
Representations of Boolean Functions
in Constructive Type Theory

Gilles Nies

Saarland University

April 20, 2012

Motivation and Goal

Goal:
Define a informative canonical representation of boolean
functions in Coq =⇒ prime trees.

Why:
Coq’s type theory is intentional.

How:
By showing that boolean functions and prime trees are
isomorphic.

Prime Trees ∼= Boolean Functions

The notion of isomorphism in Coq

Trickier than expected!

In mathematics: An invertible function f : A→ B

f isomorphismA,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) = b
∀a : A, (g ◦ f)(a) = a

Generalization to relations needed but problematic:

f isomorphism≡A,≡B
A,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) ≡B b
∀a : A, (g ◦ f)(a) ≡A a

With ≡all := N×N we now have

id isomorphism≡all ,=
N,N

Additional constraint: Mappings must preserve equality.

∀a1, a2 ∈ A : a1 ≡A a2 ⇒ g(a1) ≡B g(a2)

∀b1, b2 ∈ B : b1 ≡B b2 ⇒ f (b1) ≡A f (b2)

The notion of isomorphism in Coq

Trickier than expected!
In mathematics: An invertible function f : A→ B

f isomorphismA,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) = b
∀a : A, (g ◦ f)(a) = a

Generalization to relations needed but problematic:

f isomorphism≡A,≡B
A,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) ≡B b
∀a : A, (g ◦ f)(a) ≡A a

With ≡all := N×N we now have

id isomorphism≡all ,=
N,N

Additional constraint: Mappings must preserve equality.

∀a1, a2 ∈ A : a1 ≡A a2 ⇒ g(a1) ≡B g(a2)

∀b1, b2 ∈ B : b1 ≡B b2 ⇒ f (b1) ≡A f (b2)

The notion of isomorphism in Coq

Trickier than expected!
In mathematics: An invertible function f : A→ B

f isomorphismA,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) = b
∀a : A, (g ◦ f)(a) = a

Generalization to relations needed but problematic:

f isomorphism≡A,≡B
A,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) ≡B b
∀a : A, (g ◦ f)(a) ≡A a

With ≡all := N×N we now have

id isomorphism≡all ,=
N,N

Additional constraint: Mappings must preserve equality.

∀a1, a2 ∈ A : a1 ≡A a2 ⇒ g(a1) ≡B g(a2)

∀b1, b2 ∈ B : b1 ≡B b2 ⇒ f (b1) ≡A f (b2)

The notion of isomorphism in Coq

Trickier than expected!
In mathematics: An invertible function f : A→ B

f isomorphismA,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) = b
∀a : A, (g ◦ f)(a) = a

Generalization to relations needed but problematic:

f isomorphism≡A,≡B
A,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) ≡B b
∀a : A, (g ◦ f)(a) ≡A a

With ≡all := N×N we now have

id isomorphism≡all ,=
N,N

Additional constraint: Mappings must preserve equality.

∀a1, a2 ∈ A : a1 ≡A a2 ⇒ g(a1) ≡B g(a2)

∀b1, b2 ∈ B : b1 ≡B b2 ⇒ f (b1) ≡A f (b2)

The notion of isomorphism in Coq

Trickier than expected!
In mathematics: An invertible function f : A→ B

f isomorphismA,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) = b
∀a : A, (g ◦ f)(a) = a

Generalization to relations needed but problematic:

f isomorphism≡A,≡B
A,B := ∃g : B → A,

{
∀b : B, (f ◦ g)(b) ≡B b
∀a : A, (g ◦ f)(a) ≡A a

With ≡all := N×N we now have

id isomorphism≡all ,=
N,N

Additional constraint: Mappings must preserve equality.

∀a1, a2 ∈ A : a1 ≡A a2 ⇒ g(a1) ≡B g(a2)

∀b1, b2 ∈ B : b1 ≡B b2 ⇒ f (b1) ≡A f (b2)

The notion of isomorphism in Coq

Use setoids and morphisms for elegant definition:

Setoid := {(T : Type, ≡T : T × T) | ≡T ER}
(A,≡A) � (B,≡B) := {f : A→ B | f preserves ≡B}

f : (A,≡A) � (B,≡B) and g : (B,≡B) � (A,≡A) form a
setoid-isomorphism iff

∀b : B, (f ◦ g)(b) ≡B b

∀a : A, (g ◦ f)(a) ≡A a

The notion of isomorphism in Coq

Use setoids and morphisms for elegant definition:

Setoid := {(T : Type, ≡T : T × T) | ≡T ER}
(A,≡A) � (B,≡B) := {f : A→ B | f preserves ≡B}

f : (A,≡A) � (B,≡B) and g : (B,≡B) � (A,≡A) form a
setoid-isomorphism iff

∀b : B, (f ◦ g)(b) ≡B b

∀a : A, (g ◦ f)(a) ≡A a

Boolean functions in theory

Finite set of variables: V

Assignments (σ): V → bool

Boolean functions (φ, ψ): (V → bool)→ bool

Decision trees in theory

Based on conditionals:

(x , s, t) := (x ∧ s) ∨ (¬x ∧ t)

where x is a variable and s, t are formulas.

Defined inductively:

> and ⊥ are decision trees.
(x , s, t) is a decision tree iff x variable and s, t decision trees.

Tree interpretation:

(x ,>, (y ,⊥,⊥)) =⇒

x

> y

⊥ ⊥

Decision trees in theory

Based on conditionals:

(x , s, t) := (x ∧ s) ∨ (¬x ∧ t)

where x is a variable and s, t are formulas.

Defined inductively:

> and ⊥ are decision trees.
(x , s, t) is a decision tree iff x variable and s, t decision trees.

Tree interpretation:

(x ,>, (y ,⊥,⊥)) =⇒

x

> y

⊥ ⊥

Decision trees in theory

Based on conditionals:

(x , s, t) := (x ∧ s) ∨ (¬x ∧ t)

where x is a variable and s, t are formulas.

Defined inductively:

> and ⊥ are decision trees.
(x , s, t) is a decision tree iff x variable and s, t decision trees.

Tree interpretation:

(x ,>, (y ,⊥,⊥)) =⇒

x

> y

⊥ ⊥

Prime trees in theory

Prime trees are reduced and ordered decision trees.
Let t be a decision tree.

t is reduced if none of its subtrees is of the form (x , t ′, t ′).
t is ordered if the variables become smaller as one descends t.

Examples: Let V := {1, 2}
2

> 1

⊥ ⊥

1

> 2

> ⊥

2

> 1

> ⊥
ordered not ordered ordered

not reduced reduced reduced
⇒ prime tree

Prime trees in theory

Prime trees are reduced and ordered decision trees.
Let t be a decision tree.

t is reduced if none of its subtrees is of the form (x , t ′, t ′).
t is ordered if the variables become smaller as one descends t.

Examples: Let V := {1, 2}
2

> 1

⊥ ⊥

1

> 2

> ⊥

2

> 1

> ⊥
ordered not ordered ordered

not reduced reduced reduced
⇒ prime tree

Prime trees in theory

Prime trees are reduced and ordered decision trees.
Let t be a decision tree.

t is reduced if none of its subtrees is of the form (x , t ′, t ′).
t is ordered if the variables become smaller as one descends t.

Examples: Let V := {1, 2}
2

> 1

⊥ ⊥

1

> 2

> ⊥

2

> 1

> ⊥
ordered not ordered ordered

not reduced reduced reduced
⇒ prime tree

Roadmap

Whatever definitions used,

BF := Boolean functions
DT := Decision trees
PT := Prime trees

we will need:

Decidable equality: ∀t1t2 : DT , {t1 = t2}+ {t1 6= t2}
Denotational completeness: ∀φ : BF , {t : PT | JtK ≡ φ}
Core result : ∀t1t2 : PT , t1 6= t2 → Jt1K 6≡ Jt2K

Morphisms:

Denotational Completeness (ex. V4) : (BF ,≡) � (PT ,=)
Denotational Semantics J·K : (PT ,=) � (BF ,≡)

Isomorphism:
(BF ,≡) ∼= (PT ,=)

Version 1: The dependently typed approach
Boolean functions in Coq

Cascaded boolean functions:

booln → bool

Fixpoint nfun A n B :=
match n with

| 0 ⇒ B
| S n ⇒ A → (nfun A n B)

end.

Equivalence:
φ ≡ ψ := ∀~x , φ ~x = ψ ~x

Version 1: The dependently typed approach
Boolean functions in Coq

Cascaded boolean functions:

booln → bool

Fixpoint nfun A n B :=
match n with

| 0 ⇒ B
| S n ⇒ A → (nfun A n B)

end.

Equivalence:
φ ≡ ψ := ∀~x , φ ~x = ψ ~x

Version 1: The dependently typed approach
Boolean functions in Coq

Cascaded boolean functions:

booln → bool

Fixpoint nfun A n B :=
match n with

| 0 ⇒ B
| S n ⇒ A → (nfun A n B)

end.

Equivalence:
φ ≡ ψ := ∀~x , φ ~x = ψ ~x

Version 1: The dependently typed approach
Decision trees in Coq

Inductive DT : nat → Type :=
| DT0 : DT 0
| DT1 : DT 0
| DTI : ∀ {n}, DT n → DT n → DT (S n)
| DTL : ∀ {n}, DT n → DT (S n).

Dependency indicates number of variables the tree depends
on.

Version 1: The dependently typed approach
Denotational semantics and prime trees

Denotational Semantics: Via recursion on the decision tree.

J⊥K = false

J>K = true

J(, t1, t2)K = λb : bool .
{

Jt1K, b = true
Jt2K, b = false

Jt1K = λ : bool . JtK

Members of DT n are already ordered by design.

Thus prime trees are defined by

PT n := {t : DT n | reduced t}

Version 1: The dependently typed approach
Denotational semantics and prime trees

Denotational Semantics: Via recursion on the decision tree.

J⊥K = false

J>K = true

J(, t1, t2)K = λb : bool .
{

Jt1K, b = true
Jt2K, b = false

Jt1K = λ : bool . JtK

Members of DT n are already ordered by design.

Thus prime trees are defined by

PT n := {t : DT n | reduced t}

Version 1: The dependently typed approach
Decidable equality

We need to write an inversion function ourselves:
Definition DT Inv {n : nat} (t : DT n) :
match n as z return DT z → Type with

| O ⇒ fun t ⇒ {t = ⊥} + {t = >}
|S n’ ⇒ fun t ⇒
{p : (DT n’)×(DT n’) | t = (, fst p, snd p)}

+ {dt : DT n’ | t = dt1}
end t.

Decidable equality

∀t1t2 : DT n, {t1 = t2}+ {t1 6= t2}

by recursion on n.

Version 1: The dependently typed approach
Decidable equality

We need to write an inversion function ourselves:
Definition DT Inv {n : nat} (t : DT n) :
match n as z return DT z → Type with

| O ⇒ fun t ⇒ {t = ⊥} + {t = >}
|S n’ ⇒ fun t ⇒
{p : (DT n’)×(DT n’) | t = (, fst p, snd p)}

+ {dt : DT n’ | t = dt1}
end t.

Decidable equality

∀t1t2 : DT n, {t1 = t2}+ {t1 6= t2}

by recursion on n.

Version 2: Recursive decision trees
Recursive decision trees in Coq

Get rid of annoying inversion function!

Solution: Recursive definition instead of inductive definition

Fixpoint DTrec (n : nat) : Type :=
match n with

| 0 ⇒ bool
| S n ⇒ (DTrec n × DTrec n) + DTrec n

end.

No complicated inversion function needed.

Version 2: Recursive decision trees
Recursive decision trees in Coq

Get rid of annoying inversion function!

Solution: Recursive definition instead of inductive definition

Fixpoint DTrec (n : nat) : Type :=
match n with

| 0 ⇒ bool
| S n ⇒ (DTrec n × DTrec n) + DTrec n

end.

No complicated inversion function needed.

Version 2: Recursive decision trees
Recursive decision trees in Coq

Get rid of annoying inversion function!

Solution: Recursive definition instead of inductive definition

Fixpoint DTrec (n : nat) : Type :=
match n with

| 0 ⇒ bool
| S n ⇒ (DTrec n × DTrec n) + DTrec n

end.

No complicated inversion function needed.

Version 1 and 2: Rest of roadmap

Denotational Completeness

∀φ : booln → bool , {t : PT n | JtK ≡ φ}

by recursion on number of arguments n.

Core result:

∀t1t2 : PT n, t1 6= t2 → Jt1K 6≡ Jt2K

via induction on level n.

Both straightforward.

Version 1 and 2: Rest of roadmap

Denotational Completeness

∀φ : booln → bool , {t : PT n | JtK ≡ φ}

by recursion on number of arguments n.

Core result:

∀t1t2 : PT n, t1 6= t2 → Jt1K 6≡ Jt2K

via induction on level n.

Both straightforward.

Version 1 and 2: Rest of roadmap

Denotational Completeness

∀φ : booln → bool , {t : PT n | JtK ≡ φ}

by recursion on number of arguments n.

Core result:

∀t1t2 : PT n, t1 6= t2 → Jt1K 6≡ Jt2K

via induction on level n.

Both straightforward.

Versions 1 and 2: Summary

Copies!

Boolean functions: true, λ .true, λ .true, ...
Prime Trees: >, >1, >2, ...

Almost no automation for inductive DT s:

Tactics inversion and injection fail to deliver.
Inversion function

Remedy: Recursive Decision trees.

injection works perfectly ⇒ shorter proofs.
Coq’s destruct and reduction instead of inversion function.

Actually pretty convenient to work with.

Versions 1 and 2: Summary

Copies!

Boolean functions: true, λ .true, λ .true, ...
Prime Trees: >, >1, >2, ...

Almost no automation for inductive DT s:

Tactics inversion and injection fail to deliver.
Inversion function

Remedy: Recursive Decision trees.

injection works perfectly ⇒ shorter proofs.
Coq’s destruct and reduction instead of inversion function.

Actually pretty convenient to work with.

Versions 1 and 2: Summary

Copies!

Boolean functions: true, λ .true, λ .true, ...
Prime Trees: >, >1, >2, ...

Almost no automation for inductive DT s:

Tactics inversion and injection fail to deliver.
Inversion function

Remedy: Recursive Decision trees.

injection works perfectly ⇒ shorter proofs.
Coq’s destruct and reduction instead of inversion function.

Actually pretty convenient to work with.

Versions 1 and 2: Summary

Copies!

Boolean functions: true, λ .true, λ .true, ...
Prime Trees: >, >1, >2, ...

Almost no automation for inductive DT s:

Tactics inversion and injection fail to deliver.
Inversion function

Remedy: Recursive Decision trees.

injection works perfectly ⇒ shorter proofs.
Coq’s destruct and reduction instead of inversion function.

Actually pretty convenient to work with.

Simply typed decision trees

Goal: Get rid of dependency and copies.

Inductive SDT : Type :=
| DT0 : SDT
| DT1 : SDT
| DTI : nat → SDT → SDT → SDT.

Variable on which to branch explicitly given to branching
constructor.

No dependency, only one >-tree

Decidable equality comes for free: decide equality.

Simply typed decision trees

Goal: Get rid of dependency and copies.

Inductive SDT : Type :=
| DT0 : SDT
| DT1 : SDT
| DTI : nat → SDT → SDT → SDT.

Variable on which to branch explicitly given to branching
constructor.

No dependency, only one >-tree

Decidable equality comes for free: decide equality.

Simply typed decision trees

Goal: Get rid of dependency and copies.

Inductive SDT : Type :=
| DT0 : SDT
| DT1 : SDT
| DTI : nat → SDT → SDT → SDT.

Variable on which to branch explicitly given to branching
constructor.

No dependency, only one >-tree

Decidable equality comes for free: decide equality.

Simply typed decision trees
Sematics and prime trees

Semantics:

J⊥K = λ . false

J>K = λ . true

J(n, t1, t2)K = λσ : (nat → bool).

{
Jt1Kσ, σ n = true
Jt2Kσ, σ n = false

Unfortunately not ordered by design:

SPT := {t : SDT | reduced t ∧ ordered t}

Simply typed decision trees
Sematics and prime trees

Semantics:

J⊥K = λ . false

J>K = λ . true

J(n, t1, t2)K = λσ : (nat → bool).

{
Jt1Kσ, σ n = true
Jt2Kσ, σ n = false

Unfortunately not ordered by design:

SPT := {t : SDT | reduced t ∧ ordered t}

Alternative boolean functions

SPT not isomorphic to cascaded boolean functions while
preserving meaning: true, λ .true, ... all map to >.

Alternative definition:

BF := (nat → bool)→ bool

Equivalence:

φ ≡ ψ := ∀σ : (nat → bool), φ σ = ψ σ

Only one constant true function : λ : (nat → bool). true

Infinitely many variables ⇒ infinite decision trees!

Restriction to only the continuous boolean functions

Alternative boolean functions

SPT not isomorphic to cascaded boolean functions while
preserving meaning: true, λ .true, ... all map to >.

Alternative definition:

BF := (nat → bool)→ bool

Equivalence:

φ ≡ ψ := ∀σ : (nat → bool), φ σ = ψ σ

Only one constant true function : λ : (nat → bool). true

Infinitely many variables ⇒ infinite decision trees!

Restriction to only the continuous boolean functions

Alternative boolean functions

SPT not isomorphic to cascaded boolean functions while
preserving meaning: true, λ .true, ... all map to >.

Alternative definition:

BF := (nat → bool)→ bool

Equivalence:

φ ≡ ψ := ∀σ : (nat → bool), φ σ = ψ σ

Only one constant true function : λ : (nat → bool). true

Infinitely many variables ⇒ infinite decision trees!

Restriction to only the continuous boolean functions

Alternative boolean functions

SPT not isomorphic to cascaded boolean functions while
preserving meaning: true, λ .true, ... all map to >.

Alternative definition:

BF := (nat → bool)→ bool

Equivalence:

φ ≡ ψ := ∀σ : (nat → bool), φ σ = ψ σ

Only one constant true function : λ : (nat → bool). true

Infinitely many variables ⇒ infinite decision trees!

Restriction to only the continuous boolean functions

Continuous boolean functions

ctsn φ := ”it suffices to consider the first n variables to
evaluate φ”.

n is a modulus of continuity.

cts φ := ∃n : nat, ctsn φ

Initial idea:
BFcts := {φ : BF | cts φ}

Denotational completeness

∀φ : BFcts , {t : SPT | JtK ≡ φ}

impossible to obtain =⇒ Elim restriction.

3 possibilities to circumvent the elim restriction.

Continuous boolean functions

ctsn φ := ”it suffices to consider the first n variables to
evaluate φ”.

n is a modulus of continuity.

cts φ := ∃n : nat, ctsn φ

Initial idea:
BFcts := {φ : BF | cts φ}

Denotational completeness

∀φ : BFcts , {t : SPT | JtK ≡ φ}

impossible to obtain =⇒ Elim restriction.

3 possibilities to circumvent the elim restriction.

Continuous boolean functions

ctsn φ := ”it suffices to consider the first n variables to
evaluate φ”.

n is a modulus of continuity.

cts φ := ∃n : nat, ctsn φ

Initial idea:
BFcts := {φ : BF | cts φ}

Denotational completeness

∀φ : BFcts , {t : SPT | JtK ≡ φ}

impossible to obtain =⇒ Elim restriction.

3 possibilities to circumvent the elim restriction.

Continuous boolean functions

ctsn φ := ”it suffices to consider the first n variables to
evaluate φ”.

n is a modulus of continuity.

cts φ := ∃n : nat, ctsn φ

Initial idea:
BFcts := {φ : BF | cts φ}

Denotational completeness

∀φ : BFcts , {t : SPT | JtK ≡ φ}

impossible to obtain =⇒ Elim restriction.

3 possibilities to circumvent the elim restriction.

Version 3: Using the Axiom of Continuity
Denotational Completeness

Drastic solution:

ctsT φ := {n : nat | ctsn φ}
Axiom CTS : ∀ φ : BF, ctsT φ.

Plausible

ϕ σ :=
{

true : ∀n, σ n = true
false : otherwise

: (nat → bool)→ Prop

Denotational completeness by recursion on the modulus of
continuity given by CTS .

CTS inconsistent with CDP := ∀P : Prop, {P}+ {¬P}

CTS → CDP → False

Version 3: Using the Axiom of Continuity
Denotational Completeness

Drastic solution:

ctsT φ := {n : nat | ctsn φ}
Axiom CTS : ∀ φ : BF, ctsT φ.

Plausible

ϕ σ :=
{

true : ∀n, σ n = true
false : otherwise

: (nat → bool)→ Prop

Denotational completeness by recursion on the modulus of
continuity given by CTS .

CTS inconsistent with CDP := ∀P : Prop, {P}+ {¬P}

CTS → CDP → False

Version 3: Using the Axiom of Continuity
Denotational Completeness

Drastic solution:

ctsT φ := {n : nat | ctsn φ}
Axiom CTS : ∀ φ : BF, ctsT φ.

Plausible

ϕ σ :=
{

true : ∀n, σ n = true
false : otherwise

: (nat → bool)→ Prop

Denotational completeness by recursion on the modulus of
continuity given by CTS .

CTS inconsistent with CDP := ∀P : Prop, {P}+ {¬P}

CTS → CDP → False

Version 3: Using the Axiom of Continuity
Denotational Completeness

Drastic solution:

ctsT φ := {n : nat | ctsn φ}
Axiom CTS : ∀ φ : BF, ctsT φ.

Plausible

ϕ σ :=
{

true : ∀n, σ n = true
false : otherwise

: (nat → bool)→ Prop

Denotational completeness by recursion on the modulus of
continuity given by CTS .

CTS inconsistent with CDP := ∀P : Prop, {P}+ {¬P}

CTS → CDP → False

Version 3: Using the Axiom of Continuity
Core Result

Direct proof of

∀t1t2 : SPT , t1 6= t2 → Jt1K 6≡ Jt2K

via induction is HUGE : 9 cases!

Use size induction on pairs of decision trees.

Divide proof into case analysis

|t1|+ |t2| = 0→ (t1 = >∨ t1 = ⊥) ∧ (t2 = >∨ t2 = ⊥).

|t1|+ |t2| = m+ 1→

t1 = (n, t, t ′) ∧ n 6∈ t2
n 6∈ t1 ∧ t2 = (n, t, t ′)
t1 = (n, t ′1, t ′′1) ∧ t2 = (n, t ′2, t ′′2)

and main proof:

|t1|+ |t2| = 0 case is trivial.
|t1|+ |t2| = m+ 1 cases (3) of moderate difficulty.

Version 3: Using the Axiom of Continuity
Core Result

Direct proof of

∀t1t2 : SPT , t1 6= t2 → Jt1K 6≡ Jt2K

via induction is HUGE : 9 cases!

Use size induction on pairs of decision trees.

Divide proof into case analysis

|t1|+ |t2| = 0→ (t1 = >∨ t1 = ⊥) ∧ (t2 = >∨ t2 = ⊥).

|t1|+ |t2| = m+ 1→

t1 = (n, t, t ′) ∧ n 6∈ t2
n 6∈ t1 ∧ t2 = (n, t, t ′)
t1 = (n, t ′1, t ′′1) ∧ t2 = (n, t ′2, t ′′2)

and main proof:

|t1|+ |t2| = 0 case is trivial.
|t1|+ |t2| = m+ 1 cases (3) of moderate difficulty.

Version 4: Using the Axiom of Description

CTS too drastic.

Restriction to continuous boolean functions

BFcts := {φ : BF | cts φ}

Equivalence on BFcts := Equivalence of underlying functions.

Prove denotational completeness as proposition

∀φ : BFcts , ∃t : SPT , JtK ≡ φ

Prove core result like before

∀t1t2 : SPT , t1 6= t2 → Jt1K 6≡ Jt2K

Version 4: Using the Axiom of Description

CTS too drastic.

Restriction to continuous boolean functions

BFcts := {φ : BF | cts φ}

Equivalence on BFcts := Equivalence of underlying functions.

Prove denotational completeness as proposition

∀φ : BFcts , ∃t : SPT , JtK ≡ φ

Prove core result like before

∀t1t2 : SPT , t1 6= t2 → Jt1K 6≡ Jt2K

Version 4: Using the Axiom of Description

CTS too drastic.

Restriction to continuous boolean functions

BFcts := {φ : BF | cts φ}

Equivalence on BFcts := Equivalence of underlying functions.

Prove denotational completeness as proposition

∀φ : BFcts , ∃t : SPT , JtK ≡ φ

Prove core result like before

∀t1t2 : SPT , t1 6= t2 → Jt1K 6≡ Jt2K

Version 4: Using the Axiom of Description

CTS too drastic.

Restriction to continuous boolean functions

BFcts := {φ : BF | cts φ}

Equivalence on BFcts := Equivalence of underlying functions.

Prove denotational completeness as proposition

∀φ : BFcts , ∃t : SPT , JtK ≡ φ

Prove core result like before

∀t1t2 : SPT , t1 6= t2 → Jt1K 6≡ Jt2K

Version 4: Using the Axiom of Description
A morphism from (BFcts ,≡) to (SPT,=)

From denotational completeness and core result derive that
there is a unique SPT for every BFcts :

∀φ : BFcts , ∃!t : SPT , JtK ≡ φ

Turn this proof into a mapping using Axiom of Description:

∀(T : Type)(P : T → Prop), (∃!t : T ,P t)→ {t : T | P t}

Version 4: Using the Axiom of Description
A morphism from (BFcts ,≡) to (SPT,=)

From denotational completeness and core result derive that
there is a unique SPT for every BFcts :

∀φ : BFcts , ∃!t : SPT , JtK ≡ φ

Turn this proof into a mapping using Axiom of Description:

∀(T : Type)(P : T → Prop), (∃!t : T ,P t)→ {t : T | P t}

Version 4: Using the Axiom of Description
A morphism from (SPT,=) to (BFcts ,≡)

We want to use J·K

Prove that decision trees describe continuous functions

∀t : SDT , cts JtK

by writing a function that determines a modulus of continuity

∀t : SDT , ctsT JtK

Modulus of continuity is largest variable in the tree.

Version 4: Using the Axiom of Description
A morphism from (SPT,=) to (BFcts ,≡)

We want to use J·K
Prove that decision trees describe continuous functions

∀t : SDT , cts JtK

by writing a function that determines a modulus of continuity

∀t : SDT , ctsT JtK

Modulus of continuity is largest variable in the tree.

Version 4: Using the Axiom of Description
A morphism from (SPT,=) to (BFcts ,≡)

We want to use J·K
Prove that decision trees describe continuous functions

∀t : SDT , cts JtK

by writing a function that determines a modulus of continuity

∀t : SDT , ctsT JtK

Modulus of continuity is largest variable in the tree.

Version 5: The No-Axiom Version
Boolean functions as dependent pairs

Pair boolean functions with their modulus of continuity.

BFctsT := {φ : BF & ctsT φ}

Equivalence:
(φ, n) ≡ (ψ,m) := φ ≡ ψ

Denotational Completeness

∀(φ, n) : BFctsT , {t : SPT | JtK ≡ φ}

by recursion on modulus of continuity n.

Core result as before.

Version 5: The No-Axiom Version
Boolean functions as dependent pairs

Pair boolean functions with their modulus of continuity.

BFctsT := {φ : BF & ctsT φ}

Equivalence:
(φ, n) ≡ (ψ,m) := φ ≡ ψ

Denotational Completeness

∀(φ, n) : BFctsT , {t : SPT | JtK ≡ φ}

by recursion on modulus of continuity n.

Core result as before.

Version 3,4 and 5: Summary

No copies!

More work:

Ordering
n ∈ t
Lemmas relating orderedness and variable occurrences.

Axioms (Versions 3 and 4)!

Things to improve

Goal: Canonical representation for boolean functions

A representative should have the same meaning as the
function it describes

Setoid-isomorphism not meaning preserving!

Things to improve

Goal: Canonical representation for boolean functions

A representative should have the same meaning as the
function it describes

Setoid-isomorphism not meaning preserving!

Things to improve

Goal: Canonical representation for boolean functions

A representative should have the same meaning as the
function it describes

Setoid-isomorphism not meaning preserving!

Things to improve

Definition of representative of boolean functions:
T : Type
=T : T → T → Prop
J·K : T → BF
ER : =T is equivalence relation
P : ∀t1 t2 : T , t1 =T t2 → Jt1K ≡BF Jt2K

Meaning preserving morphisms:
$: T → T ′

EP : ∀t1 t2 : T , t1 =T t2 → $ t1 =T ′ $ t2
MP : ∀t : T , JtKT ≡BF J$ tKT ′

Used setoids are representatives, morphisms are meaning
preserving

Things to improve

Definition of representative of boolean functions:
T : Type
=T : T → T → Prop
J·K : T → BF
ER : =T is equivalence relation
P : ∀t1 t2 : T , t1 =T t2 → Jt1K ≡BF Jt2K

Meaning preserving morphisms:

$: T → T ′

EP : ∀t1 t2 : T , t1 =T t2 → $ t1 =T ′ $ t2
MP : ∀t : T , JtKT ≡BF J$ tKT ′

Used setoids are representatives, morphisms are meaning
preserving

Things to improve

Definition of representative of boolean functions:
T : Type
=T : T → T → Prop
J·K : T → BF
ER : =T is equivalence relation
P : ∀t1 t2 : T , t1 =T t2 → Jt1K ≡BF Jt2K

Meaning preserving morphisms:

$: T → T ′

EP : ∀t1 t2 : T , t1 =T t2 → $ t1 =T ′ $ t2
MP : ∀t : T , JtKT ≡BF J$ tKT ′

Used setoids are representatives, morphisms are meaning
preserving

References

