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Motivation and Goal

o Goal:
Define a informative canonical representation of boolean
functions in Coq = prime trees.

o Why:
Coq’s type theory is intentional.

e How:
By showing that boolean functions and prime trees are
isomorphic.

~J

Prime Trees = Boolean Functions
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The notion of isomorphism in Coq

@ Trickier than expected!
@ In mathematics: An invertible function f : A — B

Vb:B, (fog)(b)=5b

f isomorphismapg = dg: B — A, { Va: A, (gof)(a)=a

@ Generalization to relations needed but problematic:

Vb:B, (fog)(b)=gb

A=B .__
f lsomorphlsmA 5 Ci=dg:B—= A { Va: A, (gof)(a)=sa

e With =, := IN X IN we now have

id isomorphismyik;”

@ Additional constraint: Mappings must preserve equality.

Vaj, a2 € A: a1 =p a2 = g(a1) =g g(a2)
Vbi, by € B: by =g by = f(b1) =af(b2)



The notion of isomorphism in Coq

@ Use setoids and morphisms for elegant definition:

Setoid := {(T:Type, =r: TxT)| =7 ER}
(A, =a) - (B,=p) = {f:A— B|f preserves =g}



The notion of isomorphism in Coq

@ Use setoids and morphisms for elegant definition:

Setoid := {(T:Type, =r: TxT)| =7 ER}
(A, =a) - (B,=p) = {f:A— B|f preserves =g}

o f:(A=a) > (B,=p)and g: (B,=g) — (A =4) form a
setoid-isomorphism iff

Vb:B, (fog)(b)=gb
Va: A, (gof)(a)=aa



Boolean functions in theory

@ Finite set of variables: V
@ Assignments (0): V — bool
@ Boolean functions (¢, ¢): (V — bool) — bool
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Decision trees in theory

@ Based on conditionals:
(x,5,t) := (xAs)V(-xAt)

where x is a variable and s, t are formulas.
@ Defined inductively:

e T and _L are decision trees.
° (X, s, t) is a decision tree iff x variable and s, t decision trees.

@ Tree interpretation:

(x, T, (y,L, 1) = T y
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Prime trees in theory

@ Prime trees are reduced and ordered decision trees.
Let t be a decision tree.

o tis reduced if none of its subtrees is of the form (x, t’, ).
o t is ordered if the variables become smaller as one descends t.

o Examples: Let V :={1,2}

2 1 2
T 1 T 2 T 1
/\ /\
1 1 T 1 T 1
ordered not ordered ordered
not reduced reduced reduced

= prime tree



@ Whatever definitions used,

e BJF := Boolean functions
e DT := Decision trees
e PT := Prime trees

we will need:

o Decidable equality: Virto : DT, {t1 =t} +{t1 # tr}
o Denotational completeness: Vo : BF, {t:PT | [t] = ¢}
o Core result : Vit : PT, t1 # to — [t1] Z [t2]

@ Morphisms:

o Denotational Completeness (ex. V4) :  (BF,=) - (PT,=)
o Denotational Semantics [-] : (PT.=) = (BF,=)

@ Isomorphism:

(BF,=)= (PT,=)
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Version 1: The dependently typed approach

Boolean functions in Coq

@ Cascaded boolean functions:

bool™ — bool

@ Fixpoint nfun An B :=
match n with
|0= B
| Sn= A — (nfun A n B)
end.

e Equivalence:



Version 1: The dependently typed approach

Decision trees in Coq

@ Inductive DT : nat — Type :=
| DTy : DT 0

| DTy : DT 0
| DTy : ¥ {n}, DT n — DT n — DT (S n)

| DT, : ¥ {n}, DT n — DT (S n).
@ Dependency indicates number of variables the tree depends

on.



Version 1: The dependently typed approach

Denotational semantics and prime trees

@ Denotational Semantics: Via recursion on the decision tree.

[L] = false
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Version 1: The dependently typed approach

Denotational semantics and prime trees

@ Denotational Semantics: Via recursion on the decision tree.

[L] = false
[T] = true

[(-,t1,2)] = Ab: bool. { %g]ﬂ Zz lejsee

[t'] = A_:bool. [t]

@ Members of DT n are already ordered by design.

@ Thus prime trees are defined by

PT n := {t:DT n| reduced t}



Version 1: The dependently typed approach

Decidable equality

@ We need to write an inversion function ourselves:
Definition DT_Inv {n: nat} (t: DT n):
match n as z return DT z — Type with
|O=funt={t=1}+{t=T}
|Sn"= funt =
{p: (DT n")x(DT n’)
+ {dt: DT n’

t = (-, fst p, snd p)}
t = dt'}

end t.



Version 1: The dependently typed approach

Decidable equality

@ We need to write an inversion function ourselves:
Definition DT_Inv {n: nat} (t: DT n):
match n as z return DT z — Type with
|O=funt={t=1}+{t=T}
|Sn"= funt =
{p: (DT n)x(DT n’) | t = (-, fst p, snd p)}
+{dt: DT n'| t = dt'}

end t.
@ Decidable equality

Vtito : DT n, {1.'1 = tg} + {tl 7& tg}

by recursion on n.
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Version 2: Recursive decision trees

Recursive decision trees in Coq

@ Get rid of annoying inversion function!
@ Solution: Recursive definition instead of inductive definition
@ Fixpoint DT, (n: nat): Type :=
match n with
| 0 = bool
| Sn= (DTrec n X DTyec n) + DTyec n
end.

@ No complicated inversion function needed.
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Version 1 and 2: Rest of roadmap

@ Denotational Completeness
V¢ : bool™ — bool, {t: PT n| [t] = ¢}

by recursion on number of arguments n.

@ Core result:

Vtitr : PT n, 1 75 tr — [[tl]] 7‘é [[t2]]

via induction on level n.

@ Both straightforward.
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Versions 1 and 2: Summary

o Copies!

o Boolean functions:  true, A_.true, A__.true, ...
o Prime Trees: T, T1, T2, ..

@ Almost no automation for inductive DTs:

e Tactics inversion and injection fail to deliver.
e Inversion function

@ Remedy: Recursive Decision trees.

e injection works perfectly = shorter proofs.
e Coq's destruct and reduction instead of inversion function.

@ Actually pretty convenient to work with.
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Simply typed decision trees

Goal: Get rid of dependency and copies.

@ Inductive SDT : Type :=
| DTy : SDT
| DTy : SDT

| DT : nat - SDT — SDT — SDT.

Variable on which to branch explicitly given to branching
constructor.

No dependency, only one T-tree

Decidable equality comes for free: decide equality.
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Sematics and prime trees

@ Semantics:

[L] = A_. false
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Simply typed decision trees

Sematics and prime trees

@ Semantics:

[L] = A_. false
[T] = A_. true

[ti]o, o n= true

[(n ti,t2)] = Ao : (nat — bool). { [e]o, o n= false

@ Unfortunately not ordered by design:

SPT := {t:SDT | reduced t A ordered t}
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Alternative boolean functions

SPT not isomorphic to cascaded boolean functions while
preserving meaning: true, A_.true, ... all map to T.

Alternative definition:

BF := (nat — bool) — bool

Equivalence:

$p=v = Vo:(nat — bool), por =19

Only one constant true function : A_: (nat — bool). true

Infinitely many variables = infinite decision trees!

Restriction to only the continuous boolean functions
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Continuous boolean functions

cts, ¢ :="it suffices to consider the first n variables to
evaluate ¢".

e nis a modulus of continuity.
cts ¢ :=3dn: nat, cts, ¢

Initial idea:
BFes == {¢: BF | cts ¢}

Denotational completeness
V¢ : BFas, {t:SPT | [t] = ¢}

impossible to obtain = Elim restriction.

3 possibilities to circumvent the elim restriction.
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Version 3: Using the Axiom of Continuity

Denotational Completeness

@ Drastic solution:
o ctsT ¢ := {n:nat | cts, ¢}
o Axiom CTS :V ¢ : BF, ctsT ¢.

@ Plausible

o= { true : ¥n, 0 n = true : (nat — bool) — Prop

false : otherwise

@ Denotational completeness by recursion on the modulus of
continuity given by CTS.

e CTS inconsistent with CDP := VP : Prop, {P} + {—P}

CTS — CDP — False
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Version 3: Using the Axiom of Continuity

Core Result

@ Direct proof of
Vtity : SPT, t1 # ta — [t1] # [t2]

via induction is HUGE : 9 cases!
@ Use size induction on pairs of decision trees.
e Divide proof into case analysis

° |t1|+|t2‘ =0*>(t1=—|—\/t1ZL)/\(tQZTVtQZL).
t1=(nt,t) Angt

o [til+||=m+1—=¢ né&t Aty=(ntt)
t1=(nt.tf) At=(nt)t))

and main proof-

o |t1]| + |t2| = 0 case is trivial.
o |t1| + |t2]| = m+ 1 cases (3) of moderate difficulty.
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Version 4: Using the Axiom of Description

CTS too drastic.

Restriction to continuous boolean functions

BFes = {¢: BF | cts ¢}

Equivalence on BF := Equivalence of underlying functions.

Prove denotational completeness as proposition

Ve : BFes, 3t: SPT, [t] = ¢

Prove core result like before

Vtitr : SPT, t1 7’é tr — [[tl]] ?é [[t2]]
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@ From denotational completeness and core result derive that
there is a unique SPT for every BFs:

V¢ : BFs, At : SPT, [t =¢



Version 4: Using the Axiom of Description
A morphism from (BF¢s, =) to (SPT,=)

@ From denotational completeness and core result derive that
there is a unique SPT for every BFs:

V¢ : BFs, At : SPT, [t =¢

@ Turn this proof into a mapping using Axiom of Description:

V(T : Type)(P: T — Prop), (3't: T,Pt) = {t:T|Pt}
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Version 4: Using the Axiom of Description
A morphism from (SPT,=) to (BF¢ts, =)

e We want to use [-]

@ Prove that decision trees describe continuous functions
Vt: SDT, cts [t]
by writing a function that determines a modulus of continuity

Vt: SDT, ctsT [t]

@ Modulus of continuity is largest variable in the tree.



Version 5: The No-Axiom Version
Boolean functions as dependent pairs

@ Pair boolean functions with their modulus of continuity.

BFctst = {¢: BF & ctst ¢}

e Equivalence:

(Y.m) = ¢=19

(¢ n)



Version 5: The No-Axiom Version

Boolean functions as dependent pairs

@ Pair boolean functions with their modulus of continuity.
BFctst = {¢: BF & ctst ¢}
e Equivalence:

@) =(.m) = ¢=y

@ Denotational Completeness
Y(¢,n) : BFast, {t:SPT | [t] = ¢}

by recursion on modulus of continuity n.

@ Core result as before.



Version 3,4 and 5: Summary

@ No copies!
@ More work:

e Ordering
enct
e Lemmas relating orderedness and variable occurrences.

e Axioms (Versions 3 and 4)!
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Things to improve

@ Definition of representative of boolean functions:

T . Type

=7 : T —=T—= Prop

Il : T—BF

ER : =7 is equivalence relation

P s V! T, =7 th — [[tl]] =BF [[tQ]]

@ Meaning preserving morphisms:

0 s T—>T
EP : Vtitr: T, =Tl —=>0ti1=701t
MP . Vt: T, [[t]]‘[‘ =BF [[Q t]]T/

@ Used setoids are representatives, morphisms are meaning

preserving
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