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Abstract

For my Bachelor’s thesis I develop a library for finite types in the proof assistant Coq. This in-
cludes the definition of basic finite types, features like decidability, cardinality, a constructive
choice function, and type operations like option, (dependent) pairing, sum, taking subtypes and
the conversion from lists to finite types. The library defines vectors as a way to represent exten-
sional functions with a finite domain and implements an iterative algorithm to obtain subsets of
finite types.

Canonical structures, coercions and type classes are used to minimise the notational burden for
the user. The library is tested with a small formalisation of finite automata including closure and
decidability properties and the conversion between deterministic and nondeterministic automata.

The pre-existing Ssreflect library for finite types serves as an orientation. The goal is to achieve a
compact and understandable development in pure Coq.
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Chapter 1

Introduction

Finite types, that is types with finitely many inhabitants, are ubiquitous in type theory. They
have many properties that are intuitive not only to professionals but also to people who usually
do not have anything to do with mathematics. Some of these properties are so fundamental that
they would not even be mentioned in an informal proof. However, unthinking use of “obvious”
theorems in a proof assistant like Coq is not possible. Nomatter how “obvious” something might
seem to a human, a computer always wants to see a proof.

Considering the prevalence of finite types in some developments, with types like B and unit just
being the most basic examples, this can be a lot of work. However, we cannot do without taking
finiteness into consideration. One can even argue that the finiteness of a type is more important
information than finiteness of a set in classical logic. Finite types have important classical prop-
erties that are not provable constructively for types in general.

1.1 Related work

The importance of finite types in type theoretic developments is not a new realisation. People have
looked into finite types in type theory before. The mathematical components team accompany
their Ssreflect proof script language with the Ssreflect library [8, 17], which includes a library for
finite types. This library has been a big inspiration for this Bachelor thesis.

Denis Firsov and Tarmo Uustalu [5] investigate different possibilities to represent finite sets in
Agda, especially different notions of listability and discuss their respective advantages and dis-
advantages. Unlike the Ssreflect library and this Bachelor thesis they also consider non discrete
finite sets.

Gonthier and his coauthors explain a simplified version of the Ssreflect implemenation of finite
types in their paper about finite group theory [9]. This explanation has been very influential
on the initial design of the library. In his doctoral thesis [6] Garillot explains the unsimplified
architecture of the Ssreflect library very well.

1.2 Contributions

This bachelor thesis therefore does not embark to discover something new but rather to under-
stand the old. It will investigate how to built a library for finite types in Coq. Unlike in the Ssreflect
library [17] serving as a reference point, which uses its own proof script language, the accompa-
nying development will be carried out in pure Coq. The focus will be more on understandability
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than on high performance. Nevertheless the aim is to arrive at a library which is usable in practice
without much of a hassle. In particular this bachelor thesis presents

• A beneficial combination of canonical structures and type classes enabling automatic infer-
ence of structures.

• A formalisation of finite types based on the presentation of Gonthier et. al. [9] using canon-
ical structures and type classes.

• Decidability properties of finite types and their consequences including a constructive choice
function.

• Constructions of finite types for cartesian products, sums, options, dependent pairs and
subtypes.

• The construction of a finite type from a list over a discrete type.

• A definition of vectors as representations of extensional functions with a finite domain, the
conversion between vectors and functions and the construction of a finite type for vectors
with a finite codomain.

• Properties of cardinality of finite types, especially proofs of the well known pigeon hole
principles for injective, surjective and bijective functions between finite types; explicit for-
mulas for the cardinality of most of the finite types obtain by the presented constructions
and the relationship between cardinality of lists and cardinality of finite types.

• An adaptation of finite closure iteration [14, 13] to finite types. This algorithm is used to
iteratively compute a list over a finite type by just providing a predicate determining which
inhabitants can be added to a given list. The presentation includes a condition on which the
algorithm computes a smallest fixed point of the iterated function.

• A small formalisation of finite automata used to test the library. This includes closure prop-
erties of regular languages, decidability properties, and the conversion between determin-
istic and nondeterministic finite automata.

All presented lemmas, theorems, facts and corollaries have been proven in the accompanying Coq
development.

1.3 Overview

• The 1st chapter contains the introduction.

• The 2nd chapter introduces the preliminaries for the construction of finite types namely de-
cidability, discreteness and both type classes and canonical structures.

• The 3rd chapter contains the definition of finite types, discusses the equivalence between
properties of lists and properties of finite types, and gives a detailed explanation of finite
type registration in Coq.

• In the 4th chapter finite types for cartesian product, option and sum types are constructed
from their finite constituent types.

• The 5th chapter constructs finite types for both general dependent pairs and dependent pairs
with a proof as their second component (subtypes). It also includes the construction of a
finite type from a list over a discrete type.
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• The 6th chapter introduces vectors indexed by a finite type. It contains the construction of
a finite type for vectors over a finite type and shows that vectors can be used to represent
extensional functions with a finite domain.

• Chapter 7 contains proofs of the well known pigeon hole principles for finite types. It also
discusses the relationship between the cardinality of lists and the cardinality of finite types.

• The 8th chapter adapts finite closure iteration to finite types.

• Chapter 9 tests the library with a formalisation of finite automata. It contains the definition
of deterministic and nondeterministic finite automata including a proof of their equivalence,
proofs of closure properties and the use of different notions of reachability to obtain non
trivial decidability properties for deterministic finite automata.

• Chapter 10 summarises the findings. It also discusses possible alternative definitions of fi-
nite types and points out important differences between the approach in this bachelor thesis
and the approach taken by the Ssreflect [17] team.
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Chapter 2

Discrete Types

The formalisation of finite types is based on discrete types.To understand the formalisation of fi-
nite types one therefore needs to understand the formalisation of discrete typeswewill beworking
with.

2.1 Decidability

This formalisation is based on the notion of decidability as introduced in [14, 15, 13]. Decidability
is related to the law of excluded middlewhich says that any proposition either holds or its negation
holds. In classical logic excludedmiddle is awell known law. In type theory excludedmiddle does
not hold in general. Since the elim-restriction often prevents case analysis on propositions if the
goal is no propostion, there also is a strong version of excluded middle which is called decidability.

Definition 2.1.1 (Decidability). [14, 13, 15]
dec (P:P) := {P} + {¬ P}.

A proposition P being decidable means that one can write a program which computes either
a proof of P or a proof of ¬P . Of course any proposition is decidable if there is an equivalent
decidable proposition. The notion of decidability is naturally extended to predicates. A predicate
is decidable if it returns a decidable proposition when applied completely.

Fact 2.1.1. [13]
The usual logical connectives ∧,∨,¬,→,↔ are decidable on decidable propositions. Likewise are equality
on N and B.

Fact 2.1.2. [14, 13]
For any type X and listA of elements of X and decidable predicate p of typeX → P both ∀ x ∈ A, p x and
∃ x ∈ A, p x are decidable because one can just try every element in A.

2.1.1 Type classes

We will use the implementation of decidability from [14, 13, 15] which uses type classes. A type
class is a mechanism for implicit argument inference. One can declare a class of types as a type
class.

Definition 2.1.2. [13]
Existing Class dec.
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Afterwards one can declare instances of this class for a specific type[1]:

Example 2.1.1.
Instance True_dec : dec >:= left I.

As a result whenever an argument of type dec > is missing, Coq will automatically use True_dec.
This works for any other decidability type for which an instance of eq_dec was declared as an
instance, e.g. dec⊥, dec (1 = 2∨⊥). In general a declared instance of typeX is used if an argument
of type X is missing. This does, however, mean that it does not make sense to define several
instances for the same type. Instances can also be parametrised.

Example 2.1.2. [13]
Instance and_dec (P Q : P) : dec P → dec Q → dec (P ∧ Q).
Proof.
unfold dec; tauto.
Qed.

Coq automatically uses several instances to derive an argument. For example an argument of type
dec (1 = 2∨⊥) can be inferredwith the help of instances for disjunction,⊥ and equality on natural
numbers.

With clever use of implicit arguments and type class inference we can obtain a function which
behaves as if it had the type ∀(P : P), dec P .

Definition 2.1.3. [13, 14]
decision (P:P) {d: dec P} := d.

The argument d is implicit and will therefore be automatically inferred if there is an instance for
dec P.

2.1.2 De Morgan’s laws

De Morgan’s laws are a set of well known laws of classical logic concerned with the duality of
certain operators[4]:
Remark 2.1.1 (de Morgan’s laws).

• ¬(P ∧Q)↔ ¬P ∨ ¬Q

• ¬(P ∨Q)↔ ¬P ∧ ¬Q

• ¬ (P → Q)↔ P ∧ ¬ Q

• (∀x : p x)↔ ¬ ∃x (¬ p x)

• (∃x : p x)↔ ¬ ∀x (¬ p x)

• ¬ (∃x : p x)↔ ∀x : ¬ p x

• ¬ (∀x : p x)↔ ∃x : ¬ p x

Since some proofs require case analysis on the truth value of propositions, not all of these laws
hold in a constructive setting. Assuming excludedmiddle they are of course provable once again.
This also means that they hold for decidable propositions. Let’s take the time to investigate were
classical reasoning is needed in the proof of de Morgan’s laws.
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Remark 2.1.2.

• ¬(P ∧Q)↔ ¬P ∨ ¬Q

→ Needs decidability of P or decidability ofQ because we need to knowwhether to prove
¬P or ¬Q

← holds constructively

• ¬(P ∨Q)↔ ¬P ∧ ¬Q

→ holds constructively
← holds constructively

• ¬ (P → Q)↔ P ∧ ¬ Q

→ needs decidability of P to prove P or arrive at a contradiction. ¬ Q can be proven con-
structively

← holds constructively

• (∀x : p x)↔ ¬ ∃x (¬ p x)

→ holds constructively
← needs p to be a decidable predicate to either prove p x or to arrive at a contradiction

• (∃x : p x)↔ ¬ ∀x (¬ p x)

→ holds constructively
← needs ∃x, p x to be decidable to either prove ∃x, p x or to arrive at a contradiction

• ¬ (∃x : p x)↔ ∀x : ¬ p x

→ holds constructively
← holds constructively

• ¬ (∀x : p x)↔ ∃x : ¬ p x

→ needs p to be a decidable predicate and decidability of ∃x,¬p x. To either prove the
theorem or to arrive at a contradiction

← holds constructively

At least one direction of each law can be proven constructively. There are, however, several laws
where case analysis is needed. Two of these require case analysis on existentially quantified for-
mulas. As quantifications over list elements are decidable these laws hold constructively for quan-
tifications over list elements.

2.2 Discrete types

Next we need to discuss discrete types.

Definition 2.2.1. [15]
We call a type discrete if equality of elements of this type is decidable.

Decidability of equality is needed so often that it is useful to have an abbreviation for it.

8



Definition 2.2.2. [13, 14]
eq_dec (X:Type) := ∀ x y, dec (x = y).

Discrete types are realised as eqTypes by bundling a type and a proof of decidability together.

Definition 2.2.3. [13]
Structure eqType1 := EqType {
eqtype :> Type;
decide_eq : eq_dec eqtype }.

We can now define decidability instances for discrete types:

Example 2.2.1. [13]
Instance bool_eq_dec : eq_dec B.
Proof. ... Qed.

Example 2.2.2.
EqBool := EqType B.

Note that the second argument of EqType is automatically inferred.

2.2.1 Usability

Ideally, the usage of discrete types would resemble the usage of plain types as closely as possible
but still provide decidability. All in all there are three important features we would like to have:

1. We would like to be able to type things with values of type eqType.

2. We would like implicit argument inference to infer arguments of type eqType.

3. We would like to infer the discrete type belonging to a regular type.

Coercions

Coercions are a Coq-mechanism which allows us to achieve goal one. Coercions are functions
automatically applied by Coq if some statement does not type-check. More specifically: If some
expression e expects an argument x of type X but instead receives an argument y of type Y, Coq
normally rejects the term. However, if f is a coercion from Y to X Coq automatically applies f to y
and accepts the term. In the special case of discrete types we can define eqtype as a coercion from
eqType to Type. Normally, this is done using the coercion keyword but in structures one can use :>
instead of : to define a projection as a coercion. Without the coercion eqTypes would be relatively
useless. Coercions can be chained, which we will exploit when formalising finite types.

The use of coercions means that in Coq we can prove that a plain type is equal to its discrete type.
So for example B= eqBool. Similar equations hold for any other discrete type.

Type class inference

Our second goal was to enable the inference of implicit arguments of type eqType. We have already
seen that type classes can infer implicit arguments. However, there is a catch. Consider a function
count counting the number of occurrences of an element in a list.

1For an explanation of what the Structure keyword means see [12]
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Definition 2.2.4.

count [] x = 0

count (x :: A) x = 1 + count A x

count (y :: A) x = count A x if x 6= y

Example 2.2.3.
The count 2.2.4 function works only for eqTypes because we have to decide equality. Because we have
declared EqBool 2.2.2 as an eqType for B, we would hope to be able to state the following:

∀ x, count [true; false] x = 1.

Unfortunately this does not type check in Coq because Coq cannot infer the implicit argument of type eqType
which should be EqBool.

The reason for this is that, while EqBool incorporates a declared instance of a type class, EqBool
itself is not an instance of a type class and can therefore not be inferred by type class inference. The
type eqType itself is not even a type class. We either have to insert the implicit argument explicitly
every time or need to change count to be of type ∀(X : Type), eq_dec X → list X → X → N.
Therefore we cannot use our definition of eqType. We also gained an additional argument.

But even if we keep our definition of eqType, we still benefit from type class inference. Using type
classes we can compute a discrete type from a base type. The trick is similar to the definition of de-
cision 2.1.3. For some type X we use an implicit argument of type eq_dec X, which is automatically
inferred using type class inference, to build an eqType.

Definition 2.2.5.
toeqType (X:Type) {D:eq_dec X} : eqType := EqType X.

Canonical Structures

So far, except for the definition of toeqType, we have seen eqTypes as they are used in [13, 14] or [15].
As we have seen there are still problems with this definition.

There is another inference mechanism in Coq called canonical structureswhich we will investigate
to find out if they could help us evade the problems we encountered with type classes.

Unlike type classes, canonical structures do not only take the type into consideration but extend
Coq’s unification algorithm. Thus one can declare more than one canonical structure for each
type. Therefore we can separately declare canonical structures for different base types without
having to give up on one single type eqType as for type classes. How exactly the unification works
is described very well in [12]. For our purpose it is sufficient to get acquainted with canonical
structures looking at an example. To use canonical structures we do not have to change the defi-
nition of eqType, but only need to declare the values we wish to infer as canonical. For example:

Example 2.2.4.
Canonical Structure EqBool.

This adds new rules to Coq’s unification algorithm. Now whenever Coq needs to unify B with
the eqtype projection from some eqType it knows that it must use EqBool. In theory this works with
projections of a structure which do not return a type, too [12, 6]. In practice we will, however,
almost never encounter these cases. The example from earlier type-checks now.

Example 2.2.5.
∀ x, count [true; false] x = 1.
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Asnoted in [6, 12] coercions and canonical structures complement each other. In particular canonical
structures allow to infer the original structure from a value obtained by a coercion.

Canonical structures can be parametrised. For example we can build an eqType for the cartesian
product of two eqTypes and declare it as a canonical structure if we have already registered an
instance of eq_dec for products.

Definition 2.2.6.
Canonical Structure EqProd (T1 T2: eqType) := EqType (T1 × T2)

Example 2.2.6.
The expression count [(true,false); (false,true)] (true,true) type checks.

In this example we can see how several canonical structures work together. First EqProd provides
the desired eqType and the arguments of EqProd are inferred with the help of EqBool. This nested
structures called telescopes [7] can trigger powerful inference chains.

All in all we can see that canonical structures allow for inference of implicit arguments of type
eqType in the way we are used to from regular Type arguments.

Synergy of type classes and canonical structures

Together type classes and canonical structures form a powerful combination. Canonical structures
allow for inference of implicit arguments while type classes allow us to convert types into discrete
types. Together they even achieve results that would not have been possible separately:

Example 2.2.7.
Assume we have not only declared EqBool but also EqUnit as the eqType for unit. We can now declare
EQType_BoolUnit := toeqType (B × unit).

Now let us have a lookwhat the right side looks like, when all implicit arguments are inserted: toeqType
(B × unit) (.......decide_eq (EqCross EqBool EqUnit))

inferred with canonical structures . . . . . . . .inferred . . . . .with. . . . .type. . . . . . . .classes
The implicit argument decide_eq has been inferred by type class inference. The implicits arguments of
decide_eq (EqCross, EqBool, EqUnit), however, have been inferred with the help of canonical struc-
tures. Our current definitions would not have allowed this inference without either type classes or canon-
ical structures.

Canonical instances and toeqType

Since toeqType produces an eqType and eqType was defined with a coercion to Type, we have
X = toeqType X for any discrete type X in Coq. What is much more interesting is that even
without coercions toeqType gives us important equalities. For example we have without coercion:

Example 2.2.8.
toeqType B = EqBool

This is important because it means that toeqType produces the eqTypewe have declared as a canoni-
cal structure. This property holds for every eqType in the library. This is not a trivial equality. Had
we defined the canonical structures using a different decider than the one declared as an instance
of the type class, it would not hold.

Because toeqType normalises discrete types it is idempotent.

Fact 2.2.1.
toeqType is idempotent, i.e. for any discrete type X
toeqType (toeqType X) = toeqType X.

11



All these equations are definitional equalities and can therefore be proven in Coq by reflexivity.

2.2.2 Basic Closure properties

Discrete types are closed under several useful type operations.

Fact 2.2.2.
If X and Y are discrete types, so is X × Y .

Fact 2.2.3.
If X is a discrete type, so is option X.

Fact 2.2.4.
A sum type X + Y is discrete if both X and Y are discrete types.

12



Chapter 3

Finite Types

The heart of any library for finite types needs to be the definition of finite types. While there
are many different ways to ensure finiteness in Coq (several of which are explored in [5] e.g. a
bijection to some canonical type with n elements), we will base our definition on listability, i.e. for
a finite typewe can give a list containing all its inhabitants. This approach has several advantages:

1. We have explicit knowledge about the inhabitants.

2. This approach is very intuitive.

3. One gets many properties of lists which can be transferred to finite types with relative ease.
This is exploited in 3.3 and 8.

This notion of finiteness is also the one used in the Ssreflect library [17]. As in Ssreflect [17] we
will only allow duplicate free lists, which for example simplifies the definition of Cardinality 3.2.5.
We also require our types to be discrete. Discreteness is no additional restriction because show-
ing duplicate freeness of a list requires discreteness anyway. We could of course do without it
and, depending on the definition, even prove it from the definition of a finite type, but explicitly
requiring it makes many proofs much easier andmore understandable. Also it makes some other
things very obvious:
Remark 3.0.1.

• Most propositions cannot become finite types because of the elim restriction.

• Functions are no finite types unless one assumes functional extensionality.

As we will see in chapter 6 we can partially circumvent the second consequence.

3.1 Count

To create a finite type in Coq we will have to prove that the list of elements we want to use is
indeed complete and duplicate free. To formulate this requirement in a nice way we use the count
function described in 2.2.4. This is the method described in [9] and also used in the Ssreflect
library. There are several important properties of count we will regularly exploit:

Fact 3.1.1.
Let X be a discrete type, x be of type X and A be a list containing elements of type X.
Then x /∈ A↔ count A x = 0.
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Fact 3.1.2.
Let X be a discrete type, x be of type X and A be a list containing elements of type X.
Then x ∈ A↔ count A x > 0.

Both of these can be proved by induction on A. Most importantly:

Lemma 3.1.3.
Let X be a discrete type, x be of type X and A be a list containing elements of type X. Then
dupfree1 A→ x ∈ A→ count A x = 1

Proof. By induction on the derivation of dupfree A.

nil:
In this case x ∈ [] is a contradiction.

dupfree A’ and y /∈ A′:
Under the assumption x ∈ y :: A′ we have to show count (y :: A′) x = 1.

x = y:
In this case it remains to show that count A′ x = 0. x=y and y /∈ A′ hence x /∈ A′. By
Fact 3.1.1 count A′ x = 0.

x 6= y:
count A′ x = 1 remains to be shown which we conclude with the induction hypothesis.

Similarly we have:

Lemma 3.1.4.
Let X be a discrete type and A be a list over type X. Then
∀ x, count A x ≤ 1→ dupfree A.

Proof. By induction on A.

nil:
In this case we have to prove dupfree nil which is true without assumptions.

x::A′
We have to show that x /∈ A′ and that A′ is duplicate free. We know that count (x::A′) x ≤ 1,
this means that count A′ x = 0. By Fact 3.1.1 we conclude that indeed x /∈ A′.
We still have to prove dupfree A′. Now we can use the induction hypothesis and have to
show that ∀ y, count A′ y ≤ 1. By assumption we know that this is true for x::A′. We do a
case analysis on y = x. Either y=x, in this case we have already shown that
count A′ x = 0 ≤ 1, or y 6= x, and we have count A′ y ≤ 1 by assumption.

Lemma 3.1.5.
Let X:eqType x:X and A B: list X. Then count (A ++ B) x = count A x + count B x.

The proof here is by induction on A.
1For the definition of dupfree see [14]
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3.2 Definition of finite types

We define finite types using the same approach as with discrete types. This means we define a
type class which contains all information about the finite type.

Definition 3.2.1.
Class finTypeC (type: eqType): Type:= FinTypeC {
enum: list type;
enum_ok: ∀ x: type, count enum x = 1 }.

The proof enum_ok ensures that the list enum is indeed complete and duplicate free.
To get one type finType instead of one separate type for each base type we combine the type with
finTypeC, similar to the definition of eqType 2.2.3.

Definition 3.2.2.
Structure finType: Type:= FinType {
type :> eqType;
class : finTypeC type }.

Since finTypes have a coercion to eqTypes and eqTypes have a coercion to types we can use finTypes
both as eqTypes and as types. Of course this definition has the same disadvantages as the pure def-
inition of eqType. Therefore we need to register any finite type we declare as a canonical structure
to enable inference.

We can now use the same trick we have used when defining toeqType 2.2.5 to build a finType from
its base type.

Definition 3.2.3.
tofinType (X:Type) {D: eq_dec X} {f: finTypeC _}: finType :=
FinType (toeqType X).

This time both D and f are automatically inferred implicit arguments. The properties of toeqType,
i.e. normalisation to canonical forms and idempotents are also properties of tofinType.
To get more direct access to the list of elements we declare a new projection:

Definition 3.2.4.
elem (F: finType) := enum (type F) (class F).

Based on this we can define the cardinality of a finite type.

Definition 3.2.5 (Cardinality).
Let X be a finite type. Then Cardinality X is defined as |elem X|2.

Intuitively the Cardiniality of a finite type is the number of its inhabitants. We show that the
definition of enum_ok does indeed guarantee a complete and duplicate free list.

Fact 3.2.1.
For every finite type X the list elem X is duplicate free.

Proof. By enum_ok we know that ∀ x, count (elem X) x = 1. This implies that
∀ x, count (elem X) x ≤ 1. With Lemma 3.1.4 we conclude that elem X is duplicate free.

Fact 3.2.2.
Let X be a finite type and x of type X. Then x ∈ (elem X).

2We write |A| for the length of a list A[14]
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Proof. By 3.1.2 it suffices to show that count (elem X) x > 0. By enum_ok we get
count (elem X) x = 1 > 0.

Remark 3.2.1.
By the definition of list inclusion3 this implies that for every list A: list X
A ⊆ elem X.

3.3 Conversion to lists

Sometimes it is helpful to prove properties about finite types by proving them for the list of ele-
ments. Fortunately there are straightforward conversions which allow to do exactly that.

Fact 3.3.1.
Let X be a finite type and p be a predicate over X. Then (∀x, p x)↔ ∀x, x ∈ (elem X)→ p x.

Proof.
→: Let x be of type X. Since ∀x, p x also p x.
←: Let x:X. By assumption it suffices to show that x ∈ (elemX) which is true by Fact 3.2.2.

Fact 3.3.2.
Let X be a finite type and p be a predicate over X. Then (∃x, p x)↔ ∃x, x ∈ (elem X) ∧ p x.

Proof.
→: Let x:X such that p x. Then obviously p x. By Fact 3.2.2 also x ∈ (elem X).
←: Let x:X such that p x and x ∈ elem X. Then x is an x such that p x.

The next equivalence might look a bit strange since it replaces the ∧with→. This works because
x ∈ (elem X) is a tautology if X us a finite type. This version is useful because one gets
x ∈ (elemX) as an additional assumption instead of as an additional proof obligation if onewants
to prove ∃x, p x this way.

Fact 3.3.3.
Let X be a finite type and p be a predicate over X. Then (∃x, p x)↔ ∃x, x ∈ (elem X)→ p x.

Proof.
→: Let x:X such that p x. Then also p x.
←: Let x:X such that x ∈ (elem X) → p x. We get x ∈ (elem X) by Fact 3.2.2. Therefore x is an x
such that p x.

Most importantly we this means we can decide quantified formulas over decidable predicates
over finite types [5].

Fact 3.3.4 (Decidability of universally quantified formulas).
Let X be a finite type and p a predicate over X. Then (∀ x, dec (p x))→ dec (∀ x, p x).

Proof. By the equivalence property 3.3.1 it suffices to show that
(∀ x, dec (p x))→ dec (∀ x, x ∈ (elem X)→ p x)which is a well known property of lists 2.1.2.

Fact 3.3.5 (Decidability of existentially quantified formulas).
Let X be a finite type and p a predicate over X.

Proof. By the equivalence property above 3.3.2 it suffices to show that
(∃ x, dec (p x))→ dec (∃ x, x ∈ (elem X) ∧ p x) which is a well known property of lists 2.1.2.

3See [14]

16



This also implies that the laws of de Morgan’s 2.1.2 which need decidability of existential quan-
tifications hold for quantified formulas over decidable predicates over finite types. We can also
define a constructive choice function, which converts an existential quantifier into a sigma type4,
allowing us to circumvent the elim-restriction.

Theorem 3.3.6 (Constructive choice).
Let X be a finite type and p be a decidable predicate over X. Then there is a constructive choice function with
the type ∃ x, p x→ {x | p x}.

Proof. The definition is surprisingly easy. Using the equivalence property above 3.3.2 we can
change ∃x, p x to ∃x, x ∈ (elem X) ∧ p x. There already is a constructive choice function for lists
[14, 13] which we use to obtain the desired result.

3.4 Finite type creation guide

Havingdefined finTypeweneed to populate the librarywith frequently usedfinite types. The steps
necessary to declare a type as a finType are rather simple and dictated by the design explained in
chapters 2 and 3. To illustrate the process we use the example of B.

3.4.1 Step 1: Registering an instance for decidability

The first step to declare a finType must always be to show that equality on said type is decidable
and to declare the proof as an instance of the dec type class.

Example 3.4.1.
Instance bool_eq_dec : eq_dec B.

3.4.2 Step 2: Registering an eqType

The second step is to declare the type as a discrete type, i.e. as an eqType. Since we already have
declared the proof of discreteness as an instance, it can be inferred automatically. In order to
enable implicit argument inference of the eqType we declare it as a canonical structure.

Example 3.4.2.
Canonical Structure EqBool := EqType B.

3.4.3 Step 3: Completeness of list

Now we have to prove that the list containing all elements of the type is indeed complete and
duplicate free.

For more complicated types it can be helpful to write a function computing the list of elements
first. For simple types like B this is not necessary.

Example 3.4.3.
Lemma bool_enum_ok x: count [true; false] x = 1.

4see definition of sig in [18]
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3.4.4 Step 4: Registering an instance of finTypeC

Next we have to register an instance of finTypeC. Since the list of elements enum can be inferred
from the proof of correctness from step 3 this step looks the same way every time.

Example 3.4.4.
Instance finTypeC_bool : finTypeC EqBool.
Proof.
econstructor. apply bool_enum_ok.
Defined.

It is crucial to save the definition using Defined. If we accidentally use Qed., the definition
will be made opaque and we loose access to the list of elements and will not be able to do some
proofs.

3.4.5 Step 5: Registering a finType

Now we can finally declare the type as a finType. Since the instance of finTypeC can be inferred
automatically the type suffices as an argument.

Example 3.4.5.
Canonical Structure finType_bool : finType := FinType EqBool.

At this point it is important not to use tofinType like this:

Example 3.4.6 (bad idea).
Canonical Structure finType_bool_bad : finType := tofinType B.

Although this declaration works it can lead to problems later on because type finType_bool is de-
fined as toeqType B. Since Coq only looks at the head symbol (in this case toeqType) inference will
not work correctly.
Remark 3.4.1. Since steps 2, 4 and 5 are identical for any type, these definitions will mostly be left
out in the explanations of constructions of other finTypes. Any mentions of names of the from
EqX and finType_X can be assumed to refer to the eqType for X and finType for X respectively. For
example finType_Prod refers to the finite type for product types.

Simple inductive types like B whose constructors take no arguments are very easy to register as
finite types. But they also form the basis for every other type that can be constructed. For these
simple types even steps 1 and 3 can normally be copied from the proofs for B. Of course the
library supports other simple types, namely >, ⊥, unit, B and Empty_set.
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Chapter 4

Basic Constructions

Finite types are closed under important type operations. Therefore we can buildmany interesting
types just using very few base types and these operations. In this chapter wewill discuss themost
important simple operators before we go on to discussmore complicated operations in the follow-
ing chapters. Since the general scheme for obtaining a finite type has already been explained in
section 3.4 these chapters will focus on the most interesting parts of the constructions.

4.1 Cartesian product

4.1.1 Construction

To obtain a finite type for the product of two types we need to construct a list containing all pos-
sible pairs. To do this we first construct a function that computes all pairs of elements from two
lists.

Definition 4.1.1.
Fixpoint prodLists (X Y: Type) (A: list X) (B: list Y) :=
match A with
| nil ⇒ nil
| (x::A′) ⇒ map (λ y ⇒ (x,y)) B ++ prodLists A′ B end.

Let X and Y be discrete types with x, x′ of type X and y of type Y.

Lemma 4.1.1.
count ( map (λ y⇒ (x,y)) B) (x, y) = count B y.

Lemma 4.1.2.
x 6= x′ → count ( map (λ y⇒ (x,y)) B) (x′, y) = 0.

Lemma 4.1.3.
count (prodLists A B) (x,y) = count A x ∗ count B y.

Proof. By induction on A.

nil:
This simplifies to 0 = 0 which is true.

x′::A′:
Using 3.1.5 the left side simplifies to
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count (map (λ y⇒ (x′, y)) B (x,y) + count prodList A B (x,y). Now we can use the induction
hypothesis to change count prodList A B (x,y) to count A x ∗ count B y.
The value on the right side depends on whether x′ = x or not.

x = x′:
In this case the right side of the equation simplifies to
count B y + count A x * count B y.
So now we have:
count (map (λ y⇒ (x′, y)) B (x,y) + count A x ∗ count B y = count B y + count A x * count B
y.
By subtraction of count A x * count B y from both sides and substitution of x′ we get
count (map (λ y⇒ (x, y)) B (x,y) = count B y which follows with 4.1.1.

x 6= x′:
In this case we get
count (map (λ y⇒ (x′, y)) B (x,y) + count A x ∗ count B y = count A x * count B y.
By subtraction of count A x * count B y from both sides we obtain
count (map (λ y⇒ (x′, y)) B (x,y) = 0 which we can prove using 4.1.2.

As a result we obtain the following result:

Fact 4.1.4.
Let X and Y be finite types and z be of type X × Y . Then count (prodList (elem X) (elem Y)) z = 1.

Proof. z needs to be a pair (x,y). Because of 4.1.3 it suffices to show that
count (elem X) x ∗ count (elem Y) y = 1. Because X and Y are finite types, we can use the correctness
property enum_ok to obtain count (elem X) x = 1 and count (elem Y) y = 1. All that remains to be
shown is 1 ∗ 1 = 1 which is trivial.

This is all we need to obtain a finType for products of finite types.

Theorem 4.1.5.
If X and Y are finite types, then X (×) Y := FinType (EqProd X Y) is a finite type such that
X × Y = X (×) Y.

Proof. With the coercion type X (×) Y is equal to EqProd X Y. EqProd X Y is equal to X × Y using
the coercion eqtype.

4.1.2 Cardinality

As the name suggest the cardinality of a finite product type is the product of the cardinalities.

Theorem 4.1.6.
Let X and Y be finite types. Then Cardinality (X (×) Y) = Cardinality X ∗ Cardinality Y.

Proof. This is by definition equivalent to |prodLists (elem X) (elem Y)| = | elem X | ∗ | elem Y | . We do
induction on elem X.

nil:
In this case prodList returns nil. Since 0∗|elem Y | = 0 we have to prove 0 = 0 which is trivial.
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x::A:
In this case we have to prove
|map (λ y⇒ (x,y)) (elemY) ++ prodLists A (elemY)|= |elemY |+|A|∗|elemY | . By the induction
hypothesis we already have |prodLists A (elem Y)| = |A| ∗ |elem Y |. All that remains to be
proven is |map (λ y⇒ (x,y)) (elem Y) | = | elem Y |. Since map does not change the length of
a list, this is true.

4.2 Option

Option types are a valuable tool if one wishes to write a function which might not necessarily
have a result or if one just needs a type with one more element.

4.2.1 Construction

We construct a function which creates a list of type option X given a list of type X.

Definition 4.2.1.
toOptionList (X: Type) (A: list X) := None :: map Some A .

Lemma 4.2.1.
Let X be a discrete type and (A: list X). Then count (toOptionList A) None = 1
and count (toOptionList A) (Some x) = count A x.

Both of these can be proven by induction.

Fact 4.2.2.
Let X be a finite type and x be of type X. Then count (toOptionList (elem X)) z = 1.

Proof. By case analysis on z.

None:
This is exactly the first equation of 4.2.1.

Some x:
By 4.2.1 it suffices to show that count (elem X) x = 1 which follows by enum_ok.

Again this suffices to define a finType for option types of finite types.

Theorem 4.2.3. If X is a finite type, then ?X := FinType (EqOption X) is a finite type such that
option X = ?X.

Proof. With the coercion type ?X is equal to EqOption X which with the coercion eqtype is equal to
option X.
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4.2.2 Cardinality

Intuitively an option type is one element larger than the original type because we add None. So
we have:

Theorem 4.2.4.
Let X be a finite type. Then Cardinality (?X) = 1 + Cardinality X.

Proof. Cardinality (?X) = |None :: map Some (elem X) | = 1 + | map Some (elem X) | .
Again map does not change the length of the list so this equals 1 + | elem X | which is what we
wanted to prove.

4.3 Sum

Sum types are the Type equivalent of disjunctions. They are the best thing we have as a union
operator for types.

4.3.1 Construction

As usual we define a function computing a list of type X + Y. But this time we use two functions:
One for the left type and one for the right type.

Definition 4.3.1.
toSumList1 {X: Type} (Y: Type) (A: list X): list (X + Y) := map inl A.

Definition 4.3.2.
toSumList2 {Y: Type} (X: Type) (A: list Y): list (X + Y) := map inr A.

There are some obvious properties of these function which can easily be proven by induction on
the list argument. For discrete types X and Y the following holds:

Lemma 4.3.1.
count (toSumList1 Y A) (inl x) = count A x.

Lemma 4.3.2.
count (toSumList2 X B) (inr y) = count B y.

Lemma 4.3.3.
count (toSumList1 Y A) (inr y) = 0.

Lemma 4.3.4.
count (toSumList2 X B) (inl x) = 0.

As a result we get:

Fact 4.3.5.
Let X and Y be finite types and z: X + Y.
Then count (toSumList1 Y (elem X) ++ toSumList2 X (elem Y)) z = 1.

Proof. By 3.1.5 it suffices to show.
count (toSumList1 Y (elem X) z + toSumList2 X (elem Y)) z = 1. We do a case analysis on z

inl x:
By 4.3.4 toSumList2 X (elem Y)) (inl x) = 0. Therefore we just need to show
count (toSumList1 Y (elem X) (inl x) = 1 which we obtain by 4.3.1 and enum_ok.
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inr y:
By 4.3.3 toSumList2 Y (elem X)) (inr y) = 0. Therefore we just need to show count (toSumList2
X (elem Y) (inr y) = 1which we obtain by 4.3.2 and enum_ok.

Theorem 4.3.6. If X and Y are finite types, then X (+) Y := FinType (EqSum X Y) is a finite
type such that X + Y = X (+) Y.

Proof. With the coercion type X (+) Y is equal to EqSumXYwhichwith the coercion eqtype is equal
to X + Y.

4.3.2 Cardinality

As the name suggests the Cardinality of a finite sum type is the sum of the Cardinality of its
constituent types.

Theorem 4.3.7.
Let X and Y be finite types. Cardinality (X (+) Y) = Cardinality X + Cardinality Y.

Proof. By the definition of X (+) Y the left side equals
|toSumList1 Y (elemX) ++ toSumList2 X (elemY) |. By the definitions of toSumList1 and toSumList2
this is again equal to | map inl (elem X) ++ map inr (elem Y)|. Since map does not change the length
of the list this is equal to |elem X|+ |elem Y |which is exactly what we wanted to prove.
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Chapter 5

Dependent Pairs

Dependent pairs or sigma types are pairs where the type of the second component is determined
by a function on the first component. Dependent pairs come in two flavours: In the first the
function maps to Type, in the second to P. While the construction of the finite types for regular
pairs, options, and sums is relatively straightforward this does not apply to dependent pairs.
Remark 5.0.1.
We will use π1 (π2) for the projection to the first component (the second component) of a depen-
dent pair. In this notation we will not differentiate between the two types of dependent pairs.

5.1 Subtypes

The second variety is useful to define subtypes of elements satisfying a predicate. It seems obvious
that subtypes of finite types should be finite as well. Unfortunately equality of proofs in P is
usually not decidable making it hard to define an eqType. Fortunately there is a workaround.

5.1.1 Pure predicates

This workaround are pure predicates.

Definition 5.1.1. [15]
A predicate p : X → P is called pure if for every x:X there is only one proof of p x.

Because pure predicates have just one proof of p x, equality of proofs is decidable. This helps us
in defining subtypes. Firsov and Uustalu used the same trick for the very same purpose [5].

For every decidable predicate there is an equivalent pure predicate. We can obtain it by simply
injecting it into > and ⊥.

Definition 5.1.2. [15]
pure := {X: Type} (p: X → P) {D:∀ x, dec (p x)} x :=
if decision (p x) then > else ⊥.

Fact 5.1.1. [15]
If p is a decidable predicate, then pure p is pure.

Fact 5.1.2. [15]
Let p be a decidable predicate over X and x:X. Then p x↔ pure p x.
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Remark 5.1.1.
Note that Fact 5.1.2 allows us to convert between proofs of pure and impure versions of the same
predicate. This will be very handy.

5.1.2 Subtypes of finite types

Now we can define suptypes an idea I came across in [15], although they did not define them
generally.

Definition 5.1.3.
Let X be a type and p be a decidable predicate over X. We define subtype p as {x:X | pure p x}.

Lemma 5.1.3 (Extensionality).
Let p be some decidable predicate and x x′: subtype p. Then x = x′ if and only if π1 x = π1 x

′.

Proof.

→:
Trivial.

←:
The first components of x and x′ are equal by assumption. The second components are
proofs of pure predicates by Fact 5.1.1 and are therefore equal by the definition of pure.

Fact 5.1.4.
Subtypes of discrete types are discrete.

Proof. Assume for some decidable predicate pwe have two pairs p1 and p2 of type subtype p. They
need to be of the form exist x px and exist x′ px′ where px and px′ have types pure p x and pure p x′,
respectively. Now we do case analysis on x = x′.

x = x′:
Now we can show equality by the extensionality principle above 5.1.3.

x 6= x′:
In this case p1 and p2 are unequal. We prove this by contradiction.
Assume p1 = p2. In this case also π1 p1 = π1 p2. But this reduces to x = x′ which is a
contradiction.

Nowwe can define a function which converts a list into a list of the subtypewewish to obtain. The
idea behind the function is that we test every element of the list for the subtype property. If an
element satisfies that property, it is added to the result together with a pure version of the proof. If
not, the element is cast off. In the definition below purify performs the conversion between proofs
of impure and pure versions of a decidable predicate implied by Fact 5.1.2.
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Definition 5.1.4.
Fixpoint toSubList (X: Type) (A: list X) (p: X → P) (D:∀ x, dec (p x))
: list (subtype p) :=
match A with
| nil ⇒ nil
| cons x A′ ⇒ match decision (p x) with

| left px ⇒ (exist _ x (purify px)) :: toSubList A′ D
| right _ ⇒ toSubList A’ D
end

end.

To prove that the list obtained with toSubList is indeed complete and duplicate free, it helps to
have the following lemma.

Lemma 5.1.5.
Let X be a discrete type and p be a decidable predicate over X. Then for every A: list X and x of type
subtype p the equation count (toSubList A p) x = count A (π1 x) holds.

Proof. By induction on A.

nil:
This reduces to 0 = 0 which is true.

a::A’:
First we do a case analysis on p a.

p a:
Let pa be the proof of p a. Now we have to prove that
count (exist (pure p) a (purify pa) :: toSubList A p) x = count (a :: A) (π1 x)
We have to consider two cases:
π1 x = a:

In this case x = exist (pure p) a (purify pa) by extensionality of subtypes 5.1.3. As a
result we need to show 1 + count (toSubList A p) x = 1 + count A (π1 x) now. By the
induction hypothesis we have count (toSubList A p) x = count A (π1 x)which implies
the goal.

π1 x 6= a:
In this case by extensionality of subtypes 5.1.3 we also get
x 6= exist (pure p) a (purify pa). The remaining goal is equal to the induction hypoth-
esis.

¬p a:
In this case π1 x cannot be equal to a because π2 x is a proof of pure p x)which is equiv-
alent to a proof of p x. Therefore π1 x 6= a and all that need to be shown is
count (toSubList A p) x = count A (π1 x)which is the induction hypothesis.

Now we can prove the correctness property for the list of a finite type:

Fact 5.1.6.
Let X be a finType and p be a decidable predicate on X. Then for all x
count (toSubList (elem X) p) x = 1.
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Proof.
By Lemma 5.1.5 it suffices to show that count (elem X) (π1 x) = 1. This is guaranteed by the correct-
ness property enum_ok of finTypes.

Now we have everything that is needed to define finite subtypes of finite types.

Theorem 5.1.7. If X is a finite type and p a predicate on X , then
finType_sub p := FinType (EqSub p) is a finite type such that subtype p = finType_sub p.

Proof. With the coercion type finType_sub p is equal to EqSub p which with the coercion eqtype is
equal to subtype p.

5.2 Finite types from Lists

Since every list is finite it seems reasonable that one can convert a list A over a discrete type into
some finite type representing the elements of the list. Having defined subtypes this is not difficult.
We simply have to define a finType version of subtype (λ x⇒ x∈A). Unfortunatelywe cannot simply
use the construction for subtypes of finite types from 5.1.2 because the base type of the list is not
necessarily a finite type, but for example N.

5.2.1 Removing duplicates

Because the list of elements of a finite type needs to be duplicate free, we have to remove the
duplicates in our list in someway. Wewill use an undup function designed for exactly this purpose
from [14, 13].

Fact 5.2.1. [13, 14]
If A is a list over a discrete type, then x ∈ A↔ x ∈ undup A.

Fact 5.2.2. [13, 14]
If A is a list over a discrete type, then undup A is duplicate free.

5.2.2 Construction

Wewill again use the toSubList function to obtain our list of elements. It is important that we only
remove duplicate elements after we used toSubList to obtain the list of subtype elements. When we
remove duplicates first, the type of the resulting list will not be list {x | x ∈ A} but
list {x | x ∈ undup A}.

Fact 5.2.3.
Let A be a list over some discrete type X. Then for all x
count (undup (toSubList A (λ x⇒ x ∈ A))) x = 1.

Proof.
By 3.1.3 it suffices to show that undup (toSubList A (λ x⇒ x ∈ A)) is duplicate free and that
x ∈ undup (toSubList A (λ x⇒ x ∈ A)). We get the first by Fact 5.2.2. For the second by Fact 5.2.1 it
suffices to show that x ∈ toSubList A (λ x⇒ x ∈ A). This is equivalent to
count (toSubList A (λ x⇒ x ∈ A)) x> 0 by 3.1.2. Thanks to Lemma 5.1.5 we can get rid of toSubList
and prove count A (π1 x) > 0 instead. Now with 3.1.2 we can go back to showing that π1 x is an
element of A. Since x has type {x | x ∈ A} the type ensures that this is indeed true.

We declare the instances of finTypeCand finType as usual.
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Definition 5.2.1.
Canonical Structure finType_fromList (X: eqType) (A: list X) :=
FinType (EqSubType (λ x ⇒ x ∈ A)).

Finally we want to prove that this definition is correct in the following sense: The list of the the
first components of the element list of finType_fromList is equivalent to the original list A. To show
this we need to know the following fact from the Coq standard library.

Fact 5.2.4. [18]
x ∈ map f A↔ ∃ x, x ∈ A ∧ f x = y

Theorem 5.2.5.
Let X be a discrete type and A: list X. Then finType_fromList A is a finite type such that
map π1 (elem (finType_fromList A) ≡ A.

Proof. We have to show both directions:

→:
Let x ∈ A. We have to show x ∈ map π1 (elem (finType_fromList A). By Fact 5.2.4 it suffices to
show that there exists a p: subtype (fun x⇒ x ∈ A) such that
π1 p = x ∧ p ∈ (elem (finType_fromList A)). We can construct such a p from x and the proof of
x ∈ A. Obviously π1 p = x.
By the definition of finType_fromListwe need to show p∈ undup (toSubList A (fun x⇒ x ∈ A)).
By Fact 3.1.2 it suffices to show
count (undup (toSubList A (fun x⇒ x ∈ A))) p > 0. By Fact 5.2.3 the left side is equal to 1 and
1 > 0.

←:
Let x ∈ map π1 (elem (finType_fromList A). We need to show that x ∈ A. By Fact 5.2.4 there
exists a p: subtype (λ x⇒ x ∈ A) such that π1 p = x. Because of the type of p, x ∈ A.

Remark 5.2.1. While we have been able to convert lists to finite types this is a construction which
is not very useful in practice. Nearly all important properties of finite types are also properties of
lists over a discrete type. In fact we have shown many properties for finite types using properties
of lists. This means that the conversion to a type mainly adds a clunky package around the list
without adding many advantages. This packaging makes access to the list elements more com-
plicated than before. The only advantage of this packaging is that one can use the list as a type.
The situation in Ssreflect [17] is a bit different. Since Ssreflect is not only a library for finite types
it also provides support for finite sets. This includes set operations like incusion on subtypes.
Since support for list inclusion and similar operation already exists in [13] which we use as the
foundation of our library, the existence of these set operations would not really be a good reason
to convert lists into types in our case, either.

5.3 General sigma types

Surprisingly the definition of finite types for general dependent pairs1 is much more complicated
than the definition of subtypes although this time equality on the second component can be as-
sumed to be decidable.

1For the definition look up sigT in the Coq standard library
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5.3.1 Discreteness

The problem arises when trying to prove discreteness. At one point in the proof one wants to
show that, if the first components of two dependent pairs are equal but the second components
are unequal, the complete dependent pair is unequal. The intuitive approach seems to be to prove
this by contradiction. After all, one might think that if the dependent pairs are equal the second
components should be equal as well. It turns out it is not possible to prove that they are equal in
general [10].

It is, however, provable if the first type of the dependent pair is decidable. This has to do with the
following insight of Hedberg’s [10].

It turns out that while proof irrelevance is independent in Coq (neither provable nor disprovable)
one can prove it for equality proofs of discrete types.

Fact 5.3.1 (Hedberg’s theorem). [10]
Lemma Hedberg (X: eqType) (x y: X) (E E′: x = y) : E = E′.

The proof of this in the accompanying Coq development was heavily inspired by the proof of the
theorem in the Ssreflect library [17].

A result of this theorem which Hedberg already proved in his original paper [10] is that discrete
types are closed under dependent pairing. During the proof one shows that projection to the
second component of a dependent pair preserves equality.

Fact 5.3.2. [10]
Let x and y be of type {x:X & f x} . If x = y then also π2 x = π2 y.

Fact 5.3.3. [10]
Let X be a discrete type and f: X→ eqType. Then {x:X & f x} is a discrete type as well.

5.4 Construction of a finite type

As usual we define a function enumerating every element of the type to define a finite type.

Definition 5.4.1.
Fixpoint toSigTList {X: Type} (f: X → finType) (A: list X) :
list (sigT f) :=
match A with
| nil ⇒ nil
| x::A′ ⇒ (map (existT f x) (elem (f x))) ++ toSigTList f A′ end.

Note that because for every x, f x produces a finite type, we have easy access to ever inhabitant of
f x through elem. Again we will have to prove that the generated list is correct. To do this we first
need to know how many elements each inhabitant of X generates.

Lemma 5.4.1.
Let X be a discrete type and f: X→ eqType. Let x:X, y: f x and A: list (f x). Then
count (map (existT f x) A) (existT f x y) = count A y.

Proof. By induction on A.

nil:
In this case this reduces to nil = nilwhich is trivially true.

a::A′: We do case analysis on y = a.

29



y = a:
In this case also existT f x y = existT f x a. Therefore we need to show
1 + count (map (existT f x) A′) (existT f x y) = 1 + count A′ y. By the induction hypothesis
we get count (map (existT f x) A′) (existT f x y) = count A′ y which suffices.

y 6= a:
In this case by Fact 5.3.2 also existT f x y 6= existT f x a. This meanswe have to prove count
(map (existT f x) A′) (existT f x y) = count A′ y which is exactly the induction hypothesis.

We also need to prove that dependent pairs with the wrong first component are not in the list.

Lemma 5.4.2.
Let X be a discrete type and f: X→ eqType. Let x, x′: X, y: f x and A: list (f x). Then, if x 6= x′,
count (map (existT f x) A) (existT f x′ y) = 0.

Proof. By induction on A.

nil:
Again this reduces to nil = nil.

a::A′:
x 6= x′ therefore also existT f x a 6= existT f x′ y.
This leaves count (map (existT f x) A′) (existT f x′ y) = 0 to be shown which is the induction
hypothesis.

Nowwe can have a look at toSigTList. We can reduce counting elements of toSigTList f A to count-
ing elements of A.

Lemma 5.4.3.
Let X be a discrete type, f: X→ finType, A: list X and s: sigT f.
Then count (toSigTList f A) s = count A (π1 s).

Proof. By induction on A.

nil:
toSigTList f nil is equal to nil. And count nil s = 0 = count nil (π1 s).

a::A′:
s consists of two elements x:X and y: f x. So the left side becomes

count (map (existT f a)(elem (f a)) + + toSigTList f A′) (existT f x y).

By Lemma 3.1.5 we can change the left side to

count (map (existT f a) (elem (f a)) (existT f x y) +count (toSigTList f A′) (existT f x y).

The induction hypothesis allows us to change this to

count (map (existT f a) (elem(f a)) (existT f x y) + count A′ x.

There are two cases:
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a = x:
This means the right side of the equation reduces to 1 + count A′ x. Therfore it now
suffices to show that count (map (existT f a) (elem (f a)) (existT f x y) = 1. We can change
this to count (elem (f x)) y = 1 by Lemma 5.4.1 which is true by enum_ok.

a 6= x:
In this case the right side of the equation reduces to count A′ x. We therefore only have
to show count (map (existT f a) (elem (f a)) (existT f x y) = 0which is true by Lemma 5.4.2.

This is all we need to show correctness of the list produced by toSigTList.

Fact 5.4.4.
Let X be a finite type, f: X→ finType and s: sigT f. Then
count (toSigTList f (elem X)) s = 1.

Proof. By Lemma 5.4.3 it suffices to show count (elem X) (π1 s) = 1 which is true by enum_ok.

Theorem 5.4.5. Let X be a finite type and f a function X→ finType.
Then finType_sigT f:= FinType (EqSigT f) is a finite type such that
finType_sigT f = sigT f.

Proof. With the coercion type the finite type finType_sigT f is equal to EqSigT f which with the
coercion eqtype is equal to sigT f.
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Chapter 6

Vectors

As already discussed in chapter 3 function types cannot be declared as finTypes since they are not
discrete. For functions with a finite domain and codomain we can, however, find a replacement
which can be declared as a finite type. This replacement is a vector. A vector in mathematics is
usually a collection of objects of a certain kind with a fixed size. For example a mathematical
vector of ’type’ Rn is a collection of real numbers of size n. Our vectors, however, are not indexed
by numbers but by finite types. A Y-vector indexed by a finite type X is a collection of
Cardinality X elements of type Y.
Based on cardinality we can define vectors. We will use a subtype.

Definition 6.0.2.
Card_X_eq X Y (A: list Y) := |A| = Cardinality X

Definition 6.0.3.
vector (X: finType) (Y: Type) := subtype (Card_X_eq X Y)

Howare vectors related to functions? We can interpret aY-vector indexed byX as a functionX → Y
in the following way: If n is the position of x:X in elem X, we interpret the nth component of the
vector as the result of the function for the argument x. Ssreflect uses the same idea to represent
functions [9, 17]. To endorse the function view of vectors and to make notation easier we use long
arrows for vector types.

Definition 6.0.4.
X −→ Y := vector X Y

We also define the image of a vector.

Definition 6.0.5.
The image of a vector X −→ Y is the first component of the dependent pair, i.e. the list of type Y.

This gives us a very nice extensionality principle for vectors.

Fact 6.0.6 (Vector extensionality).
If f and g are two vectors with image f = image g, then f = g.

Proof.
This is a direct consequence of the extensionality principle for subtypes 5.1.3.

Because vectors are defined as subtypes, vectors ranging of discrete types are discrete as well.

Fact 6.0.7.
Equality on vectors ranging over discrete types is decidable.
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6.1 Construction of finite type

Before we can declare a finite type for vectors, we first need to obtain a list of all possible vectors.
In order to achieve this we first, for a natural number n and a list A, compute all lists of length n
containing only elements fromA. In the function view this means we compute all possible images
a function mapping elements from a domain of size n to elements of A can have.

Definition 6.1.1.
Fixpoint images (Y: Type) (A: list Y) (n: N) : list (list Y) :=
match n with
| 0 ⇒ [[]]
| S n’ ⇒ concat (map (λ x ⇒ map (cons x) (images A n′)) A)
end.

The first case is rather obvious: There is just one list of length 0 namely the empty list. The second
case recursively adds each element of A to all lists of length n′. This time we will proceed differ-
ently than usual to prove that our final list is correct. We will use Fact 3.1.2 and show that the list
is dupfree and every element of the type is in it. While the direct way is possible we need a lot of
generalisations and additional arguments which leads to a very convoluted proof. The first step
to prove that we can indeed built the list we want is to prove that images produces a duplicate free
list including all lists of the required length. In order to do this we first need a few lemmas.

Lemma 6.1.1.
If the list A given to images as an argument is non-empty, then the result of images A n is a non-empty
list.

This can be proven by induction on n using some properties of lists and map.
In order to show that the function images does indeed return a duplicate free list, we first have to
show that the lists which are later concatenated are pairwise disjoint. This takes several steps.

Lemma 6.1.2.
Let X be a type and A: list list X and (x y:X).
If x 6= y, then map (cons x) A and map (cons y) A are disjoint.

Lemma 6.1.3.
Let X be a type and A a list over X, B and B′ lists of lists over X, and x of type X. If B is not empty and
x /∈ A, then B′ ∈map (λ y⇒ (map (cons y) B)) A implies that B′ and map (cons x) B are disjoint.

Proof. Because B is not empty it must be of the form A′::B′′. Now we do induction on A.

nil:
In this case B′ cannot be in map (λ y⇒ (map (cons y) (A′::B′′))) nil because this simplifies to
B′ ∈ nilwhich is contradictory.

y::A′′:
By the second of de Morgan’s laws from 2.1.2 and the definition of ∈ the assumption
x /∈ y :: A′′ can be changed to x 6= y and x /∈ A′′.
From the assumption B′ ∈ map (λ y⇒ (map (cons y) (A′::B′′)) (y::A′′) we get two cases:

B′ = map (cons y) (A′::B′′):
This means we have to show that map (cons y) (A′::B′′) and map (cons x) (A′::B′′) are
disjoint which is true by Lemma 6.1.2.

B′ ∈ map (λ y⇒ (map (cons y) (A′::B′′)) A′′:
Now our goal is to show that B′ and map (cons x) (A′::B′′) are disjoint. This is exactly
what the induction hypothesis promises provided we can show that x /∈ A′′ and
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B′ ∈ map (λ y⇒ (map (cons y) (A′::B′′)) A′′. This is no problem because we have both
as an assumption.

Lemma 6.1.4.
Let X be a type and A: list X and B: list list X. If B is not empty and A is duplicate free, then any two list
C and C′ with C 6= C ′ which are elements of map (λ y⇒ (map (cons y) B)) A are disjoint.

Proof. By induction on the derivation of the proof of dupfree A.

nil:
In this case both C and C′ cannot be an element of map (λ y⇒ (map (cons y) B)) nil because
this reduces to nil.

x /∈ A′ and dupfree A′:
Bmust be of the formA′′::B′ because it is non empty. This leaves uswithC andC′ as elements
of map (λ y⇒ (map (cons y) (A′′::B′))) (x::A′). We distinguish 4 cases:

C = map (cons x) (A′′::B′) = C′:
This case is impossible because we know that C 6= C ′.

C = map (cons x) (A′′::B′) and C′ ∈map (λ y⇒ (map (cons y) (A′′::B′))) A′:
This leaves us with having to show that map (cons x) (A′′::B′) and C′ are disjoint which
we obtain using 6.1.3.

C′ = map (cons x) (A′′::B′) and C ∈map (λ y⇒ (map (cons y) (A′′::B′))) A′:
Analogous to the previous case.

C, C′ ∈ map (λ y⇒ (map (cons y) (A′′::B′))) A′:
This are exactly the assumptions we need to use the induction hypothesis to prove that
C and C′ are disjoint.

Lemma 6.1.5.
Let X be a type and A: list X and B: list list X.
Then (∀ C, C ∈ B→ disjoint A C)→ disjoint A (concat B).

Lemma 6.1.6.
Let X be a type and B be a duplicate free list of duplicate free and pairwise disjoint lists of type X. Then
concat B is duplicate free, as well.

Proof. By induction on B.

nil:
If B is nil, so is concat B and nil is duplicate free.

A::B′:
We have to show that concat (A::B′) is duplicate free. For this is suffices to show that both A
and concat B′ are duplicate free and that A and concat B′ are disjoint.
A is an element of B and therefore duplicate free by assumption.
By the induction hypothesis concat B′ is duplicate free if B′ is a duplicate free list of duplicate
free and pairwise disjoint lists. Since A::B′ satisfies this property, so does B′.
Now we only need to show that A and concat B′ are disjoint. By Lemma 6.1.5 it suffices to
show that every list C ∈ B′ is disjoint from A. This is true because A::B′ is a duplicate free
list of pairwise disjoint (and also duplicate free, but this does not matter here) lists.
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To go on we need to know a property of mappings to duplicate free lists.

Fact 6.1.7. [13, 14]
Let X and Y be types, A: list X and f: X → Y be a function that behaves like a injective function on the
elements of A, i.e. when x and y are in A, then f x = f y→ x = y. Under this condition
dupfree A→ dupfree (map f A).

Now we can essentially prove that the second case of images produces a duplicate free list, al-
though our statement will be a bit more general, namely:

Lemma 6.1.8.
Let X be a type and A: list X and B: list list X be duplicate free lists. If B is not empty, then
concat (map (λ x⇒ map (cons x) B) A)) is duplicate free.

Proof. By Lemma 6.1.6 it suffices to show that
map (λ x⇒ map (cons x) B) A is a duplicate free list of duplicate free and pairwise disjoint list.

• First we show that map (λ x⇒ map (cons x) B) A) is duplicate free. By Fact 6.1.7 it suffices to
show that A is duplicate free and λ x⇒ map (cons x) B behaves like an injective function on
the elements of A.

– A is duplicate free by assumption.
– B cannot be empty by assumption therefore it must be of the form A′::B′.
Now we have to show that ∀ x y, map (cons x) (A′::B′) = map (cons y) (A′::B′) → x = y.
Now assume that map (cons x) (A′::B′) = map (cons y) (A′::B′). In particular this would
mean that x::A′ = y::A′ and consequently x = y.

• Now we show that map (λ x⇒ map (cons x) B) A) contains only duplicate free lists. Let C ∈
map (λ x⇒ map (cons x) B) A). The proof continues by induction on the derivation of dupfree
A.

nil:
This would mean that C ∈ nil which is impossible.

x /∈ A′ and dupfree A′:
There are two cases:
C = map (cons x) B:

In this case we have to show that map (cons x) B is duplicate free. The function
cons x is obviously injective so by Fact 6.1.7 all that remains to be shown is that B
is duplicate free which we have as an assumption.

C ∈ map (λ x⇒ map (cons x) B) A′:
This is all we need, to get dupfree C with the induction hypothesis.

• We have to show that map (λ x ⇒ map (cons x) B) A) only contains pairwise disjoint lists.
This is exactly what we have proven in Lemma 6.1.4

Now we can finally prove that images produces a duplicate free list.

Lemma 6.1.9.
Let Y be a type, A:list Y and n : N. Then images A n is duplicate free if A is duplicate free.
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Proof. Assume A is duplicate free. We do induction on n.

0:
In this casewe have to show dupfree [[]], which by use of the second inference rule for dupfree1
is equivalent to nil /∈ nil and dupfree nil which is both true.

S n′:
In this case we are in the second case of the definition of images 6.1.1. This means we have
to show that concat (map (λ x⇒ map (cons x) (images A n)) A) is duplicate free.
We do case analysis on A

nil:
In this case the goal simplifies to the trivial goal dupfree nil.

x::A′:
By 6.1.8 it suffices to show that images (x::A′) n′ and x::A′ are duplicate free and images
(x::A′) n is non-empty.
• x::A′ is duplicate free by assumption.
• We obtain dupfree (images (x::A′) n) by the induction hypothesis and dupfree (x::A′).
• By Lemma 6.1.1 it suffices to show that x::A′ is non-empty which is obviously the
case since x is an element of x::A′.

To prove that the list of all lists of the appropriate form are elements of images we first prove that
the lengthening of the lists by one works as expected.

Lemma 6.1.10.
Let Y be a type, A C: list Y, B: list (list Y) and y:Y. If y ∈ A and C ∈ B.
Then y::C ∈ concat (map (λ x⇒ map (cons x) B) A)

Proof. By induction on A.

nil:
This would mean that y ∈ nil which is a contradiction.

x::A′:
The goal simplifies to y::C ∈ map (cons x) B ++ concat (map (λ x ⇒ map (cons x) B) A′). It
suffices to show either y::C ∈ map (cons x) B or
y::C ∈ concat (map (λ x⇒ map (cons x) B) A′. Now either y = x or y ∈ A′.

y = x:
In this case y::C = x::C ∈ map (cons x) B. By Fact 5.2.4 it suffices to show that
∃ C′,x::C′ = x::C ∧ C′ ∈ B. Obviously C is such a C′.

y ∈ A′:
With this assumption and the induction hypothesis we get exactly our goal.

Lemma 6.1.11.
Let Y be a type and A B: list Y. If B is a sublist of A in the sense that ∀ x, x ∈ B→ x ∈ A,
then B ∈ images A |B|.

Proof. By induction on B.
1see [14]
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nil:
In this case we have to show that nil ∈ [nil] which is trivial.

x::B′:
In this case we have to show
x::B ∈ concat (map (λ x⇒ map (cons x) (images A |B′|)) A′). By the previous Lemma 6.1.10 it
suffices to show x ∈ A and B′ ∈ images A ′.

– Because x::B is a sublist of A and x ∈ x::B) we get x ∈ A.
– By the induction hypothesis it suffices to show that B′ is a sublist of A. This is true
because a::B′ is a sublist of A.

Remark 6.1.1.
At first this sublist property might seem like a pretty strong requirement. But to get a finite type
in the endwewill have to chooseY to be a finite type andA to be elem Y. This makes this condition
trivially true for every list B of type Y

Now we can finally prove that for finite types X and Y images produces the list of all Y-vectors of
size Cardinality X

Lemma 6.1.12.
Let X and Y be finite types. Then for any list V over Y of size Cardinality X
count (images (elem Y) (Cardinality X) V = 1.

Proof. By 3.1.3 it suffices to show that V ∈ images (elem Y) (Cardinality X) and
images (elem Y) (Cardinality X) is duplicate free.

• Because V has size Cardinality X, we can reformulate our first goal to
V ∈ images (elem Y) |V |. By Lemma 6.1.11 this is the case if every element of V is an element
of elem Y as well. Since every element of V has type Y and by Fact 3.2.2 every inhabitant of
Y is an element of elem Y, this is true.

• By Lemma 6.1.9 it suffices to show that elem Y is duplicate free. By Fact 3.2.1 this is the case.

So far we have proven that for finite types X, Y we can produce a list containing every list with
elements of Y of length Cardinality X. To put it differently: If X and Y are finite types, we can
compute the list containing a list representation of the image of every possible function from X to
Y. To change this to a vector representation we need a proof of the predicate of the subtype. More
specificallywe need to prove that every element of images (elem Y) (Cardinality X) does indeed have
length Cardinality X.

Lemma 6.1.13.
Let Y be a type and n:N. Then ∀ (A : list Y ) B, B ∈ images A n→ |B| = n.

Proof. By induction on n.

0:
Let A B: list Y. images A 0 = [nil]. This means if B ∈ images A 0, then B = nil and |nil| is indeed
0.
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S n′:
In this case we have to prove
B ∈ concat (map (λ x⇒ map (cons x) (images A n)) A)→ |B| = S n for some lists A and B.
Instead of proving this we are going to strengthen the statement to decouple the two lists A:
∀ C, B ∈ concat (map (λ x⇒ map (cons x) (images C n)) A)→ |B| = S n.
Now we do induction on A.

nil:
The first part reduces to B ∈ nil which is equivalent to ⊥. Therefore the implication is
true.

x::A′:
Let C: list Y and
B ∈ (map (cons x) (images C n) ++ concat (map (λ x⇒ map (cons x) (images C n)) A′)). This
leaves us with two cases:
B = map (cons x) (images C n):

In this case by Fact 5.2.4 there exists a D: list Y such that B = x :: D and
D ∈ images C n. This leaves us with having to prove |x :: D| = S n′ or equivalently
|D| = n′. From the first induction on nwehave the following induction hypothesis:
∀ (A B: list Y),B ∈ images A n→ |B| = n′ . By choosing A as C and B asDwe obtain
the goal.

B ∈ concat (map (λ x⇒ map (cons x) (images C n)) A′):
Here the strengthening becomes important. The induction hypothesis for the sec-
ond induction reads as follows:
∀ (C: list Y), B ∈ concat (map (λ x ⇒ map (cons x) (images C n)) A′) → |B| = S n′.
Had we not strengthened the statement images C nwould now be images A′ n. Un-
fortunately the list argument of images is parametric meaning that it does not get
changed in recursive calls. This would mean that we could not use the induction
hypothesis because in our assumptions we would only have terms containing
images (x::A′) n. With the strengtheningwe are, however, perfectly capable of using
it. If we choose C for C, the premise is true and we get |B| = S n′ which is what
we need to prove.

Having proven that every list in images does indeed have the correct length we can finally convert
them to vectors. In order to do thiswe simply have to add the proof of correct length to the elements
of the list produces by images. Unfortunately the definition of the function doing this involves
tricky case analysis on dependent types which is not easy to get right. This is why the function
doing this is defined by a proof script, which makes the job a lot easier. We still need a trick,
though. The idea behind the function will be to recursively modify every element of
images Y (Cardinality X) for finite types X and Y. However, for recursive functions we need a list
as an argument and this list is not always going to be images Y (Cardinality X). By the nature of
recursion it is going to be shorter after the first recursive function call. Unfortunatelywe have only
proven that the list are of length Cardinality X for images Y (Cardinality X) and not for arbitrary list.
Fortunately we can circumvent the problem by simply adding an additional argument which is
a proof that any element in our list is also an element of images Y (Cardinality X). This property
is obviously true for images Y (Cardinality X) and any sublist of images Y (Cardinality X) produced
during recursion.
Definition 6.1.2.
Fixpoint extensionalPower (X Y:finType) (L: list (list Y))
(P: L ⊆ images Y (Cardinality X)): list (X −→ Y).

Proof. If L is the empty list, then there is nothing more to do and we return nil. If L=A::L′, then we
do two things.
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• We convert A into a vector. By assumption we know that A ∈ images Y (Cardinalty X). There-
fore we know by Lemma 6.1.13 that |A| = Cardinality X. By 5.1.2 we can convert this proof
into a proof for the pure version of the predicate. This is all we need to obtain a new vector
V.

• We recursively call extensionalPower with L′. To be able to do this we still need a proof that
L′⊆ images Y (Cardinality X). By assumptionwe know that this is true forA::L′. Consequently
this is also the case for L′.

In the end we return the list obtained by the recursive call and add V to it.

The following fact helps to break down correctness of extensionalPower to correctness of images. It
can be proven by induction on L using extensionality of vectors 6.0.6.

Lemma 6.1.14.
For all X, Y, L, P and vectors f
count (extensionalPower X Y L P) f = count L (image f).

Now we can finally prove that for finite types X and Y we can indeed enumerate all vectors of
type X −→ Y. Note how type inference can infer the missing list images Y (Cardinality X) from a
very simple proof term.

Fact 6.1.15.
For all finite types X and Y and any vector f: X −→ Y
count (extensionalPower (λ x⇒ λ y⇒ y) f = 1.

Proof. By Lemma 6.1.14 it suffices to show that
count (images (elem Y) (Cardinality X)) (image f) = 1. By Lemma 6.1.12 it suffices to show
|image f| = Cardinality X. This is guaranteed by the definition of vector and the type of f.

Now we have everything to define a finite type for vector types of finite types.

Theorem 6.1.16.
Let X and Y be finite types. Then Y X := FinType (EqVect X Y) is a finite type such that
X −→ Y = Y X .

Proof. With the coercion type Y X is equal to EqVect X Y which with the coercion eqtype is equal to
X −→ Y .

6.2 Cardinality

For finite types Xand Y any X indexed Y-vector has cardinality Cardinality Y (Cardinality X). To
prove this we have to do some ground work. Firstly we need to know that extensionalPower does
not change the length of the list supplied as an argument and secondly that images has the correct
length.

Lemma 6.2.1.
Let X and Y be finite types, L: list (list Y) and P be a proof that L is a sublist of
images (elem Y) (Cardinality X). Then |extensionalPower L P| = |L|.

Lemma 6.2.2.
Let X be a type, A: list X and B: list (list X).
In this case | concat (map (λ x⇒ map (cons x) B) A) | = |A| ∗ |B|.
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Both these facts can be proven with very simple inductive proofs.

Now we can prove that the function images returns a list of the correct length.

Lemma 6.2.3.
Let Y be a type, A: list Y and n: N. Then | images A n| = |A|n.

Proof. By induction on n.

nil:
images A nil = [[]] and |A|0 = 1. Since |[[]]| = 1 as well, all is well.

S n′:
In this case
images A (S n′) = concat (map (λ x⇒ map (cons x) (images A n)) A). By Lemma 6.2.2 it suffices
to prove |A| ∗ |images A n′| = |A|Sn′ . By the induction hypothesis | images A n′ | = |A|n′ . The
rest is trivial.

The final proof now only consist of sticking the lemmas together in the correct way.

Theorem 6.2.4.
Let X and Y be finite types. Then Cardinality Y X = Cardinality Y Cardinality X.

Proof. By the definition of Y X and Lemma 6.2.1 it suffices to show
| images (elem Y) (Cardinality X) | = Cardinality Y Cardinality X which we get by Lemma 6.2.3.

6.3 Conversion between functions and vectors

We have already seen that we can interpret vectors as functions. We will formalise this idea and
create ways to switch between the two representations.

To interpret a vector as a function we need to be able to look up an element at a specific position
in a list. We will return a default element whenever the position does not exist in the list.

Definition 6.3.1.
Fixpoint getAt {X: Type} (A: list X) (n:N) (x:X):X :=
match n with
|0⇒ match A with

|nil⇒ x
|y::A′ ⇒ y
end

|S n′ ⇒ match A with
|nil⇒ x
|x::A′ ⇒ getAt A′ n′ x
end

end.

We also need a function that looks up the position of a value in the list of elements of a finite type.

Definition 6.3.2.
Fixpoint getPosition {X: eqType} (A:list X) x :=
match A with
|nil⇒ 0
|y :: A′ ⇒ if decision (x = y) then 0 else 1+ getPosition x A′ end.
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Definition 6.3.3.
Let X be a finite type and x be of type X. We define index x as getPosition (elem X) x. For the index
of x we also write #x.

Now we can define a function that applies a vector to an argument. Again we will use a proof
script.

Definition 6.3.4.
applyVect (X: finType) (Y: Type) (f: X −→ Y): X → Y.

Proof. Let x:X be the argument applied to the vector. X cannot be uninhabited because x has type
X. Therefore elem X contains at least one element. The vector f is composed of a list A of length
Cardinality X and a proof that this is indeed the length of A. A cannot be the empty list because
X is inhabited and must contain at least one element y. We return getAt A (#x) y

In Coq we define applyVect as a coercion from vectors to functions. This allows us to use vectors in
the way we would use a function.

Now we still miss the opposite direction: From functions to vectors. In order to do this we first
need to compute the image of a function over a finite domain. This is easily achieved.

Definition 6.3.5.
getImage (X: finType) (Y: Type) (f: X → Y) := map f (elem X).

Of course the produced list contains the right elements and has the correct length:

Lemma 6.3.1.
Let X be a finite type, Y a type, f: X→ Y and x:X. Then f x ∈ getImage f.

Proof. By definition getImage f = map f (elem X). By Fact 5.2.4 it suffices to show that there is a y
such that f y = f x and y ∈ elem X. Obviously x is such a y.

Lemma 6.3.2.
Let X be a finite type, Y a type and f: X→ Y. Then |getImage f| = Cardinality X

Proof. The map function returns a list of the same length as its input list. So it suffices to show
|elem X| = Cardinality X which is true by the definition of Cardinality.

Now we can convert a function into a vector:

Definition 6.3.6.
vectorise {X: finType} {Y: Type} (f: X → Y): X −→ Y :=
exist (pure (Card_X_eq X Y)) (getImage f) (purify (getImage_length f)).

Of course we want to know that theses definitions are correct in the sense that applyVect and
vectorise are inverse to each other in both directions.
For the first direction we need to know that looking up an element in map f A at the position of x
in A will return f x provided that x is actually in A. This is easily proven by induction on A.

Lemma 6.3.3.
Let X: eqType, Y: Type, A: list X y: Y and f: X→ Y. If x:X is an element of A, then
getAt (map f A) (getPosition A x) y = f x

Now we can prove the first direction. Note that due to the coercion we would not have to write
apply in Coq and we will omit it here as well.

41



Theorem 6.3.4.
Let X: finType, Y: Type and f: X→ Y. Then for every x:X we have (vectorise f) x = f x.

Proof. In the definition of applyVect we have already argued that if we apply any vector to an
argument, the image of the vector cannot be empty. So let’s say that y ∈ image (vectorise f). By the
definition of applyVect the left side is equal to
getAt (image (vectorise f)) (# x) y and this is again, by the definitions of vectorise and getImage, equal
to getAt (map f (elem X)) (# x) y. By Lemma 6.3.3 this is equal to f x which is what we wanted to
prove.

The opposite direction, that is for any vector f, vectorise f = f, turns out to bemuchmore complicated
to prove. The problem is that vectors are dependent on the finite type X. The list imagemust have
the same length as Cardinality X. This means that we cannot do induction on image because in the
inductive case the list has become shorter and is not long enough anymore. We can still prove the
theorem by splitting the list in two lists which have the correct length if they are concatenated.
We then just do induction on the second list. In the inductive case we can put what originally was
the first element of the second list at the back of the first one. This allows us to use the induction
hypothesis. This means we first have to know a few properties of split lists.

If for some finite type X elem X contains x at some position n, then if we apply a vector f where y
is at position n in the image of f to x, the result is y.

Lemma 6.3.5.
Let X be a finite type, B, B′: list X and x:X . Also let Y be a type, A, A′: list Y and y: Y.
Let elem X = B′ ++ x::B and |A′| = |B′|. Then any X indexed Y-vector f with the image A′ ++ y::A
applied to x returns y.

The final proof boils down to showing map f A = image f for some vector f. We will first show a
more general version on which we can perform the induction. Again we will split both elem X
and image f. We will show that if we just apply f to every element of the second list of elem X, the
result will be the second list of image f.

Lemma 6.3.6.
Let Y be a type, X be a finite type and B: list X. Then for all lists B′ such that B′ ++ B = elem X and lists
(A A′: list Y) such that |A| = |B| and |A′| = |B′| and any X indexed vector f with image A′ ++ A the
following holds: map f B = A.

Proof. By induction on B.

nil:
In this case we have to show that A = nil. Since |A| = |nil| by assumption and nil is the only
list with length zero A=nilmust indeed be true.

x::B′′:
This means we have to show f x :: map f B′′ = A. By assumption |A| = |x :: B′| therefore A
cannot be empty. Therefore it must be of the form y :: A′′. Nowwe need to show two things:

– We show that f x = y. This is were we need Lemma 6.3.5 which is indeed applicable
because |A′| = |B′| and elem X = B′++x::B′′.

– We need to show map f B′′ = A′′. This can be shown using the induction hypothesis
∀ (A′′, A′: list Y) (B′: list X), |A′| = |B′| → |A′′| = |B′′| →A′ ++ A′′ = image f → elem
X = B′ ++ B′′ → map f B′′ = A′′. Of course we choose A′′ to be A′′. This is after all the
only instantiation which produces the desired result. Now the splitting finally pays
off. We can choose A′ to be A′ ++ [y] and B′ to be B′ ++ [x]. With this instantiations the
preconditions hold.
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• |A′ ++ [y]| = | B′ ++ [x]| because by assumption |A′| = |B′|.
• |A′′| = |B′′| because by assumption |y :: A′′| = |x :: B′′|.
• (A′ ++ [y])++ A′′ = image f because by assumption A′ ++ y::A′′ = image f.
• (B′ ++ [x]) ++ B′′ = elem X because be assumption B′ ++ x::B′′ = elem X.

Now we can finally prove what we wanted to show all along:

Theorem 6.3.7.
Let Y be a type, X be a finite type, and f: X −→ Y. Then vectorise f = f.

Proof. By the extensionality principle for vectors 6.0.6 it suffices to show that image (vectorise f) =
image f. This simplifies to getImage f = image f ormap f (elem X) = image f. We use Lemma 6.3.6 with
A′ = nil = B′, A= image f and B = elem X. Obviously |nil| = |nil|, nil ++ image f = image f and nil ++
elem X = elem X. All that remains to be shown is that |imagef | = |elem X|. This is true because f is
a X-indexed vector. So the second component of f is a pure version of a proof of this equation.

Now we have everything we need to change representations between vectors and functions. This
will prove to be useful in chapter 9.
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Chapter 7

Cardinality

Cardinality is a fundamental property of a finite type and should be examined further. Obviously,
if we have an element of a finite type, it’s cardinality should be positive.

Fact 7.0.8.
Let X: finType and x: X. Then Cardinality X > 0.

Proof. By Fact 3.2.2 x ∈ (elem X). We do case analysis on elem X.

nil:
In this case x ∈ nilwhich is a contradiction.

x′::A:
In this case Cardinality X = |x′ :: A| > 0.

7.1 Cardinality of finite types and lists

We investigate the connection between the cardinality of finite types and the cardinality of lists
[14, 13]. Cardinality for lists counts the number of different elements in a list.

Intuitively the following should be true:

Fact 7.1.1. [14, 13]
For any list A and B: A ⊆ B → card A ≤ card B.

Fact 7.1.2.
For any list A we have card A ≤ |A|.

We also have by induction on the proof of duplicate freeness:

Fact 7.1.3. [14, 13]
Let X: eqType and A: list X. Then dupfree A→ |A| = card A.

This allows us to convert between Cardinality and card:

Fact 7.1.4.
Let X be a finite type. Then Cardinality X = card (elem X).
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Proof. By Fact 7.1.3 it suffices to show that elem X is duplicate free, which is true according to Fact
3.2.1.

The cardinality of a finite type also gives us an upper bound for the cardinality of any list over
that type.

Fact 7.1.5.
Let X be a finite type and A: list X. Then card A ≤ Cardinality X.

Proof. By Fact 7.1.4 the cardinality ofX is equal to the cardinality of elem X. By Fact 7.1.1 it suffices
to show that A ⊆ (elem X). Since every list over X is a sublist of elem X (see Remark 3.2.1) this is
true.

We also get an upper bound for the length of duplicate free lists.

Fact 7.1.6.
Let X be a finite type and A: list X. If A is duplicate free, then |A| ≤ Cardinality X.

Proof.
By Fact 7.1.4 Cardinality X = card (elem X). By Fact 7.1.3 and dupfree Awe get that |A| = card A. So it
suffices to show card A ≤ card (elem X). By Fact 7.1.1 it suffices to show A ⊆ (elem X) which is true
according to Remark 3.2.1.

7.2 Pigeon hole principles

We can do prove the pigeon hole principles, which arewell known from set theory, for finite types.
Remark 7.2.1 (pigeon hole principles).
Let A and B be two finite sets and f be a function mapping elements of A to elements of B.

• If f is injective, then |A| ≤ |B|.

• If f is surjective, then |A| ≥ |B|.

• If f is bijective, then |A| = |B|.

We will transfer these results to finite types. It turns out to be useful to compute the image of
f as we have done when converting a function into a vector. Let us first remind ourselves what
injective, surjective and bijective mean:

Definition 7.2.1.
Let X and Y be types and f: X→ Y.

• f is called injective if ∀x y, f x = f y→ x = y.

• f is called surjective if ∀y ∃x, f x = y.

• f is called bijective if it is both injective and surjective.

The following lemma will prove to be useful.

Lemma 7.2.1.
Let X be a finite type, Y be a type and f: X→ Y. If f is injective, then getImage f is a duplicate free list.
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Proof. Assume f is injective. By definition of getImage 6.3.5 we have to poof that map f (elem X) is
duplicate free. By Fact 6.1.7 it suffices to show that elem X is duplicate free and f behaves like an
injective function on the elements of elem X. Since f is an injection the second condition is certainly
true. By Fact 3.2.1 elem X is duplicate free.

With this we can prove the first pigeon hole principle.

Theorem 7.2.2.
Let X and Y be finite types and f: X→Y be an injective function. Then Cardinality X ≤ Cardinality Y.

Proof. By Lemma 6.3.2 Cardinality X = | getImage f |. So we prove
| getImage f | ≤ Cardinality Y instead. By Fact 7.1.6 it suffices to show dupfree (getImage f). In the
previouse lemma (7.2.1) we have shown that this is the case for all injective functions of this type
and therefore also for f.

For the pigeon hole principle for surjective functions we need the following property of surjective
functions.

Lemma 7.2.3.
Let X and Y be finite types and f: X→Y be a surjective function. Then elem Y ⊆ getImage f.

Proof. Let y ∈ elem Y. By surjectivity of f we have an x such that f x = y. Therefore we can also
show f x ∈ getImage f. This is true because we have already shown in Lemma 6.3.1 that getImage
contains every element in the image of f.

We can tackle the complete pigeon hole principle now:

Theorem 7.2.4.
Let X and Y be finite types and f: X→Y be a surjective function. Then Cardinality X ≥ Cardinality Y.

Proof. As in the first pigeon hole principle we replace Cardinality X with | getImage f | by Lemma
6.3.2. We also use Fact 7.1.4 to replace Cardinality Y with card (elem Y). With Lemma 7.2.3 and Fact
7.1.1 we obtain card (elem Y)≤ card (getImage f) and by Fact 7.1.2 we get card (getImage f)≤ | getImage
f|. Now we can build a chain from which we can obtain the goal by transitivity of ≤.
card (elem Y) ≤ card (getImage f) ≤ | getImage f|.

The third pigeon hole principle is now a simple corollary.

Corollary 7.2.5.
Let X and Y be finite types and f: X→Y be a bijective function. Then Cardinality X = Cardinality Y.

Proof.
f is bijective and therefore injective and surjective. By the other pigeon hole principles we obtain
Cardinality X ≤ Cardinality X and Cardinality X ≥ Cardinality X.
Therefore Cardinality X = Cardinality Y.
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Chapter 8

Finite Closure Iteration

Iteration of a function until it reaches a fixed point is a frequently used computational idea.

Definition 8.0.2.
A fixed point of a function f is a value x such that f x = x. We will write fp f x to say that x is a
fixed point of f.

Usually it is not easy to formalise a fixed point algorithm in Coq because they are not structurally
recursive by nature. With finite types we will, however, be able to formalise a special fixed point
algorithm called finite closure iteration (FCI). The idea behind finite closure iteration is to iteratively
add elements to some set until this set fulfils a desired property. If we add elements from a finite
type, this process has to end because there are only finitely many values that can be added. To
adapt the finite closure iteration algorithm from [14] to finite types we will broadly follow the
design and outline in [13], but we prove its correctness slightly differently.

8.1 Fixed point properties

Fixed points of a function f are preserved by application of f.

Fact 8.1.1.
Let x be a fixed point of a function f. Then f x is also a fixed point of f.

If f preservers some property p, then iteration of f preserves this property as well. This gives us
a nice induction principle.

Fact 8.1.2 (f-induction). [14, 13]
Let X be a type, f: X → X and x:X. Let p: X → P be a predicate that is preserved by f. That is to say:
∀y, p y → p (f y). If p x, then ∀n : N, p (fn x).

8.2 Admissable functions

For finite closure iteration we want to iterate a function on lists until we get the list of elements
of a finite type we desire. We should therefore find sufficient property that we have a fixed point
of a function on lists. The development in [14, 13] uses a termination function (a monotonically
decreasing function to N) for this purpose. Naturally, if we can give such a function, the iteration
must terminate because at some point the function returns zero and cannot decrease the any fur-
ther. While this idea is very intuitive wewill not use it because in our case there is a natural upper
bound (the number of elements) instead of a natural lower bound.
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We therefore choose a different approach and use the natural upper bound of the cardinality of
a finite type to show that we terminate. Since FCI will iteratively add new elements to a list the
cardinality increases until we reach a fixed point. Now we formalise this idea.

Definition 8.2.1.
Let X be a discrete type and f: list X→list X. We call f an admissible function if it has the following
property:
Every list A: list X is either a fixed point of f or card (f A) > card A.

Remark 8.2.1.
We do not use list inclusion because this would allow for infinite reordering or insertion of ele-
ments already contained in the list.

We can now make a meaningful statement about iteration of admissible functions.

Lemma 8.2.1.
Let X be a discrete type, A: list X and f: list X→ list X an admissible function.
Then ∀ n, fp f (fn A) ∨ card (fn A) ≥ n

Proof. By induction on n:N.

0:
f0 A = A and card A ≥ 0.

Sn′:
We do case analysis on the induction hypothesis. We have to cases:

fp f (fn′ A):
In this case by Fact 8.1.1 also fp f (f (fn′ A)) = fp f (f (S n′) A).

card (fn′ A) ≥ n′:
Because f is admissible there are two possibilities:

fp f (fn′ A):
We have seen before that the theorem holds in this case.

card (f (fn′ A)) > card (fn′ A):
Since card (fn′ A) is at least n′ card (f (fn′ A)) = card (f (S n′) A)must be at least S n′.

As a result we know that if we iterate any admissible functionCardinality X times we have reached
a fixed point.

Theorem 8.2.2.
Let X be a finite type, A: list X and f: list X→ list X an admissible function.
Then fp f (f (Cardinality X) A)

Proof. By Lemma 8.2.1 every A: list X is either a fixed point of f or card (fn A) ≥ n. Now choose
n = Cardinality X. Assume fn A is no fixed point of f. Then card(f (fn A))> Cardinality X because f
is monotone. But we have already shown that Cardinality X is an upper bound for any list of type
list X 7.1.5 so this is impossible. It follows that f (Cardinality X) A is indeed a fixed point of f.
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8.3 Finite closure iteration

In the rest of this sectionwe assumeX to be a finite type. The definitions and proofs in this section
very closely resemble their counterparts in [14, 13] but differ in detail because of the adaption from
lists to finite types. The proofs of Lemma 8.3.1 and Corollary 8.3.2 are the only exceptions because
of the different approach we have taken in the previous section.

Now we know everything needed to implement finite closure iteration. In the end a user of FCI
only supplies a decidable predicate step: list X→X→ P that given a list of alreadypicked elements
decides whether a given element can be picked in the next step. We also assume the existence of
such a step predicate in the future. We can nowwrite a function that either picks an elementwhich
we are allowed to pick or returns a proof that all elements we are allowed to pick are already in
the list. Again this function is defined using a proof script. We will profit from the decidability
features discussed in section 3.3.

Definition 8.3.1.
Lemma pick A : {x | step A x ∧ ¬(x ∈ A)} + ∀ x, step A x → x ∈ A.

Proof. We do case analysis on ∀ x, step A x→ x ∈ A (X is a finite type).

If indeed ∀ x, step A x→ x ∈ A, we are done. Otherwise we change ¬ ∀ x, step A x→ x ∈ A into
∃ x,¬ step A x→ x ∈ A using one of deMorgan’s laws 2.1.2. Using the constructive choice function
3.3.6 for finite types we can compute such an x. We return said x together with a proof of
step A x ∧ ¬(x ∈ A) obtained from ¬ step A x→ x ∈ A using another of deMorgan’s laws 2.1.2.

We define the function we want to iterate using pick to obtain an element which it adds to the list.
If there is no such element, it returns the original list.

Definition 8.3.2.
FCStep A :=
match (pick A) with
| inl L ⇒ match L with exist _ x _ ⇒ x::A end
| inr _ ⇒ A end.

Now we can define the function that computes the final list:

Definition 8.3.3.
FCIter := FCStep(Cardinality X).

Remark 8.3.1.
Note that FCStep(Cardinality X) is still missing its argument. We still need to supply a starting list. In
[14] this list is already applied and the empty list. Not committing to the empty list we are more
flexible which we will use in chapter 9.

Of course this definition only works if FCStep is an admissible function.

Lemma 8.3.1.
FCStep is admissible.

Proof. Let A: list X. We do case analysis on step A.

{x | step A x ∧ ¬(x ∈ A)}:
This means FCStep A = x::A and since x /∈ Awe have card (FCStep A) > card A.

∀x, step A x→ x ∈ A:
In this case FCStep A = A and A is a fixed point of FCStep.
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Thus FCStep is admissible.

Consequently FCIter computes a fixed point of FCStep.

Corollary 8.3.2.
FCIter A is a fixed point of FCStep for every list A over type X.

Proof. FCIter is defined as FCStep(Cardinality X) and thus by Theorem 8.2.2 it suffices to show that
FCStep is admissible which we have already shown in Lemma 8.3.1.

Normally one will use FCIter to compute some list of elements satisfying a predicate. So it is very
likely that youwant to knowwhether every element in the computed list does actually satisfy this
predicate. Luckily we get an induction principle for FCIter which helps a lot with these tasks.

Definition 8.3.4. [14]
To indicate that every element of a list A: list X satisfies a predicate p: X→ Pwe will write A ⊆ p.

Theorem 8.3.3 (FCIter induction).
Let p be a predicate over X and A: list X.
Then A ⊆ p→ (∀ A x,A ⊆ p→ step A x→ p x)→ FCIter A ⊆ p

Proof. Let A ⊆ p and assume that ∀ A x,A ⊆ p → step A x → p x. The proof proceeds by
f-induction (Fact 8.1.2). This means we have to show two things.

• We have to show A ⊆ pwhich is true by assumption.

• We have to show ∀ B,B ⊆ p → FCStep B ⊆ p. So let B ⊆ p and x ∈ FCStep B. We need to
show p x. We do case analysis on pick B:

{y | step B y ∧ ¬(y ∈ B)}:
Since x ∈ y :: B there are two cases:
x = y:

In this case p x since step B y and B ⊆ p and by assumption
B ⊆ p→ step B y→ p y.

x ∈ B:
In this case p x because B ⊆ p.

∀y, step B y→ y ∈ B:
In this case FCStep B = B so x ∈ B. Because B ⊆ pwe have p x.

Every fixed point of FCStep contains all pickable values.

Theorem 8.3.4 (Closure).
Let x:X and A be a fixed point of FCStep. If step A x, then x ∈ A.

Proof. Because A is a fixed point of FCStepwe know that pick A can only return a proof of
∀y, step A y→ y ∈ A because otherwise FCStep A 6= A. Therefore since step A x also x ∈ A.

This gives us the corollary for FCIter.

Corollary 8.3.5.
For every A: list X and x:X. If step (FCIter A) x, then x ∈ FCIter A.

Proof. By Closure 8.3.4 and the fact that FCIter is a fixed point of FCStep 8.3.2.

This is helpful if one wants to show that every element in FCIter A satisfies some property.
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8.4 Smallest fixed points

When doing fixed point iteration people are often interested in acquiring a smallest or least fixed
point. The smallest or least fixed point of a function is a fixed point that is smaller than any other
fixed point according to some ordering, in our case list inclusion (⊆).
It is clear that in general FCIter does not compute a smallest fixed point simply becausewe already
start with a list we cannot get rid of. We have:

Lemma 8.4.1 (Preservation FCStep).
Let A: list X. Then A ⊆ FCStep A.

Proof. By case analysis on pick A.

{x | step A x ∧ ¬(x ∈ A)}:
In this case FCStep A = x::A and A ⊆ x :: A.

∀x, step A x→ x ∈ A:
In this case FCStep A = A and A ⊆ A.

As a result A is preserved during iteration of FCStep as well.

Lemma 8.4.2.
Let A: list X and n: N. Then A ⊆ FCStepn A.

The proof is by induction on n using preservation of FCStep in the inductive case. A simple
corollary is that A is a subset of FCIter A.

Corollary 8.4.3 (Preservation).
Let A: list X. Then A ⊆ FCIter A.

Proof. By Lemma 8.4.2.

Example 8.4.1.
If we take λ A x ⇒ ⊥ as the step predicate, nil would be the smallest fixed point of FCStep. However,
because of preservation, A ⊆ FCIter A. So in this particular case FCIter does not compute the smallest
fixed point if A 6= nil.

This means all we should really be talking about are fixed points containing the list we start with.

Definition 8.4.1 (Least fixed point containing A).
Let A: list X and f: list X→ list X. A fixed point B of f is called the least fixed point containing A if
A ⊆ B and for any other fixed point B′ of f : A ⊆ B′ → B ⊆ B′.

So does FCIter A compute the least fixed point containing A? Well, no. The problem is that we
could have weird step predicates.

Example 8.4.2.
Consider the following step predicate on an option type:
λ A x⇒ if decision (None ∈ A) then ⊥ else >. This means that FCIter will add elements until None
is in the list. Obviously the smallest fixed point containing A would be None::A. However, depending on
the order in which elements get picked by pick a lot of other elements could be added to the list beforeNone.

To get smallest fixed points containing Awe need to ensure that the step predicate we use is consistent.
Intuitively this means that step A x cannot become false by adding new values to A.
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Definition 8.4.2 (Consistency).
A step predicate is called consistent if ∀ A x, step A x→ ∀ A′, A ⊆ A′ → step A′ x.
Example 8.4.3.
The step predicate λ A x⇒ if decision (None ∈ A) then ⊥ else > from Example 8.4.2 is not consistent
because step nil (Some x) = > while step [None] (Some x) = ⊥ although nil ⊆ [None].

We prove that this condition is indeed sufficient.

Lemma 8.4.4.
If step is consistent, then for every A: list X, x: X and n: N we have: step A x→ step (FCStepn A) x.

Proof. Let A: list X and x: X such that step A x.
By consistency of step 8.4.2 it suffices to show that step A x and A ⊆(FCStepn A. The first is true
by assumption. The second is true by preservation of A during iteration (Lemma 8.4.2).

Nowwe prove that any fixed point of FCStep that contains a listA also contains any list one obtains
by iterating FCStep on A.
Lemma 8.4.5.
If step is consistent, then for every list A and fixed point B of FCStep such that A ⊆ B we have for any
n:N that FCStepn A ⊆ B.

Proof. Using f-induction 8.1.2. We have two things to show:

• We have to show A ⊆ B which we have by assumption.

• We have to show that for all C ⊆ B also FCStep C ⊆ B. We do case analysis on pick C:

{x | step C x ∧ ¬(x ∈ C)}:
This means that FCStep C = x::C. To show x::C ⊆ B it suffices to show x ∈ B because we
already know that C ⊆ B. Because B is a fixed point of FCStep’s, by Theorem 8.3.4 it
suffices to show that step B x. Since step is consistent and C ⊆ B and step B x we also
have step B x.

∀x, step C x→ x ∈ C:
In this case FCStep C = C and C ⊆ B anyway.

Now we can finally show that FCIter A computes the smallest fixed point containing A provided
that step is consistent.

Theorem 8.4.6.
If step is consistent, then for any A: list X the list computed by FCIter A is the least fixed point of FCStep
containing A.

Proof. Two show this we have to show three things:

• We need to show that FCIter A is a fixed point of FCStep which we have already shown in
Corollary 8.3.2.

• We have to show that FCIter A contains A i.e. A ⊆ FCIter A which is the preservation
property 8.4.3 we have shown before.

• We have to show that any fixed point B containing A also contains FCIter A. Because FCIter
is defined as iteration we can simply use Lemma 8.4.5.
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Chapter 9

Case Study: Finite Automata

To find out whether our library is useful we have to use it. We consider the formalisation of finite
automata as a test case. Finite automata have already been formalised using the finite types from
Ssreflect [2]. For the formalisation I have used an updated [3] version of this original formalisation
as inspiration and guidance for my definitions.

Since we will look at the formalisation only to test the library we will not look at all proofs in
detail, but only consider those parts were finite types play an important role. We will only define
finite automata and show interesting closure and decidability properties. Although this would
certainly be interesting we will not endeavour to prove something like the pumping lemma or
equivalence to regular expressions.

9.1 DFA

Definition 9.1.1 (Deterministic finite automata). [11]
A deterministic finite automaton (DFA) is is a structure (Q,Σ,δ,s,F ) where

1. Q is a finite set; elements of Q are called states;

2. Σ is a finite set, the input alphabet;

3. δ : Q× Σ→ Q is the transition function;

4. s ∈ Q is the start state;

5. F is a subset of Q; elements of F are called accept or final states

The idea behind a finite automaton is that the automaton “reads” aword i.e. a string of letters from
the alphabet and changes states according to the transition function starting in the start state until
the word has been fully read. If the automaton ends up in an accept state, the word is accepted
otherwise it is rejected.

We will largely follow the definition above. Like Doczkal and Smolka [3] we will fix the alphabet
to some Σ since wewant to consider closure properties of automata, which do not make any sense
if the alphabet is not identical.

We choose Σ to be some finite type. We can now define words.

Definition 9.1.2. [3]
word := list Σ.
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Remark 9.1.1.
For the empty word, i.e. nilwe will also use the usual notation ε.

Since the set of states is finite we will choose it as some finite type as well. To denote the set of
final states we will use a decidable predicate (decPred). This means we end up with the following
definition.

Definition 9.1.3. [3]
Record dfa : Type:=
{
S :> finType;
s:S;
F: decPred S;
δS : S → Σ→ S
}.

Note that like Doczkal and Smolka [3] we define S as a coercion.

To avoid confusion we will index the projections with the automaton they belong to. For example
sA is the start state of automaton A.

9.2 Acceptance and reachability

9.2.1 Acceptance

For this section we assume a DFA A. To define acceptance we lift δS to words [3]. We call the
lifted version δ∗S .

Definition 9.2.1. [3]
accept (w:word) := FA (δ∗SA

sA w).

Remark 9.2.1.
Since F is a decidable predicate acceptance is decidable.

9.2.2 Reachability

Unlike Doczkal and Smolka we will focus on reachability. We define different notion of reacha-
bility. First we define general reachability by an inductive predicate summarised by the following
inference rules:

Definition 9.2.2 (reachable).

refl reachable q q reachable (δS q x) q′
step

reachable q q′

We also define reachability with a word. This is easily done using δ∗S .

Definition 9.2.3.
reachable_with q w q′ := δ∗SA

q w = q′.

We can convert between general reachability and reachability with a word:

Fact 9.2.1.
∀ q q′, reachable q q′ ↔ ∃ w, reachable_with q w q′.
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Fact 9.2.2.
Reachable is a transitive relation.

Fact 9.2.3.
∀ q w, reachable q (δ∗S q w).

Reach

Wewill now compute a list reach q of all states which are reachable from some state q. We can use
finite closure iteration 8.3 to do this. All we need is a suitable step predicate. Now it pays off that we
have defined finite closure iteration in a way that allows to start with arbitrary lists. This means we
can put q into the list we start with and do not have to consider the case of an empty list separately
in the step predicate. Our step predicate simply decides for a state q′ whether it is reachable in one
step from a state in the list.

Definition 9.2.4.
step_reach (set: list A) (q:A) :=
∃ q′ x, q′ ∈ set ∧ reachable_with q′ [x] q.

Lemma 9.2.4.
step_reach is consistent.

Proof. By the definition of consistency 8.4.2 we have to show step_reach B′ q for some B′: list A and
q:A under the assumption that B ⊆ B′ and step_reach B q. By step_reach B q we know that there
exists some q′ ∈ B and x:Σ such that reachable_with q′ [x] q. Because B ⊆ B′ we know that q′ is
also an element of B′. Therefore there also exists a q′ in B′ such that reachable_with q′ [x] q namely
q′.

Now we can define reach:

Definition 9.2.5.
reach (q:A) := FCIter step_reach [q].

Corollary 9.2.5.
The list reach is the least fixed point of FCStep reach_step containing [q].

Proof. By Theorem 8.4.6 is suffices to show that step_reach is consistent which we have already
shown (9.2.4).

We also want to know that reach q is indeed the list of all elements reachable from q. To prove this
we will use the induction principle for FCIter 8.3.3 and Closure for FCIter 8.3.5.

Lemma 9.2.6.
Let q:A. Every element in reach q is reachable from q (written reach q ⊆ reachable q).

Proof. By FCIter induction 8.3.3 it suffices to show two things:

• We have to show [q] ⊆ reachable q. so we have to show reachable q q which is provable by the
refl rule of reachable 9.2.2.

• We have to show: ∀ set q′, set ⊆ reachable q→ step_reach set q′ → reachable q q′.
So let set ⊆ reachable q and q′ such that step_reach set q′. This means there is a q′′ ∈ set such
that reachable_with q′′ [x] q′. By Fact 9.2.1 this means reachable q′′ q. Since set⊆ reachable q and
q′′ ∈ set we also have reachable q q′′. By transitivity of reachable 9.2.2 we get reachable q q′.
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Lemma 9.2.7.
Let q and q′ be states of A. If q′ ∈ reach q, then every state q′′ which is reachable from q′ is also in
reach q.

Proof. By induction on the derivation of reachable q′ q′′.

q′ = q′′:
By assumption q′ ∈ reach q.

reachable (δS q′ x) q′′:
By induction hypothesis it suffices to show δS q′ x ∈ reach q.
By the closure property of FCIter 8.3.5 it suffices to show step_reach (reach q) (δS q′ x). Obvi-
ously reachable_with q′ [x] ((δS q′ x)) holds.

Lemma 9.2.8.
Let q and q′ be states of A. Then reachable q q′ → q′ ∈ reach q.

Proof. By Lemma 9.2.7 it suffices to show that q ∈ reach q. Since FCIter preserves the orginal list
8.4.3 [q] ⊆ reach q and consequently q ∈ reach q.

Consequently reach is correct.

Corollary 9.2.9 (Correctness of reach).
Let q, q′: A. Then reachable q q′ ↔ q′ ∈ reach q.

Proof. We have to show both directions.

→: By Lemma 9.2.8.

←: By Lemma 9.2.6.

Theorem 9.2.10.
Reachability is decidable, i.e. for all states q and q′ of A it is decidable whether reachable q q′.

Proof. reachable q q′ is equivalent to q′ ∈ reach q and list inclusion is decidable for discrete types.

Corollary 9.2.11.
Let q q′: A. (∃w, reachable with q w q′) is decidable.

Proof. By Fact 9.2.1 this is equivalent to reachable q q′ which is decidable by Theorem 9.2.10.

Remark 9.2.2.
This is a very important result. Remember that while Σ is a finite type word is not. Therefore we
did not have decidability for existential quantifications over words up until now. While we still
cannot decide all existential quantifications over words we can at least decide an interesting one.
As we will see very shortly reach allows us to decide even more quantifications over words.
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9.3 The empty language and sigma star

For this section we assume that A is some DFA. Finite automata describe languages. We call the
language of A L(A). L(A) is the set of all words accepted by A. If a word w is accepted by A, we
say that it is in L(A) or w ∈ L(A).

Thanks to reach we can decide whether a given automaton computes the empty language or the
language of all words Σ∗.

Fact 9.3.1.
A accepts every word if and only if every state in reach s is an accepting state.

Theorem 9.3.2.
dec (∀ w, w ∈ L(A)).

Proof. By Fact 9.3.1 it suffices to show that it is decidable whether every state in reach s is accepting.
Because list inclusion is decidable for discrete types andwe candecidewhether a state is accepting,
this is the case.

Definition 9.3.1.
We call the language of A empty if ∀w, ¬w ∈ L(A).

To show that we can decide whether a language is emptywe show that we can build an automaton
A which accepts the complementary language to A. To do this we simply have to negate FA [3].
The complement automaton is correct.

Fact 9.3.3. [3]
Let w be a word. Then accept (A) w↔¬ accept A w.

As a result we can decide emptiness L(A) by simply checking whether A is Σ∗.

Fact 9.3.4.
It is decidable whether L(A) is empty.

One result of decidability of emptiness is that we can decide whether there exists an w which is
accepted by A. This is one of de Morgan’s laws 2.1.2 applied to the definition of empty. Note that
word is no finite type which means that this particular law of de Morgan’s cannot be applied here.
The trick to proving this is again to use reach.

Fact 9.3.5.
L(A) is empty if and only if every state in reach sA is not accepting.

Now we can do the actual decidability proof.

Theorem 9.3.6.
dec (∃w, accept A w).

Proof. We decide whether L(A) is empty.

yes:
In this case by definition of empty there is no such w.

no:
By the equivalence above 9.3.5 we can change ¬ empty L(A) to
¬∀ q, q ∈ reach sA → ¬ FA q. We apply de Morgan’s laws 2.1.2 (SA is a finite type). This
means we can assume the existence of a q such that ¬(q ∈ reach sA → ¬ FA x). By another
of de Morgan’s laws we can change ¬(q ∈ reach sA → ¬ FA x) to q ∈ reach sA and ¬¬FA q.
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Because FA is a decidable predicate ¬¬FA q ↔ FA q. Since q ∈ reach sA there is a w such
that reachable_with s w q by 9.2.9 and 9.2.1. Because FA q we finally know that A accepts w
we have therefore found a w which is accepted by A.

By very similar reasoning we also get decidability of ∃ w,¬ accept A w. In fact the proof is almost
identical.

Fact 9.3.7.
(∃ w,¬ accept A w) is decidable.

9.4 Automata accepting words

We can construct an automaton accepting only a given wordw. First wemust build an automaton
accepting the empty word ε.

Definition 9.4.1 (Epsilon automaton).
We built an automaton only accepting ε called epsilon_autom. It needs only two states an accepting
starting state and another rejecting state to which it switches when it reads a letter.

• We choose unit + unit as Swhich is automatically inferred from the other arguments thanks
to canonical structure inference.

• inl tt is the starting state

• The predicate λ q: unit + unit⇒ if q then> else⊥ is decidable and computes whether a state
is accepting.

• λ _ _⇒ inr tt is the transition function.

In particular this definition ensures that we cannot leave the state inr tt.

Lemma 9.4.1.
∀ w, δ∗S epsilon_autom (inr tt) w = inr tt.

As a result the definition is correct.

Fact 9.4.2.
The automaton epsilon_autom only accepts ε.

As a next step we built an automaton conswhich accepts all words which start with a given letter
x and continue with a word accepted by some automaton A. To obtain an automaton accepting a
word w we will of course start with epsilon_autom and then apply this automaton for every letter
of w.

Definition 9.4.2 (cons).
Let A be some DFA and x:Σ. We build cons A x in the following way.

• We choose A + unit as S. We need an additional state to first read x, hence option A and we
need a non accepting state to go to if the first letter is incorrect, hence unit.

• The starting state is inl None.
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• The decidable acceptance predicate F is described by the following equations.

F (inl None) = ⊥
F (inl (Some q)) = FA q

F (inr tt) = ⊥

• The transition function δS is described by the following equations:

δ∗S inl (None) x = inl (Some s)

δ∗S inl (None) y = inr tt if x 6= y

δ∗S inl (Some q) y = inl (Some (δ∗SA
q y))

δ∗S (inr tt) y = inr tt

We cannot leave the state inr tt in cons.

Lemma 9.4.3.
Let A be a DFA and x be a letter. Then ∀ w, δ∗S (cons A x) (inr tt) w = inr tt.

cons computes the correct automaton.

Fact 9.4.4.
Let A be a DFA and x be a letter and w be a word. Then accept (cons A x) (x::w)↔ accept A w.

We recursively build an automaton which accepts exactly one word w.

Definition 9.4.3.
Fixpoint exactW (w: word) :=
match w with
| nil ⇒ epsilon_autom
| (x::w′) ⇒ cons (exactW w′) x end.

The resulting automaton is correct.

Fact 9.4.5.
Let w be some word. exactW w only acceptsw.

9.5 Product automata

Several closure properties (insersection, union, difference) of finite automata can be shown using
the cartesian product of the states of two automata as a new set of states. The only notable dif-
ference between the different constructions is which states are accepting. Because of this Doczkal
and Smolka [3] defined a general product automaton which takes some operator as an argument
which is used to combine the two acceptance predicates into a new one. This is a very good idea
and we will follow the same design.

Definition 9.5.1 (product automaton). [3]
Let op: P→ P→ P be some operation such that op P Q is decidable if P and Q are decidable. We
define the product automaton prodAB of twodeterministic finite automataA andB in the follwing
way.

• The set of states S is A × B and can be automatically inferred from the other arguments.

• The starting state s is (sA, sB).
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• The transition function δS is described by the equation
δS (q1, q2) x = (δSA

q1 x, δSB
q2 x)

• The acceptance predicate F is defined by the equation
F (q1, q2) = op (FA q1) (FB q2)

For the δ∗S function of the product automaton we have the same equation as for the δS function.

Fact 9.5.1.
Let A and B be DFA, w a word, and q1 a state in A and q2 a state in B.
Then δ∗SprodAB

(q1, q2) w = (δ∗SA
q1 w, δ∗SB

q2 w)

The resulting product automaton accepts the correct words.

Fact 9.5.2. [3]
Let A and B be deterministic finite automata and w be a word.
Then accept (prod A B) w↔ op (accept A w) (accept B w).

We can now show that regular languages are closed under intersection. Thismeanswe can build a
deterministic finite automatonA∩B from two other automata A and Bwhich only accepts words
which are accepted by bothA and B. We simply need to instantiate the opwith logical conjunction
(∧).

Corollary 9.5.3.
Let A and B be two deterministic finite automata. Then accept (A ∩B) w↔ accept A w ∧ accept B w.

Proof. By Fact 9.5.2 because op is instantiated by logical conjunction.

Similarly we can define a union automaton A ∪ B for two deterministic finite automata A and B
which only accepts words which are accepted by either A or B. This time we need to instantiate
opwith logical disjunction (∨).

Corollary 9.5.4.
Let A and B be two deterministic finite automata. Then accept (A ∪B) w↔ accept A w ∨ accept B w.

Proof. By Fact 9.5.2 because op is instantiated by logical disjunction.

We also define the difference A \ B of two languages of automata A and B. We could do this as
A ∩B but since we already have the product automaton it is even easier to use just choose
λ P Q⇒ P ∧ ¬ Q as op.

Corollary 9.5.5.
Let A and B be two deterministic finite automata.
accept (A\B) w↔ accept A w ∧ ¬ (accept B w).

Proof. By Fact 9.5.2 because op is instantiated by λ P Q⇒ P ∧ ¬ Q.

9.5.1 Language inclusion and equivalence

Language inclusion and equivalence are decidable because we can compute difference.

Definition 9.5.2 (Language inclusion).
We say L(A) includes L(B) (L(B) ⊆ L(A)) if ∀w, w ∈ L(B)→w ∈ L(A).

Definition 9.5.3 (Language equivalence).
We say L(A) is equivalent to L(B) (L(A)≡ L(B)) if (L(B) ⊆ L(A)) and (L(A)⊆ L(B)).
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Language inclusion can also be represented using difference and emptiness.

Fact 9.5.6.
L(B) ⊆ L(A)↔ empty (B \ A)

Since we can decide emptiness, we can also decide language inclusion and equivalence.

Fact 9.5.7.
Language inclusion is decidable.

Fact 9.5.8.
Language equivalence is decidable.

9.6 Nondeterministic finite automata

We also want to show that regular languages are closed under concatenation and the so called
Kleene operator. This is much easier using nondeterministic finite automata (NFA). The main differ-
ence between deterministic and nondeterministic finite automata is that the transition function
changes into a transition relation. We represent that relation using a decidable predicate. The
definition was again inspired by [3] but is different in some details. It just uses one starting state
and uses decidable predicates instead of boolean functions.

Definition 9.6.1.
Record nfa := NFA {
Q :> finType;
q0:Q;
Qacc: decPred Q;
δQ : Q → Σ→ decPred Q }

We lift δQ to words as we have done for δS . We call the lifted version δ∗Q . Of course δ∗Q needs to
be a decidable predicate as well.

Definition 9.6.2.
δ∗Q is decribed by the following equations.

δ∗Q q nil q′ = q = q′

δ∗Q q (x :: w) q′ = ∃q′′, δQ q x q′′ ∧ δ∗Q q′′ w q′

Because existential quantification over finite type are decidable for decidable predicates δ∗Q is de-
cidable.

δ∗Q is transitive in the following sense:

Lemma 9.6.1.
Let B be a nondeterministic finite automaton,w and w′ words and q, q′ and q′′ states of B.
Then δ∗QB

q w q′ → δ∗QB
q′ w′ q′′→ δ∗QB

q (w++w′) q′′.

We also need to define acceptance for NFA.

Definition 9.6.3.
A nondeterministic finite automaton B accepts a word w if there exists an accepting state q in B
such that δ∗QB

q0B w q.

Because Q is a finite type acceptance of words is decidable for NFA.
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9.6.1 Equivalence of NFA and DFA

For NFA to be useful to us they should be equivalent to DFA. To show this we need to be able to
convert DFA in NFA in a way that preserves acceptance and vice versa.

Definition 9.6.4 (Conversion from DFA to NFA). [3]
To built an NFA toNFA A from a DFA A we do the follwing:

• Q = SA

• q0 = sA

• Qacc = FA

• The transition relation δQ is given by the following equation:

δQ q x q′ = δS q x = q′.

This definition is correct in the following sense:

Fact 9.6.2.
Let A be a DFA, q, q′ states of A and w a word. Then δ∗SA

q w = q′ ↔ δ∗QtoNFA A
q w q′ and toNFA A

accepts w if and only if A accepts w.

The opposite direction is a more complicated because we have to get rid of cases were we have
more than one transition with some letter x from a state or where there is no transition with x
from a state. The usual way to do this is to take the power-set of all states of the NFA B as the
set of states of the DFA. A transition to several states is modelled by a transition to the set of all
the states there is a transition to. We use the same approach but instead of a powerset we will
use vectors BQB . They represent boolean functions. A vector f represents the set of all states q for
which f q = true.
Remark 9.6.1.
In the following we will not differentiate between decidable proposition and B. It is clear that
one can convert between the two of them which is regularly done in the formalisation. This is
something where the Ssreflect library [17] has an advantage because the whole library is based
on the convertibility between P and B.

Definition 9.6.5 (Conversion to DFA).
Let Bbe a NFA. We construct a DFA toDFA B in the following way:

• F is given by the finite vector type BQB and can be automatically inferred.

• The starting state is the vector obtained from the function λ q⇒ q = q0.

• The set of accepting states is given by the predicate λ f⇒ ∃ q′, f q ∧ QaccB q.

• The transition function is given by λ f x⇒ vectorise (λ q⇒ ∃ q′, f q′ ∧ δQ q′ x q).

The correctness proofs for this construction are not particularly interesting. There are, however,
two things one should know.

Firstly, one needs to use Theorem 6.3.4 several times to convert vector applications back into func-
tion applications. That is the price one has to pay for using functions as finite types.

Secondly, sometimes the coercions do not work as expected. Instead of δ∗S (toDFA B) f w q′ one
has to write applyVect (δ∗S (toDFA B) f w) q′ because although there is a conversion which converts
toDFA B into a finite type and another coercion which converts this particular finite type into a
vector and a third coercion which converts this vector into a function Coq only sees the following
Coercions:
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• NFA→ finType

• finType→ eqType

• eqType→ Type

• vector→ function

Because Coq checks which coercions it can chain before computing the values of the coercions
[6], it does not find a Coercion which returns a function. Coq would need to chain all 4 coercions
to obtain a function. However Coq does not know that the fourth coercion can be chained to the
third coercion. On the other hand for applyVect (δ∗S (toDFA B) f w) q′ Coq only needs to chain the
first 3 coercions. That these can be chained can be seen from the types alone which is why Coq
can do it.

The end result is that the conversion works correctly.

Theorem 9.6.3.
Let B be some NFA and w be a word. Then accept B w↔ accept (toDFA B) w

9.7 Automata concatenation

We can now use NFA to concatenate automata. The basic idea is that transitions starting in the
starting state of the second automaton get copied to the accepting states of the first automaton.
We need nondeterministic automata because accepting states already have transition so adding
transitions from the starting state of a second automaton leads to duplication. This and the con-
struction for the Kleene operator differ from the constructions in [3] because wewill not introduce
ε-NFA as an intermediate step.

Definition 9.7.1 (Concatenation of NFA).
Let A and B be two NFA. We construct an automaton concat A B in the following way.

• The set of states Q is given by QA +QB and can be automatically inferred.

• The starting state is inl q0A .

• The predicate Qacc is given by the following equations:

Qacc inl q = QaccA q if QaccB q0B
Qacc inr q = QaccB q

Note that even accepting states of A can be accepting if the starting state of B is an accepting state.

The predicate describing the transition relation is given by the following equations:

δQ (inl q) x (inl q′) = δQA
q x q′

δQ (inl q) x (inr q′) = δQB
q0B x q′ if QaccA q

δQ (inl q) x (inr q′) = ⊥ if ¬ (QaccA q)

δQ (inr q) x (inl q′) = ⊥
δQ (inr q) x (inr q′) = δQB

q x q′

This construction is correct.

Fact 9.7.1.
Let A and B be NFA and w, w′ and w′′ be words.
Then accept (concat A B) w↔ ∃w′ w′′, accept A w′ ∧ accept B w′′ ∧w = w′ ++ w′′.
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9.8 Kleene operator

The Kleene operator allows any number of repetitions (even 0) of a word in a language. We want
to show that regular languages are closed under the Kleene operator. The resulting automaton
must accept any combination of n : Nwords accepted by the original automaton. This is basically
an arbitrary amount of concatenations. Unfortunatelywe cannot use concatenation becausewe do
not know in advance how often we have to concatenate. Therefore, instead of adding transitions
into the beginning of a different automaton, we will simply add transitions from accepting states
back into the automaton. We also have to add a new accepting starting state because the original
starting state might not have been accepting.

Definition 9.8.1.
We define a nondeterministic automaton B∗ for an NFA B which realises the Kleene Operator in
the following way:

• Q is realised by option SB . This gives us an additional starting state. Again this argument
can be inferred automatically.

• The start state q0 is None.

• Qacc is given by the follwing equations:

Qacc None = >
Qacc (Some q) = QaccB q

• The transition relation is given by the following equations.

δQ q x None = ⊥
δQ None x (Some q′) = δQB

q0B x q′

δQ (Some q) x (Some q′) = δQB
q x q′ ∨QaccB q ∧ δSB

q0B x q′

This construction is correct as well.

Fact 9.8.1.
Let B be some NFA and w be a word.
Then accept B∗ w↔∃w′, concat w′ = w ∧ ∀w′′ ∈w′, accept B w′′.

As we have seen finite types work well in this test. Finite closure iteration has proved to be par-
ticularly helpful for obtaining additional decidability properties. The definition of vectors helped
to covert NFA in DFA. The formalisation in [3] had to use the Ssreflect formalisation of finite sets
(which do not exist in our library) instead. All in all there are only twominor grievances related to
the library. Sometimes coercions behave as bit unintuitively because the necessary type informa-
tion is not there in advance (see 9.6.1) and the conversion between vector application and function
application has to be done manually.
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Chapter 10

Conclusion

10.1 Summary

Using canonical structures, coercions and type classeswe have defined finite types. We have seen how
these features enable us to use finite types very similarly to normal Types and to switch between
the two representations. We have shown that decidability is preserved by quantifications over
finite types and that this turn out to be extremely useful in a variety of circumstances. We have
seen how to construct finite types for products, sums, options and dependent pairs. We have seen
how to use subtypes to convert lists over discrete types into finite types. We have defined vectors
as a way to represent finite extensional functions and have seen how we can switch between the
two representations. We have defined cardinality of finite types and compared it to cardinality of
lists. We have proven explicit formulas for the cardinality of most of the finite type constructions.
Additionally we showed that the well known pigeon hole principles from set theory also hold for
finite types. Finally we have adapted the finite closure iteration [14, 13] to finite types and have
shown that it computes smallest fixed points if suppliedwith a consistent predicate. In the endwe
have tested the library with a formalisation of finite automata. We have seen that the decidability
feature of finite types are very useful in practice and have used finite closure iteration to define
reachability. We have also seen a practical use of vectors in a dual role as functions and types.

10.2 Final discussions

We have seen a successful combined use of canonical structure and type classes to achieve in-
ference of discrete and finite types. In this regard there is one question which still needs to be
addressed. Could we have made it work just using type classes or canonical structures?

10.2.1 Merely type classes

This could work if we were prepared to forgo single types for eqType and finType and to just use
eq_dec and finTypeC instead. This would, however, mean that every definition would need not
only the type but also additional arguments. While this might not seem problematic at first, these
arguments quickly accumulate. For finite types we already have two additional arguments: one
for decidability and one for finTypeC. For larger and more complicated structures this quickly
becomes messy and slow. This is a well known issue [6] and even authors who advocate just
to use type classes admit that this can lead to serious problems [16]. Fortunately the additional
arguments can at least be automatically inferred.
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10.2.2 Merely canonical structures

Just using canonical structureswould work. It is much harder to declare toeqType and tofinType this
way, because if both eqType/finType and the regular Type are taken as arguments, this does not ex-
press the syntactical relationship they must fulfil. Mahboubi and Tassi [12] describe an approach
which would allow the computation of finTypes and eqTypes from Types. In fact a version of this
algorithm has been implemented in Ssreflect [17] for exactly that purpose. This approach does,
however, require a fairly involved use of so called phantom types which serves no other purpose
than to present the problem in a way that can be solved by canonical structures. Since the use
of type classes makes the design easier to understand and a class structure such as finTypeC is
recommended anyway [7, 6] I decided not to implement this using canonical structures.

10.3 Differences to Ssreflect

It has already beenmentioned that Ssreflect [17, 8] contains a library for finite types, which served
as inspiration for this development. While many things are very similar (e.g. how to represent
finiteness), there are also some significant differences. One of the most important differences
concerns the notions of decidability and discreteness. Ssreflect uses an approach called boolean
reflection which equates P and B [8]. This is means that they often use boolean functions instead
of predicates. For example Ssreflect ensures decidablity of equality of a discrete type X by de-
manding a function X → X → Bwhich computes whether two inhabitants of X are equal [17].

This means that in many cases simple function evaluation will compute a result. This is also pos-
sible with our notion of decidability. In principle every proof of dec P is a function which computes
either P or ¬ P. Therefore it can be used analogously to a function computing either true or false.
However, you might have noticed that the Instances 2.1.2 and 3.4.1 were defined using Qed. in-
stead of Defined. As a result Coq can infer that an argument of the appropriate type exists, but
cannot compute its value. The idea behind this is that

(a) with large examples the computation could get quite costly and

(b) this makes the use of decidability rather explicit. One can always see where it is used and
where case analysis is needed. This leads to some very obvious cases in some proofs, e.g. one
has to decide x = x.

One disadvantage of the approach used in this bachelor thesis is that proofs with many decisions
get more complicated. Additionally to the very concise Ssreflect proof script language this is
another reason why many proofs in the formalisation of finite automata are longer than the ones
in the development by Doczkal and Smolka [3].
This different approach to decidability leads to small differences all over the formalisation. For
example Ssreflect uses a self declared structurewith a boolean function as a predicate to formalises
subtypes instead of the already existing dependent pairs.

Another difference is the construction of eqType and finType. While the main idea is the same,
Ssreflect uses more structures nested more deeply. This design called packed classes is highly op-
timised for efficiency and used all over the mathematical components and Ssreflect libraries. Un-
fortunately it is confusing to people who have not seen it before. Because one of the main aims of
this bachelor thesis was to obtain a minimal and easy to understand formalisation I used the sim-
pler approach described in chapters 2 and 3. For the reader who wants to understand the design
used by Ssreflect Garillot’s doctoral thesis [6], which contains an excellent explanation, is highly
recommended.
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Appendix: Realisation in Coq

All results (i.e. theorems, lemmas, facts and corollaries) in this bachelor thesis have been for-
malised in the proof assistant Coq without the use of axioms. The formalisation is available at
https://www.ps.uni-saarland.de/∼menz/bachelor.php. The development was compiled using
version 8.5pl2 of Coq from July 26th 2016.

The accompanying Coq development consists of 4 files.

• External.v contains preexisting definitions from the base library [13] used in ICL. Some of
the definitions in External.v have been replaced by more recent versions from the Coq de-
velopment of Hereditarily finite sets by Smolka and Stark [15]. The main difference is the
consistent definition of type class instances for decidability using Qed.

• BasicDefinitions.v contains definitions and proofs concerning discrete types and definitions
of functions and lemmas which do not rely on finite types. This file is dependent on Exter-
nal.v

• FinTypes.v is the library for finite types. It depends on BasicDefinitions.v

• Automata.v contains the formalisation of finite automata used to test the library. It depends
on FinTypes.v.

Excluding External.v the formalisation contains 958 lines of specification and 1342 lines of proof.
The biggest part is taken up by FinTypes.vwhich accounts for 49.8% of the specification and 50.6%
of the proofs.
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