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Introduction Second-Order ZF in Dependent Type Theory Embedding Theorem and Categoricity Results Discussion

CONTRIBUTION

Formalisation of second-order set theory 2ZF in Coq + XM:
I Natural axiomatisation following [Barras, 2010]
I Cumulative hierarchy characterised by inductive predicate
I Zermelo’s embedding theorem [Zermelo, 1930]
I Quasi-categoricity: models of 2ZF only differ in height
I Models of 2ZF have uncountable cardinality
I Grothendieck universes are inner models
I Concise development in 1500 loc (500 spec, 1000 proof)

www.ps.uni-saarland.de/extras/itp17-sets/
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WHAT IS A MODEL OF ZF SET THEORY?

M

...

...

...
I Empty set ∅ at the root

I More sets formed by set operations
(union, power, replacement, etc.)

I Stages are iterated powers: "Pα ∅"

I Universes are "large" stages closed
under all set operations

I Only well-founded sets exist
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HOW DO MODELS OF ZF SET THEORY RELATE?

M

...

...

...
M′

...

...

...

∈-bisimilarity ≈

∅M ≈ ∅M′

{∅M} ≈ {∅M′}

...

dom(≈)

ran(≈)

dom(≈)

M

ran(≈)

I [Skolem, 1922]: arbitrarily incompatible models in FOL
I [Zermelo, 1930]: models embed as universes in HOL
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SET STRUCTURES

Definition
A set structure is a type M together with constants

_ ∈ _ : M→M→ Prop
⋃

: M→M

∅ : M P : M→M
_@_ : (M→M→ Prop)→M→M

for membership, empty set, union, power, and replacement.

Definition
We define the class of well-founded sets inductively by:

∀y. y ∈ x→WF y
WF x

The corresponding induction principle is called ∈-induction.
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AXIOMS SYSTEM OF ZF

Definition
A set structure M is a model of ZF if

Ext : ∀x, y. x ⊆ y→ y ⊆ x→ x = y
Eset : ∀x. x 6∈ ∅

Union : ∀x, z. z ∈
⋃

x↔ ∃y. z ∈ y ∧ y ∈ x

Power : ∀x, y. y ∈ Px↔ y ⊆ x
Rep : ∀R, x, z.R ∈ F(M)→ z ∈ R@x↔ ∃y ∈ x.Ryz

Found : ∀x. x ∈WF

where R ∈ F(M) means that R : M→M→ Prop is functional:

∀x, y, y′.Rxy→ Rxy′ → y = y′

6
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GROTHENDIECK UNIVERSES

Definition
A set U is called a (Grothendieck) universe if for all x ∈ U:

(1) x ⊆ U transitivity
(2) ∅ ∈ U inhabitance
(3)

⋃
x ∈ U closure under union

(4) Px ∈ U closure under power
(5) R ∈ F(M)→ R@x ⊆ U→ R@x ∈ U closure under replacement

Fact
If M is a model and U : M is a universe, then (Σx. x ∈ U) is a model.
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CUMULATIVE HIERARCHY AND UNIVERSES

Definition
We define the inductive class S of stages by the following rules:

S x
S (Px)

∀y. y ∈ x→ S y
S (

⋃
x)

If a stage x satisfies x ⊆
⋃

x, then we call x a limit.

Theorem
(1) S is well-ordered by inclusion and every set occurs in a stage.
(2) Universes are exactly inhabited limits closed under replacement.

Sketch.
(1) Linearity by double-induction [Smullyan and Fitting, 2010],
least elements and exhaustiveness by ∈-induction.
(2) Universe U is a stage since U =

⋃
{ x ∈ U | S x }.
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THE EMBEDDING THEOREM [ZERMELO, 1930]
Definition
For M,M′ we define ∈-bisimilarity ≈: M→M′ → Prop by

∀y ∈ x. ∃y′ ∈ x′. y ≈ y′ ∀y′ ∈ x′.∃y ∈ x. y ≈ y′

x ≈ x′

If ≈ is both total and surjective, we call M and M′ isomorphic.

Fact
The following statements hold for x ≈ x′:
(1) ≈ is functional and injective
(2) ∅ ≈ ∅
(3)

⋃
x ≈

⋃
x′

(4) Px ≈ Px′

(5) R@x ≈ R@x′ for R ∈ F(M) with R@x ⊆ dom(≈)
(6) dom(≈) is a universe (provided it is a set)
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THE EMBEDDING THEOREM [ZERMELO, 1930]
Definition
For M,M′ we define ∈-bisimilarity ≈: M→M′ → Prop by

∀y ∈ x. ∃y′ ∈ x′. y ≈ y′ ∀y′ ∈ x′.∃y ∈ x. y ≈ y′

x ≈ x′

If ≈ is both total and surjective, we call M and M′ isomorphic.

Theorem
(1) Either M and M′ are isomorphic, or
(2) ≈ is total and ran(≈) is a universe of M′, or
(3) ≈ is surjective and dom(≈) is a universe of M.

Sketch.
First prove ≈ total or surjective on stages. Then use that the
stages exhaust all sets. If dom(≈) or ran(≈) are sets, they are
universes since they reflect the original model structure.
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CATEGORICITY RESULTS

Fact
ZF is categorical in every cardinality, i.e. if there is a bijection
F : M→M′ between two models, then M and M′ are isomorphic.

Definition
ZFn is ZF plus the existence of exactly n : N universes.

Fact
ZFn is categorical for every n : N, i.e. if there are two models M,M′

that satisfy ZFn, then M and M′ are isomorphic.
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FUTURE WORK

I Model Constructions in Type Theory following
[Aczel, 1978], [Werner, 1997] and [Barras, 2010]:
Prove the axiomatisations ZFn consistent

I Formalisation of first-order set theory:
Independence of choice and continuum hypothesis
by embedding of first-order syntax.

I Type-theoretic versions of cardinality results:
Hartogs: for any type there is a larger well-ordered type
Sierpinski: continuum hypothesis implies axiom of choice

12
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LINEARITY OF STAGES

Lemma (Double-Induction)
For a binary relation R on stages it holds that Rxy for all x, y ∈ S if
(1) R(Px)y whenever Rxy and Ryx and
(2) R(

⋃
x)y whenever Rzy for all z ∈ x.

Theorem
If x, y ∈ S, then either x ⊆ y or Py ⊆ x.

Sketch.
Apply double-induction for Rxy := x ⊆ y ∨ Py ⊆ x.
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DEVELOPMENT DETAILS

File Spec Proof
Model.v 60 0
ST.v 139 212
Uncountable.v 21 14
Instances.v 37 66
Stage.v 95 251
Embeddding.v 163 297
Categoricity.v 9 11
Minimality.v 9 46
ZFn.v 12 28
Total 545 925
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