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SECOND-ORDER SET THEORY

To avoid the logical antinomies, axiomatic set theory asserts the
existence only of sets built up from specific operations:

0’ {x’y} ’ UX, Px

[Zermelo, 1930]
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existence only of sets built up from specific operations:

(Z)’ {x’y} ) UX, Px

Two further operations have a higher-order character:
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To avoid the logical antinomies, axiomatic set theory asserts the
existence only of sets built up from specific operations:

0, {x,y}, Ux, Px

Two further operations have a higher-order character:
Separation: {y € x | Py } for a "definite property" P
Replacement: {z | 3y € x. Ry z } for a "functional relation" R

Depending on the meta logic, they can be stated differently:

First-order: P and R are formulas and the axioms are schematic
Second-order: P and R are predicates and single axioms suffice

[Zermelo, 1930]
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SECOND-ORDER SET THEORY

To avoid the logical antinomies, axiomatic set theory asserts the
existence only of sets built up from specific operations:

0, {x,y}, Ux, Px

Two further operations have a higher-order character:
Separation: {y € x | Py } for a "definite property" P
Replacement: {z | 3y € x. Ry z } for a "functional relation" R

Depending on the meta logic, they can be stated differently:
First-order: P and R are formulas and the axioms are schematic
Second-order: P and R are predicates and single axioms suffice

= Second-order ZF is quasi-categorical whereas ZF is not

[Zermelo, 1930]
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QUASI-CATEGORICITY

» Previous paper: formalisation of Zermelo’s embedding
theorem for concrete second-order axiomatisation ZF:

"Any two models of ZF are either isomorphic or one embeds as
an initial segment into the other.”

» As a consequence, models of ZF only differ in their height,
i.e. ordinality of nested Grothendieck universes

» Extended axiomatisations ZF, asserting exactly n
universes are hence categorical

[Zermelo, 1930][Kirst and Smolka, 2017]
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QUASI-CATEGORICITY

» Previous paper: formalisation of Zermelo’s embedding
theorem for concrete second-order axiomatisation ZF:

"Any two models of ZF are either isomorphic or one embeds as
an initial segment into the other.”

» As a consequence, models of ZF only differ in their height,
i.e. ordinality of nested Grothendieck universes

» Extended axiomatisations ZF, asserting exactly n
universes are hence categorical

Question: Do models of every ZF,, exist in Coq(+X)?

[Zermelo, 1930][Kirst and Smolka, 2017]
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TYPE-THEORETICAL MODELS

Aczel’s sets-as-trees interpretation:
» Inductive type T of well-founded trees
» Membership is implemented by children
» (Most) set operations can be implemented directly
» Intensional in that distinct trees of same structure exist

[Aczel, 1978], [Werner, 1997], [Barras, 2010]
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TYPE-THEORETICAL MODELS

Aczel’s sets-as-trees interpretation:
» Inductive type 7 of well-founded trees
» Membership is implemented by children
» (Most) set operations can be implemented directly

» Intensional in that distinct trees of same structure exist

Assuming a strong quotient axiom for 7 we obtain:
» Extensional models

» Large models: since Coq has a hierarchy of type levels,
we can iteratively embed 7 into itself and obtain universes

—> Models of all ZF,,

[Aczel, 1978], [Werner, 1997], [Barras, 2010]
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SET STRUCTURES

A set structure is a type M coming with a binary relation
€ _: M — M — Prop called membership.
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A set structure is a type M coming with a binary relation
€ _: M — M — Prop called membership.

» Inclusionx Cy:=Vzex.zey
» Equivalencex=y:=xCyAyCx
» Equivalence classes [x] := \y.x =y

» A setxis transitive if y € x implies y C x.
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SET STRUCTURES

A set structure is a type M coming with a binary relation
€ _: M — M — Prop called membership.

» Inclusionx Cy:=Vzex.z€y
» Equivalencex=y:=xCyAyCux
» Equivalence classes [x] .= \y.x =y

» A setxis transitive if y € x implies y C x.

We define the inductive class WF of well-founded sets by:

x C WF
x € WF

The derived (strong!) induction principle is called e-induction.

a1
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ZF-STRUCTURES

A ZF-structure is a set structure M together with constants

0: M _N_: (M — Prop) = M — M
{ L, )}t M>M—->M

U:M->M @ :M->M) > M->M

PM—=M 0: (M — Prop) - M

for empty set, pairing, union, power set, separation,
replacement, and description.
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EXTENSIONAL AXIOMATISATION ZF

Extensionality: x=y—x=y

Foundation: x € WF

Infinity: Jw.Vx.x ew<+ In:Nox=P"(

Emptiness: x ¢

Pairing: ze{x,y} < z=xVz=y

Union: zeUx+Jyexzey

Power: yePx«<yCx

Separation: yePnx<yexnyeP VP: M — Prop

Replacement: zc€FQx <« 3Jdyex.z=Fy VF: M —>M
Description: (3x.xe P) - éPeP VP : M — Prop
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INTENSIONAL AXIOMATISATION ZF—

Morphism: x=x —sxey—xey

Foundation: x € WF

Infinity: Jw.Vx.x ew<+ In:Nox=P"()

Emptiness: x ¢

Pairing: ze{x,yl < z=xVz=y

Union: zeUx+Jyexzey

Power: yePx«<yCx

Separation: yePNx+<yexAyeP VP: M= Prop
Replacement: ze€FQx<«>3Jyex.z=Fy VF: M=>M
Description: (Ix.P =~ [x]) > 6P € P VP : M = Prop

P~P — 6P =P VP, P
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GROTHENDIECK UNIVERSES

A transitive set U is a universe if it is closed under all set
operations. That is, for all x,y € U, classes P : M — Prop and
functions F : M — M the following properties hold:

el Pxel
{x,y} el Pnxel
Uxelu Fax e Uif Fax C U
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GROTHENDIECK UNIVERSES

A transitive set U is a universe if it is closed under all set
operations. That is, for all x,y € U, classes P : M — Prop and
functions F : M — M the following properties hold:

el Pxel
{x,y} el Pnxel
Uxelu Fax e Uif Fax C U

Axiomatisations extending ZF (i.e. ZF without Infinity):
» ZF-, asserts at least n universes
» ZF, asserts exactly n universes

» ZF, asserts infinitely many universes

9
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RELATIONAL REPLACEMENT

Replacement for functional relations R : M — M — Prop:

R@x = (\y.d(Ry))@(dom(R) N x)
z € RQx <+ Jy.y e x ANRyz
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RELATIONAL REPLACEMENT

Replacement for functional relations R : M — M — Prop:

R@x := (\y.d(Ry))@(dom(R) Nx)
z € RQx <+ Jy.y e x ANRyz
Many other set operations can be reconstructed:
{x,y} = (Mab.(a=0Ab=x)V (a=POAb=y))QP(P))
Pnx=(M\ab.a € PNa=Db)ax

FQx = (A\ab.b = Fa)Qx
OP = ((\ab.b € P)QP() if there is a unique x € P

Hence a set U is a universe iff it is transitive, contains §) and is
closed under union, power and relational replacement.
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ACZEL’S INTENSIONAL MODEL

Define the inductive type 7 : Type of well-founded trees with
a term constructor 7 : V(A : Type ) (f :A— T ). T

[Aczel, 1978]

11
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ACZEL’S INTENSIONAL MODEL

Define the inductive type T; : Type; of well-founded trees with
a term constructor 7 : V(A : Type;) (f : A — T;). T; forj < i.

[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL

Define the inductive type 7 : Type of well-founded trees with
a term constructor 7 : V(A : Type ) (f :A— T ). T

TAf—f/ \

[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL

Define the inductive type 7 : Type of well-founded trees with
a term constructor 7 : V(A : Type ) (f :A— T ). T

TAf = /// \\\
f a ce
Tree equivalence is the binary inductive predicate defined by

Va:A.3b:B.fa=rgb Vb:B.Ja:A.fa=rgb
TAf =r 7Bg

and tree membership is defined by s € TAf :=Ja: A.s =7 fa.
This makes 7T a set structure with s = t iff s =7 t.

[Aczel, 1978]

11
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ACZEL’S INTENSIONAL MODEL (CTD.)

Turn 7 into a ZF-structure without description by setting:

[Aczel, 1978]
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Turn 7 into a ZF-structure without description by setting:

(=7 Lelim

[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL (CTD.)
Turn 7 into a ZF-structure without description by setting:

(=7 Lelim
{s,t} == 7B (A\b.if b then s else t)

[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL (CTD.)
Turn 7 into a ZF-structure without description by setting:

(=7 Lelim
{s,t} == 7B (A\b.if b then s else t)
UTAf) =7 (3a.pi(fa)) (Ma, b). pa(f a) b)

[Aczel, 1978]

12



Introduction Second-Order ZF in Type Theory Model Constructions
000 000000 00000

Discussion
[e]e)

ACZEL’S INTENSIONAL MODEL (CTD.)
Turn 7 into a ZF-structure without description by setting:

(=7 Lelim
{s,t} == 7B (A\b.if b then s else t)
U(r Af) = (Sa.pi(Fa)) (M@, b). pa(f ) b)
P(rAf) =71(A— Prop) (AP.7(Xa.a € P)(f om))

[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL (CTD.)
Turn 7 into a ZF-structure without description by setting:

(=7 Lelim
{s,t} == 7B (A\b.if b then s else t)
U Af) = 7 (Sa.pr(fa) (Aa,b). pa(Fa) b)
P(rAf) =71(A— Prop) (AP.7(Xa.a € P)(f om))
PN (rAf) =7(Xa.(fa) € P)(fom)

[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL (CTD.)
Turn 7 into a ZF-structure without description by setting:

(=7 Lelim
{s,t} == 7B (A\b.if b then s else t)

U(rAf) =7 (Za.pi(fa)) (@, D). pa(fa) b)
P(rAf) =71(A— Prop) (AP.7(Xa.a € P)(f om))
PN (rAf) =7(Xa.(fa) € P)(fom)
Fa(r Af) =71A(Ma.F(fa))
[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL (CTD.)
Turn 7 into a ZF-structure without description by setting:

(=7 Lelim
{s,t} == 7B (A\b.if b then s else t)

U(rAf) =7 (Za.pi(fa)) (@, D). pa(fa) b)
P(rAf) =71(A— Prop) (AP.7(Xa.a € P)(f om))
PN (rAf) =7(Xa.(fa) € P)(fom)
Fa(r Af) =71A(Ma.F(fa))
w:=7N(\n.P"))
[Aczel, 1978]
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ACZEL’S INTENSIONAL MODEL (CTD.)
Turn 7 into a ZF-structure without description by setting:

(=7 Lelim
{s,t} == 7B (A\b.if b then s else t)

U(rAf) =7 (Za.pi(fa)) (@, D). pa(fa) b)
P(rAf) =71(A— Prop) (AP.7(Xa.a € P)(f om))
PN (rAf) =7(Xa.(fa) € P)(fom)
Fa(r Af) =71A(Ma.F(fa))
w:=7N(\n.P"))
Theorem

T satisfies ZF= without Description.

[Aczel, 1978]
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AN EXTENSIONAL MODEL

Assume a description operator 0 : (7 — Prop) — 7 satisfying
the intensional version of Description and proof irrelevance.
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the intensional version of Description and proof irrelevance.

Define a normaliser s := §[s] with easy properties:

VS =s S=t+rys=nt v(vs) = s
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the intensional version of Description and proof irrelevance.

Define a normaliser s := §[s] with easy properties:

VS =s S=t+rys=nt v(vs) = s

Define the ZF-structure of canonical representatives
S = (¥s.7s = s) with set operations lifted from 7.
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AN EXTENSIONAL MODEL

Assume a description operator 0 : (7 — Prop) — 7 satisfying
the intensional version of Description and proof irrelevance.

Define a normaliser s := §[s] with easy properties:

VS =s S=t+rys=nt v(vs) = s

Define the ZF-structure of canonical representatives
S = (¥s.7s = s) with set operations lifted from 7.

Theorem
T satisfies ZF= and S satisfies ZF.

13
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LARGE MODELS: ZF-,

Intensional models M : Typej embed into 7;if j < i:

tx =T17(Xy.yex)(Lom)

Lemma
Upn = 7 M is a universe. Moreover, if M |= ZF>,, then U,
contains n universes and it follows that S; = ZF >, 1.
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LARGE MODELS: ZF-,

Intensional models M : Typej embed into 7;if j < i:
tx =T17(Xy.yex)(Lom)

Lemma

Upn = 7 M is a universe. Moreover, if M |= ZF>,, then U,
contains n universes and it follows that S; = ZF >, 1.

Theorem (informal)
ZF-~, has a model for every n.

Fact
(Vn:N.IM : Type;. M = ZF>,) ?
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LARGE MODELS: ZF-,

Intensional models M : Typej embed into 7;if j < i:
tx =T17(Xy.yex)(Lom)

Lemma

Upn = 7 M is a universe. Moreover, if M |= ZF>,, then U,
contains n universes and it follows that S; = ZF >, 1.

Theorem (informal)
ZF-~, has a model for every n.

Fact
(Vn: N.IM : Type;. M |= ZF>,) — Sit1 = ZF>,

14



Introduction Second-Order ZF in Type Theory Model Constructions

000 000000 [ele]e] le}
:

Discussion

[e]e]

LARGE MODELS: ZF-,

Intensional models M : Typej embed into 7;if j < i:
tx =T17(Xy.yex)(Lom)

Lemma

Upn = 7 M is a universe. Moreover, if M |= ZF>,, then U,
contains n universes and it follows that S; = ZF >, 1.

Theorem (informal)
ZF-~, has a model for every n.

Fact
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LARGE MODELS: ZF,

Sharpen last result using further ingredients:

» Excluded Middle: VP : Prop. P Vv —P

» Cumulative Hierarchy: well-ordered stratification
» Truncation: if ZF>, has a model so does ZF,
>

Embedding: any two models of ZF are either isomorphic
or one is an initial segment of the other [Zermelo, 1930]

v

Categoricity: any two models of ZF,, are isomorphic

[Kirst and Smolka, 2017] 15



Introduction Second-Order ZF in Type Theory Model Constructions Discussion

000 000000 [e]e]ele] ] [e]e]
: :

LARGE MODELS: ZF,

Sharpen last result using further ingredients:

» Excluded Middle: VP : Prop. P Vv —P

» Cumulative Hierarchy: well-ordered stratification
» Truncation: if ZF>, has a model so does ZF,
>

Embedding: any two models of ZF are either isomorphic
or one is an initial segment of the other [Zermelo, 1930]

» Categoricity: any two models of ZF,, are isomorphic

Theorem (informal)
ZF,, has a unique model (up to isomorphism) for every n.

[Kirst and Smolka, 2017] 15
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WHAT ELSE IS IN THE PAPER?

General properties of membership embeddings

Partial extensional models using weaker quotient axioms

>
>
» Least universe is the class of hereditarily finite sets (x)
» Equivalence of ZF and ZF> (*)

>

Independence of Foundation over the rest of ZF (x)

(*) Assuming Excluded Middle

16
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COQ FOR SET THEORY

» Axiomatic freedom enables independence proofs

» Type classes for structures and axiom systems

» Well-founded recursion immediate on type-level

» Universe polymorphism allows feasible model embedding
» Compact development (4250 loc: 1600 spec, 2650 proof)

WwWww.pS.uni-saarland.de/extras/cppl8—-sets/

17
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FUTURE WORK

» Formalisation of first-order set theory:
Independence of choice and continuum hypothesis
by embedding of first-order syntax

» Type-theoretic versions of cardinality results:
Hartogs: for any type there is a larger well-ordered type
Sierpinski: GCH implies AC

19
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DEVELOPMENT DETAILS

File Spec  Proof
Prelims.v 236 92
Embeddings.v 92 227

| Aczelv | 140 229 |
Quotient Constructions | 244 377
Large.v 45 85

| Basicsv | 174 295 |
Uncountable.v 26 32
Stage.v 99 256
Infinity.v 132 348

| Zermelov | 177 304 |
Categoricity.v 15 30
Truncation.v 103 216

| Permutation.v | 108 168 |
Total 1591 2659
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OVERVIEW OF RESULTS

Formal Statement Axioms
T & ZF_ none
SIEZ CE, P4
S EZF CR, Pl,
T = ZF= and S; = ZF TD, Pl5
Vn: N.aM. M = ZF>, TD, Pl5
M EZF — (Vx.x € Q <> x € HF) XM
M EZF - M = ZF> XM
M E=ZF>1 - M = ZF none
(IMM = ZF>,) - (IM.M = ZF,) XM
Vn: N.3IM. M E ZF, TD, XM
M = ZF* — Mg = ZF XM
M )ZZF_)M(Ol) ):ZF* + =Found XM

21
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HEREDITARILY FINITE SETS

The classes FI of finite sets and HF of hereditarily finite sets are

y €FI xe€FI Vyex.yeHF
DeFl xyeFl x € HF

Set Q := |Jw, then:
» xcQiffx e HF
» () is least universe
> M ZFiff M = ZF>,

22
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INDEPENDENCE OF FOUNDATION

If M is a model of ZF without Foundation, then
Muwr = (Xx.x € WF) induces a model of ZF.

If M is a model of ZF, then every permutation F : M — M
induces a model MF of ZF without Foundation:

Op =m"10 PNy x:=nYPnN(rx))
{x,y},. = 1 ({x,y}) FQ.x := 7 Y{(FQ(n x))
U, x == 7 1 (UJ(rQ(r x))) 6P = 6P

(
Pex =1 (n'Q(P(rx)) x€ry=x¢€(ry)

Any transposition F := (x {x}) yields a model Mr with x € x.

23
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