining the existing properties (completeness, cut-
freeness)

5

5

Syntax

• Context: Simply typed higher order logic

• Types (σ, τ, μ): ɩ | o | σ τ

• Logical Constants LC = {¬, ∨, ∃τ, =τ, ⊤, ⊥, ifτ, ετ, ɩτ}

• Signature S is a subset of LC

• "Fragments" can be seen as signatures

• S-terms (s, t, u, v, w): x | c (∈ S) | st | λx.t

• Typed S-terms as usual, we only consider well-typed S-terms

• denotes the set of all S-terms of type σ

6

ΛS
σ

6

Frames

• A frame D is a function mapping types to nonempty sets such that

• D(o) ⊆ {0, 1} (true/false)

• D(στ) ⊆ D(σ) → D(τ)

• A standard frame D is a frame such that

• D(o) = {0, 1}

• D(στ) = D(σ) → D(τ)

• What is a (standard) S-frame?

7

7

Logical Constants and Frames

• For each logical constant c, there is a property Pc that must hold for a function f
represented by c

• Examples:

• A frame realizes a logical constant c iff there is some f in D such that Pc(f) is true

• An S-frame is a frame that realizes all logical constants in S

• A standard frame is trivially an S-frame for all S

• S-Interpretations (into S-frames) / satisfiability / validity as usual

P¬(f) = (f1 = 0 ∧ f0 = 1)

Pεσ (f) = ∀g ∈ D(σo). (∃a ∈ Dσ. ga) → g(fg)

8

8

A New Goal

• Given the definition of a signature, we decided to work towards an additional
goal for my thesis:

• "Give me any signature you want and I give you back a complete tableau
system. I will also tell you whether this tableau system is complete with
respect to standard models"

9

9

A Signature
Dependent Tableau
System

Give me any signature you
want...

10

10

Signatures and Quasiformulas

• Goal: A modular, signature dependent tableau system

• Problem: Disequations will be the "internal workhorses" of the system; should
we require ¬ and =τ to be always in the signature?

• No! =τ is a very powerful logical constant and we will not be able to get
completeness wrt. standard models

• Solution: Introduce quasiformulas

• Every S-formula is a quasi-S-formula

• If s is an S-formula then ¬s is an quasi-S-formula

• If s and t are S-terms of the same type then s ≠ t is a quasi-S-formula

11

11

Tableau rules

• Tableau rules:

• For simplicity: We only write what is needed in A to apply a rule and what is
added in the Ai

• All A and Ai must only contain quasi-S-formulas

• Requirement: The tableau system should depend on the signature but not
vice versa

• This means that a tableau rule must not introduce new logical constants
(where "new" is relative to the premise)

12

A

A1 | ... | An
A � Ai

Closed
A

12

The Basic Tableau System

• For the empty signature, we have four rules to handle quasiformulas:

FE
s �=στ t

[sx] �=τ [tx]
x fresh BE

s �=o t

s, ¬t | ¬s, t

Dec
xs1 . . . sn �=ι xt1 . . . tn

s1 �= t1 | . . . | sn �= tn
n ≥ 0

Mat
xs1 . . . sn, ¬xt1 . . . tn
s1 �= t1 | . . . | sn �= tn

n ≥ 0

13

13

Usual Logical Constants

• The rules for the usual logical constants are not new:

Bot
⊥

Top
¬�

Or
s ∨ t

s | t OrN
¬(s ∨ t)

¬s, ¬t
DN

¬¬s
s

Ex
∃s
[sx]

x fresh ExN
¬(∃s)
[st]

t ∈ ΛS normal

14

BQ
s =τ1...τno t

[su1 . . . un], [tu1 . . . un] | ¬[su1 . . . un], ¬[tu1 . . . un]

n ≥ 0,
ui ∈ ΛS

τi normal

Con
s =τ1...τnι t, u �=ι v

[sw1 . . . wn] �=ι u, [tw1 . . . wn] �=ι u | [sw1 . . . wn] �=ι v, [tw1 . . . wn] �=ι v

n ≥ 0,
wi ∈ ΛS

τi normal

14

Towards the New Logical Constants

• Def: Let E be a branch. A term s:ɩ is discriminating in E if and only if there is a
term t such that (s ≠ɩ t) ∈ E or (t ≠ɩ s) ∈ E

• Def: Let E be a branch. A term s is accessible in E if and only if there is a
context C = [] t1 ... tn such that

• C[s] is discriminating in E for C[s] of type ɩ or

• C[s] ∈ E or ¬C[s] ∈ E for C[s] of type o

• We call C an accessibility context

• Examples: Is "ε s" accessible?

• Not accessible: s (ε s)

• Accessible: v ≠ɩ ε s t u; accessibility context: v ≠ɩ [] t u

15

15

If-Then-Else

• The interesting fact about if-then-else is that it does not necessarily return
something of type o (ifɩ:oɩɩɩ returns something of type ɩ)

• Consequence: if does not always occur as the "head" of a formula

IF
C[ifσstu]

s, [C[t]] | ¬s, [C[u]]
C accessibility context

IFL
(ifσstu)v1 . . . vn �=ι v

�

s, [tv1 . . . vn] �=ι v
� | ¬s, [uv1 . . . vn] �=ι v

� n ≥ 0

IFR
v� �=ι (ifσstu)v1 . . . vn

s, [tv1 . . . vn] �=ι v
� | ¬s, [uv1 . . . vn] �=ι v

� n ≥ 0

IFB
(ifσstu)v1 . . . vn

s, [tv1 . . . vn] | ¬s, [uv1 . . . vn]
n ≥ 0

IFBN
¬((ifσstu)v1 . . . vn)

s, ¬[tv1 . . . vn] | ¬s, ¬[uv1 . . . vn]
n ≥ 0

16

16

Choice and Description

• The rules for choice are based on a paper by Mints

• The rules for description look similar

Choice
C[εs]

¬[st] | [s(εs)]
C accessibility context,
t ∈ ΛS

σ normal

Matε

εs1 . . . sn, ¬εt1 . . . tn
s1 �= t1 | . . . | sn �= tn

Decε

εs1 . . . sn �=ι εt1 . . . tn

s1 �= t1 | . . . | sn �= tn

Desc
C[ιs]

¬[st] | x �= y, [sx], [sy] | [s(ιs)]
C accessibility context,
t ∈ ΛS

σ normal, x, y fresh

Matι

ιs1 . . . sn, ¬ιt1 . . . tn
s1 �= t1 | . . . | sn �= tn

Decι

ιs1 . . . sn �=ι ιt1 . . . tn

s1 �= t1 | . . . | sn �= tn

17

17

Generic
Completeness Result

A proof sketch

Photo: myspacegeek.net

18

18

Completeness Proof

• I will not explain the whole completeness proof here :-)

• The hard part reduces to the Model Existence Theorem:

• Def: A set E of formulas (representing a branch) is called evident if it is not
closed and no tableau rule applies

• Model Existence Theorem: If a set E is evident, then there exists an
interpretation which satifies all formulas in E

• We need to construct an S-frame D and an S-interpretation into D

19

19

Possible Values

• Given an evident set E, define possible values relation by induction on types:

• s ▹o 0 :<=> [s] ∉ E

• s ▹o 1 :<=> ¬[s] ∉ E

• s ▹στ f :<=> st ▹τ fa whenever t ▹σ a

• (We skip ▹ɩ here, it is defined using discriminants)

• D(σ) is defined as Ran(▹σ), i.e., D may be a nonstandard frame

• We need to show that D is an S-frame

• For all c ∈ S we need to find some f such that c ▹ f and Pc(f) holds

• This is straightforward for all usual logical constants including if since the f
are unique and should be clear (equality function for = etc.)

• For c ∈ {ε, ɩ}, the f is not unique so we have to define it...
20

20

Interpretations for ε and ɩ

• The interpretation for ε is also based on the work by Mints

• We define a function Φ ∈ D(σo) → D(σ) such that

• Φ f = some b such that f b = 1 if fε is empty and such a b exists

• Φ f = some a such that fε ▹ a otherwise

• fε = {εs | s ▹ f and εs is accessible}

• In the second case, there is always a common possible value for fε, i.e., for
each element in fε, even if it is empty (proof uses Matε and Decε)

• Lemma 1: ε ▹ Φ

• Lemma 2: Φ is a choice function (proof uses Choice)

21

21

Interpretations for ε and ɩ ctd.

• For description, everything will look familiar

• We define a function ψ ∈ D(σo) → D(σ) such that

• ψ f = some b such that f b = 1 if fɩ is empty and such a b exists and is
unique

• ψ f = some a such that fɩ ▹ a otherwise

• fɩ = {ɩs | s ▹ f and ɩs is accessible}

• In the second case, there is always a common possible value for fɩ, i.e., for
each element in fɩ, even if it is empty (proof uses Matɩ and Decɩ)

• Lemma 1: ɩ ▹ ψ

• Lemma 2: ɩ is a description function (proof uses Desc)

22

22

Standard Frames

• It is desirable to get completeness wrt. standard frames

• Problematic lemma: For all σ and for all a in D(σ) there is some term s such
that s ▹σ a

• Having D defined as Ran(▹), this lemma is trivial

• Having D defined as a standard frame, this lemma does not hold anymore
for all types σ
• It still holds for type ɩ (believe me)

• It holds for type o if for example {⊤, ⊥} ⊆ S (of course, there are other
choices)

23

23

• This restriction affects all rules that quantify over terms:

• Consequence: =τ1 ... τn σ, ∃σ, ɩσ and εσ only for σ, τ1, ... τn ∈ {o, ɩ} allowed

• Interesting fact: if is not affected!

ExN
¬(∃s)
[st]

t ∈ ΛS normal Choice
C[εs]

¬[st] | [s(εs)]
C accessibility context,
t ∈ ΛS

σ normal

Desc
C[ιs]

¬[st] | x �= y, [sx], [sy] | [s(ιs)]
C accessibility context,
t ∈ ΛS

σ normal, x, y fresh

BQ
s =τ1...τno t

[su1 . . . un], [tu1 . . . un] | ¬[su1 . . . un], ¬[tu1 . . . un]

n ≥ 0,
ui ∈ ΛS

τi normal

Con
s =τ1...τnι t, u �=ι v

[sw1 . . . wn] �=ι u, [tw1 . . . wn] �=ι u | [sw1 . . . wn] �=ι v, [tw1 . . . wn] �=ι v

n ≥ 0,
wi ∈ ΛS

τi normal

Standard Frames ctd.

24

24

Extensions

Future Work

25

25

Extensions

• n-ary choice

• Choice as presented in this thesis is just for sets (type σo)

• What about binary relations (type στo)?

• It turns out that choice for (arbitrary) relations is implied by choice for sets

• Introducing additional logical constants makes them easier to use

• Restricting instantiations

• Paper by Chad and myself (accepted to IJCAR 2010)

• It is enough to consider as instantiations

• ⊤, ⊥ at type o

• discriminating terms at type ɩ
• at function types terms which only contain free variables that are already free

26

26

Extensions ctd

• Primitive Recursion and the Natural Numbers

• New type n, new logical constants 0:n (zero), S:nn (successor function),
pr:σ(nσσ)nσ (primitive recursion)

• Rules bases on the peano axioms

• It looks like we need to extend quasiformulas to (dis-)equations at type n

C[pr s t u]

u = 0, [C[s]] | u = Sx, [C[t x (pr s t x)]]
C accessibility
context, x fresh

St = 0 0 = St St = Su

t = u

[tu]

[t0] | ¬[ty], [t(Sy)]
t : no, y fresh

x �=n x 0 �= 0 St �= Su

t �= u

27

27

Thank you!

28

28

References

• P. B. Andrews. "General Models, Descriptions, and Choice in Type Theory". J. Symb. Log., 37(2):
385–394, 1972.

• J. Backes, C. E. Brown: "Analytic Tableaux for Higher-Order Logic with Choice". In Fifth
International Joint Conference on Automated Reasoning (IJCAR 2010), 2010. to appear.

• C. E. Brown, G. Smolka: "Terminating Tableaux for the Basic Fragment of Simple Type Theory".
TABLEAUX 2009:138-151, Springer LNCS 5607.

• C. E. Brown, G. Smolka: "Extended First-Order Logic". TPHOLs 2009, Springer LNCS 5674.

• C. E. Brown, G. Smolka: "Complete Cut-Free Tableaux for Equational Simple Type Theory". 2009.

• C. E. Brown, G. Smolka. "Analytic Tableaux for Simple Type Theory and its First-Order Fragment".
2009.

• G. Mints: "Cut-Elimination for Simple Type Theory with an Axiom of Choice". The Journal of
Symbolic Logic, Vol. 64, No. 2., pp. 479-485. 1999.

• G. Takeuti: "Proof Theory (Studies in Logic and the Foundations of Mathematics)". Elsevier Science
Ltd, 2 Rev Sub edition. 1987.

29

29

