Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	0000

A Coq Library for Finite Types 1st bachelor seminar talk

Jan Menz

COMPUTER SCIENCE

Advisor: Prof. Dr. rer. nat. Gert Smolka

13. Juni 2016

Introduction	Architecture	Equalities and equivalences	Functions	Overview
●○○○	000000	00	00	0000
Conten	ITS			

- 2 Architecture
- Equalities and equivalences

4 Functions

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
FINITE T	YPES			

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
FINITE T	YPES			

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
FINITE TY	'PES			

- Type
- Finite number of inhabitants

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
FINITE TY	'PES			

- Type
- Finite number of inhabitants

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
FINITE TY	PES			

- Type
- Finite number of inhabitants

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
Finite ty	TPES			

- Type
- Finite number of inhabitants

What do we need formally?

• Type

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
Finite ty	TPES			

- Type
- Finite number of inhabitants

- Type
- List of inhabitants

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
FINITE TY	PES			

- Type
- Finite number of inhabitants

- Type
- List of inhabitants
- Completeness proof for list

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
FINITE TY	PES			

- Type
- Finite number of inhabitants

- Type
- List of inhabitants
- Completeness proof for list
- Decidability of equality

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○●○○	000000	00	00	0000
FINITE TY	PES			

- Type
- Finite number of inhabitants

- Type
- List of inhabitants
- Completeness proof for list
- Decidability of equality
 - needed for completeness proof

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○○●○	000000	00	00	0000
My goal				

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○○●○	000000	00	00	0000
My goal				

• Well understood

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○○●○	000000	00	00	0000
My goal				

- Well understood
- No big surprises

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○○●○	000000	00	00	0000
My goal				

- Well understood
- No big surprises
- Easy to use

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○○●○	000000	00	00	0000
My goal				

- Well understood
- No big surprises
- Easy to use
- This is their advantage

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○○●○	000000	00	00	0000
My goal				

- Well understood
- No big surprises
- Easy to use
- This is their advantage

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○○●○	000000	00	00	0000
My goal				

- Well understood
- No big surprises
- Easy to use
- This is their advantage

Challenge: make them uninteresting in type theory

Introduction	Architecture	Equalities and equivalences	Functions	Overview
○○○●	000000	00	00	0000
FINITE TY	PES			

- Type
- Finite number of inhabitants

- Type
- List of inhabitants
- Completeness proof for list
- Decidability of equality

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	•00000		00	0000
REALIST	γατιών ινι (

Reminder: eqType

```
Definition dec (P: \mathbb{P}) := {P} + {¬P}
Notation "eq_dec X" :=
(\forall x y: X, dec (x = y)) (at level 70)
Structure eqType := EqType {
eqtype :> Type ;
decide_eq : eq_dec eqtype }.
```

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	••••••		00	0000
REALISI	TATION IN (Coq		

First idea:

```
Structure finType: Type := FinType {
  type : eqType;
  elements: list type;
  allIn: ∀ x: type, count elements x = 1
}.
```

Reminder: eqType

```
Definition dec (P: \mathbb{P}) := {P} + {¬P}
Notation "eq_dec X" :=
(\forall x \ y: X, dec (x = y)) (at level 70)
Structure eqType := EqType {
eqtype :> Type ;
decide_eq : eq_dec eqtype }.
```

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	••••••	00	00	0000
REALISI	TATION IN (Coq		

```
First idea:
Structure finType: Type := FinType {
  type : eqType;
  elements: list type;
  allIn: ∀ x: type, count elements x = 1
}.
```

count

count [] x	= 0	
count (x :: A) x	= 1 + count A x	
count (y :: A) x	= count A x	$x \neq y$

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	••••••	00	00	0000
REALISI	TATION IN (Coq		

```
First idea:
Structure finType: Type := FinType {
  type : eqType;
  elements: list type;
  allIn: \forall x: type, count elements x = 1
}.
```

count

count [] x	= 0	
count (x :: A) x	= 1 + count A x	
count (y :: A) x	= count A x	$x \neq y$

We want to use it like the "real" type

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	••••••	00	00	0000
REALISI	TATION IN (Coq		

```
First idea:
Structure finType: Type := FinType {
  type :> eqType;
  elements: list type;
  allIn: \forall x: type, count elements x = 1
}.
```

count

count [] x	= 0	
count (x :: A) x	= 1 + count A x	
count (y :: A) x	= count A x	$x \neq y$

We want to use it like the "real" type

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	○●○○○○	00	00	0000
TYPE CL	ASSES			

• Define class of types as type class

Reminder: Decidability

Existing Class dec.

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
TYPE CL	ASSES			

- Define class of types as type class
- For type in this class: Define an instance

Reminder: Decidability

Existing Class dec. Instance bool_eq_dec: eq_dec B.

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
TYPE CL	ASSES			

- Define class of types as type class
- For type in this class: Define an instance
- Instance is used, when element of this type need to be inferred

Reminder: Decidability

```
Existing Class dec.
Instance bool_eq_dec:
eq_dec B.
Definition EqBool := EqType B
```

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
TYPE CL	ASSES			

- Define class of types as type class
- For type in this class: Define an instance
- Instance is used, when element of this type need to be inferred

Reminder: Decidability

```
Existing Class dec.
Instance bool_eq_dec:
eq_dec B.
Definition EqBool := EqType B
```

Only one Instance for each type

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	○○●○○○	00	00	0000
ΤΥΡΕ ΟΙ	LASSES			

Make finType dependent on types:

Class finTypeC (type: eqType): Type := FinTypeC {
 elements: list type;
 allIn: ∀ x: type, count elements x = 1
}.

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
TYPE CI	.ASSES			

Make finType dependent on types:

```
Class finTypeC (type: eqType): Type := FinTypeC {
  elements: list type;
  allIn: ∀ x: type, count elements x = 1
}.
```

```
Structure finType: Type := FinType {
  type :> eqType;
  class : finTypeC type }.
```

Introduction 0000	Architecture	Equalities and equivalences	Functions 00	Overview 0000
TYPE CL	ASSES			

Nice:

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
TYPE CL	ASSES			

<u>Nice:</u> finTypes/eqTypes can be automatically generated from types

Introduction	Architecture	Equalities and equivalences	Functions	Overview			
0000		00	00	0000			
TYPE CLASSES							

Nice: finTypes/eqTypes can be automatically generated from types Definition toeqType (T: Type) {e: eq_dec T}: eqType := EqType T.

Introduction	Architecture	Equalities and equivalences	Functions	Overview			
0000		00	00	0000			
TYPE CLASSES							

Nice: finTypes/eqTypes can be automatically generated from types Definition toeqType (T: Type) {e: eq_dec T}: eqType := EqType T.

Problematic:

Introduction	Architecture	Equalities and equivalences	Functions	Overview			
0000		00	00	0000			
TYPE CLASSES							

Nice:

finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:

finTypes/eqTypes cannot be inferred from elements of the type:
Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
TYPE CL	ASSES			

Nice:

finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:

finTypes/eqTypes cannot be inferred from elements of the type: Compute (count [true; false] true).

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
TYPE CL	ASSES			

Nice:

finTypes/eqTypes can be automatically generated from types
Definition toeqType (T: Type) {e: eq_dec T}:
eqType := EqType T.

Problematic:

finTypes/eqTypes cannot be inferred from elements of the type: Compute (count [true; false] true). Error: (diff) The term "[true; false]" has type "list bool" while it is expected to have type "list ?X".

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	○○○○●○	00	00	0000
Canoni	cal Struc	CTURES		

• Extend Coqs unification algoritm

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
Canonic	CAL STRUC	TURES		

- Extend Coqs unification algoritm
- Arbitrary values can be declared as canonical structures

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	○○○○●○	00	00	0000
Canonia	CAL STRUC	CTURES		

- Extend Coqs unification algoritm
- Arbitrary values can be declared as canonical structures
- Every time they syntactically "fit" they are inserted

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
Canoni	CAL STRUG	CTURES		

- Extend Coqs unification algoritm
- Arbitrary values can be declared as canonical structures
- Every time they syntactically "fit" they are inserted
- Can be combined to powerful *telescopes*

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
Canoni	CAL STRUG	CTURES		

- Extend Coqs unification algoritm
- Arbitrary values can be declared as canonical structures
- Every time they syntactically "fit" they are inserted
- Can be combined to powerful *telescopes*

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
CANONI	CAL STRUC	CTURES		

- Extend Coqs unification algoritm
- Arbitrary values can be declared as canonical structures
- Every time they syntactically "fit" they are inserted
- Can be combined to powerful *telescopes*

Canonical Structure EqBool := EqType \mathbb{B} .

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000		00	00	0000
CANONI	CAL STRUC	CTURES		

- Extend Coqs unification algoritm
- Arbitrary values can be declared as canonical structures
- Every time they syntactically "fit" they are inserted
- Can be combined to powerful *telescopes*

Canonical Structure EqBool := EqType B. Canonical Structure finType_bool := FinType EqBool.

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	0000
Canoni	CAL STRUC	CTURES		

- Extend Coqs unification algoritm
- Arbitrary values can be declared as canonical structures
- Every time they syntactically "fit" they are inserted
- Can be combined to powerful *telescopes*

Canonical Structure EqBool := EqType B. Canonical Structure finType_bool := FinType EqBool. Compute (count [true; false] true).

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	○○○○●○	00	00	0000
Canoni	cal Struc	CTURES		

- Extend Coqs unification algoritm
- Arbitrary values can be declared as canonical structures
- Every time they syntactically "fit" they are inserted
- Can be combined to powerful *telescopes*

Canonical Structure EqBool := EqType B. Canonical Structure finType_bool := FinType EqBool. Compute (count [true;false] true). = if bool_eq_dec true true then S (if bool_eq_dec true false then 1 else 0) else if bool_eq_dec true false then 1 else 0 : N

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	○○○○●	00	00	0000
Togeth	er: Power	FUL INFERENCE		

Definition finType_BoolUnit := tofinType($\mathbb{B} \times$ unit). finType_BoolUnit is defined

What does this actually look like?

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	○○○○●	00	00	0000
Togeth	er: Power	FUL INFERENCE		

Definition finType_BoolUnit := tofinType($\mathbb{B} \times$ unit). finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)

: finType

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	○○○○●	00	00	0000
Togeth	HER: POWER	FUL INFERENCE		

Definition finType_BoolUnit := tofinType($\mathbb{B} \times$ unit). finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B x unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)

: finType

inferred with canonical structures

Introduction	Architecture	Equalities and equivalences	Functions	Overview	
0000	○○○○●	00	00	0000	
TOGETHER: POWERFUL INFERENCE					

Definition finType_BoolUnit := tofinType($\mathbb{B} \times \text{unit}$). finType_BoolUnit is defined

What does this actually look like?

finType_BoolUnit = @tofinType (B × unit)
(@decide_eq (EqCross EqBool EqUnit))
(finTypeC_Cross finType_bool finType_unit)

: finType

inferred with canonical structures inferred with type classes

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	●○	00	0000
Equivai	Lence Prin	NCIPLES		

About: elem

Introduction	Architecture	Equalities and equivalences $\bullet \circ$	Functions	Overview
0000	000000		00	0000
Equival	ence Prin	NCIPLES		

 $(\forall (x:F), p x) \leftrightarrow \forall x \in (elem F), p x$

About: elem

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	●○	00	0000
Equivat	lence Prin	NCIPLES		

$$(\forall (x : F), p x) \leftrightarrow \forall x \in (elem F), p x$$
$$(\exists (x : F), p x) \leftrightarrow \exists x \in (elem F), p x$$

About: elem

Introduction	Architecture	Equalities and equivalences $\bullet \circ$	Functions	Overview
0000	000000		00	0000
Equivai	ence Prin	NCIPLES		

$$(\forall (x : F), p x) \leftrightarrow \forall x \in (elem F), p x$$
$$(\exists (x : F), p x) \leftrightarrow \exists x \in (elem F), p x$$
$$(\exists (x : F), p x) \leftrightarrow \exists x, x \in (elem F) \rightarrow p x$$

About: elem

Introduction	Architecture	Equalities and equivalences \bullet	Functions	Overview
0000	000000		00	0000
Equivai	Lence Prim	NCIPLES		

$$(\forall (x : F), p x) \leftrightarrow \forall x \in (elem F), p x$$

$$(\exists (x : F), p x) \leftrightarrow \exists x \in (elem F), p x$$

$$(\exists (x : F), p x) \leftrightarrow \exists x, x \in (elem F) \rightarrow p x$$

About: elem

elem is a projection from a finType to its list of elements

First one allows to use induction

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	○●	00	0000
INTEREST	'ING EQUA	LITIES		

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	○●	00	0000
INTERES	TING EQUA	LITIES		

to fin Type X = X

About: (x) and ?

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	○●	00	0000
INTEREST	TING FOUA	I ITIFS		

About: (x) and ?

INTERESTING EOUALITIES	Introduction	Architecture	Equalities and equivalences	Functions	Overview
	0000	000000	○●	00	0000
	INTEDEC				

tofinType
$$X = X$$

 $\mathbb{B} = finType_bool$
 $F_1 \times F_2 = F_1 (x) F_2$

About: (x) and ?

INTERESTING EOUALITIES	Introduction	Architecture	Equalities and equivalences	Functions	Overview
	0000	000000	○●	00	0000

tofinType
$$X = X$$

 $\mathbb{B} = finType_bool$
 $F_1 \times F_2 = F_1 (x) F_2$
option $F = ? F$

About: (x) and ?

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	○●	00	0000
INTERES	TING EQUA	LITIES		

tofinType
$$X = X$$

 $\mathbb{B} = finType_bool$
 $F_1 \times F_2 = F_1 (x) F_2$
option $F = ? F$
tofinType $\mathbb{B} = finType_bool$

About: (x) and ?

00000 000000	0.	00	0000		
Interesting eoualities					

 $tofinType \ X = X$ $\mathbb{B} = finType_bool$ $F_1 \times F_2 = F_1 \ (x) \ F_2$ $option \ F = ? \ F$ $tofinType \ \mathbb{B} = finType_bool$ $tofinType(F_1 \times F_2) = F_1 \ (x) \ F_2$

About: (x) and ?

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	●○	0000

• Set theoretic functions (STF): sets of pairs

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	●○	0000

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	●○	0000

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	●○	0000

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*
 - ► elem finType_bool := [true; false]

Introduction 0000	Architecture 000000	Equalities and equivalences 00	Functions ●○	Overview 0000

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*
 - ► elem finType_bool := [true; false]
- STF is uniquely identified by its image as a list

Introduction 0000	Architecture 000000	Equalities and equivalences 00	Functions ●○	Overview 0000

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*
 - ► elem finType_bool := [true; false]
- STF is uniquely identified by its image as a list
 - ► [false; true]

Introduction 0000	Architecture 000000	Equalities and equivalences 00	Functions ●○	Overview 0000

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*
 - ► elem finType_bool := [true; false]
- STF is uniquely identified by its image as a list
 - ► [false; true]
- We can model the type of all STF ($F_1 \longrightarrow F_2$) as a finite type

Introduction 0000	Architecture 000000	Equalities and equivalences 00	Functions ●○	Overview 0000

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*
 - ► elem finType_bool := [true; false]
- STF is uniquely identified by its image as a list
 - ► [false; true]
- We can model the type of all STF ($F_1 \longrightarrow F_2$) as a finite type
 - bundle image and proof for correct length

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	•0	0000

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*
 - ► elem finType_bool := [true; false]
- STF is uniquely identified by its image as a list
 - ► [false; true]
- We can model the type of all STF ($F_1 \longrightarrow F_2$) as a finite type
 - bundle image and proof for correct length
 - ▶ Definition STF (F:finType) (X:Type) :=
 {image: list X | if |image| = |X| then T else ⊥}
| Introduction | Architecture | Equalities and equivalences | Functions | Overview |
|--------------|--------------|-----------------------------|-----------|----------|
| 0000 | 000000 | 00 | •0 | 0000 |
| | | | | |
| | | | | |

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*
 - ► elem finType_bool := [true; false]
- STF is uniquely identified by its image as a list
 - ► [false; true]
- We can model the type of all STF ($F_1 \longrightarrow F_2$) as a finite type
 - bundle image and proof for correct length
 - ▶ Definition STF (F:finType) (X:Type) :=
 {image: list X | if |image| = |X| then T else ⊥}
- extensionalPower function computes list of all STF

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	•0	0000

EXTENSIONAL POWER (SET THEORETIC FUNCTIONS)

- Set theoretic functions (STF): sets of pairs
 - $neg := \{(true, false), (false, true)\}$
- (x:F) is uniquely identified by position in *elem*
 - ► elem finType_bool := [true; false]
- STF is uniquely identified by its image as a list
 - ► [false; true]
- We can model the type of all STF ($F_1 \longrightarrow F_2$) as a finite type
 - bundle image and proof for correct length
 - ▶ Definition STF (F:finType) (X:Type) :=
 {image: list X | if |image| = |X| then T else ⊥}
- extensionalPower function computes list of all STF
 - used in finType definition

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	○●	0000
Functio	NS AND S	TF		

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	○●	0000
Functio	ons and S	TF		

- $F_1 \rightarrow F_2$ convertible to $F_1 \longrightarrow F_2$
 - ► toSTF

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	○●	0000
Functio	NS AND S	ΓF		

- $F_1 \to F_2$ convertible to $F_1 \longrightarrow F_2$
 - ► toSTF
- $F_1 \longrightarrow F_2$ convertible to $F_1 \rightarrow F_2$

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	○●	0000
Functio	NS AND S	ΓF		

- $F_1 \rightarrow F_2$ convertible to $F_1 \longrightarrow F_2$
 - ► toSTF
- $F_1 \longrightarrow F_2$ convertible to $F_1 \rightarrow F_2$
 - ► applySTF

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	○●	0000
Functio	ONS AND ST	ΓF		

- $F_1 \longrightarrow F_2$ convertible to $F_1 \rightarrow F_2$
 - ► applySTF
 - applySTF coercion to functions

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	○●	0000
Functio	ONS AND ST	ΓF		

- $F_1 \longrightarrow F_2$ convertible to $F_1 \rightarrow F_2$
 - ► applySTF
 - applySTF coercion to functions
 - therefore STF usable as functions

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000		○●	0000
Functio	ONS AND S	ΓF		

•
$$F_1 \longrightarrow F_2$$
 convertible to $F_1 \rightarrow F_2$

- ► applySTF
- applySTF coercion to functions
- therefore STF usable as functions
- (f: $F_1 \rightarrow F_2$) : $\forall x$, (toSTF f) x = f x

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	○●	0000
Function	ONS AND S	ГF		

•
$$F_1 \longrightarrow F_2$$
 convertible to $F_1 \rightarrow F_2$

- ► applySTF
- applySTF coercion to functions
- therefore STF usable as functions
- (f: $F_1 \rightarrow F_2$) : $\forall x$, (toSTF f) x = f x
- (f: $F_1 \longrightarrow F_2$): toSTF f = f

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000		○●	0000
Function	DNS AND S	ГF		

- $F_1 \longrightarrow F_2$ convertible to $F_1 \rightarrow F_2$
 - ► applySTF
 - applySTF coercion to functions
 - therefore STF usable as functions
- (f: $F_1 \rightarrow F_2$) : $\forall x$, applySTF (toSTF f) x = f x
- (f: $F_1 \longrightarrow F_2$): toSTF (applySTF f) = f

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○
Overviev	w: Alreai	DY DONE		

• Formalisation of finite types

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○
OVERVIEV	V: ALREADY	Y DONE		

- Formalisation of finite types
- Basic types

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○
Overvie	W: ALREA	DY DONE		

- Formalisation of finite types
- Basic types
 - ► True

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○
Overvie	W: ALREA	DY DONE		

- Formalisation of finite types
- Basic types
 - ► True
 - ► False

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000		00	●○○○
OVERVIE	W: ALREAI	DY DONE		

- Formalisation of finite types
- Basic types
 - ► True
 - ► False
 - ► unit

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○
Overvie	EW: ALREA	DY DONE		

- Formalisation of finite types
- Basic types
 - ► True
 - ► False
 - ► unit
 - ► empty_Set

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○
Overvie	EW: ALREA	DY DONE		

- Formalisation of finite types
- Basic types
 - ► True
 - ► False
 - ▶ unit
 - ► empty_Set
 - ► bool

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○
<u></u>				

- Formalisation of finite types
- Basic types
 - ► True
 - ► False
 - ► unit
 - ► empty_Set
 - ► bool
- Closure properties

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	•০০০

- Formalisation of finite types
- Basic types
 - ► True
 - ► False
 - ► unit
 - ► empty_Set
 - ► bool
- Closure properties
 - option types

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○

- Formalisation of finite types
- Basic types
 - ► True
 - ► False
 - ▶ unit
 - ► empty_Set
 - ► bool
- Closure properties
 - option types
 - cartesian product

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	•୦୦୦

- Formalisation of finite types
- Basic types
 - ► True
 - ► False
 - unit
 - ► empty_Set
 - ► bool
- Closure properties
 - option types
 - cartesian product
 - sum type

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○

- Formalisation of finite types
- Basic types
 - True
 - ► False
 - ▶ unit
 - empty_Set
 - ► bool
- Closure properties
 - option types
 - cartesian product
 - sum type
 - extensional power (set theoretic functions)

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○

- Formalisation of finite types
- Basic types
 - True
 - ► False
 - ▶ unit
 - empty_Set
 - ► bool
- Closure properties
 - option types
 - cartesian product
 - sum type
 - extensional power (set theoretic functions)
- Cardinality

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	●○○○

- Formalisation of finite types
- Basic types
 - True
 - ► False
 - ► unit
 - ► empty_Set
 - ► bool
- Closure properties
 - option types
 - cartesian product
 - sum type
 - extensional power (set theoretic functions)
- Cardinality
 - injective $(f : X \to Y) \to |X| \le |Y|$

Introduction 0000	Architecture 000000	Equalities and equivalences 00	Functions 00	Overview ●○○○

- Formalisation of finite types
- Basic types
 - True
 - ► False
 - ► unit
 - empty_Set
 - ► bool
- Closure properties
 - option types
 - cartesian product
 - sum type
 - extensional power (set theoretic functions)
- Cardinality
 - injective $(f : X \to Y) \to |X| \le |Y|$
 - surjective $(f : X \to Y) \to |X| \ge |Y|$

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○●00
Overvii	EW: STILL T	O DO		

• Order

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○●00
Overvie	EW: STILL T			

- Order
- Choice

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○●00
Overvie	W: STILL T	O DO		

- Order
- Choice
- Closure properties

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○●00
OVERVIE	W: STILL T	0 00		

- Order
- Choice
- Closure properties
 - dependent pairs

Introduction 0000	Architecture 000000	Equalities and equivalences 00	Functions 00	Overview ○●00		
OVERVIEW' STILL TO DO						

- Order
- Choice
- Closure properties
 - dependent pairs
- Subtypes

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○●○○
Overvie	EW: STILL T			

- Order
- Choice
- Closure properties
 - dependent pairs
- Subtypes
- Fixed points

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○●○○
Overvii	EW: STILL T			

- Order
- Choice
- Closure properties
 - dependent pairs
- Subtypes
- Fixed points
- $\bullet \ \ finType \rightarrow countable \ type$

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○●00
		0.50		

OVERVIEW: STILL TO DO

- Order
- Choice
- Closure properties
 - dependent pairs
- Subtypes
- Fixed points
- $\bullet \ \ finType \rightarrow countable \ type$
- Possibly graphs

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○0●0
Sources	5 and Insi	PIRATION		

- Mahboubi, Assia and Tassi, Enrico Canonical Structures for the working Coq user ITP 2013, 4th Conference on Interactive Theorem Proving
- Gonthier, Georges ssreflect coqdoc documentation http://math-comp.github.io/math-comp/htmldoc/index.html
- Castéran, Pierre and Sozeau, Matthieu A Gentle Introduction to Type Classes and Relations in Coq http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typed

Introduction	Architecture	Equalities and equivalences	Functions	Overview
0000	000000	00	00	○00●
The End				

Thank you for your attention

Any questions? Ask away!