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HISTORICAL SKETCH

Situation in the late 19th century:
I Mathematical branches based on their own assumptions
I Mostly following the axiomatic method:

Purely logical derivation of theorems from first-principles
I Unifying approaches proposed by Cantor and Frege
I These systems were found to be logically inconsistent by

Cantor, Burali-Forti, Zermelo, Russell, ...

Two solutions to the foundational crisis:
I Axiomatic Set Theory: ZFC (Zermelo, Fraenkel, ...)
I Dependent Type Theory: MLTT (Martin-Löf, ...)

3[Zermelo, 1908], [Fraenkel, 1925], [Martin-Löf, 1985]
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WHAT IS A FOUNDATION OF MATHEMATICS?

Mathematics = Objects + Reasoning

A foundational system provides a common language and
logical system for all of mathematics. Important properties are:
I Universality: every mathematical concept can be

expressed and no particular branch is preferred
I Precision: the language is unambiguous and the

assumptions and steps in every argument can be identified
I Effectiveness: there are simple algorithms checking the

well-formedness of statements and correctness of proofs
I Consistency: the system is empirically free of logical flaws
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WHAT IS A SATISFACTORY FOUNDATION?

Mathematics = Objects + Reasoning

What are mathematical objects?
What are mathematical proofs?

A satisfactory foundation answers these and related questions
in a convincing way. Furthermore, the system is practical:
I Accessibility: the system is simple and intuitive
I Mechanisability: proof checking and proof automation
I Community: improvement and standardisation
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THE IDEA OF TYPES

A type is a collection of objects sharing an operational property.

Typical examples:
I Natural numbers n : N
I Numerical functions f : N→ N
I Functionals F : (N→ N)→ (N→ N)

I Boolean predicates p : N→ B

Typing rules fix the operational behaviour of the types.
Typeable statements: ( f n : N), (F f : N→ N), (F f n : N), (p n : B)
Untypeable statements: (n n : ?), ( f f : ?), (F n : ?), (F p : ?)
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THE IDEA OF COMPUTATIONS

Types consist of canonical elements as well as computations.

Consider the identity I : N→ N on natural numbers:

I n := n  I := λn.n

Terms like I 3 and I n for n : N have type N and describe
procedures that evaluate to canonical numbers. For instance:

I 3 = (λn.n) 3 � 3 3 + 2 � 4 + 1 � 5

Computation is well-behaved on typeable terms.
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MORE TYPES

There are two primitive types:
I Unit type >with a single canonical element T : >
I Empty type ⊥with no canonical element

We have seen the type former A→ B for function types.
There are two more primitive type formers:
I Product type A× B of pairs (a, b) for a : A and b : B

with projections p1 : A× B→ A and p2 : A× B→ B
I Sum type A + B with elements i1 a and i2 b

for injections i1 : A→ A + B and i2 : B→ A + B
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INDEXED PRODUCTS AND SUMS

Using the natural numbers N we can think of a generalisation
of the binary products and sums for types A0, A1, A2, ... :

A0 × A1 × A2 × . . . A0 + A1 + A2 + . . .

Members of the first: functions giving an element of An for n : N
Members of the second: pairs of an index n and a member of An

So binary products and sums have dependent counterparts:

I Π(x : B).A x containing functions λx. s with (λx. s) b : A b
I Σ(x : B).A x containing pairs (b, a) with b : B and a : A b

Here A : B→ U is a type family on a type U of types.
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INTERNAL LOGIC

Consider the typing rules for function application and pairing:

` f : A→ B ` a : A
` f a : B

` a : A ` b : B
` (a, b) : A× B

These have a well-known logical reading if we interpret→ as
implication, × as conjunction, and leave out the terms.

The internal logic can be summarised by two slogans:
Propositions-as-types (CH) and proofs-as-terms (BHK).

For instance, a logical formula φ corresponds to the type A of
its proofs. Then the logical tautology that φ implies itself is
reflected by the type A→ A. This type is inhabited by the term
λa. a which corresponds to a proof of the implication.
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INTERNAL LOGIC: OVERVIEW

Logical concept Interpretation Proof term
Truth > the canonical proof
Falsity ⊥ no proof
Conjunction A× B pair of proofs of A and B
Disjunction A + B either a proof of A or of B
Implication A→ B function from A to B
Negation A→ ⊥ special case of the above
∀-quantification Π(x : A).P x function mapping a to P a
∃-quantification Σ(x : A).P x a witness a and a proof of P a

Equality on a type A is expressed by an additional type s =A t:

` s : A
` e s : s =A s

` H : P s ` P : A→ U
` E= H : s =A t→ P t
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SOME PEANO ARITHMETIC

Natural numbers are generated from zero and its successors:

` 0 : N ` S : N→ N
` s : A ` f : A→ A
` EN a f : N→ A

The eliminator EN enables direct recursive definitions:

m + n := EN m (λn′.S n′) n m ∗ n := EN 0 (λn′.m + n′) n

These satisfy the desired equations computationally:

m + 0 � m m ∗ 0 � 0
m + (S n) � S (m + n) m ∗ (S n) � m + (m ∗ n)
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MORE PEANO ARITHMETIC

Proving the Peano Axioms means to construct elements of the
types corresponding to the respective statements:
I Disjointness: Πn. 0 6= S n
I Injectivity: Πmn.S m = S n→ m = n
I Induction is established by a generalised eliminator:

` s : P 0 ` f : Π(n : N).P n→ P (S n)

` EN s f : Π(n : N).P n

Here P : N→ U is interpreted as a unary predicate on N.
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MATHEMATICAL FOUNDATION

I Universality: the elementary mathematical concepts are all
primitive and the internal logic has the extend of
high-order predicate logic

I Precision: the language is unambiguously formal and the
internal notion of proof provides fully detailed reasoning

I Effectiveness: well-formedness and correctness of proofs
are both instances of the type checking algorithm

I Consistency: MLTT can be proven to be equiconsistent to
(strong and constructive versions of) ZFC set theory
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PRACTICALITY

I Accessibility: MLTT similar to ZFC if presented in
reasonable detail, captures the pre-formal intuition of
mathematical types, concepts like induction an recursion
built-in

I Mechanisability: easily implementable such as any other
functional programming language, already led to
groundbreaking and extensive formalisation projects
(Four-colour theorem, Kepler conjecture, etc.)

I Community: currently ZFC is the mathematical
mainstream, hence MLTT is less standardised and has to
deal with suspicions
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CONVINCING ANSWERS

Mathematics = Objects + Reasoning

What are mathematical objects? - Mental constructions!

What are mathematical proofs? - Mental constructions!

These constructions are intuited by the human mind instead of
presupposing the existence of platonic ideas as abstract entities
in some conceptual universe. Truth means provability.
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INTUITIONISTIC LOGIC

Not every classical proof corresponds to a construction.
Hence MLTT naturally implements intuitionistic logic:

I Statements such as the law of excluded middle unprovable:

Π(A : U).A + ¬A

I However, these can still be assumed consistently
I Proofs of disjunctions and existentials bear information:

Π(x : A).Σ(y : B).P x y + Q x y

I No need for explicit computational models
I Advantageous for subclassical analyses
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HIGHER-ORDER LOGIC

Objects of any order are accommodated as first-class entities.
Hence MLTT naturally implements higher-order logic:

I Uniform quantification and function application:

ΣF.Π(A : U)(P : A→ U).P (F P)

I No complete proof system can exists (for full semantics)
I Completeness plays a minor role in a constructive setting
I Instead admits categorical descriptions of structures
I Internal functions in ZFC simulate some of this strength:

∃ f .∀p ∈ P(ω). f (p) ∈ p

18



Foundations of Mathematics Dependent Type Theory Discussion

EQUICONSISTENCY OF MLTT AND ZFC

Types-as-sets interpretation:
I Type-theoretic constructions can directly be interpreted by

their set-theoretic counterparts: [[A× B]] := [[A]]× [[B]], etc.
I Yields a denotation function [[_]] from typed terms to sets

such that [[a]] ∈ [[A]] holds whenever ` a : A
I Hence every proof c : ⊥ entails an element [[c]] ∈ ∅

Sets-as-trees interpretation:
I The inductive type of well-founded trees can be shown to

satisfy most set-theoretic axioms
I Hence every derivable contradiction within a certain

subsystem of ZFC can already be simulated within MLTT
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CONCLUSION

Both MLTT and ZFC are formal foundations of mathematics.

However, there are advantages of MLTT over ZFC:
I Suitability for modern applications
I Convincing philosophical system
I Informative intuitionistic logic
I Expressive higher-order logic
I Inductive types with built-in recursion

No definite answer but MLTT seems a good candidate for now.
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