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Abstract

DML is an experimental language that has emerged from the developement of the
Oz dialect Alice. DML is dynamically typed, functional, and concurrent. It supports
transients and provides a distributed programming model.

Subject of this work is the implementation of a compiler backend that translates DML
programs to Java Virtual Machine code. Code-optimizing techniques and possibilities
for the treatment of tail calls are described.

To translate DML to the Java Virtual Machine, a runtime environment is needed. This
work presents a simple and secure implementation of the basic DML runtime classes
and elaborates on relevant improvements. Pickling, a mechanism to make higher or-
der values persistent, is provided on top of the Java Object Serialization. Finally, a
high-level distributed programming model for DML is implemented based on Java’s
Remote Method Invocation architecture.

Finally, the implemented compiler and the runtime environment of DML are com-
pared to similar projects.
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Chapter 1

Introduction

The subject of this work is the implementation of DML, an experimental, functional, concurrent,
distributed, dynamically typed language with support for transients and first class threads. In
the following we present a compiler backend and a runtime environment for translating DML
programs to Java Virtual Machine code.

The goal of our work is a simple and secure implementation of DML for the JVM. We want
further to investigate the question of efficiency. We try to estimate the influence of dynamic typing
on the speed of the implementation by comparing our results with related projects. We elaborate
what support the JVM gives us for our implementation and what features we are missing.

The compiler is written in Standard ML; the implementation follows general well-known com-
piler construction techniques as described, e.g., in [ASU86, WM92]. The runtime environment
consists of Java classes that provide the basic functionality for the execution of DML programs on
the Java Virtual Machine; parts of the Standard ML basis library are implemented directly in Java
to improve efficiency.

This chapter gives an overview about the various programming languages relevant for this
work. We describe the key features of Standard ML, Oz, and Java. Further, an overview of the
important features of DML is given.

1.1 Standard ML

Standard ML is a functional language commonly used in teaching and research. ML is type safe,
i.e., a program accepted by the compiler cannot go wrong at runtime because of type errors.
The compile-time type checks result in faster execution and can help in the development process
to avoid common mistakes. The type inference system of ML makes programs easier to write
because the compiler tries to derive the type of expressions from the context.

SML supports polymorphism for functions and data types. Data-type polymorphism allows
to describe lists of ints, lists of strings, lists of lists of reals, etc. with a single type declaration.
Function polymorphism avoids needless duplication of code by permitting a single function dec-
laration to work on polymorphic types. SML functions are higher order values; functions are
dynamically created closures that encapsulate the environment in which they are defined. Func-
tions can be returned as results of functions, they can be stored in data structures and passed to
functions as arguments. Function calls in SML are call-by-value, i.e., the arguments of a function
are evaluated before the body of the function is evaluated.

In SML, most variables and data structures are immutable, i.e., once created they can never be
changed or updated. This leads to guarantees on data structures when different parts of a pro-
gram operate on common data. Such unchangable data fits well into a functional context, where
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one tends to create new structures instead of modifying old ones. The automatic garbage collec-
tion of SML supports the functional style of programs and makes code simpler, cleaner, and more
reliable. However, SML also has updatable reference types to support imperative programming.

SML comes with an exception-handling mechanism that provides dynamic nesting of handlers
and provides — similar to other languages like C++, Java, Ada, etc. — the possibility to separate
error handling from the rest of the code. The Standard ML language supports modules (called
structures) and interfaces (called signatures). The signatures of modules specify the components
and types from the module that are visible from outside.

The language and its module system are defined formally in [MTHM97]. A consequence of
having the language definition in a formal notation is that one can prove important properties of
the language, such as deterministic evaluation or soundness of type checking. There are several
efficient implementations of Standard ML available: Moscow ML, SML/NJ, and others. Moscow
ML is a light weight implementation; SML/NJ has more developer tools such as a compilation
manager and provides a concurrent extension CML.

1.2 Oz

Since 1991 the programming language Oz has been developed at the Programming Systems Lab
under the direction of Gert Smolka. Oz combines concepts of logic, functional, and object oriented
programming. It features concurrent programming and logical constraint-based inference. The
first implementation of Oz was officially released in 1995 as DFKI Oz 1.0 [Oz95]. Two years later
the release of Oz 2.0 [Oz97] was completed. In January 1999, the successor of Oz 2.0, Mozart, was
announced to the public. The current development of Mozart is a collaboration with the Swedish
Institute of Computer Science (SICS) and the Université catholique de Louvain in Belgium.

The Mozart system [Moz99] provides distributed computing over a transparent network. The
computation is extended across multiple sites and automatically supported by efficient protocols.
Mozart further provides automatic local and distributed garbage collection.

Many features of Oz are inherited by DML and thus are explained in detail in the correspond-
ing section. Among the features not shared with DML are constraints, encapsulated search, and
objects.

Similar to Java, Oz is compiled to byte code that can be run on several platforms. Unlike
Java, Mozart provides true network transparency without the need of changing the distribution
structure of applications. Further, Oz is a data-flow language, i.e., computations are driven by
availability of data. Finally, Mozart provides low-cost threads. Thus, it is possible to create thou-
sands of threads within a process.

1.3 DML

The Amadeus project now develops a dialect of Oz, Alice, with its implementation called Stock-
hausen. DML is an experimental language that has emerged from the development process of
Alice. The roots of DML are described in [MSS98, Smo98a, Smo98b].

DML stands for ‘Dynamic ML’; the syntax is derived from Standard ML. Like Oz, DML is
dynamically typed. Further, DML supports transients and concurrency with first class threads.

The transient model of DML is a mixture of Mozart’s transient model and the Alice model. In
DML, there are three different kinds of transients: logic variables, futures and by-need futures. In our
context, logic variables are single assignment variables and futures are read-only views of logic
variables. A by-need future is a future that has a reference to a nullary function. The function’s
application is delayed until the value of the by-need future is requested and then the by-need
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future is replaced by the function’s return value. All transients become transparent after they
have been bound.

Transients can be obtained by the operations

lvar : unit -> ’a
future : ’a -> ’a
byNeed : ( unit -> ’a ) -> ’a

The operation

bind : (’a * ’a) -> ’a

assigns a value to a logic variable. The operation

future : ’a -> ’a

returns a future if the argument is a logic variable or otherwise it returns the argument as is.
Requesting transients is always implicit.

Threads can be created by

spawn : (unit -> ’a) -> unit

and can be synchronized by using transients. DML allows recursive values, e.g.,

val rec x = 1 :: x
and y = (x,y,z)
and z = {a=y, b=z}
and foo = ref baz
and baz = ref foo
and vec = #[foo,baz,vec]

is valid in DML. Similar to Oz, exceptions and exception handling are more liberal than in SML:

17 + ((raise 5) handle _ => 2)

evaluates to 19.

DML has a component system that is implemented by pickling. The component system is illus-
trated in Section 2.3.1; pickling is explained in detail in Chapter 6. Also a high level distributed
programming model adopted from Mozart is implemented (cf. Chapter 7) that makes the network
completely transparent.

Like Java and Oz, DML is platform-independent. A DML pickle can be used on any Java
capable platform.

1.4 Java

Java was originally called ‘Oak’ and has been developed by James Gosling et al. of Sun Microsys-
tems. Oak was designed for embedded consumer-electronic systems. After some years of expe-
rience with Oak, the language was retargeted for the Internet and renamed to ‘Java’. The Java
programming system was officially released in 1995. The design principles of Java are defined in
the Sun white papers [GM96].
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Java is a general-purpose, concurrent, class-based, object-oriented language. It is related to C
and C++, but has a different organization. A number of aspects of C and C++ are omitted and
some ideas from other languages are adopted. Java is meant to be a production language, so new
and untested features are excluded from the design.

Java is strongly typed and it is specified what errors may occur at runtime and what errors
must be detected at compile time. Java programs are compiled into a machine-independent byte-
code representation ( write once, run everywhere). However, the details of the machine represen-
tation are not available through the language. Java includes automatic storage management to
avoid the unsafeties of explicit memory deallocation. Java has distributed programming facilities
and supports networking with the special aspect of Internet programming. A security model for
execution of untrusted code [Gon98] is supplied.

The Java programming system consists of the object oriented programming language, the class
libraries of the Java API, a compiler for the language, and the Java Virtual Machine. The Java
language is defined in [GJS96]; the Java Virtual Machine is specified in [LY97]. The program-
mer’s interface is documented in [GYT96a, GYT96b]. Java also comes with a documentation tool
(javadoc), and a generated documentation of the API classes is available in HTML. The Java
platform provides a robust and secure basis for object oriented and multi-threaded distributed
programming.

Since 1995, Java has spread widely and the language has changed its former target architecture
from embedded systems to other subjects. People implement applications in Java that are not
restricted to run on a limited hardware (e.g., hand-held devices), but run as user interfaces for
business applications. Java is also used for scientific computing, cf. [Phi98, PJK98].

One of the less common kind of project in Java is to implement other programming languages
for the Java Virtual Machine (see [Tol99]): There are a lot of implementations for various Lisp
dialects available; BASIC variants have been ported; there are Java variants of logic programming
languages; other object oriented languages (Ada, COBOL, SmallTalk) can be translated to Java or
JVM byte code. There are some efforts to extend Java with generic classes, higher order functions
and pattern matching and transparent distribution [OW97, PZ97].

1.5 Organisation of the Paper

This is how this document is organized:

� Chapter 1 (this chapter) gives an introduction into the programming languages of interest
and a general overview of the work and its goals.

� Chapter 2 states a naïve compilation scheme for DML. The features of the Java Virtual Ma-
chine and the DML runtime environment are described. An overview of the intermediate
representation of the Stockhausen compiler and backend independent transformations on
this representation is also given.

� Chapter 3 describes platform-dependent optimizations of the compiler backend.

� Chapter 4 specifies implementation details of the compiler backend and transformations on
the generated JVM instructions.

� Chapter 5 introduces the Java classes that make up the core of the runtime implementation.
First, the basic idea is presented and then we show how this can be improved in terms of
running time and memory usage.

� Chapter 6 explains the idea of pickling, i.e., making a persistent copy of stateless entities. The
implementation in Java is presented and how the current DML system makes use of it.
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� Chapter 7 shows how the DML language can easily be extended for distributed program-
ming issues.

� Chapter 8 summarizes related projects and compares the achievements of others with the
DML system.

� Chapter 9 is about benchmarking issues. The execution speed of DML is compared to others.
We compare implementations of related languages.

� Chapter 10 draws a conclusion, gives a lookout into future dos and don’ts, advantages and
disadvantages of Java/object orientation resp. DML/functional programming.



6 Introduction



Chapter 2

Compilation Scheme

This chapter describes a simple, unoptimized compilation scheme for DML. The first sections
outline the basic knowledge of the JVM, the intermediate representation, and the DML runtime
environment that are needed to understand the compilation scheme.

The DML frontend performs some transformations on the intermediate representation that
are useful for most compiler backends: Pattern matching is represented as test graphs in order to
avoid redundant tests. Function abstractions with tuple or record patterns are annotated accord-
ingly, so the compiler backend can easily generate different methods for such parts of functions.
The intermediate representation is described in Sections 2.3.1–2.3.3, the transformations on this
representation can be found in Sections 2.3.4–2.3.6.

The remaining sections describe the compilation scheme properly. Similar to [OW97], a new
class is created for each abstraction and closures are represented by instances of their class. The
free variables of a function are stored in fields of the corresponding class. Functions have a virtual
apply method that is invoked on function applications. Applications of primitive operations are
mostly inlined or invoked by calls to static methods. This is possible because primitive operations
usually have no free variables.

Record arities are statically known. They are computed at compilation time and stored in
static fields. When records are used in pattern matching, pointer comparison on the arity suffices
to decide whether a pattern matches or not. Pattern matching is also the only place where the
compiler backend has to explicitly check for the presence of transients. Exception handling is
mapped to the exception handling of Java.

2.1 The Java Virtual Machine

To understand the code generation of a compiler it is necessary to know the target platform.
Our target platform is the Java Virtual Machine, JVM, which is described in detail in [LY97]. We
decided to compile to JVM rather than Java for the following reasons:

� This enables us to store the line numbers of the DML source code into the generated class
files.

� Machine code is easier to generate than Java programs.
� Shared code can be compiled more easily. There is a goto instruction in JVM code, but not

in Java.
� After bootstrapping, a DML interpreter could be easily implemented using an ‘eval’ func-

tion that dynamically creates classes.
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� No files need to be written, so the compiler could be run as an applet after bootstrapping.
� DML programmers don’t need the Java development tools. Java runtime environment is

enough.

However, there are also some disadvantages of generating byte code directly:

� The javac compiler performs peephole-optimizations and liveness analysis which we have
to do manually now.

� Many programmers know the Java language, but few know the JVM instructions. Java
programs would probably be easier to read for most programmers who want to understand
how their DML programs are compiled.

This section is intended to give an overview about the concepts and specific features of the
JVM, assuming basic knowledge of Java.

2.1.1 The Machine

The JVM is a stack machine with registers. There are two important stacks: The operand stack on
which all operations compute and the call stack which stores all registers of the current method
when another method is invoked. Because the JVM was developed as target platform for Java,
the machine is object-oriented and supports multi-threading. The JVM is able to load and execute
class files, which represent compiled Java class definitions. When a class file is loaded, the byte
code verifier checks whether the code satisfies some security properties to ensure a well-defined
execution. For example, registers (in Java terms ‘local variables’ of a method) must be initialized
before they can be used.

Java and the JVM are quite similar. Most Java constructs can be expressed in a few JVM instruc-
tions. Nevertheless, there are some marginal differences that might confuse Java programmers.
In Java it is possible to omit the package name when accessing a class of the current package or
of an imported one. JVM expects all package names to be explicitly stored in the class file. As
package separator slash (‘/’) is used instead of the Java package separator dot (‘.’). Constructors
are no longer implicitly created. Java implicitly initializes unused (local) variables to a default
value (0, 0.0 or null, depending on the type), JVM does not. Within non-static methods, register
0 always contains a ‘this’ pointer to the current object. The � parameters of a method are passed
in registers 1 to � (or 0 to ��� � for static methods). All other registers have no special meaning.

2.1.2 Class Files

Each compiled Java class or interface definition is stored in a class file that contains both defini-
tions of methods and fields and the JVM code of the (non-abstract) methods. For every method,
there is an exception handle table with the code ranges where exceptions should be handled, the
class of exceptions to handle and the code position of the handler routine. A method may further
have a line number table where source code line numbers are stored for debugging reasons. Each
class file has a constant pool where JVM constants such as strings, integers and float values are
stored as well as method names, field names and type descriptors.

With the description in [LY97], it is possible to directly generate class files. We decided to let
Jasmin, a Java byte code assembler that is documented in [Mey97], do this. Jasmin performs no
optimizations on the generated code, but it compiles (easy-to-read) ASCII code into Java class files
and manages the exception table, line number table and the constant pool for us. There are other
Java assemblers such as the KSM of the KOPI project that can be obtained from [G � 99]. KSM
performs some dead code analysis and branch optimization which we also do. It would have
been easier to use the KSM instead of Jasmin for generating class files, but the first alpha version
was released in May 1999, so it wasn’t available when we started our project.
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2.2 Typography for the Compilation Scheme

In this chapter, we use the following typography and abbreviation conventions:

Description Example Comment
JVM instructions invokespecial
DML source code val x=5
Class names Function Class names are expanded to de/uni-

sb/ps/dml/runtime/Function if no
package name is explicitly stated. To dis-
tinguish between classes and interfaces in
this chapter, interfaces always start with a
capital I like IValue.

Method names apply or � init �
Field names vals
Abbreviations for
methods or field
names of the DML
runtime environ-
ment

� MGetBuiltin � � MGetBuiltin � refers to the method
Builtin/getBuiltin.

Signatures of Java
methods

(int) � IValue The example refers to a method that takes
a (JVM) integer as parameter and returns
an IValue.

Labels retry We use labels to make it easier to read this
compilation scheme. In class files, the la-
bels are removed and branches to labels
are replaced by relative jumps (e.g., goto)
or absolute addresses (e.g., in the excep-
tion handle table).

Variables stamp
Functions of the
compiler backend

expCode The example translates expressions from
the intermediate language to JVM code.

Constructors of the
intermediate repre-
sentation

ConExp.

Definitions constructed value

2.3 Intermediate Language

This section describes the intermediate representation which we use.

2.3.1 Components and Pickles

The DML compiler backend as described in this chapter translates DML components, our units of
separate compilation, into pickle files. Pickles are persistent higher-order values. Generally speak-
ing, components are lists of statements, usually declarations. We distinguish between the com-
ponent body and function definitions. The component body contains all statements of a program
not contained in a function or functor definition. We don’t specially treat functors here because
functors are just functions that return a new structure. The frontend transforms structures into
records and functors into functions. Each function definition creates a new class. Function clo-
sures are instances of this class. Those function classes have an apply method which is called
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whenever this function is applied. The free variables of a function are stored in corresponding
fields of the object.

The pickle file of a DML component contains the definitions of all exported functions and the
evaluated component body. This corresponds to evaluated components in Alice. The saving and
loading of pickle files is described in Chapter 6. If a component has a top level main function, the
generated pickle can be executed via the dml command.

2.3.2 Statements

Any DML program consists of a list of statements, most of which are declarations. The interme-
diate grammar declares the following statement constructors:

datatype stm =
ValDec of stamp * exp

| RecDec of (stamp * exp) list
| EvalStm of exp
| RaiseStm of stamp
(* the following must always be last *)
| HandleStm of stm list * stamp * stm list * stm list * shared
| EndHandleStm of shared
| TestStm of stamp * test * stm list * stm list
| SharedStm of stm list * shared
| ReturnStm of exp
| IndirectStm of stm list option ref
| ExportStm of exp

The intermediate representation has a node ValDec for each non-recursive declaration. It is
possible that multiple ValDecs for the same stamp occur in the graph but for a given path, each
referred stamp is declared exactly once. Mutually recursive declarations are pooled in a RecDec
node. It is necessary to distinguish between recursive and non-recursive declarations as we will
see in Section 2.7.2. A special case of ValDec is EvalStm when the result can be discarded.

RaiseStm, HandleStm and EndHandleStm nodes are used to represent exception raising
and exception handling in DML. The declaration lists of the RaiseStm represent:

� The catch body within which exceptions should be handled — if an exception is raised, it is
bound to the given stamp,

� the handler routine for exceptions, and

� the continuation that is executed in any case after both the catch body and handler routine
have finished executing. This ‘finish’ is stated explicitly by an EndHandleStm with the
same reference as the HandleStm.

Function returns are represented explicitly as a ReturnStm, which is useful for most backends
that generate code for imperative platforms. The intermediate representation has an ExportStm
node which lists the identifiers that are visible in the top level scope. Those are the values that
should be stored in the pickle file. Whenever it is obvious that the same subgraph occurs at
two different positions of the intermediate representation, a SharedStm is created instead where
shared is a reference that the backend uses for storage of the label where the code is located.
SharedStms are helpful for creating compact code when it comes to the compilation of pattern
matching (see Section 2.3.4) and loops.
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2.3.3 Expressions

The intermediate representation defines the following constructors for expressions.

datatype exp =
LitExp of lit

| PrimExp of string
| NewExp of string option * hasArgs
| VarExp of stamp
| ConExp of stamp * hasArgs
| RefExp
| TupExp of stamp list
| RecExp of (lab * stamp) list

(* sorted, all labels distinct, no tuple *)
| SelExp of lab
| VecExp of stamp list
| FunExp of stamp * (stamp args * stm list) list

(* all arities distinct; always contains a single OneArg *)
| AppExp of stamp * stamp args
| SelAppExp of lab * stamp
| ConAppExp of stamp * stamp args
| RefAppExp of stamp args
| PrimAppExp of string * stamp list
| AdjExp of stamp * stamp

Literals are represented by a LitExp. For each occurance of a primitive value, a PrimExp
node is created. The creation of a new (constructor) name or constructor is denoted by a NewExp
node. The boolean argument is used to distinguish between constructor names and constructors.
Referring occurances of constructors and names are represented by ConExp. References have
their own constructor RefExp. For referring occurances of variables, VarExp nodes are created.

Tuples are denoted by a TupExp, records by a RecExp. The record labels are sorted and
distinct. Whenever a record turns out to be a tuple, e.g., for {1=x, 2=y}, a TupExp is created
instead. Vectors have their own constructor VecExp. The select function for tuple and record
entries is represented by a constructor SelExp.

Functions are represented by a FunExp constructor. The stamp is used for identification of
the function. Applications are denoted by an AppExp constructor. Section 2.3.5 describes the
arguments and their treatment. Primitive functions and values that can be applied, have a spe-
cial application constructor to make it easier for the backends to generate optimized code. These
constructors are ConAppExp for constructed values, RefAppExp for creating reference cells, Se-
lAppExp for accessing entries of records or tuples and PrimAppExp for applying builtin func-
tions of the runtime.

2.3.4 Pattern Matching

The compiler frontend supplies a pattern matching compiler that transforms pattern matching
into a test graph. This is useful when testing many patterns because some tests may implicitly
provide the information that a later test always fails or succeeds. These information yield in the
test graph, as the following example demonstrates. Have a look at those patterns:

case x of
(1,a) => 1

| (1,a,b) => 2
| (a,b) => 3
| _ => 4

The illustration shows the naïve and the optimized test graph:
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TupTest 2

LitTest 1

1 TupTest 3

LitTest 1

2 TupTest 2

3 4

TupTest 2

LitTest 1

1 3

TupTest 3

LitTest 1

2 4

In case that the test expression is a 2-tuple, but its first value is not 1, pattern 2 never matches
(because it is a 3-tuple), but pattern 3 always does. There are two nodes in the right graph where
the code for expression 4 is expected. To avoid redundant code, SharedStms are used there. The
test nodes in the above graph each represent a single TestStm, so complex patterns don’t increase
the stack depth of the resulting code. Further, the frontend performs a linearization of the code.
Instructions that follow a pattern are moved into the TestStm of each match as a SharedStm.

2.3.5 Function Arguments

DML functions take exactly one function argument. When more function arguments are needed,
tuples or currying can be used. Because most destination platforms support multiple function
arguments and because creating tuples and using higher order functions is comparatively ex-
pensive, the frontend splits different tuple and record patterns of a DML function into pairs of
arguments and corresponding code.

datatype ’a args =
OneArg of ’a

| TupArgs of ’a list
| RecArgs of (lab * ’a) list
(* sorted, all labels distinct, no tuple *)

� TupArgs are used when a pattern performs a test on tuples, i.e., the function can take a tuple
as argument. TupArgs provide a list of the stamps that are bound if the pattern matches.

� RecArgs are used when a function takes a record as argument. It has a list of labels and
stamps. In case this pattern matches, the record’s value at a label is bound to the corre-
sponding stamp.
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� OneArg is used when the pattern is neither a record nor a tuple. Functions always have
exactly one OneArg section. The OneArg constructor has a stamp to which the value of the
argument is bound.

Whenever a function is applied, the above argument constructors are also used. TupArgs
and RecArgs are created whenever a function is applied directly to a tuple or record. The stamp
of a OneArg constructor might also designate a tuple or record, e.g., if it is the result of another
function application.

2.3.6 Constant Propagation

Future releases of the compiler frontend will propagate constants. Because this is not yet imple-
mented, the compiler backend does a primitive form of constant propagation by now. A hash
table maps stamps that are bound by ValDec and RecDec to expressions. Hereby, chains of dec-
larations are resolved. This is needed for inlining the code of short and commonly used functions
as described in Section 3.2.4.

2.4 A Short Description of the Runtime

This section gives a short description of the runtime from the compiler’s point of view. For more
detailed information about the runtime see Daniel Simon’s Diplomarbeit.

2.4.1 Values

DML is dynamically typed, but the JVM is statically typed. Therefore we need a common interface
for values, IValue. All other values are represented by implementing classes of this interface. For
example, an integer value is represented by a wrapper Integer implementing IValue. As far
as the compiler is concerned, the following values are of special interest.

Functions

In DML each function is represented by a corresponding class. All these classes inherit from a su-
per class Function and have a method apply which implements the abstraction body. In DML
as well as in SML an abstraction generates a closure. Variables that occur free in the function body
can be replaced by their value at the time when the closure is built. Subclasses of Function have
a field for each variable that occurs free in the abstraction body. Whenever a function definition is
executed, i.e., its class is instantiated, the fields of the new instance are stored.

Variables bound within the function, such as parameters and local variables, can have different
values each time the function is applied. We don’t create fields for those variables but store them
in the registers of the JVM.

Constructors

SML distinguishes unary and nullary constructors which have very little in common. To make
clear which one we are talking about, we use the following terminology: (Constructor) names are
equivalent to nullary constructors in SML. The unary SML constructors we call constructors and
the value resulting from the application of a constructor and a value we call constructed value.
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Records

The Record class contains a label array and a value array. Label arrays are sorted by the com-
piler and are represented by unique instances at runtime, so pattern matching on records can be
realized as a pointer comparison of label arrays.

Exceptions

In DML it is possible to raise any value as an Exception. JVM only allows us to throw objects of
type Throwable. The DML runtime environment provides a class ExceptionWrapper which
contains an IValue and extends Throwable.

2.5 Helper Functions

For the compilation scheme in this chapter, there are some things we need really often. Therefore,
we use the following helper functions.

2.5.1 Loading Values of Stamps onto the Stack

As described in section 2.4.1, free variables are stored in fields whilst variables that are bound in
the current scope are stored in JVM registers. We often have to access a variable and don’t want
to distinguish where it has been bound. Sometimes we access builtins such as nil or true which
are part of the runtime environment and are accessed via the getstatic command.

stampCode abstracts about the fetching of values:

stampCode (stamp) (* when stamp is that of a builtin value *)
(* such as Match, false, true, nil, cons or Bind *)

getstatic � BMatch �

We use a table of builtins which maps builtin stamps to static fields of the runtime environment.
Sometimes we access the current function itself, e.g., in

fun f (x::rest) = f rest

Since the apply method is an instance method of the function closure, we can get the current
function closure via aload_0 which returns the current object.

stampCode (stamp) (* when stamp is the current function *)

aload_0

Variables that are bound in the current scope are stored in registers and can be accessed via
aload. The frontend makes sure that stamps are unique. We use the value of this stamp as the
number of the register for now and do the actual register allocation later.

stampCode (stamp) (* when stamp has been defined within the current *)
(* function closure or stamp is the parameter of the current function *)

aload stamp

All other variables are stored in fields of the current function closure and can be accessed via
getfield:
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stampCode (stamp) (* for all other cases *)

aload_0
getfield curClass/fieldstamp IValue

where curClass is the name of the class created for the current function closure.

Storing Stamps

In some (rare) cases, e.g., after a Transient has been requested, we store it (since we don’t want
to request it again). In general, we distinguish the same cases as for stampCode , but we don’t
need to care about builtins or the current function:

storeCode (stamp) (* when stamp has been defined within the current *)
(* function closure or stamp is the argument of the current function *)

astore stamp

stampCode (stamp) (* for all other cases *)

aload_0
swap
putfield curClass/fieldstamp IValue

2.6 Compilation of Expressions

The evaluation of an expression leaves the resulting IValue on top of the stack. Note that the
JVM provides some instructions such as iconst_ � , with � ��� � ��� , bipush and sipush for
integers and fconst_� for floats, with � � � ��� , to access some constants faster than via ldc. To
keep this description brief, we always use ldc in this document. However, in the implementation
of the compiler backend, the specialized instructions are used when possible.

2.6.1 Constructors and Constructor Names

New constructors or names are generated by instantiating the corresponding class:

expCode (NewExp (hasArgs))

new classname
dup
invokespecial classname/<init> () � void

where classname is Constructor if hasArgs is true and Name, if not. We don’t need to distinguish
between occurances of constructor names and occurances of constructors when accessing them.
The value is loaded from a JVM register or a field, depending on whether the constructor occurs
free or bound.

expCode (ConExp stamp)

stampCode (stamp)
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2.6.2 Primitive Operations

Primitive operations are managed by the runtime. The function � MGetBuiltin � returns a primive
function.

expCode (PrimExp name)

ldc ‘name’
invokestatic � MGetBuiltin � (java/lang/String) � IValue

We chose to use a runtime function rather than a table in the compiler backend so that adding
new functions doesn’t entail changes in both runtime and backend. Usually, the function � MGet-
Builtin � is called during the last compilation phase before the pickle is written, so we don’t lose
runtime performance.

2.6.3 Applications

Whenever a value is applied to another one, the first one should be a function or constructor. We
needn’t check this here, because every IValue has an apply method which raises a runtime error
if necessary.

expCode (AppExp(stamp � stamp � ))

stampCode (stamp � )
stampCode (stamp � )
invokeinterface IValue/apply (IValue) � IValue

Applications of Primitive Operations

When we know that we are about to apply a primitive operation, we can do one of the following:

� inline the code,

� make a static call to the function, or

� get the primitive operation via � MGetBuiltin � as usual and make a virtual call.

Inlining usually results in faster, but larger code. Therefore, we inline some important and small
primitive operations only.

Invoking static calls is possible, because primitive operations usually don’t have free variables,
so we don’t need an instance in this case. Static calls are way faster than virtual ones, so this is the
normal thing we do when primitive operations are called.

expCode (PrimAppExp(name, stamp � , . . . , stamp ����� ))

stampCode (stamp � )
...
stampCode (stamp ����� )
invokestatic classname/sapply (IValue ...) � IValue

The obvious disadvantage of using static calls is that adding primitive operations entails
changes on both runtime and compiler, because the compiler needs to know the classname that
corresponds to name. If the compiler doesn’t know a primitive operation, we use � MGetBuiltin � .
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expCode (PrimAppExp(name, stamp))

ldc ‘name’
invokestatic � MGetBuiltin � (java/lang/String) � IValue
stampCode (stamp)
invokeinterface IValue/apply (IValue) � IValue

In case there is more than one argument, we store all arguments into a single Tuple and pass this
tuple to the apply method.

2.6.4 Abstraction

When compiling an abstraction, we create a new subclass of Function with an apply method
that contains the body of the abstraction. Then we instantiate this new class and copy all variables
that occur free in the function body into this instance:

expCode (FunExp(funstamp,body))

new classname
dup
invokespecial classname/<init> () � void
(* populate the closure now: *)

dup
stampCode (fv � )
putfield classname/fv � IValue
...
dup
stampCode (fv ����� )
putfield classname/fv ����� IValue

stampCode (fv � )
putfield classname/fv � IValue

fv � . . . fv � are the variables that occur free within the function body. Furthermore, we need a
bijective projection className which maps the function’s funstamp to classname.

2.6.5 Literals

DML literals are int, real, word, char and string. The generated code for these looks quite similar:
A new wrapper is constructed which contains the value of the literal.

expCode(LitExp(lit))

new cls
dup
ldc v
invokespecial cls/<init> (type) � void

where v, cls and type depend on lit as follows:

varlit cls type
CharLit v Char c
IntLit v Integer i
RealLit v Real f
StringLit v String java/lang/String
WordLit v Word i
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2.6.6 Records

Record labels cannot change at runtime and therefore may be created statically. Record labels are
always sorted. We load the label array from a static field, create an IValue array with the content
of the record and invoke the Java constructor:

expCode(RecExp[(lab � ,stamp � ),(lab � ,stamp � ),. . . ,(lab � ,stamp � )])

new Record
dup
getstatic curClassFile/arity IValue[]
ldc ��� �

anewarray IValue

dup
ldc �
stampCode (stamp � )
aastore
...
dup
ldc �

stampCode (stamp � )
aastore

invokespecial Record/<init> (java/lang/Object[] * IValue[]) � void

The static arity field must be created in the current class file curClassFile and is initialized when
creating the top level environment.

2.6.7 Other Expressions

There are no new concepts introduced for the compilation of other expressions. However, the
complete schemes can be found in the appendix (see Section A.1).

2.7 Compilation of Statements

After a statement has been executed, the stack is in the same state as before.

2.7.1 Non-Recursive Declarations

With non-recursive declarations, an expression is evaluated and stored into a JVM register:

decCode (ValDec(stamp, exp))

expCode (exp)
storeCode (stamp)
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2.7.2 Recursive Declarations

With recursive declarations, function definitions like the following are possible:

fun odd 0 = false
| odd n = even (n-1)

and even 0 = true
| even n = odd (n-1)

Now odd occurs free in even, so the closure of even needs a pointer to odd. But odd also
needs a pointer to even as even occurs free in odd. We solve this conflict by first creating empty
closures, i.e., closures with null pointers instead of free variables. When all closures of the recur-
sive declaration are constructed, we set the free variable fields.

decCode (RecDec[(stamp � ,exp � ),(stamp � ,exp � ),. . . ,(stamp � ,exp � )])

(* create empty closures: *)
emptyClosure (exp � )
astore stamp �
...
emptyClosure (exp � )
astore stamp �
(* fill the closures now: *)

aload stamp �
fillClosure (exp � )
...
aload stamp �
fillClosure (exp � )

To create an empty closure, the corresponding class is instantiated. Variables, constructors,
names and literals don’t have a closure and can be directely evaluated. When all objects of a
RecDec are created, the fields of functions, tuples, records, vectors, constructed values and refer-
ences are stored via putfield instructions. Some expressions, such as AppExp, are not admissi-
ble in recursive declarations. However, we don’t need to check admissibility here because illegal
code shouldn’t pass the frontend. The complete compilation scheme for these cases can be found
in Section A.2.

2.7.3 Pattern Matching

As described in Chapter 2.3, pattern matching is transformed into TestStms of the form Test-
Stm(teststamp, test, match, notmatch) where teststamp is the identifier of the case statement, test
the pattern to compare with, match the code that should be executed in case that test matches and
notmatch the code to be executed if not.

When compiling a TestStm, we first check whether teststamp is an instance of the class corre-
sponding to test. If so, we compare the content of teststamp to test and branch to match or notmatch.
Otherwise, if teststamp is an instance of Transient, the test is rerun on the requested value of
teststamp. The request of a Transient always returns a non-transient value, so this loop is
executed at most twice. For performance reasons, it is possible to do the Transient check only
once for chains of TestStms with the same teststamp.
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decCode (TestStm(teststamp, test, match, notmatch))

stampCode (teststamp)
retry:
testCode (test)
decListCode (match)
goto finished
wrongclass:
instanceof Transient
ifeq elsecase
stampCode teststamp
checkcast Transient
invokeinterface � MRequest � (Transient) � IValue
dup
storeCode (teststamp)
goto retry
popelsecase:
pop
elsecase:
decListCode (notmatch)
finished:

Depending on test, testCode may not only compare the content of stampcode to the test pattern
but also bind one or more variables:

� Literals

In our Java representation, word, int and char values are represented as wrapper classes
that contain integer values. We check whether the test value is of the correct type and if so,
we compare its content to the value of our pattern. The pattern matches if both are equal.

testCode (LitTest(IntLit v))
testCode (LitTest(WordLit v))
testCode (LitTest(CharLit v))

dup
instanceof classname
ifeq wrongclass
checkcast classname
getfield classname/value type
ldc v
ificmpne elsecase

classname is Word, Integer or Char for word, int or char patterns. real and string
literals are compared exactly in the same way except that we use fcmpl, ifne elsecase
resp. invokevirtual � MEquals � , ifeq elsecase to do the comparison.

� (Constructor) Names

Because both the DML compiler and DML runtime guarantee that (constructor) name in-
stances are unique, pointer comparison suffices here:

testCode (ConTest(stamp))

stampCode (stamp)
ifacmpne elsecase



2.7 Compilation of Statements 21

� Constructors

The comparison succeeds when the teststamp of the TestStm, which lies on top of the stack,
is a constructed value and its constructor is equal to the conststamp of the ConTest. If this
is the case, the content of the teststamp is stored into the contentstamp of the ConTest.

testCode (ConTest(conststamp, contentstamp))

dup
instanceof IConVal
ifeq wrongclass
checkcast IConVal
invokeinterface IConVal/getConstructor () � Constructor
stampCode (conststamp)
ifacmpne elsecase
stampCode (teststamp)
checkcast IConVal
invokeinterface IConVal/getContent () � IValue
astore contentstamp

� References

Although, from the DML programmer’s view, references are just special constructors with
the extra feature of mutability, the generated code is somewhat different:

The type of a ‘constructed value’ of a ref is no IConVal, but a special class Reference,
so the constructor comparison is realized as an instanceof:

testCode (RefTest(contentstamp))

dup
instanceof Reference
ifeq wrongclass
checkcast Reference
invokevirtual Reference/getContent () � IValue
astore contentstamp

� Records, Tuples and Vectors

Records have a statically built arity that contains the sorted labels. Two records are equal
if their record arities are equal in terms of pointer comparison. When the teststamp turns
out to be a Record, we invoke a runtime function which compares the arities and returns
an IValue array that contains the content of the record if the arities match or null if they
don’t.

Pattern matching on Tuples and Vectors works exactly in the same way with the difference
that the arity is an integer value that equals the size of the value array of the Tuple or
Vector.
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testCode (RecTest[(name � , stamp � ), . . . , name � , stamp � ])
testCode (TupTest[stamp � , . . . , stamp � ])
testCode (VecTest[stamp � , . . . , stamp � ])

dup
instanceof classname
ifeq wrongclass
checkcast classname
cmpArity ()

(* Now bind the values: *)
dup
ldc �
aaload
astore stamp �
...
dup
ldc � � �

aaload
astore stamp �����

ldc �

aaload
astore stamp �

classname is Record, Tuple or Vector. The arity comparison is compiled as follows:

cmpArity (* for Records *)

getstatic curClassFile/arity java.lang.String[]
invokevirtual Record/checkArity (java.lang.String[]) � IValue[]
dup
ifnull popelsecase

The static arity field must be created in the current class file curClassFile and is initialized
when creating the top level environment. See Section 2.3.1 for details.

cmpArity (* for Tuples and Vectors *)

getfield classname/vals () � IValue[]
dup
arraylength
ldc ��� �

ificmpne popelsecase

The field vals of a Tuple or Vector contains an array with its content.

� Labels

To match a single label of a Vector, Tuple or Record, we invoke a runtime method of
ITuple, get, which returns the value that belongs to a label or null if there is no such
label in this ITuple. If get returns null, the pattern fails and we branch to the next one.
Otherwise, the pattern matches and the value is bound.
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testCode (LabTest(lab, stamp))

dup
instanceof ITuple
ifeq wrongclasscase
checkcast ITuple
ldc lab
invokeinterface ITuple/get (java.lang.String) � IValue
dup
ifnull popelselabel
astore stamp

2.7.4 Shared Code

SharedStms contain statements that are referred to at different places of the intermediate repre-
sentation. The code for each set of SharedStms is only created once and branched to from the
other positions. The branch can be done by the JVM instruction goto because

� equal SharedStms never occur within different functions, so their code is always generated
in the same method of the same class.

� JVM stack size is equal for all of the SharedStms. (Indeed, the stack is always � before and
after any statement)

� SharedStms are always constructed to be the last statement in a list, so we don’t have to
return to the place where we branched.

decCode (SharedStm(body, shared)) (* if shared = 0 *)

shared := new label
shared:
decListCode (body)

decCode (SharedStm(body, shared)) (* if shared �� 0 *)

goto shared

2.7.5 Exceptions

To raise an exception, a new ExceptionWrapper which contains the value is built and raised.

decCode (RaiseStm(stamp))

new ExceptionWrapper
dup
stampCode (stamp)
invokespecial ExceptionWrapper/<init> (IValue) � void
athrow

When compiling a HandleStm, we create a new label in front of the contbody and set shared to
this value. For each EndHandleStm, this label is branched to.
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decCode (HandleStm(trybody, stamp, catchbody, contbody, shared))

shared := cont
try:
decListCode (trybody)
to:
invokevirtual ExceptionWrapper/getValue () � IValue
astore stamp
decListCode (catchbody)
cont:
decListCode (contbody)

decCode (EndHandleStm(shared))

goto shared

To indicate to the JVM to call the catchbody when an ExceptionWrapper is raised, we create
an entry in the exception index table of the class file. Within this exception index table, order is
important. Whenever an exception occurs, the JVM uses the first entry that handles the correct
exception (which is, for DML, always ExceptionWrapper). Therefore, with nested exception
handles it is important that the inner one comes first in the exception handle table. We create an
entry like

catch (ExceptionWrapper, try, to, to)

after generating the instructions above which maintains the correct order. The catch entry
means that any occurance of an ExceptionWrapper between try and to is handled by the code
at to.

2.7.6 Evaluation Statement

Evaluation statements are expressions whose value doesn’t matter but must be evaluated because
they may have side effects. Think of the first expression of a sequentialization, for example. We
generate the code for the included expression, then pop the result:

decCode (EvalStm(exp))

expCode (exp)
pop

2.7.7 Returning from Functions

DML is a functional programming language, so functions always have a return value of the type
IValue. We therefore always return from a function via areturn.

decCode (ReturnStm(exp))

expCode (exp)
areturn
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2.7.8 Exports

Values are pickled by the runtime method � MPickle � .

decCode (ExportStm(exp))

expCode (exp)
ldc picklename
invokestatic � MPickle �
pop

where picklename is the name of the file that should be created. We use the basename of the source
file with the extension ‘.pickle’.

2.8 Summary

This chapter described the unoptimized compilation of DML to JVM code. A relatively simple
scheme emerged and helped to identify the concepts for which the translation is less straightfor-
ward since they cannot directly be mapped to JVM constructs: Special care has to be taken for
first-class functions, records, pattern matching, and recursive value bindings.
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Chapter 3

Optimizations

Starting from inefficiencies uncovered in the naïve compilation scheme from the preceeding chap-
ter, we devise optimizations to improve performance of the generated code: The creation of literal
objects is performed at compilation time. At runtime, literals are loaded from static fields. As far
as possible, we avoid creating wrapper objects at all and use unboxed representation whenever
possible.

Functions with tuple pattern get special apply methods, so creating and matching tuples
can be avoided in many cases. We make two approaches for the treatment of tail calls: A CPS-
like version which is a variant of the ideas in [App92] decreases performance but operates on
a constant stack height for all kinds of tail calls and another solution that merges tail recursive
functions into a single method, which makes tail recursion even faster but doesn’t cope with
higher order functions.

Finally, sequences of pattern matching on integer values are sped up by using dedicated switch
instructions of the JVM.

3.1 The Constant Pool

Due to the fact that DML is dynamically typed, the Java representation of DML literals is rather
expensive and slow because a new object is created for each literal. We speed up the access to
constants by creating the objects at compilation time and storing them into static fields of the class
in which the constant is used. Now the sequence

new Integer
dup
aconst_1
invokespecial Integer/<init> (int) � void

which creates a new integer constant 1 can be replaced by a simple

getstatic currentclass/lit � Integer

where currentclass is the name of the current class and � a number which identifies the literal
in this class. This optimization results in a performance gain of about 30 percent on arithmetic
benchmarks, such as computing Fibonacci numbers (on Linux with Blackdown JDK. This result
should be similar on other systems).
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3.2 Functions and Methods

As DML is a functional programming language, a typical DML program has many function ap-
plications. Applications are compiled into virtual method invocations which are, because of late
binding of JVM methods, rather expensive. Fortunately, function applications have high potential
for code optimizations.

3.2.1 � -ary Functions

DML functions have exactly one argument. When more arguments are needed, functions can
be curried and/or take a tuple as argument. Both techniques are quite common in functional
programming languages, but not in imperative or object-oriented languages and therefore rather
expensive on the JVM. On the other hand, JVM functions can have multiple arguments.

Tuple Arguments

All functions are instances of subclasses of Function which implements IValue. When a func-
tion is applied, generally IValue/apply (IValue) � IValue is invoked and the JVM chooses
at runtime the apply of the corresponding function class. It often occurs that tuples are created
just to apply a function, where the tuple is split by pattern matching immediately afterwards. As
with any object, creating Tuples is both time and memory consuming.

The DML compiler and runtime support special apply methods for the common cases of func-
tions with an arity of less than 5. Those apply0, apply2, apply3 and apply4 functions take�

, � and � arguments, so we save the time of creating tuples and pattern matching. Because ev-
ery function has those apply � methods, this optimization can be used even with higher order
function applications, when the function is not known at compilation time (e.g., if the function
is loaded from a pickle file or is distributed over the network). The default implementation of
apply � creates an � -ary tuple and invokes apply. This is necessary in case of polymorphic
functions which don’t expect a tuple as argument, but can cope with one (e.g., fn x => x). For
non-polymorphic functions that don’t expect tuples, apply � can raise � BMatch � .

Currying

For the compiler backend, there is little that can be done to optimize curried function calls. How-
ever, if the function that was created by currying is applied immediately, the frontend can convert
such curried applies into Cartesian ones, i.e., use tuples (which can be treated as shown above).
For instance,

fun add x = fn y => x+y

can be replaced by

fun add (x, y) = x+y

if the result of add is always applied immediately and add is not exported into a pickle file. Of
course, all corresponding applications have also to be changed from

add a b

to

add (a,b)
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3.2.2 Tail Recursion

Tail recursion is one of the fundamental concepts of functional programming languages. The
only functional way to implement a (possibly infinite) loop is to use one or more functions that
recursively call itself/each other. Whenever a function application is in tail position, i.e., it is the
last instruction within a function, the result of this function is the result of the application and
therefore a return to the current function is not necessary. Like most functional languages, DML
supports tail recursion. This is necessary because otherwise, loops would have a linear need of
stack (instead of a constant one) and thus many programs would crash with a stack overflow
exception after a certain number of recursions. The simplest form, self tail calls, can be easily
compiled into a goto statement to the beginning of the method. But goto cannot leave the scope
of one method, so we have to find another solution for mutually recursive functions and for tail
calls to higher order functions.

[App92] describes a way to compile applications of functional programming languages into
machine code without using a call stack at all. The trick is to transform the programs into continu-
ation passing style (CPS) which means that all functions � take a function � as an extra parameter
where the program continues after � has been executed. In case that � again contains an applica-
tion � , a new function is created that contains a sequence � of the part of � after the application
and a call of � . Now we can jump to � with continuation � without having to return afterwards.
Of course, it is quite inefficient to create so many functions. Appel describes lots of optimizations
that make CPS rather fast as the (native) SML/NJ compiler shows. [TAL90] describes a compiler
for ML programs into C code that also uses CPS.

The restrictions of the JVM don’t allow us the use of CPS in its original form because programs
can neither directly modify the call stack nor call another method without creating a new stack-
frame on top of its own one. On the other hand, we don’t need the full functionality of CPS. We can
use JVM’s call stack for applications which are not in tail position and do something CPS-like for
tail calls: For each tail call, the Function that should be applied is stored into a (static) class field
continuation, e.g., of the runtime environment and the value on which that function should
be applied is returned. All other applications are compiled into the usual invokevirtual, but
afterwards set continuation to null and apply the old value of continuation on the return
value until continuation is null after returning from the function. Now all tail calls have a
constant call stack need. This approach slows down all applications by a getstatic instruction
and a conditional branch and tail calls additionally by a putstatic to store the continuation and
some stack-modifying instructions like dup and swap, but compared to the invokevirtual in-
struction which we use for applications anyway, these instructions can be executed relatively fast.
Let’s have a look at the recursive definition of odd again:

fun odd 0 = false
| odd n = even (n-1)

and even 0 = true
| even n = odd (n-1)

With these changes, the tail call to odd is compiled like follows.

stampCode (odd)
putstatic wherever/continuation
stampCode ( � BMinus � )
stampCode (n)
ldc 1
invokeinterface IValue/apply (IValue) � IValue
areturn

All Non-tail calls now take care of the continuation field as an application of odd n demon-
strates:
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stampCode (odd)
stampCode (n)
loop:
invokeinterface IValue/apply (IValue) � IValue
getstatic wherever/continuation
dup
if_null cont
swap
aconst_null
putstatic wherever/continuation
goto loop
cont:

But alas! Because DML is multi-threaded, we have to take care that each thread has its own
continuationfield. This can be achieved by storing the continuation in a (non-static) field of
the current thread. To read or write the continuation now we determine the current thread via
static call of java/lang/Thread/currentThread. Depending on the JVM implementation,
applications now take about twice as long, but we have a constant stack size when using tail
calls. As this is not very satisfying, the DML compiler uses the following procedure instead. The
code for functions that call each other recursively are stored in the same method recapply. This
method takes 5 arguments: 4 IValues, so it can ingest the special apply � methods as described
in Section 3.2 and an int value that identifies the function. Now tail calls can be translated
into goto statements which are fast and don’t create a new stackframe. Nevertheless, we need a
separate class for each function in case it is used higher order or it is exported into a pickle file. The
apply functions for these classes invoke recapply with the corresponding function identifier.

This practice is a lot faster than the previous one and even faster than doing no special treat-
ment for tail calls at all, but it is less general than the CPS-like variant. The calls are computed at
compilation time, so higher order functions in tail position are not handled. We chose to use this
design because it is way faster than the alternative and because it can cope with most kinds of tail
calls. As a matter of fact, tail calls could be optimized more efficiently and probably a lot easier
by the JVM.

3.2.3 Using Tableswitches and Lookupswitches

For the common case that several integer tests occur after each other on the same variable, the
JVM provides the tableswitch and lookupswitch commands. We use these instructions whenever
possible, thus saving repeated load of the same variable and restoring its integer value of the
wrapper class. This results in both more compact and faster code.

3.2.4 Code Inlining

One of the slowest JVM instructions is the invokevirtual command. Therefore, we gain a good
performance increase by inlining often used and short runtime functions. Longer functions are
not inlined to keep class files and methods compact (The actual JVM specification [LY97] demands
that the byte code of each method is less than 64KB).

3.2.5 Unboxed Representation

The main performance loss we have due to the boxing of primitive values which is necessary
because DML is intended to be dynamically typed and the source of values may be a pickle file or
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network connection. The pickle as well as the network connection even might not yet exist when a
DML file is compiled, so we can make no assumptions about the type in those cases. Furthermore,
the current version of the DML frontend doesn’t supply any type information to the backend at
all.

To get an idea about the potential of an unboxed representation, we have implemented a naive
constant propagation and use this information to omit the IValue wrapper when builtin func-
tions of a known type are invoked. For example, the following function that computes Fibonacci
numbers gains a performance boost by about 35% if only the wrapper for the 3 first constant
literals are omitted and the +, - and < functions are inlined.

fun fib(n) =
if (1<n)

then fib(n-2) + fib(n-1)
else 1

If the type of fib were known to be (int) � int, the wrappers for n and the result of fib
wouldn’t have to be created. By editing the code accordingly by hand, we gain a performance
boost by almost 90% compared to the version with only the described optimizations.

3.3 Summary

The optimizations as described in this chapter cause significant performance increases. Creating
literal objects at compilation time speeds up arithmetic computations by about 30%. Omitting
wrapper objects for inlined code results in another performance gain of circa 35% after all other
optimizations are done. Manually editing the generated code shows us that the use of static type
information could further improve performance by about 90%.
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Chapter 4

Implementation

The DML compiler backend operates on the intermediate representation which is computed by
the Stockhausen implementation for the Alice programming language. Stockhausen performs
some platform-independant transformations that are useful for other compiler backends, too. The
following figure shows the structure of the compilation process. The intermediate representation
as described in Section 2.3 is marked as ‘Intermediate-2’. After all classes are created, a Java
process is executed on the main class to create a single pickle file that contains the evaluated
component.

Program.sml

Frontend

Intermediate-1

Middleend

Intermediate-2

Backend

Program.class Closure
�
.class ... Closure � .class

java

Program.pickle

This chapter gives an overview of the implementation of the compiler backend. Before the
class files are written, some optimizations are performed on the generated byte code: Sequences
of aload and astore are omitted whenever possible. A liveness analysis is done and dead code
is eliminated.

4.1 The Modules

The compiler backend is split into the following modules.
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Abbrev.sml

This file defines a structure with abbreviations for the classes, methods and fields that are used in
the backend. This avoids typos in the generated code.

Common.sml

defines a few functions, constants and structures that are used in most of the other parts of the
backend.

CodeGen.sml

The main part of the compiler backend. This part transforms the intermediate representation into
a list of JVM instructions which is written into Jasmin files by ToJasmin.sml afterwards. This is
done by the following steps:

Constant Propagation

A hash table is used to map stamps to their value.

Computation of Target Classes

Generally, each function is stored in a separate class. As described in 3.2.2, we gain performance
by merging functions that recursively call each other into one recapplymethod of a single class.
When computing ‘free variables’, we are not really interested in the function where a variable
occurs free, but in the method. A hash table maps pairs of function stamps and the number of
arguments of that function to pairs of target classes and a label within this function. If that target
class differs from the function stamp, the code of this function will be stored in the recapply
method of the target class at the position of this label.

Computation of Free Variables

Remember that variables that are bound in the current method are stored in registers whereas free
variables are stored in fields of the class.

Generate the Instruction List

This can be implemented straight forward as described in Chapter 2. In this compilation phase,
we don’t bother about register allocation. We operate on stamps instead of registers and postpone
register allocation to liveness analysis in ToJasmin.sml. Sometimes we want to access some of the
special registers 0 (the ‘this’ pointer), or 1 (the first argument of a method). We define some
dummy stamps for these registers.

The optimizations as described in Chapter 3 demand the following changes:

� To realize the constant pool of DML literals, a hash table maps pairs of classes and constants
to a number that uniquely identifies the literal in this class. A function inserts a literal into
the hash table if necessary and returns the name of the static field associated with this literal
in either case. Those static fields are created by a fold over this hash table. The initialization
is done in the � clinit � method and is also created by a fold. The � clinit � method is
executed by the JVM immediately after the Class Loader loaded this class, i.e., the class is
used for the first time.
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� Each generated function class file must have apply � methods with � arguments, where
n=1. . . 4. Those apply � methods create a Tuple out of their arguments and invoke apply
by default. If a function has an explicit pattern matching for an � -tuple, i.e., a TupArgs
constructors occurs in the FunExp, the apply � is generated like any other apply method.

� The merged recapply methods of mutually tail recursive functions differ slightly from
ordinary apply functions. The number of IValue arguments of such a recapply is that
of the function with the most arguments in this block, but not greater than 4. Apart from
that, recapply takes an integer argument that identifies the function that should be called.
The code for all of these functions is merged into one method which is introduced by a
tableswitch instruction that branches to the correct function. For accessing registers 2, 3, 4
and 5, we need special stamps again.

Now applications are compiled like this:

– Tail call applications with the same target class as the calling method are compiled into
a goto instruction to the beginning of the function in this method. The arguments are
passed via register 1–4 (or 1–5 in case of recapply).

– Any application of a function that resides in a recapply is done by invocation of this
method.

– Other applications, i.e., non-tail call applications or tail call applications to an unknown
or another that the current method, are compiled into ordinary invocations of the ap-
ply or apply � method, depending on the number of parameters.

� Many functional programs operate on lists. Our compilation so far is relatively inefficient
when using lists, because for pattern matching the constructor name of the constructed
value in question has to be loaded on the stack to compare it to the predefined ‘::’. The
runtime defines a special class Cons for cons cells, so a simple instanceof instruction
suffices to tell whether a value has been constructed by a ‘::’ or not. This optimization is
possible for any predefined constructor name, but not for user-defined ones. We could de-
fine a new class for the constructed values of each user-defined constructor names. But in
the case of distributed programming when using names that were defined in an imported
component, we cannot know the class name of the corresponding constructed values. For
the same reason we cannot use integer values instead of constructors and constructor names.

� The runtime supplies special tuple classes Tuple � where
� � � � � . The content fields

of the tuples can be accessed via getfield commands. This is faster and less memory
consuming than the normal getContent method we use for other tuples. See Section 5.3.1
for a description of this optimization.

When the code lists for all methods of a class are constructed, they are passed to the last
module of the compiler backend, ToJasmin.sml.

ToJasmin.sml

This module does the register allocation for the stamps, computes the stack size required within
each method and performs the following optimizations before the Jasmin files are generated.

Register Allocation.

The register allocation is done in 2 steps:
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1. Fuse aload/astore sequences. A stamp is defined only once and is never bound to an-
other value afterwards. The intermediate representation often binds one stamp to the value
of another one. If this happens, a code sequence like aload � astore � is created. From
now on, the stamps � and � contain the same value, so this code sequence can be omitted
if further references to � are mapped to � . A hash table is used to map those stamps. This
optimization can only be done for unconditional assignments. If more than one astore is
performed on the same stamp within this method, those stamps must not be fused.

2. Perform a liveness analysis. We decided to do a simple but fast liveness analysis. Two
hash tables map each stamp to its first defining and last using code position. Branches may
influence the lifetime of a stamp as follows. When branching from within the (old) lifetime
to a position before the first defining position of this stamp, the new defining position is set
to the target of the branch. When branching from behind the (old) last usage to within the
lifetime, the last using position is set to the origin of the branch. When all branches are taken
into account, each stamp is assigned to the first register that is available within its lifetime.

Dead code elimination.

The code after unconditional branches to the next reachable label is omitted. If the first instruction
after a (reachable) label is goto, all branches to this label are redirected to the target of this goto.
If the first instruction after a label is an athrow or some kind of return, unconditional branches
to this label are replaced by this command.
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Value Representation

The basic task of the runtime environment is to define a mapping of DML values to Java classes.
Since Java doesn’t provide corresponding constructs, we have to write classes that model the
behavior of the DML values. The representation of the values is coupled with the primitive oper-
ations of the language.

In the following we discuss several implementation strategies and justify our basic design con-
cept. We present a simple and secure implementation of DML values: literals, names, construc-
tors, and tuples straightforward to model. DML threads are based on Java threads, the different
kinds of transients can be used to synchronize the computation. The treatement of functions is
adopted from Pizza [OW97]. The exception model of DML is implemented as light weight as pos-
sible. After representing a simple version of the runtime classes, we describe some optimizations
that save access time and memory.

In Section 5.1 we explain and justify our basic class concept. Section 5.2 presents the impleme-
nation of the runtime classes that will be refined and improved in Section 5.3. The features of the
Java programming language the implementation relies on are explained as far as needed.

5.1 Basic Concept

The DML language has the following key properties:

1. the language is dynamically typed

2. concurrency with first class threads is supported

3. transients are supported

4. values are higher order

5. any value can be raised as an exception

6. state is represented in terms of references

The modeling of the features of DML into the Java language makes use of the concepts of
Java’s object oriented system (see Section 1.4). The key properties of DML induce the following
constraints on the implementation.

� Property 1 enforces the usage of a common supertype, i.e., a common superclass or the
implementation of an interface for all classes that represent DML values. Further, type tests
are required at runtime and literals have to be boxed in wrapper classes. In particular this
means that we can not use the Java Virtual Machine primitive types directly.
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� Property 2 causes us to subclass the Thread class of Java. We will have to take care to
synchronize parts of the code in order to preserve the semantic characteristics of references
and transients.

� Property 3, the support of transients, requires additional runtime tests, since transients are
used implicitly. This concerns amongst other things the equals method of the classes. This
is another reason why the implementation has to provide wrapper classes for the literals.

� Property 4 implies that many values can be applied, i.e., many of the objects representing a
value are applicable values.

� Property 5 induces us to implement exception raising and handling as light weight as pos-
sible; we have to choose between subclassing some Java exception class or using exception
wrappers.

For the implementation different possibilities could have been chosen.

1. The first idea is that the superclass value should extend some exception class. Then Prop-
erty 5 is fulfilled. But exception creation, i.e., the instantiation of an exception class, in Java
is quite expensive even if the exception is not raised.

2. The second idea is to use the Java top class java.lang.Object as the superclass of all
values. Then we will have to use an exception wrapper in order to be able to raise arbitrary
values. First class threads can be provided by simply subclassing java.lang.Thread.
The application of values can be done by explicitly type testing whenever an application
occurs — and raise a type error if the object is not a function value.

3. The third idea is to define the supertype value as an interface that declares a method apply.
This has several advantages with respect to 2. We can implement first class threads by
subclassing java.lang.Thread and implementing the interface. We reduce the number of
necessary type tests as follows. Values that are not applicable implement the apply method
by raising a type error. This will speed up evaluation when there is no error condition. The
usage of an interface makes the runtime more flexible for changes, it is easier to add further
types and classes. The declaration is separated from the implementation.

We decided for the third idea, because this will be the most efficient way to implement the
runtime. The resulting class hierarchy can be seen in Figure 5.1.

DMLValue

Literals

Name

Constructor

ConVal

Tuples

Functions

DMLTransient

Thread

Figure 5.1: The basic class hierarchy.
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5.2 Implementation

5.2.1 General Notes About The Implementation

Presented Code

In the sequel we present code to illustrate the runtime classes. This code is not ‘pure Java’ but
can be read as pseudo code in the style of Java. Some sections of the actual code are replaced by
comments that merely describe what happens instead of giving the hard-to-read Java reality. At
other places, macros like RAISE are used; their meaning should be clear from the context.

Access Modifiers

Due to the extensions to SML, DML allows much more recursive values. Such recursive values
must be constructed top-down. To achieve foreign function security, the content fields of recursive
constructed objects should be private to the objects and accessible only via methods that check the
semantical constraints. This has one obvious disadvantage: it is too slow. As a consequence, object
fields that are immutable in the sense of DML are declared ‘blank final’ as far as possible. For the
other fields security in that sense can only be achieved with high costs that we are not willing to
pay. We relax security on demands of efficieny.

Threads and Synchronize

This is how Java understands threads. There is a shared main memory where all objects fields,
class fields, and arrays are stored. In the main memory each object is associated with a lock. Every
thread has its own working memory where it can execute the methods of a Java program. There
the local variables of methods are stored; no other thread can see these variables. The working
memory (cache) keeps working copies of the shared objects in the main memory. This situation
is shown in Figure 5.2. Operations on the memory are executed in terms of actions, i.e., atomic
instructions, see Figure 5.3. There are rules that define when a thread is obliged to transfer the
content of the working copies to or from the shared memory. These rules can be found in [GJS96,
Chapter 17] and in [LY97].

Consider the following code of a DML program.
let

val r1 = ref 0
val r2 = ref 0

in
spawn (fn () => (r1 := 1; r2 := 2));
(!r1, !r2)

end

According to the semantic rules of DML, there are three possible results of the expression
above:

� (0,0) — the freshly spawned thread runs only after the references are dereferenced
� (1,0) — the spawned thread changes the value of r1, then the dereferenciation of both

references takes place
� (1,2) — the spawned thread does all his work, then the dereferenciation is computed.

However, in Java we have to take care that there cannot be the result (0,2). Such a situation
could occur according to the Java rules for threads, cf. [GJS96, Chapter 17.10]. To avoid that out-
come of the computation, all methods of the reference objects have to be synchronized, i.e., must
aquire the lock of the reference object. This guarantees the correctness of the implementation.
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Figure 5.2: How Java sees the memory of Threads.

The method toString

Each of the classes overrides the toString() method in an appropriate way. There is also a
method toString(int) that can be used to control the ‘print depth’ of recursive values. Those
will not be shown explicitly in the following.

The method equals

For many of the objects in the runtime, equals is reduced to pointer equality. Because of the
transients, we have to reconsider the equals method of each class. It usually looks similar to the
following:

boolean equals(Object other) {
if (this == other) {

return true;
} else if (other instanceof DMLTransient) {

return other.equals(this);
} else {

return false;
}

}

First the pointer equality is tested. If this test fails, we have to consider the other object to
be a transient. If so, the equals of other will produce the correct result. Otherwise the objects
cannot be equal. In the following we will present the code for equals methods only if they differ
much from this concept and modulo the test for transients.
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Figure 5.3: Atomic actions threads may perform.

5.2.2 DMLValue

The supertype DMLValue is provided by defining an interface DMLValue. This interface provides
basic functions for all subtypes.

public interface DMLValue {
public DMLValue apply(DMLValue val);

}

Since any value in DML may be an applicable value, the method apply has to be imple-
mented. When invoked at runtime, late binding will resolve the method call to the implementing
class and the appropriate object method will be executed.

5.2.3 Literals

In DML the literals consist of integers, words, reals, strings, and characters. These literals are
implemented by wrapper classes. Since the corresponding classes java.lang.Integer, etc.
are declared final, they cannot be extended for our purpose. Therefore we need our own wrapper
classes. We present the character wrapper as an example.

public class Char implements DMLValue {
final public char value;
public Char(char c) {

value = c;
}
public DMLValue apply(DMLValue val) {

RAISE(runtimeError);
}

}

We define an appropriate constructor for each of the literal classes. Each class has a field where
the Java primitive value is stored. Two literals are equal if their primitive values are equal. The
application of a literal value results in an error.
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5.2.4 Names, Constructors and Constructed Values

Terminology

In SML, there are nullary and unary constructors and exceptions. In analogy we have the follow-
ing situation in DML. Names are nullary constructors, e.g. unit and true. Constructors in terms
of DML are unary constructors, e.g. ::, ref, and Option.SOME. Since in DML any value can
be raised as an exception, there is no need to have a special exception construct. If you apply a
constructor to some arbritrary value, you obtain a constructed value; this corresponds to a value
tagged with a constructor.

Name

The application of a name results in a type error. Equality is reduced to pointer equality of Java
objects (modulo transients).

public class Name implements DMLValue {
public Name() {}

}

Constructor

Again, equality is pointer equality. Applying a constructor results in a constructed value with a
pointer to its constructor and the content value.

public class Constructor implements DMLValue {
public Constructor() {}
public DMLValue apply(DMLValue val) {

return new ConVal(this,val);
}

}

ConVal

A constructed value has a reference to the constructor by that it was constructed and a reference
to the value. We define a unary constructor that is needed for recursive constructed values, and a
constructor with constructor and value arguments.

public class ConVal implements DMLValue {
public Constructor constructor;
public DMLValue content = null;
public ConVal(Constructor con) {

constructor = con;
}
public ConVal(Constructor con, DMLValue ct) {

constructor = con;
content = ct;

}
}

In the DML model, references are constructed values, too. Therefore we have to consider the
following methods:

public boolean equals(Object val) {
if (val instanceof ConVal &&
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((ConVal) val).constructor != REFERENCE) {
return

(constructor == ((ConVal) val).constructor) &&
content.equals(((ConVal) val).content);

} else if (val instanceof DMLTransient) {
return val.equals(this);

} else {
return false;

}
}
public synchronized DMLValue exchange(DMLValue val) {

if (constructor == REFERENCE) {
DMLValue ret = content;
content = val;
return ret;

} else {
RAISE(runtimeError);

}
}

Equality is equality of the constructor and the value if the constructor is not the reference
constructor. References have the property to be non-structural equal. The method exchange is
synchronized to make the exchange of the content of a reference atomic.

5.2.5 Tuples and Records

Tuples are implemented by a Java class that stores the items of the tuple in an array.

public class Tuple implements DMLValue {
public DMLValue vals[];
public Tuple(DMLValue[] v) {

vals = v;
}

}

We must be aware that it is possible to dynamically create records with new labels. That means
we cannot statically map record labels to numbers, i.e., we can’t replace them by tuples. Records
are somewhat more complex. The labels have to be stored with the values in order to be able to
reference them again. Record labels are represented by Java strings and assumed to be sorted by
the compiler backend.

public class Record implements DMLValue {
protected Hashtable labels;
public DMLValue[] values;
public Record (String[] ls, DMLValue[] vals) {

values = vals;
// enter the labels with the values’ index
// into the hashtable ‘labels‘

}
public DMLValue get(String label) {

// lookup label’s index in the hashtable
// return ‘value[index]‘

}
}

We use the hashtable labels to map labels to indices in the value array. In this naïve im-
plementation equality testing is rather expensive — labels and associated values have to be com-
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pared. Also, records need much memory because each record keeps its own hashtable to lookup
the values.

5.2.6 Functions

We proceed as follows:

abstract public class Function implements DMLValue {
public boolean equals(Object val) {

return getClass().equals(val.getClass());
}

}

We consider two functions to be equal if their class names are the same. SML doesn’t allow
comparison of functions at all, so this can be seen as an extension.

5.2.7 Transients

DMLTransient

LVar

Future

ByNeedFuture

Figure 5.4: The transients of DML.

Terminology

The terminology used in the sequel is defined in Section 1.3.

Implementation

The class hierarchie of the transients is depicted in Figure 5.4. All the variants of transients have
three operations in common: request, getValue, and bind. Therefore we define a new inter-
face DMLTransient as follows:

public interface DMLTransient extends DMLValue {
public DMLValue getValue();
public DMLValue request();
public DMLValue bind(DMLValue val);

}

Any concrete implementation of this interface contributes these three methods. The first im-
plementation presented is LVar, representing a logic variable.

public class LVar implements DMLTransient {
protected DMLValue ref = null;
synchronized public DMLValue getValue() {

if (ref == null) {
return this;

} else {
if (ref instanceof DMLTransient) {
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ref = ((DMLTransient) ref).getValue();
}
return ref;

}
}
synchronized public DMLValue request() {

while (ref == null) {
try {

this.wait();
} catch (java.lang.InterruptedException e) {

// This should never happen!
}

}
if (ref instanceof DMLTransient) {

ref = ((DMLTransient) ref).request();
}
return ref;

}
}

The LVar contains a reference to the not yet known value. The method getValue returns
the content if known (and makes a path compression on the reference chain) or the logic variable
itself. The method request either returns the known value (again with path compression) or
suspends the current thread. The suspended threads are entered into the wait-set of the logic
variable.

synchronized public DMLValue bind(DMLValue v) {
if (ref != null) {

RAISE(LVar.Fulfill);
} else {

while (v instanceof DMLTransient) {
if (v == this) {

RAISE(LVar.Fulfill);
}
DMLValue vv = ((DMLTransient) v).getValue();
if (v == vv) {

break;
} else {

v = vv;
}

}
ref = v;
this.notifyAll();
return UNIT;

}
}

By using bind on the logic variable the reference is bound and all threads in the wait-set are
woken up. Equality is the equality of the referenced values. If the logic variable is used as a
function, the apply method simply requests the referenced value and calls its apply.

Futures are essentially like LVars, except that the bind operation will result in an error.

The third implemented variant are ByNeedFutures. A ByNeedFuture contains a reference
to an applicable value closure of type unit -> ’a. When the value is requested, closure is
applied to unit and the reference of the function replaced by the result of the application. The
ByNeedFuture knows three states: not yet evaluated function (UNBOUND), an exception occurred
when the function was evaluated (ERROR), and successfully evaluated function (BOUND).
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5.2.8 Threads

All threads we will run in a DML program are instances of the following class.

public class Thread extends java.lang.Thread implements DMLValue {
final public DMLValue fcn;
public Thread(DMLValue v) {

fcn = v;
}
public void run() {

fcn.apply(UNIT);
}

}

A DML thread extends the class java.lang.Thread. The builtin function spawn uses the
thread constructor with the DMLValue argument. The thread defines the run method that will be
executed as its main loop. Equality is pointer equality. Uncaught Java exceptions and uncaught
DML exceptions will be propagated up the call stack and they will not leave the thread context.
The thread terminates, the exception is printed to the console.

We could have solved the problem of tail recursion with a field tail in the class Thread where
the continuation would have been passed. The tail recursion is explained in detail in the backend
(see Section 3.2.2).

5.2.9 Exceptions

Speaking in Java terms, an exception is an event that occurs during the execution of a program
that disrupts the normal flow of instructions. Exception are intended to be used when an error
condition occurs. This has the advantages that

� the programmer can separate the error handling from the normal control flow

� errors are propagated up the call stack

� errors can be grouped and differentiated

Java has different types of exceptions, including I/O exceptions, runtime exceptions, and excep-
tions of one’s own creation. The exception can either be checked or unchecked. Unchecked excep-
tions are subclasses of the class RuntimeException. Runtime exceptions can occur anywhere in
a program and in a typical Java program can be very numerous. The cost of checking for runtime
exceptions often exceeds the benefit of catching or specifying them. Thus the compiler does not
enforce that you catch or specify runtime exceptions, although you can do so.

In DML we want to be able to raise any value as an exception. Since we don’t want our
values to extend some of the Java exception classes, we need to wrap the values to be raised into
a wrapper class. Because in DML an exception can be raised everywhere and will be handled
explicitly in some other (Java) context, it is a good idea to make our exception wrapper class a
runtime exception.

public class ExceptionWrapper extends RuntimeException {
final public DMLValue value;
public ExceptionWrapper(DMLValue val){

value = val;
}

}

The value to be raised is an argument to the constructor of the wrapper class.
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5.2.10 Miscellaneous Types

Literals

There is one additional class JObject that represents Java API objects. With some builtin func-
tions, any Java object can be treated as a DML value. The JObjects cannot be seen as a real
interface to the Java API. This would require a support by the frontend, cf. [BKR99].

Ports, Vectors, Arrays

One of the more sophisticated types is the Port. Ports implement a many-to-many communica-
tion. They use a stream, i.e., a list with a logic variable at the end. If a thread wants to write to
a port, the logic variable at the end of the list is replaced by a ‘cons’ cell with the message as the
‘car’ and a fresh logic variable as the ‘cdr’.

public class Port implements DMLValue {
LVar last = null;
public Port(LVar f) {

last = f;
}
public DMLValue send(DMLValue msg) {

LVar newLast = new LVar();
synchronized (last) {

last.bind(new Cons(msg, new Future(newLast)));
last = newLast;

}
return UNIT;

}
}

Receiving messages from a port is an implicit operation; it is not distinguishable from a usual
list. Appropriate primitive functions for creation of ports and sending messages are supplied:

type ’a port
val newPort : unit -> ’a port * ’a list
val send : ’a port * ’a -> unit

The SML Basis Library defines Arrays and Vectors. For reasons of efficiency these additional
types are implemented in Java. The implementation is straightforward, and the code is not repre-
sented here.

5.3 Enhancements

All the enhancements implemented in this section result in the class tree shown in Figure 5.5.

5.3.1 Tuples

In the case of tuples there can be done several things to improve efficiency. First, we implement
special classes Tuple � for tuples of arity 2, 3, and 4. We avoid the indirection of a Java array and
achieve faster access to the subvalues by defining 2, 3 resp. 4 object fields.

Since all these Tuple � s are of type tuple, we define a common interface DMLTuple. To pre-
serve the former class hierarchy position of the record class, the interface also declares a method
get(String) that can be used to fetch values by a label.
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Figure 5.5: The class hierarchy after considering the enhancements.

Records are more efficient if the labels (we assume labels are always sorted) are stored in a
global hashtable and the record only keeps a pointer to the so called RecordArity. The compar-
ison of two records then is reduced to pointer equality of the records’ arities. Only if the arities
match, the values in the record have to be compared. Furthermore record values can be accessed
by index (since the sorted labels are the same) rather than by label.

5.3.2 Constructed Values

Constructed values also can be specialized into ConVal � classes that avoid the indirection of a
tuple but store the content in object fields. We define an interface DMLConVal similar to the DML-
Tuple interface. Now a method getConstructor is necessary, since interfaces cannot define
object fields.

Another point is the storage of the constructor: references and cons-cells know their construc-
tor statically and don’t need an object field for it; we define two special classes Reference and
Cons.Since we have different objects for references and cons-cells we also have to take care of
the constructors. The class Constructor is subclassed for each of :: and Reference, and the
default implementation of apply is changed. In both cases testing for the constructor can be
reduced to an instanceof test.

5.3.3 Functions

In SML functions only have one argument. If a function is always called with tuples, we may
avoid the wrapping and unwrapping of values into tuples. We can gain some speed by specializ-
ing apply. We define apply0(), apply2(v,w), . . . Still, the compiler must produce a method
apply, not only because the interface definition requires it, but because the function could be
called at runtime with some other value than a tuple. If the closure of a function is empty, i.e.,
there are no free variables, we can additionally define static methods sapply � . There are of course
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changes to the DMLValue interface — now the applys have to be defined. All the implementing
classes have to provide implementations.

5.3.4 General Speedups

In Java, there are several things to do to speed up execution of methods. One thing is to declare
methods to be class methods, i.e., static methods. Another improvement is the declaration of
methods to be final whenever possible. It is also a good idea to avoid synchronizedmethods
— these are much slower. If possible, classes should be declared final, too.

Since the Java Virtual Machine specification doesn’t define the cost of method invocation or
object creation or anything else, these enhancements vary in result on the concrete implementation
of the virtual machine.

5.4 Summary

The DML runtime can be implemented in Java with a reasonable effort. The DML top level type is
defined by an interface DMLValue. All classes representing DML values have to implement that
interface. The equals method of any class has to be aware of transients. The method apply has
to be reimplemented by all of the classes since Java provides no multiple inheritance or default
implementations.

DML threads can be based on Java threads, and transients use Java’s wait and notifyAll
methods to synchronize the computation. The transients are not replaced by the value they are
bound to — there are always reference chains, but the implementation provides the illusion of
disappearing transients. To avoid that, transient support by the virtual machine would be needed.

New DML types can easily be added to the runtime environment. Any new type just has to
implement the DMLValue interface and to contribute the implementation for equality testing and
application.
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Chapter 6

Pickling

Pickling is the process of making (higher order) stateless values persistent, i.e., to store them to
some medium. Pickling plays a major role during the compilation process: each DML program is
compiled into a pickle file. Execution then consists of depickling such a file and calling the main
function of the pickle (see Chapter 2.3.1).

Pickling uses Java’s Object Serialization mechanism [Sun98]. Object Serialization encodes an
object, and objects reachable from it, into a stream of bytes and reconstructs the object graph from
the stream when deserializing. The properties of Object Serialization have to be extended in order
to achieve the semantic properties of pickling: while deserialization creates new objects, we want
the objects to preserve their identity. Further, pickling abstracts away the existence of class files
for user defined functions and stores the byte code with the function instances in the pickle. The
size of the pickle files can be reduced by compression of the byte stream.

The Object Serialization of Java provides many possibilities to customize the default serial-
ization behavior and the implementation of pickling requires only small changes to the runtime
classes as presented in Chapter 5.

6.1 To Pickle Or Not To Pickle

In DML stateless values can be pickled. Stateful entities such as transients, references, ports,
and threads cannot be pickled and pickling one of those results in a runtime error. For names and
constructors, we have a special handling to preserve pointer equality: globalization and localization.
The following table summarizes the behavior of the diverse values.

Value Type Pickled As
Literals themselves
Name globalized name
Constructor globalized constructor
ConVal constructor globalized
Tuple, Record themselves
Function closure
Reference runtime error
Thread runtime error
DMLTransient runtime error
Array, Port runtime error

Pickling can be invoked in the following way
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val _ = General.pickle ("filename",something)

and unpickling is simply

val v = General.unpickle "filename"

6.2 Pickling and Serialization

To implement pickling, Java Object Serialization is used. The Java Object Serialization process is
specified in [Sun98]. Here we give a short summary of the serialization concept and its properties.
The differences to pickling are elaborated, and the hooks are shown by which the pickling process
can be customized.

The default properties of Java’s serialization are

1. objects are optionally serializable

2. serialization/deserialization works by copy rather than by reference

3. the object graph is traversed

4. cyclic data structures and coreferences are preserved

5. the class code of objects is located by the class name which is attached to each object

6. static fields are not serialized with the object instances

Pickling needs some more sophisticated treatment. We want further

7. objects to enshrine their identity

8. the class code to reside in the pickle

9. static values of closures to be stored with the function’s class. At the instantiation time of
the closure, the transitive closure of all reachable data structures is built up. The external
references of the code are made explicit as static fields of the function class.

As one can see there is some conflict between 2. and 7., 5., and 8. as well as between 6., and 9..
Considering this, the following has to be done:

� provide a mechanism for the pickled objects to have a unique identity

� modify the serialization so that class code will be attached to the objects in the pickle

� figure out how static properties of closures can be stored so that we don’t have to compute
them at unpickling time

Since serialization produces copies of objects, pointer equality is lost when serialization works
on instances of Name or Constructor. Therefore, to pickle Name or Constructor values re-
quires globalizing them during serialization, and respectively localizing them during deserializa-
tion. For the builtin names and constructors (true, false, ::, etc.) we need unique names and
constructors that are further equal across machines and pickling operations.
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Figure 6.1: Java’s Object Input and Output Routines
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6.2.1 Outline of Java Serialization

To serialize objects, the java.io.ObjectOutputStream class can be used. To write the objects
to an underlying output stream the ObjectOutputStream provides a method void write-
Object(Object). To deserialize objects there is the java.io.ObjectInputStream class. It
provides the input routine by the method Object readObject()1. All objects that want to use
the default serialization mechanism have to be declared serializable by implementing the interface
java.io.Serializable. This interface has no methods to implement, it serves only to identify
the semantics of being serializable.

The algorithm for the output and the input of objectgraphs is depicted in Figure 6.1. Let out
the outputstream and in the inputstream. The serialization starts with a call to out.writeOb-
jectwith the object o that is to be serialized. The object’s class must implement Serializable,
or else an exception is thrown. Deserialization is performed by the readObject method. Each
call to readObject returns one data structure. The depicted algorithm is simplified for the sake
of understanding; the precise description can be found in [Sun98].

So, if a class implements Serializable and is written to resp. read from one of the provided
streams, one has the default behavior with the following properties:

� data structures are serialized by traversal
� coreferences and cycles in the structures are preserved
� objects are written once to the stream
� each object is annotated with its corresponding class descriptor

In order to customize this behavior we can on the one hand implement several methods in the
classes of the objects we want to serialize. On the other hand, we can subclass the default streams
and customize the output algorithm. The following methods of the respective class influence
serialization:

1. (a) private void writeObject(ObjectOutputStream), and

(b) private void readObject(ObjectOutputStream)

can be overridden to provide special handling for the classes’ fields. Note that the access
modifier private is mandatory here.

2. (a) Object writeReplace(), and

(b) Object readResolve()

give the user a way of replacing and resolving objects by other objects. The readResolve
is called after deserialization, but before the object is inserted into the object graph.

The following methods of the stream classes are overridden and modified in the implementa-
tion.

1. void annotateClass(Class) of ObjectOutputStream is invoked when the object’s
Class is written to the stream. This happens before the object itself is written. Therefore
this class annotation will always be read from a stream before the corresponding instances.

2. Class resolveClass( ��� � ��� �����
	�� ) of ObjectInputStream is called when deserializa-
tion of an object starts and before the actual reading of the object itself.

1We are aware of the fact that using the default mechanism of Java is not the best solution considering speed or size of
serialized objects. Efforts have been successfully made to improve the general behavior of the object serialization process,
e.g., in [HP99]. Yet the improved versions don’t have the full functionality (replacing objects is not possible), so we have
to use the Java defaults.
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3. Object replaceObject(Object) of the ObjectOutputStream replaces objects simi-
lar to the writeReplace method of the class to serialize. The replaceObject is called
only if enableReplaceObject(true)method has been invoked on the stream.

The tasks of pickling can be fulfilled as follows. Globalizing and localizing uses the mentioned
methods of the classes. Annotation of byte code to the objects uses annotateClass and read-
Resolve. The replaceObject method will be used to check the admissibility of the pickling.

6.3 Implementation of Pickling

The tasks can now be specified as follows:

� modify the default serialization behavior of

– transients, Thread, Array, Port etc. to raise errors

– Name and Constructor to be globalized/localized

� annotate objects of type Functionwith their byte code and their static fields, i.e., store class
properties with objects

� load the byte code of the classes from the pickle when deserializing, and

� provide a class loader that can handle pickled classes.

In order to use the default serialization of Java, the interface DMLValue looks like this:

public interface DMLValue extends java.io.Serializable {
// ...

}

Most of the already mentioned value types are now ready to be serialized and nothing has to
be changed in the classes, excepting Name and Constructor.

6.3.1 Globalization and Localization

Globalization and localization concerns names and constructors. It preserves pointer equality
in terms of Java. The names and constructors must be globalized when serialized and localized
when deserialized. The builtin names and constructors must be unique across machines and
serialization processes. The implementation realizes localization by object replacement.

Therefore, we add a field to the classes where a so-called GName (for ‘global name’) is stored.
The field is initially empty. A GName is an object that is globally unique across Java machines.
The constructor and name objects can then be identified by their GName. A global hashtable maps
the GNames to objects. The globalization takes place in the writeObject method of Name resp.
Constructor: If the name or constructor is pickled for the first time, it gets a new GName and
registers itself with the new GName in the global table GName.gNames. After that, the default
mechanism is used for serialization.

The localization is implemented by readResolve: When unpickling a name or constructor
object, the constructor is looked up by its GName in the global table. If there already is a reference,
the current object reference is discarded and the one from the hashtable is used instead.

Unique names and constructors now can be realized by subclassing the Name and the Con-
structor class and rewriting the write and read routines. This is done by replacing the GName by
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a string. Now the GName is already initialized when the name or constructor is created. Therefore,
nothing needs to be done in writeObject2. It cannot be assumed that such names and construc-
tors are always available in the global hashtable since there is the possibility that a unique object is
first encountered during unpickling3. Thus readResolve checks if the unique object is already
present and returns either the value in the hashtable or the freshly created object.

6.3.2 Annotation of Class Code

Since functions are instances of classes we have to care about their byte code definition. One of
the purposes of pickling is to make the presence of class files transparent for the programmer.
To achieve transparency the byte code of the class files is stored with the instance of the class. It
would be a waste of resources to annotate all of the function classes because much of the byte
code is defined in the runtime’s basis library and exists on all machines. Therefore we split up
functions in two kinds: user defined functions and runtime defined builtins. In the following, we
annotate only objects of type Function. The resulting class tree is shown in Figure 6.2.

The annotation with class code cannot be implemented by modifying the methods of the
Function objects — at the time of the deserialization the code needed to countermand the anno-
tation of the object is the concrete implementation; what we have here is a variant of the ‘chicken-
egg-problem’. So the annotation of the classes is deferred to the output stream.

DMLValue

Literals

Name

Constructor

DMLConVal

Reference

Cons

ConVal �

DMLTuple

Tuple

Record

Tuple �Builtin

Function

DMLTransient

LVar

Future

ByNeedFutureThread

Figure 6.2: The class hierarchy after the introduction of pickling.

We define a PickleOutputStream subclassing ObjectOutputStream. The constructor of the
class enables replacement of objects. We annotate the Class object of the Function objects.
During the serialization process, Java writes a Class handle for each object before the object itself
is written (see Figure 6.1). The annotation is implemented in the annotateClass method. We
do not present the detailed code here because it is rather tricky to find out where to get the class
code from and how to write it to the stream. The concept of the method is as follows: The method

2The method is not inherited from the superclass because of the required private access.
3On the other side, the runtime takes care that the builtin names and constructors are created only if they do not already

exist.
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replaceObject gives us the possibility to clean up references of transients and the chance to
wait for transient values to be bound. This is the place where an error is raised if someone tries to
pickle a Thread, Array, Port or Reference. We prevent the pickling of transients or threads
etc. Note that this does not prevent those objects from being serialized — it’s just not possible to
pickle them. We will need this feature later, when we use distribution, cf. Chapter 7.

6.3.3 Class Loading

To deserialize pickles we need a class loader that can handle the pickled class code. To create such
a class loader, the java.lang.ClassLoader class is extended and adapted for our purpose.
The class loader contains a hashtable where the byte code is stored by the corresponding class
name. The method findClass is modified so that it can define classes that are stored in the
hashtable. The PickleClassLoader will be invoked when annotated classes are detected to
define the classes in the VM.

6.3.4 Reading Pickles

To read pickles we adapt java.io.ObjectInputStream for our purpose. When the Object-
StreamClass of an object is read from the input stream, the resolveClass method of the
stream is called. At that time, we determine if the class was annotated with byte code by the
PickleOutputStream. The byte code of the class is then read and defined with the Pickle-
ClassLoader. Then we read the values of the static fields from the stream.

6.4 Summary

Pickling of DML values is implemented using Java Serialization. The DMLValue interface ex-
tends Serializable so that all values use the default mechanism. Modification of the objects
during serialization can be realized by implementing readObject and writeObject. The glob-
alization and the localization are realized by the methods readResolve and writeReplace.
The annotation of special classes with their byte code requires the usage of a customized Ob-
jectOutputStream and ObjectInputStream. The annotation itself takes place in the anno-
tateClass method. Furthermore a class loader has to be created that can handle the byte code
from the pickle. That class loader is used during deserialization in the method resolveClass.
As a by-product, pickling cleans up references of transients. The actual implementation of pick-
ling further uses compression on the pickled files. We just use a GZIPOutputStream resp. a
GZIPInputStream as an intermediate layer between the file stream and the pickle stream. Pick-
ling simplifies the usage of the compiler since it abstracts away the class file handling.
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Chapter 7

Distributed Programming

This chapter introduces DML’s features of distributed programming and explains the basic con-
cepts. We show how a high level distribution can be implemented in Java.

Today computers are no longer standalone machines but are usually connected together by
networks of different kinds. Still, it is an often error-prone task to implement distributed applica-
tions, partly because the programmer has to explicitly deal with the network.

By making mobility control a primitive concept, one can abstract away the network and so
release the programmer of the low level handling of transport layers etc. By defining the behavior
of different data structures, the network is still there, but on a higher level. The key concepts
are network awareness and network transparency1. The idea behind the distribution model of DML
comes from Mozart [HVS97, HVBS98, VHB � 97].

Java’s design goals include distributed programming in heterogenous networks, so we can
hope to find a simple way of implementing distribution in DML. Java Remote Method Invocation
(RMI) provides the mechanism by which servers and clients may communicate and pass infor-
mation back and forth. One of the central features of RMI is its ability to download the code of a
class if the class is not available on the receiver’s virtual machine. Yet this involves the presence of
a HTTP or FTP server; the distribution of DML removes this necessity by modifying some classes
in the Java API.

This chapter is organized as follows. In Section 7.1 we explain the usage of distribution in
DML. Section 7.2 gives a summary of Java’s distribution model. The distributed semantics of
DML is specified in Section 7.3 and the implementation of the DML model is presented in Sec-
tion 7.4. To facilitate the handling of class code we have to modify some of the Java RMI classes;
this is explained in Section 7.5. The results of the chapter are summarized in Section 7.6.

7.1 Establishing Connections in DML

The user of DML can provide values for other sites with

Connection.offer : ’a -> ’a ticket

This function takes a value and makes it available for access from some other machine. It returns
a ticket by which the value can be taken from somewhere else with

Connection.take : ’a ticket -> ’a

1These terms first appeared in [Car95].
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A ticket is a unique identifier that carries information about where the value is offered. Such a
ticket is simply a string and can be sent to an other site via email or something like that.

7.2 Java RMI

Java has a distributed object model, implemented by using Remote Method Invocation RMI. RMI
is a correspondent to Remote Procedure Call RPC in procedural languages. RMI abstracts away
the communication protocol layer and tries to be both simple and natural for the Java program-
mer. Java RMI uses Java serialization; many of the properties discussed in Chapter 6 are main-
tained.

Speaking in Java terms a remote object is an object on one Java Virtual Machine that provides
methods that can be invoked from another Java Virtual Machine, potentially on a different host.
An object of that kind implements some remote interface that declares the methods that can be
invoked remotely. A remote method invocation is the action of invoking such a method on an remote
object. There is no difference in syntax for remote or non-remote methods. Similar to the non-
distributed environment, references of remote objects can be passed as arguments to and as results
from methods. One can still type cast a remote object along the implemented interfaces hierarchy.
The instanceof operator of Java works as before.

To make objects remote one must define an interface that extends the interface java.rmi.Re-
mote. The remote object implementation class must implement that interface. The remote object
class must extend one of the RemoteObject classes provided in the java.rmi package, e.g.,
UnicastRemoteObject. It is further required to define an appropriate constructor for the class
and to provide implementations for the remote methods in the interface.

There are some characteristics that the programmer has to keep in mind when using RMI. First,
remote objects are usually referred to by their interface methods and never by their implementa-
tion. Second, non-remote arguments that are used in a remote method invocation are transferred
using Java serialization and therefore passed by copy. In contrast, remote objects are passed by ref-
erence. Two further details have to be respected: some methods of java.lang.Object are spe-
cialized, and each remote method must declare to throw the checked exception java.rmi.Re-
moteException.

Java RMI applications usually are comprised of several programs, namely a server and a client.
Server applications create remote objects and make them available for clients, which in turn in-
voke methods on those objects. The arguments of these methods (and the return values) can also
be remote objects created by the client — eventually the client is a server, too. So there are the
following tasks to comply with:

1. provide a naming service for remote objects,

2. organize the communication between remote objects

The naming service is provided by the so called registry. The communication between objects is
implemented by RMI. Since in Java a subclass can be passed instead of the class itself we have to

3. load class code of objects for which the class code is not available locally

This is realized by RMI’s class loading facility which annotates objects with the location of the
corresponding class. The code can then be fetched from the web server denoted by the location.
Figure 7.1 shows the Java model of distribution.
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Figure 7.1: RMI distributed computation model.

7.3 Distributed Semantics of DML

To use the distribution correctly a semantics has to be specified for the primitive values. The
semantics of DML tries to imitate the semantics of distributed Oz (see [HVS97]). A summary of
the semantics is depicted in Figure 7.2.

Furthermore, while Java speaks in terms of clients and servers, the DML distribution model
doesn’t make such a distinction, we simply talk about sites. The home site of a value V is the site,
where the value was created; other sites that have a reference to V are called foreign sites.

Literals, constructed values, names, constructors, records, tuples, and functions are stateless
and can be replicated, i.e., if such a value is offered to another site, the requesting site simply gets
a copy of that value.

Stateful values such as references, transients, threads, arrays, ports, and vectors are treated in a
different way. Threads and arrays are not sent to another site, but are replaced by a NoGood which
does not allow the foreign site to perform any operationson the value. NoGoods are globalized
so that if a NoGood comes back to its creation site, it will be localized and replaced by its former
entity, and the home site can use the respective value as before. Ports and transients are stationary
on their creation site, and foreign sites only get a proxy for the requested value. All operations
performed on such a proxy are forwarded to the home site and executed there.

References use a Mobile Protocol that works as follows. On each site, references have a proxy.
Only one site can own the content in the proxy. There is one manager on the home site of the
reference which is responsible for the coordination of the proxies. To request the cell content the
proxy on the site asks the manager for it. The manager then takes the content from the actual
owner and gives it to the requesting site. Subsequent requests are handled in a first-in-first-out-
manner.

7.4 Implementation

To implement the distributed part of DML, Java’s Remote Method Invocation is used. This has
the advantages that

� there is much functionality implemented
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Figure 7.2: DML values and their distributed semantics.
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� distribution is compact and secure

� distributed garbage collection is provided by RMI

There is one problem if we want to use the standard RMI. The class code for values must be
provided via a web server working on the offering machine. To facilitate the handling and avoid
the need for a web server, we have to reimplement some classes of the RMI API (see Section 7.5).

7.4.1 Providing Values

To facilitate the handling of tickets and values, all the interchange of values works via one boot-
strap remote object. This bootstrap object is created and installed the first time one of the Con-
nection functions is used. At that time, the registry is started on a specified port of the host
and the special bootstrap object is bound in that registry. The bootstrap object is defined by the
Export interface and the implementing Exporter class. All communication goes through the
exporter; that object handles an internal hash table that maps tickets to values. This situation is
illustrated in Figure 7.3. There is one registry per host, several JVMs may use one single registry.

registry registry

Site 1 Site 2

offer

RMI

take

offer

Exporter
Exporter

take

Figure 7.3: Offering and Taking Connections

7.4.2 Stateless Entities

All stateless values as listed in Figure 7.2 are replicable. Literals are easy to implement: nothing
has to be changed. The same holds for tuples and records. Functions and builtins don’t have to
be changed either, since their default behavior is to be passed by copy, and this is the desired way.

7.4.3 Stateful Entities

Array and Thread

Values that are offered as NoGoods have to be changed slightly, e.g., the Array class.
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public class Array implements DMLValue {
private NoGood ng = null;
private Object writeReplace() throws ObjectStreamException {

if (ng == null) { // if serialized for the first time
GName gn = new GName();
ng = new NoGood(gn);
GName.gNames.put(gn,ng);
return ng;

} else {
return ng;

}
}

}

The writeReplace method replaces the values by an instance of the NoGood class. In order
to achieve uniqueness, the NoGood has an associated GName. The actual value is stored under
that GName, so that original value can be restored if the NoGood returns to its creation site.

Transients and Ports

For the proxy-providing values the following has to be done. We define new interfaces DMLTran-
sient and DMLPort for the respective classes. These interfaces extend the Remote interface of
Java’s RMI and our DMLValue.

public interface DMLTransient extends Remote, DMLValue {
public DMLValue getValue() throws RemoteException;
public DMLValue request() throws RemoteException;
public DMLValue bind(DMLValue val) throws RemoteException;

}

The methods declared in the DMLTransient interface can be invoked remotely. No other
methods of the transients can be invoked, since the remote site only sees the DMLTransient
interface.

The remote interface for the Ports looks similar; Ports provide a method send and, to pre-
serve the DMLValue type, a method apply.

In order to make objects stationary, it is required to extend one of the RemoteObject classes
(remote objects are passed by reference). In our case this is realized as follows:

public class LVar extends UnicastRemoteObject
implements DMLTransient {
public LVar() throws RemoteException { }
// ...

}

7.4.4 References

References implement the Mobile Protocol. On its home site, the reference is associated with a
server manager. All sites communicate with the reference via a client manager. The server man-
ager and the client manager are modeled by remote objects. The reference is a non-remote object
and transferred by serialization.

The manager classes implement remote interfaces, SManager and CManager. These have the
following definitions respectively.

public interface SManager extends Remote {
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public DMLValue request(CManager requester) throws RemoteException;
}

public interface CManager extends Remote {
public DMLValue release() throws RemoteException;

}

The interfaces are implemented by ServerManager resp. ClientManager:

public class ServerManager extends UnicastRemoteObject
implements SManager {
CManager contentOwner;
public ServerManager(CManager initial) throws RemoteException {

contentOwner = initial;
}
public synchronized DMLValue request(CManager iWantIt)

throws RemoteException {
DMLValue val = contentOwner.release();
contentOwner = iWantIt;
return val;

}
}

The request method takes the requesting client manager as its argument. It enforces the
former owner to release the content of the reference and registers the requesting client as the new
content owner. Then it returns the content value of the reference.

The client manager provides the possibility to delete the content of the reference and return it
to the server manager.

public class ClientManager extends UnicastRemoteObject
implements CManager {
Reference ref = null;
public ClientManager(Reference r) throws RemoteException {

ref=r;
}
final public DMLValue release() throws RemoteException {

return ref.release();
}

}

The Reference class now looks as follows:

public class Reference implements DMLConVal {
DMLValue content = null;
SManager mgr = null; // Homesite-Manager
CManager cmgr = null; // Clientsite-Manager
// ...

}

The object has fields for the homesite manager and a client manager, both are initially empty.
As long as no distribution takes place, we have no overhead in the code. The content of a reference
is now removable:

public DMLValue release() {
DMLValue t = content;
content = null;
return t;

}
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The release method is used by the server manager to fetch and delete the content from a
client reference.

The content of a reference can be accessed by:

synchronized public DMLValue getContent() throws RemoteException {
if (content == null) {

content = mgr.request(cmgr);
}
return content;

}

Before we can return the content of the reference, we have to make sure that the reference on
which the method is invoked owns the content or else we ask the manager to request it.

The managers of a Reference are only created if the reference is used in an distributed con-
text. Since Reference is a non-remote class, the distribution is performed by serialization, i.e.,
the writeObject method of the Reference object is used.

private void writeObject(ObjectOutputStream out) throws IOException {
try {

// the client manager is not written to the stream
// since the readObject method will install a new one
CManager CMGR = null;
if (cmgr == null) { // i.e., we are on the home site

CMGR = new ClientManager(this);
} else { // previously installed by readObject

CMGR = cmgr;
}
cmgr = null;
// the content will not be transferred immediately
DMLValue t = content;
content = null;
// install and export the server manager
if (mgr == null) { // i.e., we are at home

mgr = new ServerManager(CMGR);
}
// write Reference to stream and restore the client
// manager and the content
out.defaultWriteObject();
cmgr = CMGR;
content = t;

} catch (RemoteException e) {
System.err.println(e);

}
}
private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException {
in.defaultReadObject();
cmgr = new ClientManager(this);

}

When the reference is written to the RMI output stream, the managers are installed. The client
manager and the content are not written to the stream, since the site that deserializes the reference
installs its own client manager. Note that if you re-distribute references the new server manager
remains the same.

To make clear that the references have the desired behavior, look at the following. Imagine
we have two sites A and B. On site A we create a reference R. At first nothing happens at all —
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the reference class is designed such that there is no overhead if the user doesn’t use distribution.
Then site A offers R to the world, using

val ticket = Connection.offer R

Then the ticket is somehow transferred to site B, and B uses the ticket with

val myR = Connection.take ticket

At this point in time several things happen. First of all, B connects via a TCP/IP connection to
A, asking for the value with the ticket ticket. A now serializes R and uses the writeObject
method, i.e., installs a ClientManager, a ServerManager and transfers a copy of the Reference
without the content, but with a reference to the ServerManager. Site B receives the reference and
uses the readObject method of Reference to deserialize the object. It knows nothing about
the content, but receives the reference of the ServerManager. If site B now wants to do anything
with myR, the methods of myR enforce the connection to the ServerManager and the request of the
content. This example is illustrated in Figure 7.4.

content

A creates a reference
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Home Site A
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content
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myRR

content
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content
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Figure 7.4: The Mobile Protocol of Reference.

7.5 Reimplementing RMI

After having a look at the sources of RMI, we are faced with the following situation: Java RMI
uses specialized subclasses of MarshalInputStream resp. MarshalOutputStream for the se-
rialization of non-remote objects in the remote environment. The solution is to reimplement these
classes and tell the Virtual Machine to use the modified implementation instead. The virtual ma-
chine then has to be invoked with the -Xbootclasspath command line option as follows:
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Figure 7.5: The patched RMI without a web server and URL protocol.

% java -Xbootclasspath:$PATCH:$RT -classpath $CLASSPATH ...

The environment variable PATCH contains the path to the patched class files and the variable RT
points to Java’s default runtime classes (usually something like /opt/jdk/jre/lib/rt.jar).

The modifications are the following. In the output class we have to make sure the byte code of
offered functions is provided. The server will make the code available via the export facility which
itself simply looks up the code in the PickleClassLoader. So we modify the annotateClass
method similar to the annotateClass of pickling. The unmarshalling has to check whether it
has to load the class via net and is modified by overriding the resolveClass method.

That is all you have to do. All other parts of the runtime classes are left unchanged. The
Export interface has to be extended with a method that provides class byte code and another
method that has access to the static fields of classes.

Since the classes that we have modified are platform-dependant, the current implementation
works with Linux. The source code for other platforms has not been available for me, but the
modifications are straight forward and could easily be transferred to other operating systems.

The model of DML’s distribution is sketched in Figure 7.5. In contrast to Java RMI’s class
loading concept, DML doesn’t need a web server and the use of a URL protocol.

7.6 Summary

In DML distributed programming is implemented using Java Remote Method Invocation. We
have to modify the default behavior of the marshaling classes to achieve a smart solution. The
DML system provides distributed programming on a high level, many of the explicit Java con-
structs are avoided. In this respect, a similar approach is taken in [PZ97], where an add-on for
Java RMI is presented.

Because we use RMI, we don’t have to care about distributed garbage collection and low level
protocols; no failure handling is implemented. The implementation is compact and reuses much
of Java’s facilities.

There are alternative implementations of RMI [NPH99], but we don’t have the source code to
adapt it to our input and output streams.
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Related Work

In this chapter we briefly describe projects that share some properties with our work. We sketch
what other systems do and give references to these works. As mentioned in Chapter 1, there are
already many programming languages that are translated to the Java VM. An always changing
and useful list can be found at [Tol99].

8.1 Kawa

Kawa [Bot98] is a compiler for the LISP dialect Scheme to the JVM. It provides a higher-level
programming interface with support for scripting and interactive read-eval-print loops. It gives
a full integration between Java and Scheme. The author, Per Bothner, describes a possibility for
generally treating tail calls in a CPS-like style. Just like our proposal in Section 3.2.2, this slows
down all applications but operates on a constant call stack.

8.2 MLj

MLj is meant to be a complete system for compilation of Standard ML to Java byte code. It has a
static type system with extensions for classes and objects. MLj provides a Java API interface with
additional syntax. MLj performs whole program optimization and gains much speed because of
that: Polymorphism is reduced to monomorphism by duplicating methods. Functions are de-
curried and boxing can be avoided rather efficiently. So far, only simple tail recursion is handled.
See also [BKR99].

8.3 Bertelsen

In his Master Thesis Peter Bertelsen describes a new compiler backend for Moscow ML that com-
piles Standard ML to Java. In contrast to MLj, no API interface is given. There is no tail call
handling implemented. Bertelsen performs no optimizations that go beyond MLj. See [Ber98] for
details.

8.4 Java related software

For the Java programming language several software projects are concerned with issues we ad-
dressed in Chapters 5–7. For one, the serialization routines have been reimplemented to provide
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faster (and more compact) algorithms, cf. [HP99]. In correspondence, the Java RMI facilities have
been improved. Java RMI uses Java serialization so it is useful to enhance both in conjunction. The
reimplementation provides a much faster RMI, designed to work on high speed network connec-
tions rather than insecure and unstable Internet connections. This work is described in [NPH99].

Java’s RMI needs much care to be used by a programmer such as exception handling etc. Java-
Party [PZ97] gives transparent remote objects and further improvements to facilitate the usage of
distributed programming in Java.
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Benchmarks

In this chapter we present some benchmarks and show how we use them to analyze the perfor-
mance of the DML system. We compare the execution time of programs with SML/NJ and MLj
to figure out the pros and conts of the way we implemented DML. The benchmark programs and
the evaluation follows the evalutation of the Oz VM [Sch98].

To what other system should we compare DML? Of course, MLj and SML/NJ are good can-
didates for comparison. DML is dynamically typed and therefore needs many runtime type tests
while SML/NJ and MLj don’t; so we can hope to figure out the cost of dynamic typing. While both
MLj and DML are interpreted by the Java Virtual Machine, SML/NJ is compiled to native code.
DML supports transients and has the possibilty to dynamically read higher order values; the for-
mer induces further runtime type tests, and the latter prohibits some optimizations. Neither MLj
nor SML/NJ have similar features.

Due to dynamic typing, we expect DML to be slower than MLj or SML/NJ. Further, because
DML provides transients, pattern matching and primitive operations of the language are more
expensive. If we compare DML to MLj, we can analyze the cost of our dynamic properties and
the support for transients. The costs of concurrency and distribution cannot be compared because
MLj does not provide similar features. By comparing DML to SML/NJ, we try to determine how
much overhead is introduced by using a virtual machine to interpret the code instead of using
native code. Again the costs of concurrency and the omitted static type information have to be
considered. SML/NJ provides concurrency as a module and we will have a look at the costs of
threads. The distributed programming facility of DML have no counterpart in SML/NJ.

Another system we compare DML with is Kawa. Similar to DML, Kawa programs are inter-
preted by the JVM. Kawa is dynamically typed and in this respect more similar to DML than MLj
and SML/NJ. But because the source language differs from DML considering the translation of
closures, the benchmark results are not so significant.

9.1 How We Measure

The time is measured with GNU Time v
�����

. Let X denote the benchmark to be executed. In the
case of DML, the execution time of

dml X

is measured. For MLj, the execution of the command

java -classpath X.zip X
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is used. For both DML and MLj we start the JVM with identical runtime options. SML/NJ pro-
grams are started by

sml @SMLload=X

The execution of Java byte code can be accellerated by using so called Just In Time (JIT) compil-
ers. For Linux, there are several JIT compilers available; we only consider ‘tya

� � �
’ [Kle99] and the

default ‘sunwjit’ that comes with Blackdown’s JDK [dSR � 99]. The usage of JIT compilers is only
for the profit of DML and MLj with respect to SML/NJ as SML/NJ has no such way of speeding
up.

First we call each benchmark program without arguments and measure the time it takes to ex-
ecute the dummy call. By doing this, we can get a good estimation of how much time is consumed
before the actual benchmark is started; the startup time will be subtracted from the overall run-
time. If we use a JIT compiler we have to take into account the time that is needed to JIT-compile
the class code. In practice, this time span was infinitesimal with respect to the total time of the
execution, so that we can simply neglect this aspect. Each benchmark program then is executed� �

times, the time listed in the result table is the arithmetic average of the overall time minus the
startup time. The standard deviation was also computed in order to show that the results of the
benchmarks don’t vary too much. We do not show the values of the deviation here, we usually
gained results where we had � � ��� .
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The standard deviation is computed as follows:
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Since the running time measured in seconds is not so interesting as the ratio we give the results
in the form ‘SML/NJ : MLj : DML’ resp. ‘MLj : DML’ normalized with respect to SML/NJ resp.
MLj, i.e.,

�-, ��.0/01�23�54 .0/760879 , �*:0.0/;23�54 .0/760879
resp.

�-, �*:0.0/�2<��.0/71
The benchmarks on the JVM are run with ‘green’ threads. For Linux running on a single

processor machine the choice of green threads results in a better running time; native threads are
heavy weight. Note that Linux limits the number of threads per user to

� �>=
by default; each Java

native thread counts as one system thread. A normal user therefore is not able to create more than
the system limit; some programs will not be able to run as expected. For green threads there is no
such limit.

9.2 The Test Platform

The benchmarks programs are executed by using the following hardware and software:
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Architecture x86
Processor Intel Celeron (Mendocino), � =>= MHz
Main Memory

� ���
MB

OS (Red Hat
= � �

) Linux
� � � � � �

Java Blackdown JDK
� � � � �

-RC
�

JIT TYA
��� �

JIT sunwjit (included in JDK
� � � � �

-RC
�
)

MLj Persimmon IT. MLj � � �
Kawa Kawa

��� = � = �
SML SMLofNJ Version

� � � � � � �
Time GNU Time v

�����

9.3 Benchmark Programs

We perform and analyze the following benchmarks:

� Fib/Tak — The Fibonacci numbers are computed in order to measure how good function
application and integer arithmetic works. The Takeushi function serves the same purpose
with a different ratio of function calls and arithmetics.

� Deriv — This program computes symbolic derivations to show the costs of using construc-
tors and pattern matching.

� NRev — By using naive reverse of lists, we want to find out the costs of transients and
allocation of lists on the heap (see below)

� Concfib — Concfib measures the cost of thread creation and synchronization with transients
in DML resp. channels in CML (the concurrent extension to SML/NJ).

The code of the benchmarks can be found in Appendix B.

9.4 Analysis

Fibonacci and Takeushi

The Fibonacci benchmark computes fib 31 and thereby induces circa 2.1 million recursive calls.
In each call of the function, one comparison on integers, one addition and one subtraction has
to be performed. The Takeushi benchmarks computes tak(24, 16, 8) which causes about
2.5 million function calls. In this case, less arithmetic functions have to be performed.

The benchmark results for Fibonacci are the following:

�
: � : � � (no JIT)

�
:
� � �

:
� � � �

(tya)

�
: � � = :

� = � �
(sunwjit)

There are two things one notices at once: MLj code that is accelerated by a JIT compiler beats
SML/NJ and DML falls back by the factor of about 10-12. One can image that the native code of
SML/NJ is way faster than the interpreted byte code of Java, but this contradicts the fact that MLj
is as fast as SML/NJ. So this can’t be the reason why the DML code is so slow. What else could
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cause that breakdown? The analysis of the runtime behavior of the DML Fibonacci program
shows that about � � % of the time is spent for arithmetics, particularly the creation of integer
wrapper objects. To confirm that the missing type information (or better: statically unused type
information) causes the high costs we try the following: we add and use type information ‘by
hand’. If we then use the enhanced Fibonacci we indeed gain about � � % of run time and are
almost as fast as MLj. The benchmark ratio then is

�
: � � = : � ��� (sunwjit)

The conclusion is that object creation makes the computation expensive; the high costs emerge
from wrapping and unwrapping integers.

The Takeushi benchmark confirm these assumptions. As there are less arithmetic operations
to perform the ratio looks slightly better for DML:

�
: � :

� �
(no JIT)

�
:
� � �

:
� �

(tya)

�
: � � � :

� �
(sunwjit)

If static type information could be used, we could again be as fast as MLj.

Deriv

Computing symbolic derivations does not use arithmetic. So we can hope to have nicer results
with that benchmark. Indeed the ratio is

�
:
� � �

:
= � �

(no JIT)

�
:
� � �

: � � � (tya)

�
: � � � : � � � (sunwjit)

Considering the case of sunwjit, we are almost as fast as MLj, the ratio MLj : DML is
�

:
� � �

.
The loss of efficiency can be put down to the presence of transients and DML’s dynamic properties
that prohibit the optimizations MLj may perform.

NRev

Naive reverse depends mainly on the append function; languages that support transients can
write append in a tail recursive manner and should have some advantage over the others. So we
have to compare the following functions to one another:

fun append’ (nil, ys, p) = bind (p, ys)
| append’ (x::xr, ys, p) =
let

val p’ = lvar ()
val x’ = x::p’

in
bind (p, x’);
append’ (xr, ys, p’)

end
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versus

fun append (nil, ys) = ys
| append (x::xs, ys) = x :: (append (xs,ys))

Using append’ results in

�
:
� �

:
� � � � � � (no JIT)

�
:
� �

:
� � � � � � (tya)

�
:
� � :

� � � � � � (sunwjit)

The disastrous result comes from the creation of logic variables. These objects are very ex-
pensive to create because they inherit from UnicastRemoteObject (for distribution). A way of
speeding up is therefore to provide different transients for non-distributed programming. Indeed
this speeds up the DML execution

�
:
� � � �

: � � (no JIT)

�
:
� �

:
�>=

(tya)

�
:
� � : � � (sunwjit)

The append’ function creates twice as much objects as the corresponding function used with
MLj. But since in Java object creation is more expensive than method invocation, we still are much
slower than SML/NJ or MLj though the append can only be written with simple recursion. For
MLj this has the consequence that the limit on the length of the lists is tighter than that of DML,
because the stack depth is greater. As SML/NJ doesn’t use a call stack there are no consequences
for them.

If we compare the run times using the append function that is not tail recursive, the following
ratio is achieved:

�
:
� � � �

:
� � (no JIT)

The ratio is similar if we use JIT compilers.

As a consequence we propose the implementation of two transient variants — one that can
supports distribution and one that can only be used on one site. Further it seems that the cost for
object creation exceeds the benefits of saving a method invocation by far.

Concfib

Concfib repeatedly computes the value of fib 12. Each recursive invocation creates two fresh
threads that compute the sub value. Results are given back via transients resp. channels.

MLj has no special feature for concurrency so we only compare DML to SML/NJ. The SML/NJ
version of Concfib uses the CML facilities. The communication between threads is implemented
by the use of channels. The Java-Linux Porting Team considers ‘the usage of hundreds or even
thousands of threads is bad design’. This point of view is reflected in the costs for threads as the
ratio shows

�
:
� � � (no JIT, green threads)
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�
:
� � =

(tya, green threads)

�
:
� � � (sunwjit, green threads)

For the native threads implementation we have

�
:
� � � (no JIT)

�
:
��� �

(tya)

�
:
� � �

(sunwjit)

In this benchmark, we have used the cheaper versions of transients. By using the expensive
versions, we obtain a result that is worse (due to the costs of creating transients that can be used
distributedly).

Code Size

Besides the run time of the programs the size of the compiled code is worth a look. The size is
given in bytes.

SML/NJ MLj DML
Fibonacci � � � � = � � � � � � �>="=
Takeushi � � � � � = = � � � � � � �
Derivate � � � � � � � � � � = � � �
NRev � � � � = � = � � = � � � �
Concfib

= � � � � � – � = � �

We do not consider the runtime systems here, i.e., for SML/NJ the size of the Linux heap image
is listed; the heap image was produced by exportFn and can be executed via run.x86-linux.
The Java runtime is used to execute MLj’s output. MLj stores the generated class code in zip files.
DML compiles the programs into pickles and additionally has runtime libraries. Note that the
pickles are compressed using gzip output streams and are therefore somewhat reduced in size.

As one can see, the size of the files interpreted by the JVM are more compact by up to two
orders of magnitude. This aspect becomes important if we consider distributed programming —
the more data transferred, the slower the transmission and the slower the execution of distributed
programs.

9.5 Dynamic Contest

Kawa is the only competitor that translates a dynamically typed language to the JVM. If we want
to compare our implementation with Kawa, we have to rewrite the benchmarks in the Scheme
language. We measured for all of the benchmarks that DML is faster than Kawa by a factor of
about 3–4. This factor is achieved with each benchmark no matter which JIT is used. So we can
conclude that we have the fastest implementation of a functional dynamically typed language
executed on the JVM.
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9.6 Summary

As expected, DML is usually slower than SML/NJ and MLj. The main performance loss comes
from the boxing and unboxing of literals. If we avoid boxing (as done in the manually optimized
Fibonacci benchmark), we achieve significantly better results. If we take advantage of type in-
formation, the Fibonacci benchmark runs even faster on the JVM than the native compilation of
SML/NJ.

The transients of DML introduce only little overhead for pattern matching and primitive oper-
ations if they are not used. In the case of NRev, the cost for creating transients exceeds the benefits
of constant call-stack size of tail recursive append. Transients that can be used in a distributed
environment are very expensive to create; it is recommended to provide a further variant of tran-
sients that can only be used locally. Threads in DML cannot be used in the way Mozart or CML
propagate the use of threads. It is not possible to create zillions of threads on a JVM because Java
threads are valuable resources that are not suitable for short live cycles.

The component system and distribution facilities of DML prohibit whole program optimiza-
tion. MLj can perform such optimizations at the expense of modularity and separate compilation.
According to Benton, Kennedy, and Russell [BKR99] this is the most important step to achieve a
reasonable performance.

DML is faster than Kawa in any benchmark we have tested. This is the result of Scheme’s
environment model that provides less possibilities for optimization.

The influence of JIT compilers for the JVM depends on the program executed; there are pro-
grams that cannot be run with a special JIT compiler, some run faster, some are slower. In general,
the JIT compilers achieved better performance enhancements for MLj programs than for the DML
counterparts.
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Chapter 10

Conclusion

We have built a compiler and a runtime environment for translating a dynamically typed high-
level language to the Java Virtual Machine.

The compiler produces pickle files that contain evaluated components. Pickle files can be exe-
cuted on any Java capable platform in combination with the DML runtime that provides the value
representation and the primitives of the language. The goal of a simple and secure implementa-
tion of DML for the JVM has been achieved.

The naïve implementation of the DML system is straightforward and compact. We take advan-
tage of many Java features. DML’s concurrency is based on Java threads, the pickling mechanism
reuses Java Object Serialization, and the distribution model adopts the Java RMI infrastructure.
The data-flow synchronization of threads by transients is implemented using Java synchroniza-
tion primitives. Exceptions can directly use the corresponding JVM exceptions.

The implementation is enhanced by refining the representation of tuples and constructed val-
ues. Further, function closures have special support for tuple arguments. One of the problems of
Java as a target platform for a dynamically typed source language is that the typed byte-code en-
forces the usage of expensive wrappers. The DML compiler omits boxing and unboxing of literals
whenever possible. The representation of constant values is built at compilation time to avoid the
creation of objects at runtime. Mutually recursive functions are merged into a single function to
enable tail call optimization. The compiler performs code inlining for primitive functions.

It is interesting to look at the optimizations MLj performs on programs. MLj can avoid box-
ing and unboxing completely due to whole program optimization. Polymorphic functions are
replaced by separate versions for each type instance for which they are used. The problem with
this approach is that the code size can grow exponentially. Because MLj operates on the com-
plete source code, it can limit the blowup by only generating the monomorphic functions that are
actually used. In contrast, DML’s component system prohibits that approach.

General tail-call optimization cannot be implemented reasonably without support of the JVM.
Solutions that use CPS-like approaches are too slow. Without special treatment, tail recursion
requires linear call-stack size and leads to stack overflow exceptions of the JVM. The current ver-
sions of MLj and Kawa have no special treatment for mutually tail recursive functions. This
limitation may cease to exist in future versions of the JVM. The Java Virtual Machine specification
limits the amount of code per method to 65535 bytes. This limit is no problem for most pro-
grams, yet the generated code of the DML parser exceeds that size and cannot be compiled. As a
consequence, the compiler cannot be bootstrapped.

As the benchmark results show, future versions of DML should use static type information to
further reduce boxing and runtime type checks. The current RMI model and implementation rec-
ommends the support for variants of transients: One version that is capable of being distributed
and another one that is faster but can only be used locally. A good implementation of transients
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takes advantage of VM support. E.g., the Oz VM provides transient support at the level of the
bytecode interpreter and can replace transients by their value as soon as they are bound. The
DML implementation has to keep the wrapper objects instead.



Appendix A

Compilation Scheme

A.1 Compilation of Expressions

Section 2.6 describes how most expressions are compiled for the JVM. The compilation of refer-
ences, constructed values, variables, tuples and vectors introduces no new concepts. For the sake
of completeness they are described here.

A.1.1 References

A reference is a special constructor, but the contents of its constructed values are mutable. Con-
structors are equal if pointer comparison succeeds, so there must be only one reference construc-
tor, which can be found in a static field of the runtime.

expCode (RefExp)

getstatic � BRef �

Applications of Constructors

When applied to a value, a constructor results in a constructed value. The ConVal class has a
(Java) constructor which takes a constructor and content value as parameter.

expCode (ConAppExp(constamp, stamp))

new ConVal
dup
stampCode (constamp)
stampCode (stamp)
invokespecial ConVal/<init> (IValue, IValue) � void

Applications of References

The Reference class has a (Java) constructor with an IValue as its argument. The constructor
of references is always ref; we don’t have to explicitly store it.
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expCode (RefAppExp(stamp))

new Reference
dup
stampCode (stamp)
invokespecial Reference/<init> (IValue) � void

A.1.2 Variables

Variables are loaded from either a JVM register or a field depending on whether it occurs bound
or free in the current function:

expCode(VarExp(stamp))

stampCode (stamp)

A.1.3 Tuples and Vectors

In DML, Tuples are records with labels [
�
,
�
,. . . , � ]. Tuples are constructed just like records, but

have no label array.

Vectors are treated similar to tuples. They supply some special functions and are constructed
in the same way:

expCode(TupExp[stamp � ,stamp � ,. . . ,stamp � ])
expCode(VecExp[stamp � ,stamp � ,. . . ,stamp � ])

new classname
dup
ldc ��� �

anewarray IValue

dup
ldc �
stampCode (stamp � )
aastore
...
dup
ldc �

stampCode (stamp � )
aastore

invokespecial classname/<init> (IValue[]) � void

classname is either Tuple or Vector.

A.2 Recursive Declarations

General information about the compilation of recursive declarations can be found in Section 2.7.2.
For the sake of completeness, a description about creating and filling closures follows here.

The empty instances of Functions, Tuples, Vectors, Constructor Applications and Reference
Applications are constructed as follows. Regardless of the body or content of the expression, a
new instance of the corresponding class is created:
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emptyClosure (FunExp(funstamp,exp))
emptyClosure (TupExp(content))
emptyClosure (VecExp(content))
emptyClosure (ConAppExp(content))
emptyClosure (RefAppExp(content))

new classname
dup
invokespecial classname () � void

where classname is the classname of the funstamp, or Tuple, Vector, ConVal or Reference, in
case the expression is TupExp, VecExp, ConAppExp or RefAppExp.

Records are constructed just like Tuples, but get an arity as parameter:

emptyClosure (RecExp(content))

new classname
dup
getstatic curClassFile/arity IValue[]
invokespecial Record (IValue[]) � void

VarExp, ConExp and LitExp don’t have a ‘closure’, so they can be directly evaluated.

emptyClosure (exp)

expCode (exp)

Some expressions, such as AppExp, are not admissible in recursive declarations. However, we
don’t need to check admissibility here because illegal code shouldn’t pass the frontend.

The empty closures are filled as follows:

� Functions

To fill the empty closure of a function, we load it on top of the stack, then store the values of
the free variables into the closure:

fillClosure (FunExp(funstamp, exp))

dup
stampCode (fv � )
putfield classname/fv � IValue
...
dup
stampCode (fv



��� )

putfield classname/fv



��� IValue

stampCode (fv



)

putfield classname/fv



IValue

where fv � to fv



are the free variables of funstamp and classname is the name of the class

corresponding to funstamp.
� Tuples, Records, Vectors

Tuples, records and vectors are filled by creating an array of values and storing it into class-
name/vals where classname is Tuple, Record or Vector.
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fillClosure (TupExp[stamp � ,stamp � ,. . . ,stamp



])

fillClosure (RecExp[(lab � ,stamp � ),(lab � ,stamp � ), . . . ,(lab



,stamp



)])

fillClosure (VecExp[stamp � ,stamp � ,. . . ,stamp



])

ldc � � �
anewarray IValue

dup
ldc �
stampCode (stamp � )
aastore
...
dup
ldc �
stampCode (stamp



)

aastore

putfield classname/vals IValue[]

� Constructor Applications and ref Applications

ConVals and References have one single content field. This field is now assigned.

fillClosure (ConAppExp(constamp,stamp))
fillClosure (RefAppExp(stamp))

stampCode (stamp)
putfield classname/content IValue
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The Code of the Benchmarks

This Chapter lists the code for the benchmarks performed in Chapter 9. We present the code for
SML/NJ, MLj, and DML where is it identical, the differences are listed seperately.

B.1 Differences

SML/NJ wants the programmer to do the following to make a program ‘executable’:

fun foo n = ...
fun callfoo (_, [x]) =

let
val arg = Int.fromString x;

in
case arg of

NONE => 1
| SOME n => (foo n; 0)

end
| callfib _ = 2

val _ = SMLofNJ.exportFn ("Foo", callfoo)

To fetch the command line arguments, MLj programs have to look as follows:

structure Foo :
sig

val main : string option array option -> unit
end

=
struct

fun do_foo = ...
fun main (env: string option array option) =

case env of
NONE => ()

| SOME env’ =>
if Array.length env’ = 0 then ()
else

case Array.sub(env’, 0) of
NONE => ()

| SOME str =>
case Int.fromString str of

NONE => ()
| SOME n => (do_foo n; ())
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end

In DML we have the following situation

fun foo n = ...
fun main [x] =

let
val n = valOf(fromString x)

in
foo n

end
| main _ = ()

B.2 Common Parts

Fibonacci

fun fib n =
if (1 < n)

then fib(n-2) + fib(n-1)
else 1

Takeushi

fun tak(x,y,z) = if y<x
then tak(tak(x-1,y,z),

tak( y-1,z,x),
tak( z-1,x,y))

else z

Derivations

datatype expr = Plus of expr * expr
| Minus of expr * expr
| Var of int
| Const of int
| Times of expr * expr
| Div of expr * expr
| Exp of expr * int
| Uminus of expr
| Log of expr;

fun dotimes(0,p) = 0
| dotimes(n,p) = (p(); dotimes(n-1,p))

fun deriv(Var(u),x) = if u=x then Const(1) else Const(0)
| deriv(Const(u),x) = Const(0)
| deriv(Plus(u,v),x) = Plus(deriv(u,x),deriv(v,x))
| deriv(Minus(u,v),x) = Minus(deriv(u,x),deriv(v,x))
| deriv(Times(u,v),x) = Plus(Times(deriv(u,x),v),Times(u,deriv(v,x)))
| deriv(Div(u,v),x) = Div(Minus(Times(deriv(u,x),v),

Times(u,deriv(v,x))),
Exp(v,2))

| deriv(Exp(u,n),x) = Times(Times(deriv(u,x),Const(n)),Exp(u,n-1))
| deriv(Uminus(u),x) = Uminus(deriv(u,x))
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| deriv(Log(u),x) = Div(deriv(u,x),u)
fun nthderiv(0,exp,x) = exp

| nthderiv(n,exp,x) = nthderiv(n-1,deriv(exp,x),x)
fun goderiv n =

dotimes(n, fn () => nthderiv(6,Exp(Div(Const(1),Var(1)),3),1));

Naive Reverse

fun append (nil, ys) = ys
| append (x::xs, ys) = x :: (append (xs,ys))

fun nrev(nil) = nil
| nrev(a::bs) = append(nrev(bs), a::nil);

fun append’ (nil, ys, p) = fulfill (p, ys)
| append’ (x::xr, ys, p) =

let
val p’ = lvar ()
val x’ = x::p’

in
bind (p, x’);
append’ (xr, ys, p’)

end
fun append (xs, ys) =

let
val p = lvar ()

in
append’ (xs, ys, p); p

end
fun rev nil = nil

| rev (x::xr) = append (rev xr, x :: nil)

Concfib

Concfib is implemented using CML; threads communicate through channels:

open CML
fun fib 0 = 1

| fib 1 = 1
| fib n =

let
fun fib’ n =

let
val res = channel ()

in
spawn (fn () => send (res, fib n));
recv res

end
in

fib’ (n-1) + fib’ (n-2)
end

fun loop 1 = (fib 12; ())
| loop n = (fib 12; loop (n-1))

fun loopit (_, [x]) =
let

val b = Int.fromString x
in
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case b of
NONE => 1

| SOME i =>
(RunCML.doit ((fn () => loop i), NONE);
print "Done.\n";
0)

end
| loopit _ = 2

In DML, Concfib uses transients. The threads communicate by binding logic variables:

fun fib 0 = 1
| fib 1 = 1
| fib n =
let

fun fib’ n =
let

val res = lvar ()
in

spawn (fn () => bind (res, fib n));
future res

end
in

fib’ (n - 1) + fib’ (n - 2)
end

fun loop 1 = fib 12
| loop n = (fib 12 ; (loop (n - 1)))
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