
Fachrichtung 6.2 – Informatik
Naturwissenschaftlich-Technische Fakultät I
– Mathematik und Informatik –
Universität des Saarlandes

Jacke – A Parser-Generator Tool for Standard ML

Jan Schwinghammer
jan@ps.uni-sb.de

Programming Systems Lab

Saarland University, Germany

Fortgeschrittenen-Praktikum

Angefertigt unter der Leitung von
Prof. Dr. Gert Smolka

Vorgeschlagen und betreut von
Leif Kornstaedt und Andreas Rossberg

February 28, 2002

Jacke – A Parser-Generator Tool for Standard ML

Jan Schwinghammer

jan@ps.uni-sb.de

Programming Systems Lab

Saarland University, Germany

Introduction

In this report, design, usage and implementation of the Jacke tool are described. Jacke is a parser
generator for Standard ML [4], generating LALR parsers from grammar specifications which can be
embedded into ordinary ML code. It features compositional syntax to specify grammar productions,
closely resembling ML notation.
Outline. In the following section, a brief overview of the functionality of Jacke is given. Next,
usage of the tool is explained in detail, and an example is presented. Finally the implementation is
described, though it is not necessary to read this part in order to use Jacke. The present version
does not contain all the features of the original proposal [5], possible extensions are discussed at
the end of the next section on page 3.
Acknowledgment. The implementation of Jacke has been supervised by Leif Kornstaedt and Andreas
Rossberg. The software makes use of parts of ML-Yacc [6], which is copyrighted by David R. Tarditi
and Andrew W. Appel.

Functionality of the Tool

Jacke is a parser-generator tool, similar to the Yacc tools, but with SML consistent syntax. One of
the main design goals of Jacke is simplicity. It features the following properties:

• grammar definition and parser declarations embeddable into SML source code

• extended, “compositional” Backus-Naur-Form for the specification of grammar productions
and semantic actions, similar to the use of parser combinators

• ability to deal with multiple start symbols

Contents

Introduction 1

Functionality of the Tool 1

Overview 2

Limitations and possible Extensions 3

Detailed Description 4

Syntax and Semantics 4

Example 6

Implementation 8

Lexer and Parser 9
Normalization 9
Generation of LALR Tables 10
Code Generation 10
Performance 11

Conclusion 11

References 12

Like ML-Yacc [6], Jacke generates (SML code for) parsers for LALR languages [1]. Context-
free grammars are used to specify the syntax of the language to be parsed. Such a grammar
consists of disjoint sets T and NT, a set P , and a start symbol s ∈ NT. Elements in T are
called terminals, or tokens, elements in NT are called nonterminals. A symbol is either a terminal
or nonterminal, the set of symbols is denoted by S = T]NT. P contains the productions, or
rules, of the grammar, which are of the form (A, σ1 . . . σk), where A ∈ NT and σi ∈ S. A string
α1 . . . αk−1σ1 . . . σmαk+1 . . . αn of symbols is derivable from the string α1 . . . αk−1Aαk+1 . . . αn if
there is a production (A, σ1 . . . σm) ∈ P . The language defined by the grammar is the set of strings
of tokens derivable from s in zero or more steps.

Just as ML-Yacc, Jacke uses an attribute grammar scheme with synthesized attributes. Each
symbol in the grammar is associated with such an attribute (i.e., an ML value), and each production
(A, σ1 . . . σk) has a semantic action associated with it. Parsers perform bottom-up, left-to-right
evaluations of parse trees, and so the attribute associated with A can be computed from those
associated with the σi, using the corresponding semantic action. The result of a successful parse is
the attribute associated with the start symbol s of the grammar.

In contrast to ML-Yacc, the specification of the parser is embeddable into ordinary SML code.
Moreover, we think ML-Yacc is too restrictive in several aspects by requiring that

• nonterminals must be explicitly defined, and a type needs to be annotated for each nonterminal

• the type of positions must be specified and by

• only allowing for the definition of grammars with a single start symbol

The dependance of generated parsers and lexers is complicated by the fact that ML-Yacc generates
“token functions”, which a lexer must call instead of simply supplying the tokens. Moreover, the
output of ML-Yacc is a whole collection of SML functors which must be instantiated before the
actual parser is produced.

Jacke addresses all of these issues. Nonterminals need not be defined explicity, and in particular
it is not necessary to annotate types for the associated semantic attributes. In parsers produced by
Jacke, all symbols carry left and right position information of arbitrary, user-definable type. This
information is available to semantic actions and is also used in syntactic error messages, but the
actual parser is polymorphic in this type. Further, several parsers may be defined in a single file,
corresponding to the definition of multiple start symbols. Finally, a simplification is obtained by
providing a token datatype. The lexer only needs to yield the sequence of these tokens, along with
their respective positions.

Overview

Token declarations in Jacke look very much like SML datatypes. Jacke translates them to a corre-
sponding datatype token. Associativity declarations mimic SML infix directives. For example,

token PLUS | MINUS | TIMES | NUM of int

assocl TIMES

assocl PLUS MINUS

declares four tokens, where the NUM token carries an integer as additional semantic attribute. Fur-
ther, TIMES, PLUS and MINUS are declared to be associative to the left, and TIMES is given highest
precedence.

The actual productions of the grammar (which are usually mutually recursive) take the form
of rule bindings, resembling SML function definitions. They may include a type annotation on the
left hand side, documenting the type of the intended return value. The right hand sides of rule
bindings, commonly just a sequence (‘,’) of symbols, are extended to BNF expressions. These are

2

result transformations (‘=>’) and alternatives (‘|’), which are compositional in structure, i.e. they
may be nested arbitrarily. To continue the example of arithmetic expressions, consider the rule
bindings

rule exp :int =

NUM

| n1 as exp, oper, n2 as exp => (oper (n1,n2))

and oper =

PLUS => (op+)

| MINUS => (op-)

Conceptionally, each BNF expression returns a value, synthesized from the attributes of the subex-
pressions. For token identifiers without token attributes, this is (). For tokens with attributes
(those having an ‘of’ part, such as NUM above), this is just their attribute. Sequential expressions
return the tuple of their component results, alternative expressions return the value of the rule that
was successful. The combinator ‘=>’ allows results to be transformed into a different value, using
SML expressions.

The ‘as’ expression allows a subexpression result to be named, so that it is available in following
result transformations. As short hand, expressions consisting of a symbol identifier symid only (such
as oper above) stand for the expression symid as symid. This often allows for more compact rules
and is consistent with the scheme used to name results of subexpressions in New Jersey’s ML-Yacc.
Finally, there is the expression ‘skip’, representing ε. The value associated with ‘skip’ is ().

Rules may be given explicit precedences, allowing to deal with conflicts occurring during gen-
eration of the LALR tables. For example, one would write

rule exp =

n1 as exp, oper, n2 as exp => (oper (n1,n2)) prec PLUS

when implementing an evaluator for arithmetic expressions.
The start symbols of the grammar are declared using parser bindings. Only these declarations

actually generate SML functions. A parser binding just denotes the corresponding start symbol,
and conversely, only these declarations specify start symbols of the grammar. For example,

parser eval = exp

will generate the actual parsing function eval for the above grammar with start symbol exp,
taking a lexer as input to produce the parse result. The type of the lexer, α lexer, is unit →
token option× α× α, where α is the type of positions.

Limitations and possible Extensions

Although it is most likely sufficient for practical purposes, having no scoping for the input to
Jacke is not satisfying from an aesthetical point of view. However, the advantage of this approach
is that only few assumptions on the syntax of SML are made apart from some basic keywords,
string literals, comments, and bracket structure. In particular, the tool should work well with most
extensions of Standard ML.

A useful extension is to also allow productions to contain inherited attributes. This was specified
by Andreas Rossberg in the original proposal [5] as follows. A rule may contain an optional argument
pattern which represents the inherited atribute. To pass these attributes, each occurrence of the
left hand side symbol of this rule in the grammar must be followed by a corresponding attribute
application. Thus, one might specify a rule such as

rule exp E =

LET, ID, EQUAL, n1 as exp E, IN, n2 as exp (insert(E,ID,n1)) => (n2)

3

using environments (which are extended during the parse) for the evaluation of an expression syntax
with let. Used as a start symbol, a parameterised symbol would create a parsing function with an
additional (curried) argument.

Further, rule templates are conceivable, i.e. generic rules parameterised over BNF expressions.
Such templates are available in Gump, see [3].

Detailed Description

In this section, usage of Jacke to develop LALR parsers for SML is described in detail.

Syntax and Semantics of Specifications

The syntax of specifications extends ML syntax [4], as defined by the following grammar.

dec ::= . . . extends declarations by

| token tokbind token declaration

| assocl symid1 . . . symidn left associative symbols (n ≥ 1)

| assocr symid1 . . . symidn right associative symbols (n ≥ 1)

| nonassoc symid1 . . . symidn non associative symbols (n ≥ 1)

| rule rulebind production rule

| parser parsbind start symbol

tokbind ::= symid 〈of type〉 〈| tokbind〉

rulebind ::= symid 〈: type〉 = bnfexp 〈and rulebind〉

parsbind ::= vid 〈: type〉 = symid

bnfexp ::= skip ε

| symid terminal or non-terminal symbol

| (bnfexp)

| vid as bnfexp naming

| bnfexp , bnfexp sequence

| bnfexp prec symid precedence annotation

| bnfexp => (exp) result transformation

| bnfexp | bnfexp alternative

From a given input file file, Jacke produces a file file.out which contains the toplevel SML decla-
rations, datatype declarations for the specified tokens, and finally, for each specified parser, SML
code which implements the corresponding parsing function.

Toplevel declarations are simply copied in the output. Each token declaration

token symid1 〈of type1〉 | . . . | symidn 〈of typen〉

is translated to a corresponding datatype declaration

datatype token = symid1 〈of type1〉 | . . . | symidn 〈of typen〉

4

If several differing token declarations are found in the input file, Jacke will issue a warning message
and regard the last declaration as the one specifying the terminal symbols of the grammar. Never-
theless it makes sense to have more than one token declaration in the source file, e.g. when writing
code for both a signature and a matching structure.

From all the associativity declarations and rule bindings found in the input file, a single structure
containing the generated LALR tables and some further declarations is generated1. This means
that these declarations are global, and in particular there is no scoping of these declarations possi-
ble. Consequently, multiple associativity declarations for a single token lead to an error message.
However, precedences are assigned to terminal symbols according to the order in which associativity
declarations occur in the input.

Nonterminals of the grammar are implicitly defined by the rule bindings. An error message is
generated if identifiers occur in some right hand side that are neither tokens nor appear on the left
hand side of any rule. Start symbols are defined through parser declarations. Each parser decla-
ration will produce SML code implementing a parser for the language described by the grammar
with that specific start symbol. This generated function will take a lexer as input to produce the
result of the parse, i.e. the semantic attribute of the start symbol.

Rule bindings associate each nonterminal A with an BNF expression. BNF expressions provide
the notation for specifying the productions with left hand side A. At the same time, they describe
the synthesized attribute to be associated with A. Internally, Jacke rewrites these BNF expressions
into the form of ordinary grammar productions.

skip is just the empty sequence, with associated attribute (). symid stands for the symbol symid
and returns the value associated with symid. Similarly, vid as bnfexp stands for bnfexp, returning
its attribute. As short hand, expressions consisting of a symbol identifier symid only stand for
the expression symid as symid. This naming scheme is subject to the condition that names in a
sequence of BNF expressions are distinct. The value associated with a sequence bnfexp1 , bnfexp2

is the tuple of the values of the elements.
In the result transformation bnfexp => (exp), the SML code exp may use identifiers which are

bound by bnfexp. These environments are defined in the following way.

env (symid) = {symid}

env (vid as bnfexp) = {vid}

env ((bnfexp)) = env (bnfexp)

env (bnfexp1 , bnfexp2) = (env (bnfexp1) ∪ env (bnfexp2))− (env (bnfexp1) ∩ env (bnfexp2))

For the remaining cases, env (bnfexp) = ∅ is just the empty set, i.e. no identifiers are bound. This
could be relaxed to some extent, for example by defining env (bnfexp1 | bnfexp2) = env (bnfexp1) ∩
env (bnfexp2). For simplicity, this is not done. Apart from the attributes of identifiers id in
env (bnfexp), the semantic action exp may use position information that is made available by the
lexer. Access is provided via the identifiers idleft and idright, respectively2.

An alternative bnfexp1 | bnfexp2 denotes a rule for each case. More exactly, it stands for a fresh
nonterminal A and an extended grammar, with the two new rule bindings

rule A = bnfexp1 and rule A = bnfexp2

Finally, Jacke allows to assign precedences to rules by the BNF expression

bnfexp prec symid

Here, the precedence of symid is assigned to bnfexp. Precedences and associativities are used to
resolve shift/reduce conflicts which may occur during generation of LALR tables.

1The structure is output at the position of the first rule binding in the source.
2
id.left, or left(id), certainly would be preferrable, but this would also mean writing id.result or result(id),

respectively, whenever referring to the semantic value of id.

5

This precedence scheme is the same as used in Yacc, and is in fact directly inherited from ML-
Yacc: each rule is assigned the precedence of its rightmost terminal. A shift/reduce conflict can be
resolved if both rule and lookahead symbol have precedences. The result is a shift if the symbol
has higher precedence, and a reduction if the rule has the higher precedence. If the respective
precedences are equal, associativity information for the lookahead symbol is used to resolve the
conflict.

In the case of an left associative token, the reduction is chosen, in the case of a right associative
token the conflict is resolved by shifting. Finally, if the token is declared nonassociative, or else if
token or rule have not been assigned a precedence, a warning is produced and the shift is chosen.

Reduce/reduce conflicts are resolved as in ML-Yacc by always choosing the rule appearing first
in the input. However, this should be utilised with great care only, since new rules are generated
by Jacke when rewriting BNF expressions.

Jacke generates code that makes the following assumptions on the scope. The rule and parser
declarations must be in the scope of the token declaration. In the current implementation, the
generated parsers will call an error function parseError if a syntactical error is detected during
the parse. This function takes as input the current position:

parseError : position type → parse result type

The generated code will assume this function in the environment. Note that this design decision is
necessary since the parser does not know the type of positions, but usually the user should know
about the position where the error has been detected.

Observe that skip is not available as name to semantic actions. However, this can always be
simulated by writing

name as skip => (. . .)

In particular, it is possible to obtain position information in this way. Also note that (type) errors
in the generated code, in particular those in the functions implementing the semantic actions, are
most likely caused by mismatching types of the rule attributes. To facilitate debugging of parser
specifications, the corresponding positions in the source are printed in the output. However, due
to the normalization with its generation of additional rules, this is not always possible.

Example – A Parser for Pure Lambda Calculus

The following sample code defines an SML structure containing an abstract syntax data type, and
a second structure containing a parser for terms of the lambda calculus. The result of a parse will
be an abstract syntax tree for the input token sequence.

structure AbstractSyntax =

struct

datatype abs_syn =

Var of string | App of abs_syn * abs_syn | Lam of string * abs_syn

end

structure Parse =

struct

structure A = AbstractSyntax

token VAR of string | LPAR | RPAR | DOT | LAM

6

assocl VAR LPAR LAM

rule exp =

VAR => (A.Var VAR)

| e1 as exp, e2 as exp => (A.App (e1,e2)) prec VAR

| LAM, VAR, DOT, exp => (A.Lam (VAR,exp))

| LPAR, exp, RPAR => (exp)

parser parse = exp

end

From this code, Jacke will generate a file containing the following SML objects.

(* just copied *)

structure AbstractSyntax :

sig

datatype abs_syn

= App of abs_syn * abs_syn | Lam of string * abs_syn | Var of string

end

structure Parse :

sig

structure A : <sig>

(* generated from Jacke declarations *)

structure JackeDeclarationsStruct__1013197552 : <sig>

(* generated from token declaration *)

datatype token = DOT | LAM | LPAR | RPAR | VAR of string

(* generated from parser declaration *)

val parse : (unit -> token option * ’a * ’a) -> AbstractSyntax.abs_syn

end

The additional structure contains the LALR tables as well as some internal definitions. The
generated code for the parse function makes use of a previously defined error function in the
environment, which takes a position as input. In the case of syntactical errors occuring during
a parse, this function is called with argument the position where the error has been detected.
Moreover, the code for the parsing engine for the generated LR parsers is in the files LrTable.sml
and LrParser.sml, which must be in the environment before compiling the generated file.

All that is left is to provide a lexing function nextToken to the parser,

nextToken : unit → token option× position type× position type

When applied to (), this function should yield the next token of the input, if any. If, for example,
using the ML-Lex lexer generator, the following would be a suitable specification file.

structure P = Parse

type posType = int

type lexresult = P.token option * posType * posType

val linenum = ref 1

val error = fn x => TextIO.print(x ^ "\n")

val eof = fn () => (NONE, !linenum, !linenum)

%%

7

%structure Lexer

alpha=[A-Za-z];

digit=[0-9];

ws = [\ \t];

%%

\n => (linenum:=(!linenum+1); lex());

{ws}+ => (lex());

"\\" => (SOME P.LAM,!linenum,!linenum);

{alpha}+ => (SOME (P.VAR yytext), !linenum,!linenum);

"(" => (SOME P.LPAR, !linenum, !linenum);

")" => (SOME P.RPAR, !linenum, !linenum);

"." => (SOME P.DOT, !linenum, !linenum);

. => (error ("lexer: ignoring bad character "^yytext); lex());

This will produce a structure Lexer containing the function makeLexer. From this, it is easily
possible to assemble a function taking a filename as input and parsing this file. This is demonstrated
by the following piece of code.

val fileParser = fn f =>

let val ins = TextIO.openIn f

val lexer = Lexer.makeLexer (fn n => TextIO.inputN (ins,n))

val result = Parse.parse lexer

val _ = TextIO.closeIn ins

in

result

end

handle e => (TextIO.closeIn ins; raise e)

Consult the ML-Lex documentation [2] for further details on how to generate lexical analysers with
this particular tool.

Implementation

In this section, the implementation of the tool and design decisions made for this implementation
are described at a high level. The implementation itself can be roughly divided into four parts, as
sketched in Figure 1: lexer and parser for Jacke itself, normalization phase, LALR table generation,
and code generation. The code for the parsing engine for the generated LR Parsers is in the files

Code generation

LALR table generation

Normalization Translation

Lexer Parser

output.sml, mkprstruct.sml, verbose.sml

ML-Yacc files: sigs.sml, grammar.sml, lalr.sml,
core.sml, utils.sml, coreutils.sml, look.sml,
shrink.sml

NormalForm.sml, Translate.sml

jacke.lex, jacke.grm, AbsSyn.sml

Figure 1: Overview of the implementation. Source files for the different phases.

8

LrTable.sml and LrParser.sml, which must be in the environment before compiling the generated
file file.out. The present implementation of Jacke reuses code of the ML-Yacc parser generator [6].
In particular, the generation of the tables is taken without any modifications. In the following, the
phases are described.

Lexer and Parser

Lexer and parser for Jacke are generated from jacke.lex and jacke.grm using ML-Lex and ML-
Yacc, respectively. Abstract syntax datatypes are defined in AbsSyn.sml. This file also provides a
semantic analysis, checking if

• all symbols in associativity declarations are terminal symbols (i.e., defined as token)

• terminal symbols (i.e., symbols occuring in the token declaration) and nonterminal symbols
(i.e., symbols occuring on the left hand side of some rule) are disjoint sets

• all identifiers occuring on the right hand sides of rules are defined as symbols, i.e. either
terminal or nonterminal

• all start symbols, i.e. identifiers appearing in parser declarations, are defined as (nonterminal)
symbols

Moreover, a warning is issued if several differing token declarations are found in the source file. For
the subsequent processing of the input, only the positions of rule declarations are retained (more
exactly, result transformations). This information is eventually output with the corresponding
semantic action clause to facilitate debugging of grammar specifications.

Normalization

Jacke allows rules to be defined in a generalized BNF notation. Expressions given in this form are
transformed to productions in “standard” BNF, i.e., to the form

rule r = n1 as S1,. . . , nk as Sk => (exp) 〈 prec symid 〉

where k > 0, or

rule r = skip => ()

Moreover, a new start symbol S and terminals EOP and Di are introduced3, together with a rule

rule S = Di, Si, EOP => (Si)

for each declared parser with respective start symbol Si.
Given such a normalized grammar, terminals and nonterminals are internally coded as integers.

Starting with first the Di, followed by EOP and then the user-defined tokens, terminals are numbered
0, 1, 2, . . . Similarly, nonterminals are numbered, beginning with the newly introduced start symbol.

Associativity and precedences are coded according to the internal ML-Yacc scheme: precedences
are multiples p of 3, where greater integer means higher precedence. A number p stands for left-
associative, p+1 for non-associativity and precedences of rules, and p+2 means right-associative.

With the help of these codings, an “ML-Yacc grammar”, i.e., a value of the Grammar.grammar

type of ML-Yacc, is constructed from the normalized grammar productions. This is used as input
to the table generation modules of ML-Yacc, which use associativities and precedences as above to
resolve shift/reduce conflicts.

3In fact, these symbols have fresh names, to avoid name clashes with user-defined symbols.

9

Generation of LALR Tables

The code for the generation of LALR tables from a (normalized) grammar description is taken
from ML-Yacc. It produces action and goto tables which can be output using the functions in the
structure mkPrStruct. These use the internal integer representation of symbols and associativi-
ties/precedences as well as ML-Yacc’s defaults to resolve conflicts occurring during table generation.

More specifically, MakeLrTable.mkTable takes a Grammar.grammar value and returns a value
of type LrTable.table, along with a list of errors and a verbose description of the table.

Code Generation

Code for the output file file.out is generated by the “main routine”, the function Output.output.
Apart from ML toplevel declarations, which are just copied, and the generated token datatype,
the output file will contain code for

• LALR tables

• code for each individual parser, taking a lexical analyzer as input and “wrapping” it so that
it works with multiple start symbols

• a datatype of semantic values, to hold the attributes associated with symbols on the parse
stack, and a semantic actions function

To deal with multiple start symbols, the following standard trick is applied: the terminals are
(internally) extended by a set of dummy tokens, one for each start symbol. To select the right one
when parsing, the appropriate token must be the first symbol supplied by the lexer stream. This
is achieved by wrapping the lexing function in the code for each parser. Likewise, an end-of-parse
token is introduced and appended to the original lexing stream to indicate its end, as soon as the
original lexing function yields a result (NONE,p1,p2).

The semantic values datatype holds the attributes associated with symbols on the parse stack.
Generally, if k start symbols are defined, this datatype declaration takes the form

datatype (ty1, . . . , tym) svalue = VOID | EOP of unit→unit

| D1 of unit→unit | . . . | Dk of unit→unit

| tok1 of unit→tokenty1 | . . . | tokl of unit→tokentyl

| rule1 of unit→ty1 | . . . | rulem of unit→tym

where toki are the tokens, rulej the nonterminals, and tokentyi is either the specified attribute
associated with toki or unit if none is specified. Note how type variables ty1, . . . , tym are used to
leave the typing of rules implicit in the user definitions, contrasting ML-Yacc where explicit type
annotations for each nonterminal are required. In fact, this would not even work in our case since
Jacke introduces new rules during normalization.

The semantics action function implements the semantic actions associated with each rule of the
normalized grammar. For a rule

rule r = n1 as S1,. . . , nk as Sk => (exp)

the corresponding clause of function actions will match the k topmost values (and their positions)
on the parse stack, and bind them to variables n1, . . . , nk to make them accessible in code. Next,
the result is the left hand symbol of the rule along with the result of the semantic action, which is
pushed back onto the stack by the actual parser when reducing by this rule. Thus, the clause takes

10

the form

(, (SValue.Sk(nk), nkleft, nkright))

:: . . . ::(, (SValue.S1(n1), n1left, n1right)) ::stack

=> let val result =

let val n1 = n1() · · · val nk = nk()

in r(fn () => (exp)) end

in (symr, (result, n1left, nkright), stack) end

where symr is the integer coding for the symbol r. From this code fragment it can also be seen
that token names must not have constructor status in this place: considering t as abbreviation for

t as t

the pattern t(t) will appear in the above. For this reason, there is a structure generated that defines
a function for every symbol name, before the token datatype declaration appears. This structure
is then opened when defining the semantic action function. Moreover, the datatype of semantic
values is defined in a structure SValue, so the pattern has in fact the form SValue.t(t).

Performance: Delayed vs. Immediate Evaluation of Semantic Actions

Besides the above clause for the semantic action function, there is a second possibility: evaluation
of semantic actions could be delayed until the completion of a successful parse. This is the default
with ML-Yacc since it allows for error-recovery, where it must be possible to “undo” semantic
actions. The clause for the the semantic action function will in this case take the form

(, (SValue.Sk(nk), nkleft, nkright))

:: . . . ::(, (SValue.S1(n1), n1left, n1right)) ::stack

=> let val result =

r(fn () =>

let val n1 = n1() · · · val nk = nk()

in exp end)

in (symr, (result, n1left, nkright), stack) end

Note that this code generation scheme of delayed evaluation can be quite easily adapted to deal
with inherited attributes, as outlined on page 3.

delayed immediate
SML NJ 41 (182) 27 (117)
Alice 195 (389) 197 (760)
Moscow ML 120 (out of memory) 59 (255)

Figure 2: Comparing running times of delayed and
immediate evaluation of semantic actions.

Clearly, this comes at the price of higher
memory consumption and impairs efficiency.
The numbers in Figure 2 indicate this quite
clearly. The numbers are (user) time in
seconds, obtained as total sum of running
times of five runs. The considered parser
was a simple expression parser, evaluating
the expressions in the semantic actions. The input consisted of 100000 (400000) tokens in each run.
In the case of SML New Jersey and Moscow ML, the improvement in running time (and memory
usage) are quite obvious. The anomalous performance of Alice needs further investigation.

Conclusion

We presented Jacke, a parser-generator tool for SML. It features SML-consistent syntax, and def-
initions of grammars are embeddable into SML source code. The syntax for the specification of

11

grammar productions is compositional and extends Backus-Naur-Form. Jacke improves on the
comparable tool ML-Yacc by generating parsers which are significantly easier to use. It also allows
to omit some unnecessary specifications required by ML-Yacc, such as the explicit declaration of
nonterminals and the types of their associated semantic attributes.

The specification language is quite flexible and several extensions of the tool are conceivable.
For example, productions making use of inherited attributes could be included. Further, the tool
could be extended by rule templates, i.e. generic rules parameterised over BNF expressions. These
parameters could even be higher-order, allowing parameters to be rule templates themselves. Such
templates are available in Gump [3].

Finally, the performance of parsers generated by Jacke and ML-Yacc, repectively, should be
compared. This might be interesting since Jacke’s treatment of tokens as datatype and the resulting
wrapping of lexers leads to the evaluation of a case statement, for each call to the lexer. The size of
this case expression depends linearly on the number of tokens. On the other hand, the complexity
of parsers generated by ML-Yacc is largely due to a construction made in order to avoid this.
Moreover, a reasonable ML implementation will optimise the case statement to a table lookup.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1986.

[2] A. W. Appel, J. S. Mattson, and D. R. Tarditi. A lexical analyzer generator for Standard ML,
Version 1.6, Oct 1994. Available at http://cm.bell-labs.com/cm/cs/what/smlnj/doc/.

[3] L. Kornstaedt. Definition und Implementierung eines Front-End-Generators für Oz. Master’s
thesis, Fachbereich Informatik, Universität Kaiserslautern, and Programming Systems Lab,
Universität des Saarlandes, Sept. 1996.

[4] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised).
The MIT Press, 1997.

[5] A. Rossberg. Proposal for Jacke and Hose, June 1999. Personal communication.

[6] D. R. Tarditi and A. W. Appel. ML-Yacc User’s Manual, Version 2.4, April 2000. Available at
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/.

12

