
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
Bachelor’s Program in Computer Science

Bachelor’s Thesis

Representations of Boolean Functions
in Constructive Type Theory

submitted by
Gilles Nies

submitted on
March 20, 2012

Supervisor
Prof. Dr. Gert Smolka

Advisor
Dr. Chad E. Brown

Reviewers
Prof. Dr. Gert Smolka

Dr. Chad E. Brown

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any other media
or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek
der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public by having
them added to the library of the Computer Science Department.

Saarbrücken,

Datum/Date Unterschrift/Signature

iii

Abstract

Boolean functions are of great importance in computer science, be it in logic
or for verification purposes in cryptography and hardware verification. Our
goal is to formalize an informative canonical representation of boolean func-
tions in Coq’s constructive type theory: Prime trees. For that purpose we
present several plausible characterizations of boolean functions and suggest
various definitions of decision trees, the underlying datatype of prime trees:
A dependent inductive type, a recursive type and a simple inductive type. In
order to show that prime trees are canonical we explicitely define mappings
between prime trees and boolean functions in a constructive way and prove
that these mappings form an isomorphism, thereby showcasing the elusive-
ness of the concept of isomorphism in an intentional type theory. Some of
these isomorphisms will require the assumption of axioms ranging from con-
ventional assumptions to more controversial ones.

v

Acknowledgements

First of all, I would like to express my deep gratitude to my advisor Dr. Chad E. Brown
for his masterful way of guiding me through the whole process of writing my thesis. His
advice, more than once, gave me flashes of insight, that were invaluable to the completion
of this document.

Furthermore, I would like to thank Prof. Dr. Gert Smolka for his lecture ’Introduc-
tion to Computational Logic’ that lead to the opportunity of finishing my Bachelor studies
under his chair’s guidance.

Lastly, I want to express my appreciation for all the people that have supported me
to whatever extend during the last months.

vii

Contents

1 Introduction 1
1.1 Motivation and Overview . 1
1.2 Structure of the thesis . 2

2 Theory 3
2.1 Boolean functions . 3
2.2 Decision Trees . 4
2.3 Prime Trees . 4

3 Preliminaries 7
3.1 A two-valued type: bool . 7
3.2 Coq and the Elim Restriction . 7
3.3 Functional Extensionality . 8
3.4 Representing an isomorphism in Coq . 9

3.4.1 Setoids and partial setoids . 10

4 Decision trees as a dependent inductive type 13
4.1 Cascaded boolean functions . 13
4.2 Decision trees . 15

4.2.1 Denotational Completeness for decision trees 21
4.3 Prime trees . 22

4.3.1 Denotational Completeness for prime trees . 25
4.3.2 Unique existence of prime trees . 27

5 Simply typed decision trees 33
5.1 Simple decision trees . 33
5.2 Alternative definition of boolean functions . 36
5.3 Version 1: Using the Axiom of Continuity . 43

5.3.1 CTS vs. CDP . 44
5.4 Version 2: Using the Axiom of Description . 45

5.4.1 Consequences of assuming Description . 48
5.5 Version 3: Boolean functions as dependent pairs . 48
5.6 Boolean functions as Stream bool→ bool . 49

6 Conclusion and Future Work 55
6.1 The isomorphisms . 55
6.2 Possible improvements . 56

ix

Chapter 1

Introduction

1.1 Motivation and Overview

Boolean functions are an important topic in hardware design for computers, especially for hard-
ware verification purposes. In order to show that pieces of hardware, more precisely the circuits
embedded in that hardware, function correctly one has to show that they implement their spec-
ification. Popular means of formalizing such specifications are boolean functions. Circuits that
compute the specified boolean functions are considered correct. One of the major advances in not
only verification, but in computer science and mathematics in general, are proof assistants or proof
checkers. The catchphrase of "machine-checked proofs" comes to mind. It is, therefore, crucial to
come up with suitable representations of boolean functions in such proof assistants.
In this thesis we give several ways of representing boolean functions in Coq’s constructive type
theory [2, 4]: n-ary cascaded functions which is a recursive function type, as well as a the con-
tinuous members of (nat → bool) → bool or alternatively Stream bool → bool. Since Coq’s type
theory, the Calculus of Inductive Constructions, is intentional, we often-times fail to prove equality
of Coq’s built-in functions and therefore we make it our goal to formalize an informative canonical
representation for boolean functions in Coq.
This will happen by way of decision trees, a tree-like structure, to which we add constraints to
finally arrive at prime trees [7], that share most of the convenient properties of Bryant’s Binary
Decision Diagrams (BDDs) [5]. We realize decision trees as a dependent inductive type DT :
nat → Type, a recursive type DTrec : nat → Type equivalent to DT and as a simple inductive
type SDT : Type. Thereafter, we declare prime trees to be only the reduced and ordered decision
trees.
We give ways of mapping boolean functions to prime trees and back and show that prime trees
are indeed unique for a boolean function by proving that these mappings form an isomorphism
between boolean functions and prime trees. To formalize the notion of isomorphism in Coq we
seize the idea of using partial and total setoids [3], which typically are utilized to represent sets in
type theory. They consist of a carrier type, a relation on that type serving as an equality notion, as
well as a proof that the equality is a (partial) equivalence relation.
For some of the isomorphisms presented in this thesis, the assumption of axioms is necessary to
avoid pitfalls. To be more accurate, we will need to circumvent the elim restriction.
The axioms we will assume range from conventional assumptions like Functional Extensionality
(FE) and Proof-irrelevance (PI) to more controversial ones like the Axiom of Continuity. We will,
however, also be able to present isomorphisms between boolean functions and prime trees, that do
not require any unprovable assumptions, but have their own set of draw-backs.

1

1.2 Structure of the thesis

The thesis consists of three main parts. In Chapter 2 we introduce the mathematical notions of
boolean functions, decision trees and prime trees, as well as notation for those semantic objects.

Chapter 3 gives a short introduction to Coq’s Calculus of Inductive Constructions. In addition
we introduce some types which form the very base of our endeavour, like bool and a model that
expresses an isomorphism between two types, as well as a classical axiom which is always of im-
portance when talking about functions in Coq: Functional Extensionality.

The fourth chapter introduces one possible representation for boolean functions in constructive
type theory; cascaded boolean functions. Furthermore, we give a suitable inductive type for de-
cision trees as a so-called dependent inductive type. With this, we then derive a straightforward
definition of prime trees and prove that our representation of prime trees is isomorphic to cascaded
boolean functions. In addition, we briefly demonstrate how to define decision trees in a recursive
way and show that both representations of decision trees coincide.

Chapter 5 outlines the construction of decision trees as a simple inductive type. Moreover, we
give three alternative definitions for boolean functions and show which problems arise while prov-
ing that boolean functions and prime trees are isomorphic in a constructive setting. In order to
work around these problems axioms are needed.

2

Chapter 2

Theory

In this Chapter we give a short formal introduction to boolean functions, decision trees and prime
trees as given by Smolka and Brown in [7]. Prime trees are essentially a simplified version of
Bryant’s Binary Decision Diagrams [5].

2.1 Boolean functions

Boolean functions are an abstraction of functional circuits, which map a certain number of two-
valued inputs x1, . . . , xn to a certain number of outputs y1, . . . , ym. Each one of those outputs is
computed using as many available inputs as needed. This means that every output combined with
the inputs, characterizes a certain boolean function. Mathematically speaking, we have a finite
set of variables V and assignments which are functions V → B mapping variables to truth-values
{1, 0} =: B. Boolean functions compute a truth-value from the assigned values of the variables.
This pinpoints the set of boolean functions to (V → B)→ B.

There are several possible ways to represent a boolean function, the first one being truth tables.
Truth tables list the result of a boolean function for every possible assignment. For V := {a, b} an
example of a truth table for a boolean function φ is given by:

σ a σ b φ σ
0 0 0
0 1 0
1 0 0
1 1 1

One can easily observe that φ σ = 1 if σ a = 1 and σ b = 1. Otherwise φ evaluates to 0. While
truth tables give a very detailed characterization of boolean functions, they are not suited well for
storing a boolean function in memory due to their high need of space.
The well-known logical formulae give a much more compact representation of a boolean function. It
is no surprise that the above φ is described by the formula a∧ b. We denote with F the set of logical
formulas depending only variables from V. For s ∈ F we define V s to be the set of variables used
in s. We also specify a function 〈·〉 ∈ F → (V → B) → B mapping formulas to their boolean

3

Chapter 2. Theory

functions:

〈>〉 = λσ. 1
〈⊥〉 = λσ. 0
〈a〉 = λσ. σa
〈¬s〉 = λσ. 1− 〈s〉σ
〈s ∧ t〉 = λσ. min{〈s〉σ, 〈t〉σ}
〈s ∨ t〉 = λσ. max{〈s〉σ, 〈t〉σ}
〈s→ t〉 = λσ. max{1− 〈s〉σ, 〈t〉σ}
〈s ≡ t〉 = λσ. i f 〈s〉σ = 〈t〉σ then 1 else 0

While formulas give compact characterizations of boolean functions, there is not just one formula
per boolean function. In fact there are infinitely many formulas representing the same function.
For instance, > and x ∨ ¬x both represent the same boolean function, as > ≡ (x ∨ ¬x) holds.

2.2 Decision Trees

Considering that formulas are not unique for a boolean function, we will treat a special class of
formulas called decision trees, which will form the foundation of an informative canonical repre-
sentation for boolean functions. We will start by introducing conditionals, which are well-known
from programming. Conditionals are formulas of the form t ∧ s1 ∨ ¬t ∧ s2 which we will write as
(t, s1, s2). Using this construct, decision trees can elegantly be defined by induction.

• > and ⊥ are decision trees

• (x, t1, t2) is a decision tree, if x is a variable and if t1 as well as t2 are decision trees.

As the name suggests, decision trees can be interpreted as tree diagrams. Using this diagram repre-
sentation of a formula, it is easy to decide whether it is valid for a certain input. For σ ∈ V → B and
s ∈ F, we can compute 〈s〉 σ by recursively following the path described by σ starting at the root
x, where σ x = 1 means, that we can forget about the right subtree of x and continue by evaluating
the left subtree. The result is then given by the leaf we inevitably reach, where > means 1 and ⊥
means 0.

2.3 Prime Trees

Prime trees are decision trees which fulfill two properties. They are reduced and ordered. A decision
tree is reduced if no internal node has equal subtrees, meaning that no subtree is of the form (x, t, t).
Formally, we can capture this as a recursive predicate reduced on decision trees:

• ⊥ and > are reduced

• (x, t1, t2) is reduced⇐⇒ t1 6= t2 and t1 as well as t2 are reduced

Assume a linear order < on V. For x, y ∈ V, we say that x is smaller than y if x < y. A decision tree
is then ordered if, for every path from root to leaf, the variables become smaller. We also formalize
this with a predicate on decision trees with an intermediate step. We first define when a decision
tree is ordered with respect to a variable.
Let x, y be variables:

• ⊥ and > are ordered w.r.t. x

4

2.3. Prime Trees

• (y, t1, t2) is ordered w.r.t. x⇐⇒ y < x and both t1, t2 are ordered w.r.t. y

With this intermediate step, we are able to define when a decision tree is ordered in an elegant way:

• ⊥ and > are ordered

• (x, t1, t2) is ordered⇐⇒ t1, t2 are ordered w.r.t. x

In fact, these constraints remind of Binary Decision Diagrams introduced by Bryant in 1986 [5].
For illustration purposes, let V = {1, 2}. Then (1,>,>) and (1, (2,⊥,>),>) are not prime trees,
the former not being reduced and the latter not being ordered since 2 ≮ 1. The decision tree
(2, (1,⊥,>),>), however, is reduced and ordered, which also makes it a prime tree.

5

Chapter 2. Theory

6

Chapter 3

Preliminaries

In this chapter we introduce Coq’s Calculus of Inductive Constructions as well as some well-known
issues that come with it (Section 3.2). We discuss issues that arise while dealing with functions in
Constructive Type Theory in Section 3.3 and give a few Coq definitions which form the very basis
of the thesis’ goal in Sections 3.1 and 3.3. The main focus lies on Section 3.4, where we try to bring
across the complications one has to deal with, when trying to find a reasonable way of representing
isomorphisms in Coq. In the end, we come up with a model of isomorphism based on the notions
of setoid and partial setoid as given by Barthe et al. in [3].

3.1 A two-valued type: bool

The intuition behind boolean functions as an abstract object is more or less clear. However, before
one can begin to define such functions in Coq, one needs to come up with a type to represent the
two-valued inputs and outputs of boolean functions. Such a type is given by bool. It is predefined
in Coq as an inductive type, hence, the keyword Inductive [2].

Inductive bool : Set :=
| true : bool
| false : bool.

Three constructors are involved in this definition. bool is a type constructor. It is of type Set, which
is a universe of types. true and f alse are the member constructors of the type bool. In general, the
only members of an inductive type in Coq, are those terms constructed by its member constructors.
This means that bool has exactly two members: true and f alse. bool will serve us as representative
for our two-valued inputs and outputs.

3.2 Coq and the Elim Restriction

The central idea of Constructive Type Theory is to model propositions as types. This means that
programs and properties are both written in the same language. For Coq this language is the Calculus
of Inductive Constructions. The heart of Coq is a type checking algorithm. What this means for func-
tional programming is clear: We design structures of a certain type T and we do computation on
them by defining procedures which take elements of type T as arguments. The type checker then
makes sure that the argument and the procedure are compatible before doing any computation.
In Coq, such datastructures, say D, would be inhabitants of the type universe Type and procedures
on them would have functions types from D to some other type T. Function types are of the form
∀(t1 : T1) · · · (tn : Tn), T t1 · · · tn and are themselves again members of Type. What is denoted
by Type, is, however, not just one universe, but infinitely many, namely: Typen for any natural

7

Chapter 3. Preliminaries

number n.1 We say that function types quantify over T, if their members take arguments of type
T. Function types which quantify over Typen, are in general inhabitants of a higher universe than
their arguments: Typen+1. For propositions and proofs the whole story is essentially the same with
one big exception. Propositions are terms of type Prop. Prop is the lowest type universe and it is
impredicative, meaning that quantification over a type (including Prop) yields another proposition.
Finding a proof of a proposition, say P, boils down to finding a term of type P. This means proof
checking is in fact type checking. The impredicativity of Prop, however, comes at a price. We are not
allowed to use information stored in a proof, to build something different then a proof. We refer to
this restriction as the elim restriction. The issue is best made clear by a small example: Suppose we
would define an inductive proposition bool′:

Inductive bool’ : Prop :=
| true’ : bool’
| false’ : bool’.

The definition of the following function is allowed.

Definition bool2bool’ (b : bool) : bool’ :=
if b then true’ else false’.

bool2bool′ maps members of bool to proofs of bool′ in an obvious way. The definition of the inverse
of this function is however not permitted:

Definition bool’2bool (b : bool’) : bool :=
if b then true else false.

bool′2bool maps proofs of bool′ to inhabitants of bool which is not a proposition and is restricted
because we need to know the structure of the proof in order to make a decision on which boolean
to return.
A switching function on bool′ is, however, allowed, since we construct proofs from proofs.

Definition switch (b : bool’) : bool’ :=
if b then false’ else true’.

The elim restriction is necessary to ensure consistency of Coq.

3.3 Functional Extensionality

Obviously, functions are an important topic of this thesis. However, set theoretic functions and
type theoretic functions are two very distinct notions. It is therefore very important to understand
the difference, which is best shown by a small example. Consider the functions bool → bool. Set
theory tells us that there are exactly 4 different functions bool → bool:

K> := λ . true
K⊥ := λ . f alse

negb := λb. ¬b
idbool := λb. b

Every other function bool → bool is considered equal to one of the four functions above. For
instance idbool ◦ idbool = negb ◦ negb = idbool or negb ◦ K> = K⊥. This is because set theoretical
functions abstract from algorithmic content. In type theory, however, functions are procedures
with algorithmic content, which means that we have to give an implementation in order to define
a function. We conclude, that negb ◦ negb and idbool ◦ idbool are different algorithms and therefore
negb ◦ negb = idbool ◦ idbool is not provable in Coq, implying that there are infinitely many functions

1The type universe Set mentioned in Section 3.1 can be seen as the second lowest type universe. Most of the basic types,
like bool, are inhabitants of Set.

8

3.4. Representing an isomorphism in Coq

of type bool → bool in Coq. However, both procedures negb ◦ negb and idbool ◦ idbool compute the
same mathematical function idbool . We say that two procedures f and g, which compute the same
function, are equivalent. In Coq, this idea is captured by the following definition:

Definition equivalent {A B : Type} (f g : A→ B) : Prop := ∀ a:A, f a = g a.

We consider procedures as equivalent (and write f ≡ g), if they have the same input-output be-
haviour. In the remainder of this thesis, we will call procedures functions, whenever it is clear that
we are talking about procedures in Coq.
Sometimes one wants to be able to replace equivalent functions with each other in every possible
context. This is not immediately possible in Coq, since it would involve proving something of the
form f ≡ g ⇒ f = g for every two functions of matching types. While it is easy to prove this
set theoretically, since equivalent functions are also equal, it is not provable in Coq. The result is
known as Functional Extensionality and it can only be assumed in Coq as an axiom.

Axiom FE : ∀ {A B : Type} (f g : A→ B), f ≡ g→ f =g.

Functional Extensionality is a conventional mathematical reasoning principle.

3.4 Representing an isomorphism in Coq

The main goal of this thesis is to show that prime trees give a canonical representation for boolean
functions. We want to achieve this by showing that prime trees and boolean functions are iso-
morphic. Now the question arises on how to best represent an isomorphism in constructive type
theory. In mathematics an isomorphism between two sets A and B is defined as an invertible func-
tion f ∈ A→ B.

f isomorphismA,B ⇐⇒ ∃g ∈ B→ A : f ◦ g = idB ∧ g ◦ f = idA

One can generalize this definition up to two relations ≡A⊆ A× A and ≡B⊆ B× B, as follows:

f isomorphism≡A ,≡B
A,B ⇐⇒ ∃g ∈ B→ A : ∀b ∈ B, (f ◦ g)(b) ≡B b ∧

∀a ∈ A, (g ◦ f)(a) ≡A a

If one wants to show that two sets A and B are isomorphic, it suffices to find two functions f ∈
A → B and g ∈ B → A, where g plays the role of f−1, such that f is an isomorphism≡A ,≡B

A,B . We
denote this using (A,≡A) u f (B,≡B).
Unfortunately, this definition does not characterize what we want. Consider the following relations
on the natural numbers:

≡eq = {(x, y) | x = y}
≡all = N×N

While ≡eq tells us that two natural numbers are only related if they are equal, ≡all relates every
pair of natural numbers. Surprisingly, we can now prove the following, which we obviously don’t
want to have:

Lemma 3.1. (N,≡eq) uid (N,≡all).

Proof. We have (id ◦ id)(x) = x and therefore (id ◦ id)(x) ≡eq x. Also (id ◦ id)(x) ≡all x holds
because both (id ◦ id)(x) and x are natural numbers.

We are able to prove this, because we have not ensured that our mappings f and g respect their

9

Chapter 3. Preliminaries

respective relations. Formally, we have to enforce the additional property

∀a1, a2 ∈ A : a1 ≡A a2 ⇒ g(a1) ≡B g(a2) ∧
∀b1, b2 ∈ B : b1 ≡B b2 ⇒ f (b1) ≡A f (b2)

Clearly, this is violated for the above lemma, because x ≡all y ; id(x) ≡eq id(y), as x and y are in
general not equal.

To capture this mathematical definition of an isomorphism in Coq, we first have to model rela-
tions. A relation between two types A and B will be a predicate R of type A → B → Prop. This
way, a ≡ b holds, if and only if R a b is provable in Coq. We have already seen such a relation in the
section about Functional Extensionality (Section 3.3), namely, equivalence of functions (≡) of type
(A→ B)→ (A→ B)→ Prop for some types A, B.

3.4.1 Setoids and partial setoids

To represent the ideas of isomorphisms up to two relations and functions respecting relations in Coq, we
decided to revert to an elegant approach involving setoids, partial setoids and morphisms. Usually
setoids are used to represent sets in intentional type theory by giving the "set" as a type called the
carrier, an equality on the set and a proof component involving the equality [3]. A (total) setoid is
defined as a dependent triple:

Setoid := (T : Type , R ⊆ T × T , R equivalence relation on T)

In Coq, this can be realized with Σ types.

Definition Reflexive {T : Type} (R : T→ T→ Prop) :=
∀ t : T, R t t.

Definition Symmetric {T : Type} (R : T→ T→ Prop) :=
∀ t1 t2 : T, R t1 t2 → R t2 t1.

Definition Transitive {T : Type} (R : T→ T→ Prop) :=
∀ t1 t2 t3 : T, R t1 t2 → R t2 t3 → R t1 t3.

Definition ER {T : Type} (R : T→ T→ Prop) :=
Reflexive R ∧ Symmetric R ∧ Transitive R.

Definition Setoid := { T : Type & { R : T→ T→ Prop | ER R } }.

We use multiple versions of so-called Σ types in this definition.

• {a : A | P a}: This is notation for sig A P, where A : Type and P : A → Prop. It is a Curry-
Howard version of existential quantification. While ∃a : A, P a is a proposition, {a : A | P a}
has type Type. For both constructs, we have to give a witness a : A for which the proposition
P a can be proven.

• {a : A & T a}: Such a term is mostly referred to as a dependent sum. Without notation it
takes the form sigT A T, where A : Type and T : A → Type. The difference to sig is that, the
right-hand side T a is a type instead of a predicate, which depends on the left hand side.

We will use overloaded notation for both sig and sigT by writing Σa:A(P a) whether P has type
A→ Prop or A→ Type.

We write functions for extracting the domain type and the relation over the carrier type.

Definition D (S : Setoid) : Type := let (T,) := S in T.

10

3.4. Representing an isomorphism in Coq

DefinitionR (S : Setoid) : (D s→D s→ Prop) :=
let (T, P) as z return (D z→D z→ Prop) := S in

let (r,) := P in r.

A function mapping from one setoid to another by preserving their individual equality is called a
morphism and embodies the idea of a function respecting relations mentioned above. The definition
is again by Σ type:

Definition morphism (S1 S2 : Setoid) : Type :=
{ f : D S1 →D S2 | ∀ x y : D S1, (R S1) x y→ (R S2) (f x) (f y) }.

Instead of morphism S1 S2 we will write S1 � S2.
Two functions D S1 → D S2 over setoid domains are equivalent if they their outputs are equal
underR S2.

Definition morphism eq {S1 S2 : Setoid} (f g : D S1 →D S2) : Prop :=
∀ x, (R S2) (f x) (g x).

We will write f ≡R g for morphism eq f g.
Instead of saying that two types are isomorphic we now consider the idea of two setoids being
isomorphic, by finding suitable relations and morphisms between them such that the composition
of the morphisms is equivalent to the identity function. Formalized in Coq, this looks as follows:

Definition SetoidIsomorphism (S1 S2 : Setoid) (m1 : S1� S2) (m2 : S2� S1) :=
let (f,) := m1 in let (g,) := m2 in (f ◦ g) ≡R id ∧ (g ◦ f) ≡R id.

By characterizing an isomorphism predicate like this, we make sure that the relations and map-
pings involved, fulfill some necessary conditions before we can even argue about an isomorphism
at all.

Sometimes we have a suitable equality on a type but we fail to turn them into a setoid, because
the equality is not provably reflexive. For us, this will be the case due to extensionality issues. We
account for such cases by weakening the constraint on the equalities, such that they only have to
be partial equivalence relations.

Definition PER {T : Type} (R : T→ T→ Prop) :=
Symmetric R ∧ Transitive R.

We adapt the definition of setoid to define partial setoids.

Definition PartialSetoid := { T : Type & { R : T→ T→ Prop | PER R } }.

The definitions ofD,R and morphism, also work on partial setoids, by changing the argument type
to PartialSetoid. Therefore we use D,R and morphism for both flavours of setoids.

The definition of morphism eq has to be adapted to account for the missing reflexivity of the rela-
tions.

Definition morphism eq p {S1 S2 : PartialSetoid} (f g : D S1 →D S2) : Prop :=
∀ x, (R S1) x x→ (R S2) (f x) (g x).

We will write f ≡p
R g for morphism eq p f g. A definition for an isomorphism between two

partial setoids can easily be derived from the above adaptation.

Definition PartialSetoidIsomorphism (S1 S2 : PartialSetoid) (m1 : S1� S2) (m2 : S2� S1) :=
let (f,) := m1 in let (g,) := m2 in (f ◦ g) ≡p

R id ∧ (g ◦ f) ≡p
R id.

We will see a legitimate example of two partial setoids which are isomorphic in Section 5.6.

11

Chapter 3. Preliminaries

12

Chapter 4

Decision trees as a dependent inductive type

In this chapter we provide a first formalization of boolean functions, decision trees and prime trees
in Coq. Section 4.1 introduces boolean functions as n-ary cascaded functions as defined in Coq’s
standard library [2]. In Section 4.2 we realize decision trees as a dependent inductive type and
showcase the complications and lack of automation that comes with it. Section 4.2 also covers a
small debate about recursive types and inductive types, inspired by Adams in [1] and gives an
alternative recursive definition of decision trees and a proof that both representations are in fact
equivalent. In the last section (Section 4.3), we add constraints to decision trees to obtain prime
trees, which are a simplified version of Bryant’s Binary Decision Diagrams (BDD) [5] , and show
that prime trees are canonical representatives for boolean functions.

4.1 Cascaded boolean functions

In Chapter 3 we already saw how to model the two-valued inputs and outputs of boolean functions.
It is however not immediately clear how a suitable type for boolean functions themselves looks
like. In Chapter 2, we defined boolean functions using a finite set of variables V and assignments
of the form V → B. To translate this into Coq, we have to define a function type taking arbitrarily,
but finitely many two-valued inputs. More precisely, a type taking n booleans before returning
a boolean: booln → bool. In fact, such function types An → B for arbitrary types A and B are
predefined in Coq’s standard library by recursion on the number of inputs.

Fixpoint nfun A n B :=
match n with

| 0⇒ B
| S n⇒ A→ (nfun A n B)

end.
We call functions of type An → B cascaded functions from A to B. Note that A0 → B reduces to
B, which matches our intuition of a ’function taking no argument’. Obviously, a boolean func-
tion taking n arguments will be modelled in Coq as nfun bool n bool, which we will abbreviate as
booln → bool.

In order to prove any meaningful result, we need to be able to give all the arguments to a cas-
caded function An → B at once. Since we cannot quantify over n variables, we need to come up
with a type, whose inhabitants contain exactly n elements of type A. The Coq standard library has
such a type predefined. It is called nprod and like the name suggests, it realizes an n-ary product
or n-tuple. It is also defined by recursion on the size of the tuple.

13

Chapter 4. Decision trees as a dependent inductive type

Fixpoint nprod A n : Type :=
match n with

| 0⇒ unit
| S n⇒ A × nprod A n

end.

This definition is worthy of more explanation. It involves the inductive types unit and prod. unit
is the inductive type with exactly one inhabitant, which is obtained by its sole constructor tt : unit.
The type prod realizes pairs in Coq. It, too, has only one constructor pair taking two elements a : A
and b : B for two arbitrary types A, B. We conclude that nprod A n stands for A× ...× A× unit,
with n occurrences of A in this type. We will use the conventional mathematical notation An for
n-tuples over A and we will denote members of An as ~a. In order to avoid ambiguities we will
write An → B for nfun A n B and (An)→ B for nprod A n→ B.

Of course, cascaded functions cannot immediately handle n-tuples as arguments. Coq’s standard
library provides a function called nuncurry for exactly that purpose. We name this procedure Ap
and it will allow us to feed the n arguments to the function one by one.

Fixpoint Ap {A B : Type} {n : nat} : (An → B)→ (An)→ B :=
match n with

| 0⇒ fun b ⇒ b
| S n⇒ fun f ~a⇒ let (a,~a′) :=~a in Ap (f a)~a′

end.

The first thing that stands out is the return type ∀(f : An → B)(~a : An), B of Ap. The structure
of f and~a depends on the implicit argument n, which is why we bind them after we did the case
analysis on n, when their top level structure is certain. If we have no arguments, A0 → B reduces
to B, making f an element of type B, which we suggestively bind as b, then we return exactly b. In
the other case, we use the fact that~a has type An+1, meaning that we can extract the first element
a, apply it to f , which is of type An+1 → B, and continue recursively by applying f a : An → B to
~a′ : An. For readability we will leave Ap implicit most of the time. We will, thus, write f ~a for Ap f ~a.

We have seen in Section 3.3, that we consider two functions as equivalent, when they have the
same input-output behaviour. With Ap we are able to capture this idea for cascaded functions.

Definition Feq {A B : Type} {n : nat} (f g : An → B) : Prop :=
∀~a : An, Ap f ~a = Ap g~a.

We write f ≡ g, when f is equivalent to g.

Lemma 4.1. ≡ is an equivalence relation.

Proof. Let f , g, h : An → B be given.

• Reflexivity: For any given~a : An, f ~a = f ~a holds by reflexivity of =.

• Symmetry: Let f ≡ g and~a : An be given. Because of f ≡ g we also have f ~a = g~a which
gives us the desired result by symmetry of =.

• Transitivity: Let f ≡ g and g ≡ h be given. For any given ~a : An, we have f ~a = g ~a and
g~a = h~a. The claim follows through transitivity of =.

One can show that for n = 0, equality can be proven from equivalence.

Lemma 4.2. ∀ f g : A0 → B, f ≡ g→ f = g.

14

4.2. Decision trees

Proof. Let f and g be ’functions’ taking no argument. We have A0 = unit, f ~a = f and g ~a = g
for~a : A0 by definition. Then,

f ≡ g = ∀~a : A0, f ~a = g~a
= unit→ f = g

So, we obtain a proof of f = g by feeding tt : unit to the proof of f ≡ g.

As for equivalence, we have to adapt the statement of Functional Extensionality to cascaded func-
tions. In fact, we can prove that from Functional Extensonality one can obtain an extensionality
principle for cascaded functions.

Lemma 4.3 (Cascaded Functional Extensionality). Let A and B be two arbitrary types and n : nat.
Then, FE→ ∀ f g : An → B, f ≡ g→ f = g.

Proof. We assume FE. Let f , g : An → B with f ≡ g be given. To show : f = g
Induction on n.

• n = 0 : We know by Lemma 4.2 that equivalence and equality coincide for n = 0.

• n→ n + 1 : We have f , g : An+1 → B with f ≡ g in addition to the inductive hypothesis

IH : ∀ f g : An → B, f ≡ g→ f = g

According to FE, it suffices to show that ∀a : A, f a = g a to obtain f = g.
Let a : A be given. Since f a and g a have type An → B, IH applies and it suffices to show

f a ≡ g a : ∀~a : An, (f a)~a , f (a,~a)
f≡g
= g (a,~a) , (g a)~a.

4.2 Decision trees

Syntax

Considering that we have defined decision trees inductively in Chapter 2, it is only natural to use an
inductive type to represent decision trees in Coq. We will do so with a somewhat unconventional
dependent inductive type DT of type nat → Type. The idea is that every decision tree depends
on a natural number, representing the number of variables the decision tree depends on. In the
following we will refer to this natural number as the level of the decision tree.

Inductive DT : nat→ Type :=
| DT0 : DT 0
| DT1 : DT 0
| DTI : ∀ {n}, DT n→ DT n→ DT (S n)
| DTL : ∀ {n}, DT n→ DT (S n).

It may be surprising to the reader that DT has four constructors. As expected we have two con-
structors representing the base cases, DT0 for ⊥ and DT1 for >, which both are of level 0, because
they do not depend on any variable. DTI is the branching constructor. It takes two subtrees of equal
level n and creates a decision tree of an elevated level n + 1. The fourth constructor DTL is the
lifting constructor, which increases the level of a decision tree from n to n + 1. This is necessary
since a branching tree can only be constructed via two subtrees of the same level. Assume two
trees t1 : DT n and t2 : DT m with n < m. If one wants to combine them using DTI , then one can
do so by iterating the lifting constructor m− n times on t1, equating their levels.

15

Chapter 4. Decision trees as a dependent inductive type

Semantics

With the syntax fixed, we are able to define semantics of decision trees. We will use the denotational
approach by defining the meaning of decision trees by a function. Clearly, this has to happen
recursively since DT is an inductive type.

Fixpoint DT Den {n:nat} (t:DT n) : booln → bool :=
match t with
| DT0 ⇒ false
| DT1 ⇒ true
| DTI n t1 t2 ⇒ fun b:bool⇒ if b then (DT Den t1) else (DT Den t2)
| DTL n t⇒ fun ⇒ (DT Den t)

end.

Unsurprisingly, we return true and f alse for DT1 and DT0 respectively. In the branching case DTI ,
we do a case analysis on the first boolean argument to decide whether we have to consider the left
or the right subtree. In the lifting case, we just take and ignore the first argument and continue
recursively with the underlying tree.
As in the definition of Ap, the returned function depends on the parameter n : nat. In the first two
cases DT0 and DT1, we have n = 0, because DT0 and DT1 are of type DT 0, thus we must return an
element of type bool0 → bool which is equal to bool. In the last two cases, we have n + 1 arguments,
therefore Coq expects us to return a function of type booln+1 → bool = bool → booln → bool. We
do so by first taking an element of type bool and recursively continuing with the subtrees of level
n. In the following we will use JtK for DT Den t.
Note that the design of decision trees doesn’t require any modelling of variables. We will therefore
write (, t1, t2) for DTI t1 t2, instead of (x, t1, t2) for any variable x, like we did in Chapter 2. Also
we will use tn for an n-times lifted tree DTL . . . DTL︸ ︷︷ ︸

n times

t in addition to ⊥ and > for DT0 and DT1.

We will show that lifting a tree once, is equivalent to ignoring the first variable.

Lemma 4.4. Let t : DT n, b : bool and~b : booln be given.
Then, JtK~b = Jt1K (b,~b).

Proof. Jt1K (b,~b) = (f un ⇒ JtK) (b,~b) = ((f un ⇒ JtK) b)~b = JtK~b

Sometimes it is important to know if two decision trees are equal. In Coq, two terms are equal,
if they are convertible, meaning, that they have the same normal form under all kinds of reduc-
tions. This implies that the terms must be of the same type. It turns out, that this prevents us from
defining a decision procedure for equality on DT in a straightforward way. To be more precise, we
want to define a certifying function of the form

∀t1 t2 : DT n, {t1 = t2}+ {t1 6= t2}.

which just us that we can either prove equality or inequality of two decision trees. However, the
conventional approach using induction on t1 and immediate case analysis on t2 produces ill-typed
cases like {> = t1}+ {> 6= t1}. The problem is that, after induction on t1, we end up having four
cases: two cases where t2 : DT 0 and two cases where t2 : DT (n + 1). Subsequent case analysis
on t2 produces again 4 cases (per case), despite t2 having type DT 0 (meaning that only t2 = >
or t2 = > are possible) and DT (n + 1) (only t2 = (, t, t′) or t2 = t1 are possible) respectively.
Consequently, we have to come up with a dependent inversion function for DT, which deduces
the appropriate cases from the level of a given decision tree. While the idea behind this is fairly
easy, the translation into Coq is a quite tricky task.

16

4.2. Decision trees

Definition DT Inv {n : nat} (dt : DT n) :
match n as z return DT z→ Type with

| O⇒ fun dt⇒ {dt = ⊥} + {dt = >}
| S n’⇒ fun dt⇒ {p : (DT n’) × (DT n’) | dt = (, fst p, snd p)}

+ {t : DT n’ | dt = t1}
end dt.

First of all, note, that we have not yet given a definition of DT Inv. What we have written above is
but the return type of DT Inv.
We start by explaining the not previously introduced sum types. sumbool : Prop→ Prop→ Set is a
Curry-Howard version of the proposition Or : Prop → Prop → Prop. For both, an Or-proposition
P ∨ Q and an instance of sumbool {P}+ {Q}, it suffices to fulfill either P or Q. sumbool is used in
the n = 0 case of DT Inv. sum : Type → Type → Type is similar. Here, one has to give either a
member of the left type or the right type. sum is used in the n = S n′ case of DT Inv.
f st and snd are obviously the first and second projection on a non-dependent pair.
We achieve the inversion effect with a case analysis within the return type of DT Inv, which states
that the trees at level 0 are either ⊥ or > and that trees of every other level are either lifted trees or
branching trees. Note that the return-clause of the match states that we return a function taking a
decision tree and returning a type. This is necessary, because, in order to make the return type of
DT Inv dependent, we have to bind the given decision tree dt anew in each individual case of the
match. This is why we have to apply dt to the match at the very end.
Thankfully, it is not difficult at all to give a function which has this complicated type. Given the
decision tree dt : DT n, we just have to consider the four different cases. Since dt depends on n, a
case analysis on dt will also fix n to either 0 or n′ + 1 for some n′ : nat and the match will reduce.
Let dt be

• ⊥ : We have to give an element of {⊥ = ⊥} + {⊥ = >}. We trivially fulfill the left hand
side.

• > : We have to give an element of {> = ⊥}+ {> = >}. We trivially fulfill the right hand
side.

• (, t1, t2) : We fulfill the left hand side by giving the witness (t1, t2). With f st (t1, t2) = t1
and snd (t1, t2) = t2, we have (, t1, t2) = (, f st (t1, t2), snd (t1, t2)).

• t1 : We fulfill the right hand side by giving t and prove the condition t1 = t1 trivially.

The necessity of such a complicated inversion function fuels a conflict well-known to Coq users:
Which is better, inductive types or recursive types? The answer is best given by a small intuitive
example given in [1]: Consider the following dependent inductive definition of vectors of length n
over a type T:

Inductive V (T : Type) : nat→ Type :=
| nil : V T 0
| cons n : T→ V T n→ V T (S n).

Now assume, that we want to prove the following obvious result about V T:

∀~v : V T 0, ~v = nil

In order to find a proof of this statement, we would have to write a similar inversion function to
DT Inv, which decides, by looking at the structure of the dependency, which case we are in. Now
recall the definition of nprod from the previous section 4.1 , our recursive type for n-tuples. The
corresponding result for nprod is a trivial:

∀~v : T0, ~v = tt

17

Chapter 4. Decision trees as a dependent inductive type

The difference lies in the fact that we are easily able to deduce information about the structure of a
recursive object by looking at the top-level structure of its dependency. This is due to the fact that
recursive types are subject to reduction, which inductive types are not. In our example we know
that T0 reduces immediately to unit, which only holds tt as member. For V T 0 this is not the case.
We have to deduce by hand (by writing an inversion function) that a member of V T 0 cannot be
constructed with the constructor cons since it produces only non-empty vectors, hence it must be
nil.

With this in mind we try to define a recursive type DTrec : nat→ Type isomorphic to DT. DT 0 has
only two inhabitants, meaning that it is isomorphic to bool =: DTrec 0. Alternatively, we could use
unit + unit : Set, whose inhabitants are inl unit tt and inr unit tt . This idea is useful to define a
type isomorphic to DT (n + 1) namely (DTrec n×DTrec n) + DTrec n. This way every DTrec (n + 1)
constructed with inl is considered to be a branching tree and all others are lifted trees. In Coq,
recursive decision trees take the following form:

Fixpoint DTrec (n : nat) : Type :=
match n with

| 0⇒ bool
| S n⇒ (DTrec n × DTrec n) + DTrec n

end.

What we hoped for, is indeed the case. By definition we have but two cases for a recursive decision
tree of level 0, namely true or f alse, and two cases for a tree of level n+ 1, namely inl (t1, t2) or inr t.

The denotation function J·Krec : ∀n, DTrec n→ booln → bool of DTrec is similar to the one of DT:

Fixpoint DTrec Den {n : nat} : DTrec n→ booln → bool :=
match n as z return DTrec z→ boolz → bool with
| 0⇒ fun t⇒ if t then true else false
| S n⇒ fun t b⇒

match t with
| inl (t1, t2)⇒ if b then DTrec Den t1 else DTrec Den t2
| inr t⇒ DTrec Den t

end

end.

In fact one can easily prove that DT n and DTrec n are isomorphic. Here are functions mapping back
and forth. We will not use notation since the implicit argument n : nat of DTI and DTL is important
for the DT2DTrec mapping.

Fixpoint DT2DTrec {n : nat} (t : DT n) : DTrec n :=
match t in DT z return DTrec z with
| DT0 ⇒ false
| DT1 ⇒ true
| DTI n t1 t2 ⇒ inl (DTrec n) ((DT2DTrec t1), (DT2DTrec t2))
| DTL n t’⇒ inr (DTrec n × DTrec n) (DT2DTrec t’)

end.

Fixpoint DTrec2DT {n : nat} : (DTrec n)→ (DT n) :=
match n as z return DTrec z→ DT z with
| 0⇒ fun t : DTrec 0⇒ if t then DT1 else DT0
| S n⇒ fun t : DTrec (S n)⇒ match t with

| inl (t1,t2)⇒ DTI (DTrec2DT t1) (DTrec2DT t2)
| inr t’⇒ DTL (DTrec2DT t’)

end

end.

18

4.2. Decision trees

We verify that the mappings fulfill the necessary conditions.

Lemma 4.5. Let n : nat be given.

1. (DT n,=) and (DTrec n,=) are setoids.

2. DTrec2DT is a morphism (DTrec n,=)� (DT n,=).

3. DT2DTrec is a morphism (DT n,=)� (DTrec n,=).

Proof.

1. = is an equivalence relation.

2. Let t, t′ : DTrec n with t = t′ given. Then we immediately have DTrec2DT t = DTrec2DT t′.

3. Analogous to 2.

We prove that the two mappings indeed form an isomorphism between (DT n,=) and (DTrec n,=).

Theorem 4.1. Let n : nat be given.
We show: SetoidIsomorphism (DT n,=) (DTrec n,=) DT2DTrec DTrec2DT.

Proof. We have to show:

• ∀t : DT n, t = DTrec2DT (DT2DTrec t) : Let t : DT n be given. Induction on t:

– t = > : By definition DT2DTrec > = true and DTrec2DT true = >.

– t = ⊥ : By definition DT2DTrec ⊥ = f alse and DTrec2DT f alse = ⊥.

– t = (, t1, t2) : We have two inductive hypotheses:

IH1 : t1 = DTrec2DT (DT2DTrec t1)

IH2 : t2 = DTrec2DT (DT2DTrec t2)

The claim follows immediately by the definitions of DTrec2DT and DT2DTrec as well as
IH1 and IH2.

– t = t′1 We have the inductive hypothesis:

IH : t′ = DTrec2DT (DT2DTrec t′)

The claim follows immediately by the definitions of DTrec2DT and DT2DTrec as well as
IH.

• ∀t : DTrec n, t = DT2DTrec (DTrec2DT t) : We have t : DTrec n. Induction on n:

– n = 0 : We either have t = true or t = f alse. For both cases the claim follows
since DTrec2DT true = > and DT2DTrec > = true as well as DTrec2DT f alse = ⊥
and DT2DTrec ⊥ = f alse.

– n→ n + 1 : We have the inductive hypothesis:

IH : ∀t : DTrec n, t = DT2DTrec (DTrec2DT t)

Since t : DTrec (n + 1) we either have:

19

Chapter 4. Decision trees as a dependent inductive type

∗ t = inl (t1, t2) : We use IH for both t1 and t2 and obtain thereby
t1 = DT2DTrec (DTrec2DT t1) and t2 = DT2DTrec (DTrec2DT t2). By this and the
definitions of DT2DTrec and DTrec2DT we have the claim.
∗ t = inr t′ : We use IH for t′ and obtain t′ = DT2DTrec (DTrec2DT t′). By this and

the definitions of DT2DTrec and DTrec2DT we have the claim.

For the remainder of this chapter we will continue with the development for DT. All the results
can be easily adjusted to DTrec. If parts of the development are different for DTrec we will write so
explicitly. The main difference will be that we do not need an inversion function for DTrec and that
there is more automation support for the recursive version, which makes it more convenient to use.

We prove that the lifting and the branching constructor are injective. Coq provides a tactic injection
for injectivity proofs. Consider the successor constructor S : nat → nat of the natural numbers. To
show that S is injective, that is : ∀n n′ : nat, S n = S n′ → n = n′, one applies injection to the proof
of S n = S n′, which provides n = n′. Unfortunately, injection cannot prove injectivity claims for
DT since it is a dependent inductive type, which is why we have to prove it by hand. We introduce
a helping lemma:

Lemma 4.6 (f equal). Let A, B be arbitrary types and f : A→ B.
Then, ∀a1a2 : A, a1 = a2 → f a1 = f a2.

Proof. trivial.

Note, that by instantiating f with the predecessor function pred on nat, one can show that S is
injective using f equal. f equal is part of Coq’s standard library.

Lemma 4.7 (Injectivity of DTI and DTL). We prove the following two claims 1:

1. Let dt1, dt2, dt3, dt4 : DT n.
Then, (, dt1, dt2) = (, dt3, dt4)→ dt1 = dt3 ∧ dt2 = dt4.

2. Let dt1, dt2 : DT n.
Then, dt1

1 = dt1
2 → dt1 = dt2

Proof. Consider the functions g, h : DT (S n)→ DT n defined as :

g t :=
{

t1, t = (, t1, t2)
t′, t = t′1 h t :=

{
t2, t = (, t1, t2)
t′, t = t′1

1. By instantiating f equal with A := DT (S n), B := DT n, f := g and the proof of (, dt1, dt2) =
(, dt3, dt4), we have dt1 = dt3, since g (, dt1, dt2) = dt1 and g (, dt3, dt4) = dt3.
Analogously, we have dt2 = dt4, by instantiating f := h instead of f := g.

2. By instantiating f equal with A := DT (S n), B := DT n, f := g and the proof of dt1
1 = dt1

2 we
have dt1 = dt2, since g dt1

1 = dt1 and g dt1
2 = dt2. Note, that we could also instantiate f := h.

This is due to the fact that Coq only allows definitions of total functions. Since g and h take
arguments of type DT (S n) we also have to specify what happens with a lifted decision tree:
Both functions return the underlying tree t′.

1The corresponding results for DTrec can easily be proven using the injection tactic.

20

4.2. Decision trees

Now we are all set for the definition of a certifying equality deciding procedure on DT.

Definition eq dt cert {n : nat} (t1 t2 : DT n) : {t1 = t2} + {t1 6= t2} .

We describe such a function by recursion on n.

• n = 0 : We have t1, t2 : DT 0. With DT Inv we end up with four cases, where either equality
or inequality are trivially provable by constructor discrimination.

• n = n′ + 1 : We have t1, t2 : DT (S n′) and therefore t1 and t2 are either branching trees or
lifted trees. Two of those cases can easily be treated with simple constructor discrimination
to prove trivial inequalities. Two cases remain:

– t1 = (, t3, t′3) and t2 = (, t4, t′4)
By recursion we can compare the left and right subtrees of t1 and t2. If t3 = t4 and
t′3 = t′4, then (, t3, t′3) = (, t4, t′4) can easily be proven. If either t3 6= t4 or t′3 6= t′4, then
also (, t3, t′3) 6= (, t4, t′4):
Suppose t3 6= t4 but (, t3, t3

′) = (, t4, t′4). We have t3 = t4 by Lemma 4.7.
We use a symmetric argument for the t′3 6= t′4 case.

– t1 = t1
3 and t2 = t1

4.
By recursion we either have t3 = t4 and therefore also t1

3 = t1
4, or t3 6= t4 which implies

t1
3 6= t1

4. For the last part, suppose t3 6= t4 but t1
3 = t1

4. Through Lemma 4.7 we have
t3 = t4.

For definition purposes we will define bool version of eq dt cert.

Definition eq dt {n:nat} (t1 t2 : DT n) : bool := if eq dt cert t1 t2 then true else false.

Whenever we refer to either version of decidable equality of decision trees we will write t1 =dt t2.

4.2.1 Denotational Completeness for decision trees

In this section we will work on the first essential result of our development. It is a mapping
(booln → bool) → DT n which shows that every boolean function can be expressed as a decision
tree. Such a result is called denotational completeness. To realize this in Coq, we use the concept of
certi f ying f unctions, which means, that we define an algorithm carrying its correctness proof.

Definition DT DenCompl {n : nat} : ∀φ : booln → bool, {t : DT n | JtK ≡ φ}.

We describe a function of this type via recursion on n:

• n = 0 : φ takes no argument, implying that φ : bool. Case analysis:

– φ = true : We choose >, which clearly fulfills J>K ≡ true.

– φ = f alse : We choose ⊥, which has the desired property J⊥K ≡ f alse.

• n = n′ + 1 : We have φ : booln′+1 → bool. By recursion, we obtain t1 and t0, the decision
trees fulfilling Jt1K ≡ φ true and Jt0K ≡ φ f alse, respectively. Our decision tree of choice is
(, t1, t0), and we show that J(, t1, t0)K ≡ φ.

21

Chapter 4. Decision trees as a dependent inductive type

Proof. Let~b : booln′+1 be given and let~b = (b,~b′):

J(, t1, t0)K~b = (J(, t1, t0)K b)~b′

= (i f b then Jt1K else Jt0K)~b′

Case analysis on b:
b = true :

J(, t1, t0)K~b = JttK ~b′

= (φ true)~b′ (Jt1K ≡ φ true)

= (φ b)~b′

, φ~b
b = f alse :

J(, t1, t0)K~b = Jt0K~b′

= (φ f alse)~b′ (Jt0K ≡ φ f alse)

= (φ b)~b′

, φ~b

By projection on the decision tree, we get a normal mapping from boolean functions to decision
trees from the certifying version. One can define a general projection function π1 returning the
witness of a Σ type as follows:

Definition π1 {T : Type} {P : T→ Prop} : { t : T | P t }→ T :=
fun σ⇒ let (t,) := σ in t.

We use π1 to define a mapping from boolean functions to decision trees:

Definition BF2DT {n : nat} (φ : booln → bool) : DT := π1 (DT DenCompl φ).

4.3 Prime trees

Given a decision tree it is not difficult to determine whether it is also a prime tree. According to
Chapter 2, a prime tree is a reduced and ordered decision tree. The good news is, that we do not
have to order our decision trees since the syntax and semantics of DT already enforce an order
on variables. The reason is that we do not specify explicitly on which variable the branching con-
structor works and DT Den is defined such, that it branches on the first remaining variable. Thus,
we have no choice but to take the arguments from left to right, thereby enforcing orderedness of
decision trees.

We can decide whether a decision tree is reduced in a recursive way as described in Chapter 2.
For this purpose we use the boolean version of the fact that equality of decision trees is decidable.

22

4.3. Prime trees

Fixpoint reduced {n : nat} (t : DT n) : bool :=
match t with
| ⊥ ⇒ true
| > ⇒ true
| (, t1, t2)⇒ t1 6=dt t2 ∧ reduced t1 ∧ reduced t2
| t1 ⇒ reduced t

end.

We would like to define prime trees as the subset of decision trees which are reduced. In Coq,
subsets are modelled with Σ types {a : A | P a}, where P a is a proposition, meaning, it is of type
Prop. reduced dt, however, has type bool. Luckily, we can automatically coerce bool into Prop every
time we need a boolean b to be a proposition.

Coercion bool2Prop (b : bool) := if b then True else False.

Here, True is the trivial inductive proposition, which is directly provable by its constructor I :
True. False is the empty proposition, only provable with inconsistent assumptions. By simple case
analysis on b : bool one can show that b = true iff bool2Prop b is provable. Since Coq puts coercions
in automatically the definition of prime trees is now trivial:

Definition PT (n : nat) : Type := {dt : DT n | reduced dt}.

To reason about prime trees comes down to reasoning about the underlying decision tree. We can
access this decision tree by projection.
By having reduced go to bool, we can show that all the proofs of reduced dt are equal, a result
which is, for arbitrary propositions, only provable while assuming proof-irrelevance or equally
strong assumptions. Therefore, it is always advisable to define predicates going to bool whenever
possible.

Lemma 4.8. Let dt be an arbitrary decision tree. Then, ∀ r1, r2 : reduced dt , r1 = r2.

Proof. Case analysis. Let reduced dt be

• true : By coercion r1 and r2 are proofs of True, implying that r1 = I = r2.

• f alse : By coercion r1 is a proof of False.

This fact leads to a very convenient property of prime trees considering that we are in a construc-
tive environment: For two prime trees to be equal, it suffices that the underlying decision trees are
equal.

Lemma 4.9. Let t1 and t2 be two prime trees of level n. Then, π1 t1 = π1 t2 → t1 = t2.

Proof. We have prime trees t1 and t2 with π1 t1 = π1 t2. We know reduced (π1 t1) and reduced
(π1 t2) by definition of prime trees. Equality of the proofs of reduced (π1 t1) and reduced (π1 t2)
remains to be shown: With π1 t1 = π1 t2, we have two proofs of reduced (π1 t1). By Lemma 4.8
those two proofs must be equal.

For convenience and readability reasons we will use prime trees as if they were decision trees.
Every time we use a prime tree pt in a context in which a decision tree is expected, we refer of
course to π1 pt. Lemma 4.9 even allows us to do so for equality. In Coq this can be realized by
another coercion:

Coercion PT as DT {n : nat} (pt : PT n) := π1 pt.

23

Chapter 4. Decision trees as a dependent inductive type

The recursive procedure for reducing decision trees is straightforward. The only interesting case to
consider is the branching case, since only branching nodes may violate the reducedness condition.
We will handle this case as follows:

reduce (, t1, t2) :=
{

(reduce t1)
1 , reduce t1 =dt reduce t2

(, reduce t1, reduce t2) , reduce t1 6=dt reduce t2

Informally spoken, when we have two already reduced subtrees of a branching node, it is easy to
merge them while preserving reducedness. We compare them using =dt. Are the trees equal, then
the variable of the branching node is irrelevant since, no matter how the variable gets assigned,
we have the same subtree. Only when the reduced subtrees are different, the assignment of the
variable leads to different behaviours.
In Coq, we will implement reducing of decision trees as a certifying function, which additionally
carries proof that resulting prime tree has an equivalent denotation:

Definition reduce cert {n : nat} (dt : DT n) : { pt : PT n | JdtK ≡ JptK }.
We define reduce cert by recursion on the decision tree dt:

• dt = ⊥ : Return ⊥, which is a trivial prime tree and equivalent to itself.

• dt = > : Return >, which is a trivial prime tree and equivalent to itself.

• dt = (, t1, t2) : By recursion we have prime trees pt1 and pt2 with Jt1K ≡ Jpt1K and Jt2K ≡
Jpt2K. Case analysis using =dt:

– pt1 = pt2 : We return pt1
1 and show Jpt1

1K ≡ J(, t1, t2)K.

Proof. Let~b : booln+1 be given and~b = (b,~b′):

J(, t1, t2)K~b = (i f b then Jt1K else Jt2K)~b′

Case analysis on b :
b = true :

J(, t1, t2)K~b = Jt1K~b′

= Jpt1K~b′ (Jpt1K ≡ Jt1K)

= Jpt1
1K (b,~b′) (Lemma 4.4)

= Jpt1
1K~b

b = f alse :

J(, t1, t2)K~b = Jt2K~b′

= Jpt2K~b′ (Jpt2K ≡ Jt2K)

= Jpt1K~b′ (pt1 = pt2)

= Jpt1
1K (b,~b′) (Lemma 4.4)

= Jpt1
1K~b

pt1
1 is reduced since pt1 is reduced, which follows from pt1 being a prime tree.

– pt1 6= pt2 : We return (, pt1, pt2) and show J(, pt1, pt2)K ≡ J(, t1, t2)K.

24

4.3. Prime trees

Proof. Let~b : booln+1 be given and~b = (b,~b′):

J(, t1, t2)K~b = (i f b then Jt1K else Jt2K)~b′

Case analysis on b :
b = true :

J(, t1, t2)K~b = Jt1K~b′

= Jpt1K~b′ (Jpt1K ≡ Jt1K)

, (i f true then Jpt1K else Jpt2K)~b′

= (i f b then Jpt1K else Jpt2K)~b′ (b = true)

= J(, pt1, pt2)K~b

b′ = f alse :

J(, t1, t2)K~b = Jt2K~b′

= Jpt2K~b′ (Jpt2K ≡ Jt2K)

, (i f f alse then Jpt1K else Jpt2K)~b′

= (i f b then Jpt1K else Jpt2K)~b′ (b = f alse)

= J(, pt1, pt2)K~b

(, pt1, pt2) is reduced, since pt1 and pt2 are reduced and pt1 6= pt2.

• dt = t1 By recursion we have a prime tree pt with JptK ≡ JtK. We return pt1, which is reduced
since pt is reduced, and prove Jt1K ≡ Jpt1K.

Proof. Lemma 4.4 and JptK ≡ JtK

Alternatively, we could have also defined reduce cert via recursion on n instead of dt. A subsequent
case analysis with DT Inv gives us the exact same cases. The corresponding proof for DTrec works
via induction on n.
Similar to denotational completeness we can project on the prime tree to receive a mapping from
decision trees to prime trees.

Definition DT2PT {n : nat} (dt : DT n) : PT n := π1 (reduce cert dt)

4.3.1 Denotational Completeness for prime trees

Combining the mapping BF2DT : (booln → bool) → DT n and DT2PT : DT n → PT n, allows us
to define a first version of a denotational completeness function for prime trees.

Definition BF2PT cert {n : nat} : ∀φ : booln → bool, {pt : PT n | JptK ≡ φ}.

For any given φ : booln → bool, (DT2PT ◦ BF2DT) φ is the desired prime tree. J(DT2PT ◦
BF2DT) φK ≡ φ follows by the certificates of DT2PT and BF2DT as well as transitivity of ≡
(Lemma 4.1).

25

Chapter 4. Decision trees as a dependent inductive type

For a direct denotational completeness mapping for prime trees, we recall the algorithm for reduc-
ing a decision tree t. It has only one interesting case, namely the case where t = (, t1, t2). Instead
of writing a certifying function only for reducing, one could one could also treat this case accord-
ingly during the definition of the denotational completeness result for decision trees, giving us an
equivalent and reduced decision tree for an argument function. In other words, we can define a
denotational completeness function directly to prime trees. The equivalence proofs of the witness
tree and the function are the same as in the denotational completeness for decision trees definition
in section 4.2.1 except for the case that we are changing.

Definition PT DenCompl {n : nat} : ∀φ : booln → bool, {t : PT n | JtK ≡ φ}.

We describe a function of this type via recursion on n:

• n = 0 : φ is a boolean. We choose > when φ = true and ⊥ when φ = f alse. Both > and ⊥
are reduced by definition.

• n = n′ + 1 : We have φ : booln′+1 → bool. By recursion, we obtain ptt and pt f , the prime
trees fulfilling JpttK ≡ φ true and Jpt f K ≡ φ f alse, respectively.
Case analysis by =dt:

– ptt = pt f : In this case we return pt1
t , which is reduced since ptt is a prime tree. We

show φ ≡ Jpt1
t K:

Proof. Let~b : booln′+1 be given and let~b = (b,~b′):

φ~b = (φ b)~b′

Case analysis on b:
b = true :

(φ b)~b′ = (φ true)~b′

= JpttK~b′ (JpttK ≡ φ true)

= Jpt1
t K (b,~b′) (Lemma 4.4)

= Jpt1
t K~b (~b = (b,~b′))

b = f alse :

(φ b)~b′ = (φ f alse)~b′

= Jpt f K~b′ (Jpt f K ≡ φ f alse)

= JpttK~b′ (ptt = pt f)

= Jpt1
t K (b,~b′) (Lemma 4.4)

= Jpt1
t K~b (~b = (b,~b′))

– ptt 6= pt f : We chose (, ptt, pt f), which is reduced since ptt 6= pt f , and both ptt and pt f
are prime trees and hence also reduced. Only φ ≡ J(, ptt, pt f)K remains to be shown.

26

4.3. Prime trees

Proof. Let~b : booln+1 be given and~b = (b,~b′):

φ~b = (φ b)~b′

Case analysis on b :
b = true :

(φ b)~b′ = (φ true)~b′

= JpttK~b′ (JpttK ≡ φ true)

, (i f true then JpttK else Jpt f K)~b′

= (i f b then JpttK else Jpt f K)~b′ (b = true)

= J(, ptt, pt f)K (b,~b′)

= J(, ptt, pt f)K~b (~b = (b,~b′))

b = f alse :

(φ b)~b′ = (φ f alse)~b′

= Jpt f K~b′ (Jpt f K ≡ φ f alse)

, (i f f alse then JpttK else Jpt f K)~b

= (i f b then JpttK else Jpt f K)~b′ (b = f alse)

= J(, ptt, pt f)K (b,~b′)

= J(, ptt, pt f)K~b (~b = (b,~b′))

An interesting question is, if the two denotational completeness versions return the same prime
tree. We will answer this question when we have a few more important results available. What
we can, however, easily prove is that the two prime trees have equivalent denotations. In fact, this
result will be enough to prove equality of the resulting prime trees.

Lemma 4.10. ∀φ : booln → bool, Jπ1 (BF2PT cert φ)K ≡ Jπ1 (PT DenCompl φ)K.

Proof. Both BF2PT cert and PT DenCompl produce prime trees equivalent to their argument
function φ. From transitivity of ≡ (Lemma 4.1) follows the result.

4.3.2 Unique existence of prime trees

Our next aim is to prove that prime trees are indeed a canonical representation of boolean functions.
We will start with the core result relating syntactic equality to semantic equality. We need a helping
lemma stating three intuitive facts.

Lemma 4.11.

1. Let dt1, dt2, dt3, dt4 : DT n.
Then, (, dt1, dt2) 6= (, dt3, dt4)→ dt1 6= dt3 ∨ dt2 6= dt4.

2. Let dt1, dt2 : DT n.
Then, dt1

1 6= dt1
2 → dt1 6= dt2

27

Chapter 4. Decision trees as a dependent inductive type

3. Let dt1, dt2, dt3 : DT n.
Then, Jdt1

1K ≡ J(dt2, dt3)K→ Jdt1K ≡ Jdt2K∧ Jdt1K ≡ Jdt3K.

Proof.

1. We have (, dt1, dt2) 6= (, dt3, dt4). We compare dt1 and dt3 as well as dt2 and dt4 by =dt. If
either dt1 6= dt3 or dt2 6= dt4 holds then we are done. When dt1 = dt3 and dt2 = dt4, then we
also have (, dt1, dt2) = (, dt3, dt4).

2. We have dt1
1 6= dt1

2. Proof by contradiction.
Assume, dt1 = dt2. Then we would also have dt1

1 = dt1
2.

3. We have Jdt1
1K ≡ J(dt2, dt3)K. Let~b : booln be given. Jdt1K~b = Jdt2K~b holds since Jdt1

1K (true,~b) =
Jdt1K ~b (Lemma 4.4) and J(, dt2, dt3)K (true,~b) = Jdt2K ~b together with transitivity of ≡
(Lemma 4.1).
Jdt1K~b = Jdt3K~b holds analogously using (f alse,~b) instead of (true,~b).

Theorem 4.2. If pt1, pt2 : PT n are different prime trees, then they denote different boolean functions.

Proof. We prove ∀pt1 pt2 : PT n, pt1 6= pt2 → ∃~b : booln, Jpt1K~b 6= Jpt2K~b by induction on n and
subsequent case analysis using DT Inv:

• n = 0 : We have pt1, pt2 : PT 0 with pt1 6= pt2.

– pt1 = > and pt2 = ⊥ : We suggest tt : bool0 as witness. We have J>K tt = true and
J⊥K tt = f alse and thus the claim.

– pt1 = ⊥ and pt2 = > : Analogous to previous case.

– pt1 = ⊥ = pt2 : since pt1 6= pt2.

– pt1 = > = pt2 : since pt1 6= pt2.

• n→ n + 1 : We have pt1, pt2 : PT (n + 1) with pt1 6= pt2 and the inductive hypothesis:

IH : ∀pt1 pt2 : PT n, pt1 6= pt2 → ∃~b : booln, Jpt1K~b 6= Jpt2K~b.

– pt1 = (, t1, t′1) and pt2 = (, t2, t′2) : Case analysis via Lemma 4.11 (1):

∗ t1 6= t2 : Via induction we have~b : booln s.t. Jt1K~b 6= Jt2K~b. Our witness is therefore
(true,~b) since J(, t1, t′1)K (true,~b) = Jt1K~b and J(, t2, t′2)K (true,~b) = Jt2K~b implies
also J(, t1, t′1)K (true,~b) 6= J(, t2, t′2)K (true,~b).

∗ t′1 6= t′2 : Via induction we have~b : booln s.t. Jt′1K~b 6= Jt′2K~b. The witness is (f alse,~b)
since J(, t1, t′1)K (f alse,~b) = Jt′1K ~b and J(, t2, t′2)K (f alse,~b) = Jt′2K ~b implies also
J(, t1, t′1)K (f alse,~b) 6= J(, t2, t′2)K (f alse,~b).

– pt1 = t1
1 and pt2 = (, t2, t′2) : (, t2, t′2) is reduced since it is a prime tree and thus we

have t2 6= t′2. Via induction we have ~b : booln s.t. Jt2K ~b 6= Jt′2K ~b. Now assume the
opposite of what we want to prove: J(t2, t′2)K ≡ Jt1

1K. By Lemma 4.11 (3) we have Jt2K ≡
Jt1K ≡ Jt′2K. By Lemma 4.1 (transitivity of ≡), this would, however, mean Jt2K ≡ Jt′2K.

– pt1 = (, t1, t′1) and pt2 = t1
2 : Analogous to previous case.

28

4.3. Prime trees

– pt1 = t1
1 and pt2 = t1

2 : Lemma 4.11 (2) gives us t1 6= t2. Via induction we have~b : booln

s.t. Jt1K~b 6= Jt2K~b. We choose (true,~b) as witness. By Lemma 4.4 we have Jt1
1K (true,~b) =

Jt1K~b and Jt1
2K (true,~b) = Jt2K~b which gives us Jt1

1K (true,~b) 6= Jt1
2K (true,~b).

This gives us enough material to show that every boolean function has exactly one logically equiv-
alent prime tree. We first define a uniqueness predicate as in the Coq library.

Definition unique {T : Type} (P : T→ Prop) (t : T) :=
P t ∧ ∀ t’ , P t’→ t = t’.

If unique P t is provable then t is the only inhabitant of T for which P t is provable. We will use the
conventional notation for uniqueness quantification ∃!t : T, P t := ∃t : T, unique P t. This notation
is also predefined in Coq.

The previous theorem an denotational completeness are the key to prove unique existence of prime
trees.

Corollary 4.1 (Unique existence of prime trees). ∀φ : booln → bool, ∃!t : PT n, φ ≡ JtK.

Proof. As witness we choose the tree which denotational completeness for prime trees returns
for φ. Let t := π1 (PT DenCompl φ). φ ≡ JtK holds because of the certificate that comes with
PT DenCompl.
Uniqueness is still to show: ∀t′ : PT n, φ ≡ Jt′K→ t = t′. For this part, assume that we have another
prime tree t′ equivalent to φ. Case analysis using =dt:

• t = t′ : Nothing to show.

• t 6= t′ : By transitivity of ≡ (Lemma 4.1) we know JtK ≡ Jt′K. Through the previous theorem
(Theorem 4.2), however, we know that this is impossible since t 6= t′.

Corollary 4.2 (Injectivity of J·K). Let t1 and t2 be two prime trees of the same level.
Then, Jt1K ≡ Jt2K→ t1 = t2.

Proof. We have Jt1K ≡ Jt2K and by Lemma 4.1 (≡ is reflexive) we also have Jt1K ≡ Jt1K. By Corol-
lary 4.1 with φ := Jt1K we obtain the unique prime tree t equivalent to Jt1K and the fact that every
other prime tree equivalent to Jt1K must be equal to t. We use this fact for t2 and t1 to get t = t1 and
t = t2.

From the above Corollary we can now easily show a result we postponed before:

Corollary 4.3. BF2PT cert and PT DenCompl map to the same prime tree.

Proof. For φ : booln → bool, we have Jπ1 (BF2PT cert φ)K ≡ Jπ1 (PT DenCompl φ)K through
Lemma 4.10. By Corollary 4.2, we also have equality.

Next we would like to show that prime trees and cascaded boolean functions depending on n
variables are isomorphic:

29

Chapter 4. Decision trees as a dependent inductive type

Lemma 4.12. Let n : nat be fixed.

1. (PT n,=) is a total setoid

2. (booln → bool,≡) is a total setoid.

Proof.

1. = is an equivalence relation.

2. ≡ is and equivalence relation by Lemma 4.1.

Lemma 4.13.

1. J·K is a morphism from (PT n,=) to (booln → bool,≡) for any n : nat.

2. λφ. π1 (PT DenCompl φ) is a morphism from (booln → bool,≡) to (PT n,=) for any n : nat.

Proof.

1. We have t1, t2 : PT n with t1 = t2. Jt1K ≡ Jt2K then follows by reflexivity of ≡ (Lemma 4.1).

2. We have φ, ψ : booln → bool with φ ≡ ψ. Let tφ := π1 (PT DenCompl φ) and tψ :=
π1 (PT DenCompl ψ). Since JtφK ≡ JtψK holds through the certificates coming with deno-
tational completeness and transitivity of ≡ (Lemma 4.1), we have tφ = tψ by Corollary 4.2.

Theorem 4.3. ∀n : nat,
SetoidIsomorphism (PT n,=) (booln → bool,≡) J·K (λφ. π1 (PT DenCompl φ)).

Proof. We need to show :

1. ∀t : PT n, t = π1 (PT DenCompl JtK).

2. ∀φ : booln → bool, φ ≡ Jπ1 (PT DenCompl φ)K.

(2) follows immediately via certificate of PT DenCompl. We show (1):
Let t : PT n be given. We have Jπ1 (PT DenCompl JtK)K ≡ JtK through the certificate of PT DenCompl.
Since J·K is injective (Corollary 4.2) we have the claim.

By using Σ types we can gather prime trees and boolean functions of all levels. We first show
that this yields total setoids. For this we extend the definition of ≡ to Σ types. Let (n, φ) and (m, ψ)
be of type Σn(booln → bool):

(n, φ) ≡Σ (m, ψ) :=
{

φ ≡ ψ , n = m
False , n 6= m

Lemma 4.14.

1. (Σn(booln → bool),≡Σ) is a total setoid.

2. (Σn(PT n),=) is a total setoid.

30

4.3. Prime trees

Proof.

1. We show that ≡Σ is an equivalence relation.

• Reflexivity: For any (n, φ), (n, φ) ≡Σ (n, φ) boils down to showing φ ≡ φ, which we
have by Lemma 4.1.
• Symmetry: Let (n, φ) and (m, ψ) with (n, φ) ≡Σ (m, ψ) be given.

If n = m holds, then we have to show ψ ≡ φ from φ ≡ ψ which we have already done
(Lemma 4.1).
If n 6= m, then (n, φ) ≡Σ (m, ψ) is a proof of False.

• Transitivity: Let (n, φ), (m, ψ) and (k, ξ) with (n, φ) ≡Σ (m, ψ) ≡Σ (k, ξ) be given.
If n = m = k, then we have to show φ ≡ ξ from φ ≡ ψ ≡ ξ which is the transitivity
property of ≡ already shown in Lemma 4.1.
If n 6= m or m 6= k, then we have a proof of False.

2. Equality is an equivalence relation.

Note, that the proof of Lemma 4.14 (1), while easy on paper, is trickier than one expects. It requires
a lemma stating that the decidable equality procedure for nat, say nat eq cert : ∀n m : nat, {n =
m}+ {n 6= m}, always computes the same proof of n = n. To be more precise, we need the fol-
lowing: nat eq cert n n = le f t (n 6= n) (eq re f l n), where eq re f l is the sole constructor of Coq’s
inductive equality proposition eq and le f t one of the constructors of sumbool indicating that we
prove the left proposition. This lemma will be used several times in the Coq proofs of the next
results (Lemma 4.15 and Theorem 4.4). Without such a lemma, we would run into dependency
issues, only solvable using Coq’s Program package, which assumes additional axioms that imply
Uniqueness of Identity Proofs (UIP).
We reuse the morphisms from the level dependent case to define morphisms for the Σ case.

Definition PT2BFΣ (P : {n:nat & PT n}) : {n:nat & booln → bool} :=
let (n, t) := P in (existT (fun n⇒ booln → bool) n JtK)).

Definition BF2PTΣ (F: {n:nat & booln → bool}) : {n:nat & PT n} :=
let (n, φ) := F in (existT (fun n⇒ PT n) n (π1 (PT DenCompl φ))).

Lemma 4.15.

1. PT2BFΣ is a morphism from Σn(PT n) to Σm(boolm → bool).

2. BF2PTΣ is a morphism from Σn(booln → bool) to Σm(PT m)

Proof.

1. We have (n, t1), (m, t2) : Σn(PT n) with (n, t1) = (m, t2).
By (n, t1) = (m, t2) we also have n = m and t1 = t2.2

Jt1K ≡ Jt2K then holds by reflexivity of ≡ (Lemma 4.1).

2. We have (n, φ), (m, ψ) : Σn(booln → bool) with (n, φ) ≡Σ (m, ψ).
If n = m then we have φ ≡ ψ and have to show π1 (PT DenCompl φ) = π1 (PT DenCompl ψ).
This holds through Lemma 4.13.
If n 6= m, then we have a proof of False.

2This is one of the rare cases where we actually obtain n = m and t1 = t2 from (n, t1) = (m, t2) through the inversion
tactic. Usually Coq’s Program package is necessary to show such results for members of dependent sums.

31

Chapter 4. Decision trees as a dependent inductive type

Theorem 4.4. SetoidIsomorphism (Σn(PT n),=) (Σn(booln → bool),≡Σ) PT2BFΣ BF2PTΣ.

Proof. We need to show :

1. ∀(n, φ) : Σn(booln → bool), (n, φ) ≡Σ PT2BFΣ (BF2PTΣ (n, φ)).

2. ∀(n, t) : Σn(PT n), (n, t) = BF2PTΣ (PT2BFΣ (n, t)).

1. Both BF2PTΣ and PT2BFΣ produce trees and functions of the same level as their argu-
ment, meaning that showing (n, φ) ≡Σ PT2BFΣ (BF2PTΣ (n, φ)) boils down to showing
φ ≡ Jπ1 (PT DenCompl φ)K, which holds because of Theorem 4.3.

2. Both BF2PTΣ and PT2BFΣ produce trees and functions of the same level as their argu-
ment, meaning that showing (n, t) = BF2PTΣ (PT2BFΣ (n, t)) boils down to showing t =
π1 (PT DenCompl JtK), which holds because of Theorem 4.3.

To make the isomorphism useful in any context, it is desirable to replace ≡Σ with =. Unfortu-
nately SetoidIsomorphism (Σn(PT n),=) (Σn(booln → bool),=) PT2BFΣ BF2PTΣ is unprovable.
We fix this by assuming functional extensionality (FE). In a first step we prove that (PT n,=) and
(booln → bool,=) are setoid-isomorphic for a fixed n. (booln → bool,=) is a setoid for every n : nat
since = is an equivalence relation. That J·K and (λφ. π1 (PT DenCompl φ)) are still morphisms
follows by f equal (Lemma 4.6).

Theorem 4.5. We assume FE. ∀n : nat,
SetoidIsomorphism (PT n,=) (booln → bool,=) J·K (λφ. π1 (PT DenCompl φ)).

Proof. We need to show :

1. ∀t : PT n, t = π1 (PT DenCompl JtK).

2. ∀φ : booln → bool, φ = Jπ1 (PT DenCompl φ)K.

(1) has already been shown in Theorem 4.3.
We show (2): Also by Theorem 4.3 we have ∀φ : booln → bool, φ ≡ Jπ1 (PT DenCompl φ)K. By
cascaded functional extensionality which follows from FE (Lemma 4.3) we have the claim.

The Σ version of the isomorphism is now easy to show. (Σn(PT n),=) and (Σn(booln → bool),=)
are setoids since = is an equivalence relation and PT2BFΣ, BF2PTΣ are morphisms between these
setoids by f equal (Lemma 4.6).

Theorem 4.6. We assume FE.
SetoidIsomorphism (Σn(PT n),=) (Σn(booln → bool),=) PT2BFΣ BF2PTΣ.

Proof. We need to show :

1. ∀(n, φ) : Σn(booln → bool), (n, φ) = PT2BFΣ (BF2PTΣ (n, φ)).

2. ∀(n, t) : Σn(PT n), (n, t) = BF2PTΣ (PT2BFΣ (n, t)).

(2) follwos immediately through Theorem 4.3. We show (1):
Both BF2PTΣ and PT2BFΣ produce trees and functions of the same level as their argument, mean-
ing that showing (n, φ) = PT2BFΣ (BF2PTΣ (n, φ)) boils down to showing φ = Jπ1 (PT DenCompl φ)K,
which holds because of Theorem 4.3 and cascaded functional extensionality (Lemma 4.3).

32

Chapter 5

Simply typed decision trees

In this chapter we present another formalization of decision trees as a simple inductive type (Sec-
tion 5.1). We will introduce an alternative definition of boolean functions in Section 5.2 and show
that the elim restriction (Section 3.2) is a major problem in this development. In Sections 5.3, 5.4
and 5.5, we suggest three different approaches to work around the elim restriction, which will lead
to the use of axioms. In all three versions we will, in the end, be able to prove that prime trees are
isomorphic to boolean functions. In the last Section 5.6 we will shortly present yet another rep-
resentation of boolean functions, which we prove to be isomorphic to the previously introduced
representation by using partial setoids.

5.1 Simple decision trees

In Chapter 4 we gained some first hand experience about the difficulties that arise while using
dependent inductive types. Seemingly easy tasks like defining an equality deciding procedure
require quite a bit of infrastructure before a definition is possible. Therefore we have hope, that we
can come up with a simple inductive type for decision trees that does not require such complicated
ideas.

Syntax

This new definition is now a straightforward translation of the mathematical definition given in
Chapter 2, where we use V := nat.

Inductive SDT : Type :=
| DT0 : SDT
| DT1 : SDT
| DTI : nat→ SDT→ SDT→ SDT.

The first thing to notice is that the type SDT does not have a dependent return type. There is
no natural number indicating the number of variables a decision tree depends on. Instead, we
indicate explicitly, with a natural number, on which variable to branch. We also have but three
instead of four constructors in contrast to DT n of Chapter 4: DT0, DT1 for ⊥, > respectively and
the branching constructor DTI taking a natural number and two arbitrary decision trees.

Semantics

Defining the denotational semantics J·K for SDT is a straightforward task. We provide an assign-
ment for variables as a function σ : nat→ bool, which leads to the following definition:

33

Chapter 5. Simply typed decision trees

Fixpoint SDT Den (t : SDT) (σ : nat→ bool): bool :=
match t with
| DT0 ⇒ false
| DT1 ⇒ true
| DTI n t1 t2 ⇒ if σ n then (SDT Den t1 σ) else (SDT Den t2 σ)

end.
As expected we have J⊥K σ = f alse and J>K σ = true for every assignment σ. For J(n, t1, t2)K σ we
decide with σ n which subtree to evaluate next.

Following the development of Chapter 4, we define a procedure that decides equality on SDT.

Definition eq dt cert (t1 t2 : SDT) : {t1 = t2} + {t1 6= t2}.

With SDT being a simple inductive type, we need no further infrastructure to compare two decision
trees. This fact even allows us to derive such a function automatically in Coq using the tactic decide
equality, which can compare two elements of a simple inductive type, whose constructors do not
take proofs or functions as arguments.
We prove a few facts about simple decision trees.

Lemma 5.1. Let n, m : nat and t1, t2, t3, t4 : SDT. Then,

1. (n, t1, t2) = (m, t3, t4)→ n = m ∧ t1 = t3 ∧ t2 = t4

2. (n, t1, t2) 6= (m, t3, t4)→ n 6= m ∨ t1 6= t3 ∨ t2 6= t4

Proof.

1. The tactic injection applied to the proof of (n, t1, t2) = (m, t3, t4) gives us all three conjuncts.

2. We have (n, t1, t2) 6= (m, t3, t4).
We compare t1 with t3 and t2 with t4 using =dt as well as n with m. If we obtain one inequality
by these comparisons we are done. If t1 = t3, t2 = t4 and n = m, then we have (n, t1, t2) =
(m, t3, t4).

Since we explicitly specify the variable on which an internal node branches, we sometimes have to
know if a given variable is present in a decision tree. We do this by recursion on the tree.

Fixpoint inTree (n : nat) (dt : SDT) : bool:=
match dt with
| (m, t1, t2)⇒ if (n = m) then true else inTree n t1 ∨ inTree n t2
| ⇒ false

end.

Obviously, we return f alse for leaf nodes, since they do not branch on variables. For a branching
node, we return true, when it branches on the variable we are looking for. If it branches on a
different variable, it suffices when n occurs in either subtree t1 or t2. We use intuitive notation
n ∈ V t for inTree n t.

Lemma 5.2. Let m : nat and (n, t1, t2) : SDT be given.
Then, m 6∈ V (n, t1, t2)→ m 6∈ V t1 ∧m 6∈ V t2

Proof. Proof by contradiction.
Since inTree returns a boolean, we know from logic m 6∈ V t1 ∧ m 6∈ V t2 ⇐⇒ ¬(m ∈ V t1 ∨ m ∈
V t2). We assume m ∈ V t1 ∨m ∈ V t2. In either case, we would have m ∈ V (n, t1, t2).

34

5.1. Simple decision trees

Simple prime trees

Exactly analogous to the development for dependent decision trees we define a predicate reduced :
SDT → bool, which tests if a decision tree is reduced. Since we explicitly give the variable on
which a node branches, we also have to come up with a procedure testing whether a decision tree
is ordered with respect to the conventional ’less than’ order < on natural numbers. This happens
exactly like described in Chapter 2: We first specify when a decision tree is ordered w.r.t a variable
with ordered′ : SDT → nat→ bool, then using ordered′, we define the ordered predicate.

Fixpoint ordered’ (dt : SDT) (n : nat) : bool :=
match dt with
| (m, t1, t2)⇒ if (n > m) then ordered’ t1 m ∧ ordered’ t2 m else false
| ⇒ true

end.

Definition ordered (dt : SDT) : bool :=
match dt with
| (n, t1, t2)⇒ ordered’ t1 n ∧ ordered’ t2 n
| ⇒ true

end.
We prove a few properties about ordered and ordered′.

Lemma 5.3.

1. Let n : nat and t : SDT. Then, ordered′ t n→ ordered t

2. Let n : nat and t : SDT. Then, ∀m : nat, n > m→ ordered′ t m→ ordered′ t n

3. Let n : nat and t1, t2 : SDT. Then, ordered (n, t1, t2)→ ordered t1 ∧ ordered t2

Proof.

1. Case analysis on t: If t = > or t = ⊥ then t is ordered by definition.
So let t = (m, t1, t2). We have ordered′ (m, t1, t2) n and have to show that ordered (m, t1, t2),
which means showing ordered′ t1 m ∧ ordered′ t2 m. Case analysis:

• n > m : In this case ordered′ (m, t1, t2) n reduces to ordered′ t1 m ∧ ordered′ t2 m, which
we had to show.

• n ≯ m : ordered′ (m, t1, t2) n is by coercion a proof of False.

2. Case analysis on t: If t = > or t = ⊥ then t is ordered w.r.t every variable.
Let t = (k, t1, t2). We have ordered′ (k, t1, t2) m and have to show that ordered′ (k, t1, t2) n.
Case analysis:

• m > k : In this case ordered′ (k, t1, t2) m reduces to ordered′ t1 k ∧ ordered′ t2 k. Since n >
m by assumption, we have n > k by transitivity of >, which also gives us ordered′ (k, t1, t2) n.

• m ≯ k : ordered′ (k, t1, t2) m is by coercion a proof of False.

3. ordered (n, t1, t2) gives us by definition ordered′ t1 n ∧ ordered′ t2 n. By (1) we also have
ordered t1 ∧ ordered t2

With ordered and reduced defined, the definition of SPT is just a formality:

35

Chapter 5. Simply typed decision trees

Definition SPT : Type := {dt : SDT | reduced dt ∧ ordered dt }.

Note that ∧ denotes boolean conjunction.
As before in Section 4.2, we want to use simply typed prime trees as decision trees. The following
lemmas allows us to to so:

Lemma 5.4. Let t be a prime tree. ∀p1 p2 : reduced t ∧ ordered t, p1 = p2.

Proof. Case analysis:

• reduced t = true = ordered t : By coercion p1 and p2 are two proofs of True, since true∧ true =
true. True has only one proof, namley I, implying that p1 = I = p2.

• In all the other cases we have a proof of False by coercion.

Lemma 5.5. Let t1 and t2 be two prime trees. Then, π1 t1 = π1 t2 → t1 = t2.

Proof. We have π1 t1 = π1 t2 already, so only equality of the proofs has to be shown.
Through π1 t1 = π1 t2, we have two proofs of reduced (π1 t1) ∧ ordered (π1 t1), which have to be
equal by Lemma 5.4.

Coercion PT as DT (pt : SPT) := π1 pt.

5.2 Alternative definition of boolean functions

After defining prime trees without any complication, we consider the question whether SPT and
Σn(booln → bool) are (partial) setoid-isomorphic. While there is a possibility that these two types
are (partial) setoid-isomorphic, the mappings that form the isomorphism certainly do not preserve
the meaning of the related objects.

Theorem 5.1. Let � be some relation on Σn(booln → bool). (Σn(booln → bool),�) and (SPT,=) are
not (partial) setoid-isomorphic while preserving the semantics.

Proof. Assume the semantics would be preserved by mapping back and forth. Consider λ .true :
bool1 → bool and λ .true : bool2 → bool. Both represent a constant true function, thus their corre-
sponding prime trees shouldn’t have to branch on any variable, implying that they both have the
same prime tree >. Thus, prime trees would not be canonical for boolean functions.

The difference of dependent prime trees to simple prime trees in this argument is that, λ .true
is mapped to >1 while λ .true is mapped to >2 with >1 6= >2, while for simple prime trees both
are mapped to>. Consequently, we have to come up with a new type for boolean functions. Chap-
ter 2 defined boolean function theoretically as (V → B) → B. We will follow this approach by
defining boolean functions as follows.

Definition BF : Type := (nat→ bool)→ bool.

In fact, this invalidates the argument of Theorem 5.1, because there is only one constant true func-
tion λ : (nat → bool). true. We have, however, to take care of another problem. Since we rede-
fined boolean functions to be of type (nat→ bool)→ bool, we have infinitely many variables. This

36

5.2. Alternative definition of boolean functions

means that a corresponding decision tree for such a function would need to have infinitely many
branching nodes. DT cannot contain such a tree since it is an inductive type, implying that all its
inhabitants are constructed through finitely many member constructors. For σ : nat → bool the
following function ϕ serves as an example 1:

ϕ σ :=
{

true , ∀x, σ x = true
f alse , otherwhise (5.1)

We therefore restrict ourselves to only those members of (nat→ bool)→ bool, where there is a last
variable n, s.t. all subsequent variables m, m ≥ n are unimportant for the function. These functions
are exactly those boolean functions we will refer to as continuous boolean functions. We express
this in Coq as follows:

Definition cts’ (n : nat) (φ : BF) : Prop :=
∀ σ1 σ2, (∀ m, m < n→ σ1 m = σ2 m)→ φ σ1 = φ σ2.

We will write ctsn φ for cts′ n φ and we will refer to n as a modulus of continuity.
Definition cts (φ : BF) : Prop := ∃ n:nat , ctsn φ .

Before continuing the development we make a few definitions and prove a few lemmas which we
will need frequently.

Definition update (n:nat) (b : bool) (σ : nat→bool) : (nat→bool) :=
fun m⇒ if (n = m) then b else (σ m).

Definition BFeq (ψ φ : BF) := ∀ σ : nat→ bool, φ σ = ψ σ.
We will write σn

b for update n b σ and we will use ≡ as infix notation for BFeq.

Lemma 5.6. BFeq is an equivalence relation.

Proof. We use the fact that = is an equivalence relation.

Lemma 5.7.

1. Let n : nat and σ : nat→ bool. Then, ∀b : bool, σn
b n = b

2. Let n, m : nat with n 6= m and σ : nat→ bool. Then, ∀b : bool, σn
b m = σ m

Proof.

1. σn
b n = (f un m⇒ i f (n = m) then b else (σ m)) n = b

2. σn
b m = (f un m⇒ i f (n = m) then b else (σ m)) m

n 6=m
= σ m

We define a function, which decides from a proof of cts0 φ, whether φ is constant false or constant
true.

Definition constants (φ : BF)(e : cts0 φ) : {∀ σ, φ σ = true} + {∀ σ, φ σ = false}.

Let σf := λ . f alse. Case analysis:

• φ σf = true : We pick the left hand side.
Let σ be given. We show φ σ = true.

1If one would translate this definition into Coq, ϕ would have type (nat → bool) → Prop because of the universal
quantification. We don’t know, however, if (nat → bool) → bool does not contain a similar function to ϕ, which is why we
have to account for such functions as well.

37

Chapter 5. Simply typed decision trees

Proof. Since φ has modulus of continuity 0, we immediately have φ σ = φ σf = true, if
we can show that ∀m, m < 0→ σf m = σ m. Since there is no such m, we are done.

• φ σf = f alse : We pick the right hand side and show that for any given σ, we have
φ σf = φ σ = f alse as in the previous case.

We show that fixing the assignment of the last important variable reduces the modulus of continu-
ity of a non-constant boolean function.

Lemma 5.8. Let φ : BF such that ctsn+1 φ holds. Then, ∀b : bool, ctsn (λσ. φ σn
b).

Proof. Let φ with ctsn+1 φ, b : bool, σ, σ′ : nat → bool as well as H := ∀m : nat, m < n → σ m =
σ′ m be given. We have to show φ σn

b = φ σ′nb . We use the fact that ctsn+1 φ and thus it is enough to
show ∀m : nat, m < n + 1→ σn

b m = σ′nb m. We have this immediately byH and Lemma 5.7.

The following results concerning ordered, ordered′, inTree and update will be important later on.

Lemma 5.9.

1. Let n : nat and t : SDT s.t. ordered′ t n holds. Then, ∀m : nat, m ≥ n→ m 6∈ V t

2. Let n : nat, b : bool and t : SDT with n 6∈ V t. Then, ∀σ, JtK σn
b = JtK σ

Proof.

1. By induction on t.
If t = > or t = ⊥, then m 6∈ V t holds by definition.
Let t = (n′, t1, t2). We have ordered′ (n′, t1, t2) n, m with m ≥ n and two inductive hypotheses:

IH1 : ordered′ t1 n→ m 6∈ V t1

IH2 : ordered′ t2 n→ m 6∈ V t2

We have to show that m 6∈ V (n′, t1, t2). Case analysis:

• n > n′ : In this case ordered′ (n′, t1, t2) n gives us ordered′ t1 n′ ∧ ordered′ t2 n′ and
by Lemma 5.3 we have ordered′ t1 n ∧ ordered′ t2 n. Since n > n′ and m ≥ n we have
m 6= n′. So m 6∈ V (n′, t1, t2) comes down to showing m 6∈ V t1 ∧m 6∈ V t2. We have both
conjuncts by IH1 and IH2.

• n 6> n′ : By definition ordered′ (n′, t1, t2) n = f alse. By coercion we then have a proof of
False.

2. Induction on t.
If t is a leaf, then the claim holds by definition of J·K.
Let t = (m, t1, t2) and σ : nat → bool, b : bool be given. We have n 6∈ V (m, t1, t2) and two
inductive hypotheses:

IH1 : n 6∈ V t1 → Jt1K σn
b = Jt1K σ

IH2 : n 6∈ V t2 → Jt2K σn
b = Jt2K σ

We have to show that J(m, t1, t2)K σn
b = J(m, t1t2)K σ. Case analysis:

• m = n : Then we have n 6∈ V (n, t1, t2).

38

5.2. Alternative definition of boolean functions

• m 6= n : In this case n 6∈ V (m, t1, t2) gives us n 6∈ V t1 ∧ n 6∈ V t2 by Lemma 5.2. By
IH1 and IH2 we thus have Jt1K σn

b = Jt1K σ and Jt2K σn
b = Jt2K σ. By Lemma 5.7 we also

have σn
b m = σ m and the claim follows.

We define a type which contains only the continuous boolean functions as follows.
Definition BFcts := {φ : BF | cts φ}.

We will denote members of BFcts as if they were of type BF. With φ : BFcts we thus mean that φ is a
function for which cts φ holds. Using BFcts as type for boolean functions we will, however, not be
able to define a denotational completeness function, which will be one of the morphisms we use to
show that boolean functions and simple prime trees are setoid-isomorphic.

∀φ : BFcts, {pt : SPT | φ ≡ JptK}.

The reason is that we would need to extract the modulus of continuity from the cts φ proof to
construct a member of {pt : SPT | φ ≡ JptK} : Type. The elim restriction, however, does not permit
such scenarios. Without modifications to our definition of BFcts, we are stuck. When the modulus
of continuity is available, however, we are able to define an auxiliary function from which we can
easily derive the denotational completeness result.

Definition SPT DenCompl aux {n : nat} : ∀φ : BF, ctsn φ→
{t : SDT | JtK ≡ φ ∧ reduced t ∧ ordered′ t n }.

We do recursion on n:

• n = 0 : We have φ with cts0 φ. By constants, φ is either constant true or constant false.
The correct prime trees are> and⊥ respectively. Both⊥ and> are ordered and reduced
by definition and are equivalent to φ in their respective case.
• n = n′ + 1 : We have φ with ctsn′+1 φ. By Lemma 5.8, both φt := λσ. φ σn

true and
φ f := λσ. φ σn

f alse have modulus of continuity n. We can therefore use recursion to com-
pute decision trees t1 and t0 with Jt1K ≡ φt, Jt0K ≡ φ f , reduced t1, ordered′ t1 n′, reduced t0
and ordered′ t0 n′.

Before we decide which tree to return, we first proveH := J(n′, t1, t0)K ≡ φ :

Proof. Let σ : nat→ bool be given.

φ σ = J(n′, t1, t0)K σ

Case analysis on σ n′ :

σ n′ = true :

J(n′, t1, t0)K σ = Jt1K σ

= φ σn′
true (Jt1K ≡ φt)

By using the fact that φ has modulus of continuity n′ + 1, we have φ σn′
true = φ σ, if

we can prove ∀m, m < n′ + 1 → σn′
true m = σ m. This is the case, because of Lemma

5.7 and the fact that σ n′ = true.

σ n′ = f alse :

J(n′, t1, t0)K σ = Jt0K σ

= φ σn′
f alse (Jt0K ≡ φ f)

39

Chapter 5. Simply typed decision trees

Analogous to the previous case we have φ σn′
f alse = φ σ.

To decide which tree to return, a case analysis using =dt is necessary:

− t1 = t0 : In this case we take t1 as witness, which is already reduced and ordered
w.r.t. n′. Through Lemma 5.3, t1 is also ordered w.r.t. n′ + 1. In addition we have
Jt1K ≡ J(n′, t1, t1)K ≡ J(n′, t1, t0)K since t1 = t0 and J(n′, t1, t0)K ≡ φ through H and
thus also Jt1K ≡ φ.

− t1 6= t0 : We use the witness (n′, t1, t0), which is reduced since t1 6= t0, reduced t0
and reduced t1 holds. We also have ordered′ (n′, t1, t0) (n′ + 1) since n′ + 1 > n′,
ordered′ t1 n′ and ordered′ t0 n′. That J(n′, t1, t0)K ≡ φ holds, has been shown above
(H).

The reason for this auxiliary function is the following subtle difference between ordered′ and ordered:
Just because t0 and t1 are ordered, does not imply that (n, t1, t0) is ordered, since n might be smaller
than the root of t1 or t0. For ordered′ this is different. If ordered′ t1 n and ordered′ t0 n holds, then we
at least know that ordered′ (n, t1, t0) (n + 1) holds, since there are no bigger variables than n− 1 in
t1 or t0.

The definition of a denotational completeness mapping for prime trees will require additional as-
sumptions in form of axioms or a modification of our type for boolean functions. We will therefore
postpone it since there are plenty of results left to prove that do not require the assumption of ax-
ioms.

We will concentrate on proving that there is exactly one logically equivalent prime tree for a given
boolean function. For this we need a bit of infrastructure. To motivate this, look at the proof of
Lemma 4.2 of the previous chapter. The inductive hypothesis gives us the result for any two prime
trees of the next smaller level. This means, that the inductive hypothesis applies for the subtrees
of a branching tree, since they necessarily have a smaller level. This was possible because we did
induction on the level of the prime trees. For simple prime trees we have no such thing. Our only
hope is induction on the first prime tree, followed by a case analysis on the second. This way, how-
ever, it is not possible to use the inductive hypothesis for the two subtrees of a branching tree.

We prove a special version of an induction principle called size induction, which will present a
solution to that problem.

Lemma 5.10 (double size induction). Let T : Type, P : T → T → Prop and f : T → nat be a size
function on T. Then,
(∀x1 x2, (∀y1 y2, (f y1 + f y2) < (f x1 + f x2)→ P y1 y2)→ P x1 x2)→ ∀x1 x2, P x1 x2.

Proof. We have H := ∀x1 x2, (∀y1 y2, (f y1 + f y2) < (f x1 + f x2) → P y1 y2) → P x1 x2 and
x1, x2 : T. We have to show P x1 x2. We immediately apply our assumption H, and have to prove
the premiss ofH, namely ∀y1 y2, (f y1 + f y2) < (f x1 + f x2)→ P y1 y2.
Induction on f x1 + f x2:

• f x1 + f x2 = 0 : We have y1, y2 and (f y1 + f y2) < 0.

• f x1 + f x2 = n + 1 : We have y1, y2 and (f y1 + f y2) < n + 1 and the inductive hypothesis:

IH : ∀z1 z2 : T, (f z1 + f z2) < n→ P z1 z2.

We have to show P y1 y2.
We again use assumptionH and receive z1, z2 : T with (f z1 + f z2) < (f y1 + f y2) and have

40

5.2. Alternative definition of boolean functions

to show P z1 z2. With IH we have this, if we can show (f z1 + f z2) < n. This is the case
since (f z1 + f z2) < (f y1 + f y2) < n + 1.

We define a suitable size function for decision trees.

Fixpoint size (t : SDT) : nat :=
match t with
| (n, t1, t2)⇒ 1 + size t1 + size t2
| ⇒ 0

end.

We will denote size t using |t|. Note, that |t| is exactly the number of internal nodes of t.
Based on the sum of the sizes of two trees we define a special kind of case analysis.

Lemma 5.11 (Size Case Analysis). Let t, t′ : SPT.

1. If |t|+ |t′| = 0, then (t = >∨ t = ⊥) ∧ (t′ = >∨ t′ = ⊥).

2. If |t|+ |t′| = n + 1 and t 6= t′ then either:

• t = (n, t1, t2) ∧ n 6∈ V t′,

• n 6∈ V t ∧ t′ = (n, t1, t2) or

• t = (n, t1, t2) ∧ t′ = (n, t′1, t′2).

Proof.

1. We have |t|+ |t′| = 0 and thus |t| = 0 and |t′| = 0. By definition of | · |, the only trees of size
0 are leaves.

2. We have |t|+ |t′| = n + 1 and t 6= t′. Case analysis on t and t′:
Since |t|+ |t′| = n + 1, not both t and t′ can be leaves. 5 cases remain:

• t = > and t′ = (n, t1, t2) : The second case applies. We have n 6∈ V ⊥ by definition of ∈.

• t = ⊥ and t′ = (n, t1, t2) : Analogous to previous case.

• t = (n, t1, t2) and t′ = >: The first case applies. We have n 6∈ V > by definition of ∈.

• t = (n, t1, t2) and t′ = ⊥: Analogous to previous case.

• t = (n, t1, t2) and t′ = (m, t′1, t′2) : Case analysis:

– n > m : The first case applies. We show n 6∈ V (m, t′1, t′2).
Since n > m, we have n 6= m and therefore it suffices to show that n 6∈ V t′1 ∧ n 6∈
V t′2. Since (m, t′1, t′2) is a prime tree and therefore both t′1 and t′2 are ordered w.r.t. m
and by Lemma 5.3 also w.r.t. n. By Lemma 5.9 we have n 6∈ V t′1 and n 6∈ V t′2.

– n < m : The second case applies. The proof that m 6∈ V (n, t1, t2) is analogous to
the previous case.

– n = m : The third case applies.

The next lemma motivates why we will be able to use the above mentioned inductive hypothe-
sis for the subtrees of a branching tree.

Lemma 5.12. Let t1, t2 : SDT and n : nat. Then, ∀m : nat, |t1|+ |t2| < m + |(n, t1, t2)|.

41

Chapter 5. Simply typed decision trees

Proof. By definition of | · | we have that |(n, t1, t2)| = 1 + |t1|+ |t2| > |t1|+ |t2|.

Theorem 5.2. If t1, t2 : SPT are different prime trees, then they denote different boolean functions.

Proof. To show : ∀t t′ : SPT, t 6= t′ → ∃σ, JtK σ 6= Jt′K σ.
Let t, t′ : SPT with t 6= t′ be given. We use Lemma 5.10 to do size induction, which gives us

IH : ∀t1 t2 : SPT, |t1|+ |t2| < |t|+ |t′| → t1 6= t2 → ∃σ, Jt1K σ 6= Jt2K σ

Case analysis:

• |t|+ |t′| = 0 : By Lemma 5.11 (1) both t and t′ are leaves. Since t 6= t′ every σ can be used as
witness.

• |t|+ |t′| = n + 1 : We do a case analysis according to Lemma 5.11 (2):

– t = (n, t1, t2) ∧ n 6∈ V t′ : Since (n, t1, t2) is a ordered and reduced, we have that t1
and t2 are also reduced, ordered w.r.t n and therefore ordered (Lemma 5.3), in addition
to t1 6= t2. Through Lemma 5.9 we also have n 6∈ V t1 and n 6∈ V t2 and by Lemma
5.12 |t1| + |t2| < |t′| + |t| holds. Since all the premisses of IH are fulfilled, we have
σ s.t. Jt1K σ 6= Jt2K σ. By Lemma 5.9, we therefore have Jt1K σn

true 6= Jt2K σn
f alse and by

this we have J(n, t1, t2)K σn
true 6= J(n, t1, t2)K σn

f alse because J(n, t1, t2)K σn
true = Jt1K σn

true 6=
Jt2K σn

f alse = J(n, t1, t2)K σn
f alse. By Lemma 5.9 we have, however, that Jt′K σn

true = Jt′K σn
f alse

since n 6∈ V t′. Consequently, we have JtK σn
true 6= Jt′K σn

true or JtK σn
f alse 6= Jt′K σn

f alse.

– n 6∈ V t ∧ t′ = (n, t1, t2) : Analogous to previous case.

– t = (n, t1, t2) ∧ t′ = (n, t′1, t′2) : Since t 6= t′ we have t1 6= t′1 or t2 6= t′2 by Lemma 5.1.
Reducedness and orderedness w.r.t n and thus orderedness of t1, t′1, t2 and t′2 are given
by the fact that t and t′ are prime trees and Lemma 5.3. We obviously have |t1|+ |t′1| <
|(n, t1, t2)|+ |(n, t′1, t′2)| and |t2|+ |t′2| < |(n, t1, t2)|+ |(n, t′1, t′2)|. By IH we thus have σ
s.t. Jt1K σ 6= Jt′1K σ or Jt2K σ 6= Jt′2K σ. Lemma 5.9 gives us that n doesn’t occur in either
t1, t′1, t2 or t′2. By Lemma 5.9, we therefore have Jt1K σn

true = Jt1K σ and Jt′1K σn
true = Jt′1K σ

as well as Jt2K σn
f alse = Jt2K σ and Jt′2K σn

f alse = Jt′2K σ . From this, JtK σn
true 6= Jt′K σn

true or
JtK σn

f alse 6= Jt′K σn
f alse follows because J(n, t1, t2)K σn

true = Jt1K σn
true = Jt1K σ 6= Jt′1K σ =

Jt′1K σn
true = J(n, t′1, t′2)K σn

true and J(n, t1, t2)K σn
f alse = Jt2K σn

f alse = Jt2K σ 6= Jt′2K σ =

Jt′2K σn
f alse = J(n, t′1, t′2)K σn

f alse

Note, that by using size induction, we essentially have to prove the same goals as in the depen-
dent inductive version (Theorem 4.2), where one can interpret pt1 = (, t1, t2) and pt2 = t′1 as the
corresponding case to pt1 = (n, t1, t2) and n 6∈ V pt2. One can think of the size of a simple prime
tree as an equivalent to the level of dependent prime trees for the above proof.

Corollary 5.1 (Injectivity of J·K). Let t1 and t2 be two prime trees.
Then, Jt1K ≡ Jt2K→ t1 = t2.

42

5.3. Version 1: Using the Axiom of Continuity

Proof. Assume Jt1K ≡ Jt2K. We want to know if t1 and t2 are already equal and thus do a case
analysis using =dt. If t1 = t2 holds, then we have nothing left to prove, so assume t1 6= t2. This,
however, also implies Jt1K 6≡ Jt2K (Theorem 5.2).

This is as far as we can get without further assumptions to circumvent the elim restriction. The
following sections will introduce three different versions of keeping the modulus of continuity of a
function available for definitions.

5.3 Version 1: Using the Axiom of Continuity

In this section we will use a rather drastic method to circumvent the elim restriction. We simply
assume that every boolean function is continuous. We realize this such that we know the modulus
of continuity of a boolean function at all times.
We define a version of the cts predicate of type BF → Type.

Definition ctsT (φ : BF) : Type := {n:nat | ctsn φ}.

Axiom CTS : ∀ φ : BF, ctsT φ.

CTS denotes the so-called Axiom of Continuity. When CTS is assumed, we can ask for the modulus
of continuity of a function whenever we need it. In Section 5.3.1 at the end of the chapter we will
show that CTS is inconsistent with informative classical logic.

Deriving denotational completeness is now an easy task.

Definition SPT DenCompl : ∀φ : BF, {t : SPT | JtK ≡ φ}.

Let φ : BF be given. Through CTS, we receive n : nat s.t. ctsn φ holds. By the auxiliary func-
tion SPT DenCompl aux, we receive a reduced decision tree t, which is logically equivalent
to φ and ordered w.r.t. n. By Lemma 5.3, t is also ordered, which makes it a prime tree.

Denotational completeness in addition to Theorem 5.2 make it possible to establish the unique
existence result.

Corollary 5.2 (Uniqueness of prime trees). ∀φ : BF, ∃!t : SPT, φ ≡ JtK.

Proof. We use t := π1 (SPT DenCompl φ) as witness. t is equivalent to φ by the certificate of
SPT DenCompl. Uniqueness remains to be shown: ∀t′ : SPT, Jt′K ≡ φ → t′ = t. Assume another
prime tree t′ logically equivalent to φ. Using =dt either t = t′ holds, then there is nothing to show,
or t 6= t′ holds, but then JtK 6≡ Jt′K by Theorem 5.2, which is impossible because JtK ≡ φ ≡ Jt′K.

We show that SPT and BF are setoid-isomorphic. Let

BF2SPT := λφ : BF. π1 (SPT DenCompl φ)

Lemma 5.13.

1. (SPT,=) is a setoid.

2. (BF,≡) is a setoid

3. BF2SPT : (BF,≡)� (SPT,=)

4. J·K : (SPT,=)� (BF,≡)

43

Chapter 5. Simply typed decision trees

Proof.

1. = is an equivalence relation.

2. ≡ is an equivalence relation by Lemma 5.6.

3. Let φ, ψ : BF with φ ≡ ψ. Then, by definition of BF2SPT we have JBF2SPT φK ≡ φ ≡ ψ ≡
JBF2SPT ψK, but with J·K being injective by Corollary 5.1, we have BF2SPT φ = BF2SPT ψ.

4. Let t1, t2 : SPT with t1 = t2. Jt1K ≡ Jt2K immediately follows.

Theorem 5.3. SetoidIsomorphism (SPT,=) (BF,≡) J·K BF2SPT.

Proof.

• ∀t : SPT, t = BF2SPT JtK : By definition we have JBF2SPT JtKK ≡ JtK and by Corollary 5.1
also BF2SPT JtK = t

• ∀φ : BF, φ ≡ JBF2SPT φK : Immediately by definition of BF2SPT.

As in the previous chapter we are able, by assuming FE, to prove SetoidIsomorphism (SPT,=)
(BF,=) J·K BF2SPT. (SPT,=) and (BF,=) are setoids because = is an equivalence relation. J·K and
BF2SPT are still morphisms by Lemma 4.6 (f equal).

Theorem 5.4. We assume FE.
SetoidIsomorphism (SPT,=) (BF,=) J·K BF2SPT.

Proof.

• ∀t : SPT, t = BF2SPT JtK : Like in the previous theorem (Theorem 5.3).

• ∀φ : BF, φ = JBF2SPT φK : We have ∀φ : BF, φ ≡ JBF2SPT φK by Theorem 5.3. FE gives us
∀φ : BF, φ = JBF2SPT φK.

5.3.1 CTS vs. CDP

In this section we want to demonstrate the consequences of assuming CTS. Imagine we are in a
strong classical environment where we want to assume Computational Decidability of Propositions
(CDP).

Axiom CDP : Type := ∀ P : Prop, {P} + {¬ P}.

We demonstrate that CTS and CDP leads to a proof of False.
Since CDP is of type Type we can ask if a proposition is provable at all times and in every context.
We show, that it is possible, using CDP, to define a non-continuous boolean function. The trick is,
to use CDP to define a ∀-quantification of type bool instead of Prop. In fact, with CDP, one can
convert every proposition to a boolean as follows.

44

5.4. Version 2: Using the Axiom of Description

Definition Prop2bool (P : Prop) : bool := if (CPD P) then true else false.

Recall the definition of ϕ (5.1). In Coq, the definition of ϕ can now be realized as a function having
type (nat→ bool)→ bool instead of (nat→ bool)→ Prop.

Definition phi : BF := fun σ⇒ Prop2bool (∀ n, σ n = true) .

Now let σn
>, σ> : nat→ bool be defined as follows:

σn
> m :=

{
true , m < n
f alse , otherwhise

σ> m := true

It is now possible to show ϕ σn
> = ϕ σ>, where n is the modulus of continuity of ϕ obtained by

CTS.

Theorem 5.5. Let n be the modulus of continuity of ϕ obtained via CTS. Then, ϕ σn
> = ϕ σ>.

Proof. Let n and ctsn ϕ be given by CTS.
Then we have ∀m : nat, m < n → σn

> m = true ∧ σ> m = true, by definition of σn
> and σ>. Since ϕ

has modulus of continuity n, we have ϕ σn
> = ϕ σ>.

Obviously, this is not possible since only the first n variables are assigned to true by σn
> and the

rest to f alse. Thus, ϕ σn
> should be f alse while ϕ σ> should be true. Hence, we have f alse = true

by the above theorem, which is equivalent to False.

5.4 Version 2: Using the Axiom of Description

Simply assuming that all boolean functions are continuous is a radical solution. Instead of as-
suming CTS, we try to find a less controversial approach. We, again, restrict ourselves to only
the continuous functions and therefore chose BFcts as type for boolean functions. For this, we use
the initial definition of cts as existential quantification. Remember, that we had trouble with the
elim restriction when we wanted to define a denotational completeness function. In this version
of our quest to find an isomorphism between boolean functions and prime trees we do not neces-
sarily need denotational completeness as a function. We will show how to define a mapping from
boolean functions to prime trees a little later in this section.
We still need denotational completeness, although not as a function, but as a proposition.

Theorem 5.6 (Denotational Completeness for prime trees). ∀φ : BFcts, ∃t : SPT, φ ≡ JtK.

Proof. Let φ and n : nat with ctsn φ be given. By the auxiliary function SPT DenCompl aux we
thus have a reduced and logically equivalent prime tree t with ordered′ t n. By Lemma 5.3, t is also
ordered an thus a prime tree.

Note, that we did not violate the elim restriction in this proof, since we build proofs from proofs
and functions.
It is also important to notice that, in a statement of the form ∀φ ψ : BFcts, φ ≡ ψ, we do not compare
the modulus of continuity of φ and ψ. We mearly enforce that φ and ψ are continuous. For the rest,
we simply compare the actual functions using BFeq.
From denotational completeness also follows that there exists only one prime tree for a given
boolean function.

Corollary 5.3 (Unique existence of prime trees). ∀φ : BFcts, ∃!t : SPT, φ ≡ JtK.

45

Chapter 5. Simply typed decision trees

Proof. The proof is exactly analogous to the proof of Corollary 5.2.

It is our aim to show that BFcts and SPT are setoid-isomorphic. It is therefore crucial to show
that decision trees, and thus also prime trees, only represent continuous functions. The following
function computes the modulus of continuity of the denotation of a decision tree in a certifying
manner.

Definition SDT Den cts (t : SDT) : {n:nat | ctsn JtK}.
We describe such a function via structural recursion on t.

• t = > : Obviously, a possible modulus of continuity is 0, since we don’t have to consider any
assignments. We vacuously have cts0 J>K.

• t = ⊥ : Analogous to previous case.

• t = (n, t1, t2) : By recursion we have n1 and n2 s.t. ctsn1 Jt1K and ctsn2 Jt2K. A modulus of
continuity of (n, t1, t2) is η := max{n, n1, n2}+ 1.
By definition we have η > n, η > n1 and η > n2. We have to show ctsη J(n, t1, t2)K.

Proof. Let σ1, σ2 : nat→ bool andH := ∀m : nat, m < η → σ1 m = σ2 m be given. We show
J(n, t1, t2)K σ1 = J(n, t1, t2)K σ2.
We have σ1 n = σ2 n byH since n < η. Case analysis:

– σ1 n = true = σ2 n : Jt1K σ1 = Jt1K σ2 needs to be shown. Since ctsn1 Jt1K holds, it suffices
to show ∀m : nat, m < n1 → σ1 m = σ2 m. For every such m, we have σ1 m = σ2 m byH
since m < n1 < η.

– σ1 n = f alse = σ2 n : Jt2K σ1 = Jt2K σ2 can be shown as in the previous case.

At this point we would like to define an actual mapping from boolean functions. Since there is
no way around the need to know the modulus of continuity of the argument function to build a
corresponding prime tree, we have to introduce a new assumption, namely the Axiom of Description.
With description it is possible to ask for the witness of a uniqueness quantification proof whenever
we need it. In other words, we can transform a unique existence proof into a mapping and can thus
circumvent the elim restriction. We will use the constructive definite description axiom from Coq’s
Description library. We will, however, refer to it simply as description. 2

Axiom description : ∀ (A : Type) (P : A→ Prop), (∃! x : A, P x)→ {x : A | P x}.

We will use description to define a mapping BFcts → SPT from the proof of Corollary 5.3. Let
PT Unique denote the proof of Corollary 5.3.

Definition BFcts2SPT cert (φ : BFcts) : {t : SPT | φ ≡ JtK} :=
description SPT (fun t⇒ φ ≡ JtK) (PT Unique φ).

Definition BFcts2SPT (φ : BFcts) : SPT := π1 (BFcts2SPT cert φ)

2Another possibility would be to assume a choice principle to turn the proof of Lemma 5.6 (Denotational Completeness
for prime trees) into a mapping. Since choice → description holds (uniqueness quantification is also an existential quan-
tification), but description → choice doesn’t hold in general, we show a stronger result by assuming the weaker description
instead of choice.

46

5.4. Version 2: Using the Axiom of Description

Lemma 5.14.

1. (BFcts,≡) is a setoid

2. BFcts2SPT is a morphism (BFcts,≡)� (SPT,=)

3. J·K is a morphism (SPT,=)� (BFcts,≡)

Proof.

1. Since we just forget the cts proof carried by members of BFcts, ≡ denotes normal equivalence
on the actual functions, which is an equivalence relation by Lemma 5.6.

2. Let φ, ψ : BFcts with φ ≡ ψ. Since BFcts2SPT is defined through BFcts2SPT cert we have by
certificate JBFcts2SPT φK ≡ φ ≡ ψ ≡ JBFcts2SPT ψK. Through injectivity of J·K (Corollary 5.1),
we have BFcts2SPT φ = BFcts2SPT ψ.

3. Let t1, t2 : SPT with t1 = t2. Jt1K ≡ Jt2K immediately follows. Through SDT Den cts t1 and
SDT Den cts t2 we obtain the modulus of continuity n and n′ of Jt1K and Jt2K respectively in
addition to proofs of ctsn Jt1K and ctsn′ Jt2K. Hence, Jt1K and Jt2K are continuous.

Theorem 5.7. SetoidIsomorphism (SPT,=) (BFcts,≡) J·K BFcts2SPT.

Proof.

• ∀t : SPT, t = BFcts2SPT JtK : By certificate of BFcts2SPT cert we have JBFcts2SPT JtKK ≡ JtK
and by Corollary 5.1 also BFcts2SPT JtK = t

• ∀φ : BF, φ ≡ JBFcts2SPT φK : Immediately by certificate of BFcts2SPT cert.

Unfortunately assuming FE will not suffice to show that (SPT,=) and (BFcts,=) are (partial)
setoid-isomorphic. The reason is, that showing φ = ψ for φ, ψ : BFcts also involves showing that
the proofs of cts φ and cts ψ are equal. In order to show that two proofs are equal, we, in general,
need the axiom of proof-irrelevance (PI). Proof-irrelevance (in Prop) can be assumed without con-
tradiction in Coq. It expresses that only provability matters, whatever the exact form of the proof
is.

PI := ∀P : Prop, ∀p1 p2 : P→ p1 = p2

With FE and PI in our arsenal, we will be able to prove (SPT,=) and (BFcts,=) to be setoid-
isomorphic. (SPT,=) and (BFcts,=) are obviously both setoids (= is an equivalence relation). That
J·K and BFcts2SPT are still morphisms, follows by f equal (Lemma 4.6).

Theorem 5.8. We assume FE and PI.
SetoidIsomorphism (SPT,=) (BFcts,=) J·K BFcts2SPT.

47

Chapter 5. Simply typed decision trees

Proof.

• ∀t : SPT, t = BFcts2SPT JtK : Already proven in Theorem 5.7.

• ∀φ : BF, φ = JBFcts2SPT φK : By Theorem 5.7 we have ∀φ : BF, φ ≡ JBFcts2SPT φK. Through
FE and PI we know that ∀φ : BF, φ = JBFcts2SPT φK since the underlying functions are
equal (by FE) which makes cts JBFcts2SPT φK and cts φ proofs of the same proposition. PI
then gives us equality of those proofs.

5.4.1 Consequences of assuming Description

Assume we are in a classical environment where excluded middle (XM) is assumed. Excluded
middle is the corresponding proposition to the CDP function.

XM := ∀P : Prop, P ∨ ¬P

Note that that we also have XM by assuming PI like we did for the proof of Theorem 5.8, since
PI → XM holds. If description is assumed in addition, it is possible to define CDP which allows
us to define ϕ (5.1) as a function of type (nat→ bool)→ bool.

5.5 Version 3: Boolean functions as dependent pairs

To reach our goal in version 1, we had to assume a controversial axiom in order to find a corre-
sponding prime tree for a boolean function. This axiom made the modulus of continuity of boolean
functions accessible in every context. In version 2 the modulus of continuity was out of reach when-
ever we needed it for definitions instead of proofs because of the elim restriction. The question
arises whether there is a type for boolean functions, which keeps the modulus of continuity avail-
able in every context without using axioms. By pulling the modulus of continuity out of the cts
proof and making it part of the identity of the boolean function we can do so. Version 3 combines
ideas from version 1 and version 2. We use ctsT as in version 1 and pair every boolean function
with their modulus of continuity and the corresponding proof in order to restrict ourselves to only
the continuous boolean functions similar to version 2. Formally, we build the dependent sum of
boolean functions and their modulus of continuity.

Definition BFctsT : Type := {φ : BF & ctsT φ}.

To make clear that the modulus of continuity is now part of the identity of boolean functions we
will write (φ, n) for members of BFctsT .

The definition of a denotational completeness mapping is no challenge.

Definition SPT DenCompl : ∀(φ, n) : BFctsT , {t : SPT | JtK ≡ φ}.

φ is a boolean function with ctsn φ. By the auxiliary function SPT DenCompl aux, we obtain
a reduced decision tree t, which is logically equivalent to φ and ordered w.r.t. n. By Lemma
5.3, t is also ordered, which makes it a prime tree.

Note that the elim restriction is not violated since the modulus of continuity must not be extracted
out of a proof.
Uniqueness of prime trees can be proven as in the previous two sections.

Corollary 5.4 (Uniqueness of prime trees). ∀(φ, n) : BFctsT , ∃!t : SPT, φ ≡ JtK.

48

5.6. Boolean functions as Stream bool→ bool

Proof. Analogous to the proof of Corollary 5.2.

As in Section 5.4 we will only compare the actual functions using equivalence:

(φ, n) ≡ (ψ, m) := φ ≡ ψ.

We define
BFctsT2SPT := λ(φ, n). π1 (SPT DenCompl (φ, n))

Verifying that (BFctsT ,≡) is a setoid as well as showing that BFctsT2SPT and J·K are morphisms
between (BFctsT ,≡) and (SPT,=) is just as before.

Lemma 5.15.

1. (BFctsT ,≡) is a setoid

2. BFctsT2SPT is a morphism (BFctsT ,≡)� (SPT,=)

3. J·K is a morphism (SPT,=)� (BFctsT ,≡)

Proof. All three parts are analogous to the corresponding parts of Lemma 5.14.

Theorem 5.9. SetoidIsomorphism (SPT,=) (BFctsT ,≡) J·K BFctsT2SPT.

Proof. Analogous to the corresponding proof (Theorem 5.7) in Section 5.4.

Unfortunately, it is not possible to prove that (SPT,=) and (BFctsT ,=) are setoid-isomorphic, even
when FE and PI are assumed. The reason is, that proving (φ, n) = (ψ, m) means proving φ = ψ,
n = m and ctsn φ = ctsm ψ. While FE and PI would take care of the first and last equality respec-
tively, n = m is in general not provable. In fact, when a function is continuous, we have infinitely
many moduli of continuity for that function.

Theorem 5.10. For any (φ, n) : BFctsT , we have ∀m : nat, m > n→ ctsm φ.

Proof. Assume σ, σ′ : nat → bool as well as H := ∀k : nat, k < m → σ k = σ′ k. We have to show
φ σ = φ σ′. We use the fact that ctsn φ holds and thus it suffices to show ∀l : nat, l < n→ σ l = σ′ l.
For any such k we have σ l = σ′ l byH since k < n < m holds.

5.6 Boolean functions as Stream bool→ bool

In this section, we want to briefly show, that there is an alternative definition of boolean functions
involving Streams. We will mostly follow the introduction of streams as done by Chlipala [6].
Streams can be seen as unbounded lists over a type T. With this analogy in mind we want to define
streams as an infinite chain of constructors, that add one element to an already present stream (cons
operations). Coq’s mechanism to realize such infinite chains of constructors is Coinduction. In Coq’s
Stream library one finds the following definition [2].

CoInductive Stream (T : Type) : Type :=
| Cons : T→ Stream T→ Stream T.

49

Chapter 5. Simply typed decision trees

We will use the infix notation� for Cons.
Along with the Stream type come two definitions for extracting the first element and the remainder
of a stream.

Definition hd {T : Type} (s : Stream T) :=
let (t, s’) := s in t.

Definition tl {T : Type} (s : Stream T) :=
let (t, s’) := s in s’.

Suppose we would define boolean functions using streams:

Definition BF’ := Stream bool→ bool.

We would like to show that BF and BF′ are isomorphic. Essentially this means to prove that Stream
bool and nat → bool are isomorphic. Before taking this challenge on, we would like to make an
important observation about coinductive types: Infinite data and infinite proofs go hand in hand.
This is best made clear by a small example. Consider the following corecursive procedure which
applies a function f to all the members of a stream.

CoFixpoint map {T T’ : Type} (f : T→ T’) (s : Stream T) : Stream T’ :=
f (hd s)� map f (tl s).

Now consider the following two definitions of a constant true stream.

CoFixpoint falses := false� falses.

CoFixpoint trues := true� trues.

CoFixpoint trues’ := map negb falses.

Proving that trues = trues′ holds is impossible without assumptions. The reason is that Coq’s
equality predicate eq is limited to equalities that can be proven by "finite syntactic arguments" (see
Chapter ’Infinite Data and Proofs’ in [6]), which is not the case when arguing about streams. We
have to define an extensional equality stream eq on streams which we will write as s $ t.

Fixpoint get {T : Type} (s : Stream T) (n : nat) : T :=
match n with

| 0⇒ hd s
| S n⇒ get (tl s) n

end.

get s n will from now on be written as s[n].

Definition stream eq {T : Type} (s t : Stream T) := ∀ n, s[n] = t[n].

We will use conventional equivalence ≡ as an equality notion for nat→ bool.

The mapping Stream bool → (nat→ bool) is given by the get function.

Definition str2sig (s : Stream bool) : nat→ bool := get s.

For the inverse mapping we have to put in a bit more work. We first define a stream over nat,
which, starting at some n : nat, increases n with every Cons operation.

CoFixpoint ascending (n : nat) := n� (ascending (S n)).

Using the map procedure and ascending, a mapping (nat→ bool)→ Stream bool can look like this:

Definition sig2str (σ : nat→bool) : Stream bool := map σ (ascending 0).

We show an important property about ascending, get and map:

Lemma 5.16. For any f : nat→ bool and n, m : nat, we have: (map f (ascending m))[n] = f (n + m).

50

5.6. Boolean functions as Stream bool→ bool

Proof. We prove this by induction on n.

• n = 0 : We have (map f (ascending m))[0] = hd (map f (ascending m)) = f m = f (0 + m).

• n→ n + 1 : We have the inductive hypothesis

IH : ∀m : nat, (map f (ascending m))[n] = f (n + m)

and wish to prove (map f (ascending m))[n + 1] = f ((n + 1) + m). By commutativity and
associativity of + we have f ((n + 1) + m) = f (n + (m + 1)) and by rewriting using IH from
right to left we end up with f (n + (m + 1)) = (map f (ascending (m + 1)))[n], which equals
(map f (ascending m))[n + 1].

We now have everything we need to prove that Stream bool and nat→ bool are setoid-isomorphic.

Lemma 5.17.

1. (Stream bool,$) is a setoid.

2. (nat→ bool,≡) is a setoid.

3. str2sig is a morphism (Stream bool,$)� (nat→ bool,≡)

4. sig2str is a morphism (nat→ bool,≡)� (Stream bool,$)

Proof.

1. We prove that $ is an equivalence relation.

• Reflexivity: $ is reflexive since for any stream s and n : nat we have that s[n] = s[n].
• Symmetry: $ is symmetric since for any two streams s, t with s $ t, we have t[n] = s[n]

for any n through symmetry of =.
• Transitivity: $ is transitive since for any streams s, t, r with s $ t and t $ r, we have

s[n] = r[n] for any n through transitivity of =.

2. Like in (1), we use that fact that = in an equivalence relation.

3. Let s, t : Stream bool with s $ t. For any given n : nat we then have to show str2sig s n =
str2sig t n. This holds since str2sig s n = s[n], str2sig t n = t[n] and by s $ t.

4. Let σ, σ′ : nat → bool with σ ≡ σ′. We need to show sig2str σ $ sig2str σ′. Let n : nat be
given.

(sig2str σ)[n] = (map σ (ascending 0))[n]
= σ (n + 0) (Lemma 5.16)
= σ n

= σ′ n (σ ≡ σ′)

= σ′ (n + 0)

= (map σ′ (ascending 0))[n] (Lemma 5.16)

= (sig2str σ′)[n]

Theorem 5.11. SetoidIsomorphism (Stream bool,$) (nat→ bool,≡) str2sig sig2str.

51

Chapter 5. Simply typed decision trees

Proof.

• ∀s, sig2str (str2sig s) $ s : Let s : Stream bool and n : nat be given.
We have (map (str2sig s) (ascending 0))[n] = str2sig s (n + 0) by Lemma 5.16. Unfolding the
definition of str2sig to get yields the claim.

• ∀σ, str2sig (sig2str σ) ≡ σ : Let σ : nat→ bool and n : nat be given.
We have (map σ (ascending 0))[n] = σ (n+ 0) by Lemma 5.16. The claim follows immediately.

The two mappings str2sig and sig2str also play an important role in the mappings BF → BF′

and BF′ → BF. Here are the definitions:

Definition BF2BF’ (φ : BF) : BF’ := fun s⇒ φ (str2sig s).

Definition BF’2BF (φ : BF’) : BF := fun σ⇒ φ (sig2str σ).

We would like to use ≡ as equality on BF and a corresponding version of ≡ on BF′. We will,
however, not be able to prove that BF and BF′ are setoid-isomorphic using these relations. The
reason is, that we are not able to prove results of the form φ (str2sig (sig2str s)) = φ s and
φ (sig2str (str2sig σ)) = φ σ. The extensional equalities used to compare boolean streams and
nat → bool assignments, do not allow us to rewrite str2sig (sig2str s) to s nor sig2str (str2sig σ)
to σ in this context. We, therefore, define a modified version of ≡, which doesn’t work on equal
inputs, but on equivalent inputs.

Definition BFeq ext (φ ψ: BF) := ∀ σ σ′, σ ≡ σ′ → φ σ = ψ σ′.

Definition BFeq ext’ (φ ψ: BF’) := ∀ s s’, s $ s’→ φ s = ψ s’.

We will use ≡ext as infix notation for BFeq ext and ≡′ext for BFeq ext′.
Unfortunately ≡ext and ≡′ext are not provably reflexive, since neither σ ≡ σ′ implies φ σ = φ σ′ nor
s $ s′ implies φ s = φ s′. We have, however, accounted for exactly such circumstances in Section
3.4 when we introduced partial setoids.

Lemma 5.18.

1. (BF,≡ext) is a partial setoid.

2. (BF′,≡′ext) is a partial setoid.

3. BF2BF’ is a morphism (BF,≡ext)� (BF′,≡′ext).

4. BF’2BF is a morphism (BF′,≡′ext)� (BF,≡ext).

Proof.

1. We show that ≡ext is a partial equivalence relation.

• Symmetry: Let φ, ψ : BF with φ ≡ext ψ as well as σ, σ′ : nat → bool with σ ≡ σ′ be
given. We show ψ σ = φ σ′. We have σ′ ≡ σ since ≡ is symmetric (Lemma 5.17). Using
this, we have φ σ′ = ψ σ through φ ≡ext ψ.

• Transitivity: Let φ, ψ, ξ : BF with φ ≡ext ψ, ψ ≡ext ξ as well as σ, σ′ : nat → bool with
σ ≡ σ′ be given. We show φ σ = ξ σ′. We have σ′ ≡ σ′ since≡ is reflexive (Lemma 5.17).
By φ ≡ext ψ and ψ ≡ext ξ we thus also have φ σ = ψ σ′ and ψ σ′ = ξ σ′. By transitivity
of = we conclude φ σ = ξ σ′.

2. Analogous to (1) replacing ≡ by $ and ≡ext by ≡′ext.

52

5.6. Boolean functions as Stream bool→ bool

3. Assume φ, ψ : BF with φ ≡ext ψ as well as s, s′ : Stream bool with s $ s′. We need to show
BF2BF′ φ s = BF2BF′ ψ s′, which, by definition, corresponds to φ (str2sig s) = ψ (str2sig s′).
By using φ ≡ext ψ, we have this, if we can show (str2sig s) ≡ (str2sig s′). By definition this is
the same as showing ∀n : nat, s[n] = s′[n] which we already have with s $ s′.

4. Assume φ, ψ : BF′ with φ ≡′ext ψ as well as σ, σ′ : nat → bool with σ ≡ σ′. We need to show
BF′2BF φ σ = BF′2BF ψ σ′, which, by definition, corresponds to φ (sig2str σ) = ψ (sig2str σ′).
By using φ ≡′ext ψ, we have this, if we can show (sig2str σ) $ (sig2str σ′) which is the same
as ∀n, (map σ (ascending 0))[n] = (map σ′ (ascending 0))[n]. Through Lemma 5.16 we can
rewrite this to ∀n, σ (n + 0) = σ′ (n + 0), which we can show through σ ≡ σ′.

Theorem 5.12. PartialSetoidIsomorphism (BF′,≡′ext) (BF,≡ext) BF’2BF BF2BF.

Proof.

• ∀φ, φ ≡′ext φ → BF2BF′ (BF′2BF φ) ≡′ext φ : We assume some φ : BF′ with φ ≡′ext φ as well
as s, s′ : Stream bool with s $ s′ and wish to show BF2BF′ (BF′2BF φ) s = φ s′. By definition
this is the same as φ (sig2str (str2sig s)) = φ s′. Since str2sig and sig2str form a setoid-
isomorphism between (Stream bool,$) and (nat → bool,≡) we have sig2str (str2sig s) $ s.
Using transitivity of $ (Lemma 5.17), we also have sig2str (str2sig s) $ s′ because of s $ s′.
The claim then follows via φ ≡′ext φ.

• ∀φ, φ ≡ext φ→ BF′2BF (BF2BF′ φ) ≡ext φ : Analogous to the previous case.

Next, we would like to build setoids (Stream bool,=) and (nat → bool,=) as well as (BF,=)
and (BF′,=) and prove the corresponding isomorphisms. Note that all the candidates are in fact
setoids since = is an equivalence relation. Also str2sig, sig2str, BF2BF′ and BF′2BF are still mor-
phisms between their respective setoids, which follows from f equal (Lemma 4.6). For the first
setoid-isomorphism between (Stream bool,=) and (nat → bool,=) we have to assume stream ex-
tensionality and sigma extensionality, the latter being a special case of FE.

Str Ext := ∀s1 s2 : Stream bool, s1 $ s2 → s1 = s2.
Sig Ext := ∀σ1 σ2 : nat→ bool, σ1 ≡ σ2 → σ1 = σ2.

Theorem 5.13. We assume Str Ext and Sig Ext.
SetoidIsomorphism (Stream bool,=) (nat→ bool,=) str2sig sig2str.

Proof.

• ∀s, sig2str (str2sig s) = s : We have ∀s, sig2str (str2sig s) $ s by Theorem 5.11. Str Ext
then gives us the claim.

• ∀σ, str2sig (sig2str σ) = σ : We have ∀σ, str2sig (sig2str σ) ≡ σ by Theorem 5.11. Sig Ext
then gives us the claim.

For the isomorphism between (BF,=) and (BF′,=), assuming Sig Ext and Str Ext are not strong
enough. We will need FE and Str Ext. Since FE obviously implies Sig Ext, we are still able to use
the previous theorem. Using = as equality on BF and BF′, enables us to prove a SetoidIsomorphism
between (BF,=) and (BF′,=) instead of just a PartialSetoidIsomorphism as before.

53

Chapter 5. Simply typed decision trees

Theorem 5.14. We assume FE and Str Ext.
SetoidIsomorphism (BF′,=) (BF,=) BF’2BF BF2BF.

Proof. We have

H1 := ∀s, sig2str (str2sig s) = s
H2 := ∀σ, str2sig (sig2str σ) = σ

through (Theorem 5.13).

• ∀φ, BF2BF′ (BF′2BF φ) = φ : By unfolding the definitions of BF2BF′ and BF′2BF we have
to prove (f un s : Stream bool ⇒ φ (sig2str (str2sig s))) = φ. Using FE it is enough to prove
φ (sig2str (str2sig s)) = φ s. ByH1 we have this.

• ∀φ, BF′2BF (BF2BF′ φ) = φ : By unfolding the definitions of BF2BF′ and BF′2BF we have
to prove (f un σ : nat → bool ⇒ φ (str2sig (sig2str σ))) = φ. Using FE it is enough to prove
φ (str2sig (sig2str σ)) = φ σ. ByH2 we have this.

54

Chapter 6

Conclusion and Future Work

6.1 The isomorphisms

• (Σn booln → bool,≡Σ) and (Σn PT n,=)

In Chapter 4 we showed that Σn booln → bool and Σn PT n are setoid-isomorphic. We quickly
discovered that modelling decision trees as a dependent inductive type DT : nat → Type
required a complicated inversion function, which did a level dependent case analysis on the
given decision tree. This showcased the lack of support for such dependent types in Coq, as
tactics like inversion or injection failed to deliver.

– (DT n,=) and (DTrec n,=)
A recursive type for decision trees DTrec : nat → Type was clearly the better approach
compared to the dependent inductive one. No inversion function similar to DT Inv
was required as Coq’s usual case analysis did the job. The setoid-isomorphism itself
was straightforward to show. The idea to come up with a recursive type for decision
trees was inspired by Adams [1].

By design, every decision tree was already ordered, such that only reducing was necessary
to define prime trees. The draw-back of the types Σn booln → bool and Σn PT n is that
we have several copies of the same function and the same prime tree, as both λ . true and
λ . true are constant true functions as well as both >2 and >1 are constant true prime trees.
For the setoid-isomorphism between (Σn booln → bool,≡) and (Σn PT n,=) no axioms were
required. When we changed ≡ to =, however, we needed FE as expected.

• (BF,≡) and (SPT,=)

In Chapter 5, we defined boolean functions as BF := (nat → bool) → bool. Decision
trees were defined by a simple inductive type SDT : Type without dependency. It turns
out that without additional assumptions, we are unable to define a useful mapping (de-
notational completeness for prime trees) from boolean functions to simple prime trees. A
first solution was to assume that every boolean function is continuous such that we obtain a
modulus of continuity of the function in question. Assuming the Axiom of Continuity, while
drastic, seemed plausible since it appeared impossible to define non-continuous members of
(nat → bool) → bool. Unfortunately CTS is inconsistent with other axioms, like CDP, that
allow us to migrate members of (nat→ bool)→ Prop to (nat→ bool)→ bool, like described
in Section 5.3.1.
Approaching the end of this development, we had to put in more work as for the previous
isomorphism involving cascaded functions. This holds especially for the proof of ∀t1 t2 :

55

Chapter 6. Conclusion and Future Work

SPT, t1 6= t2 → Jt1K 6≡ Jt2K (Theorem 5.2). This is mainly due to the fact that simple decision
trees were not ordered by definition and that the branching constructor explicitly indicated
the variable on which it branches. A few additional lemmas relating orderedness and vari-
able occurrences in a tree were required to establish Theorem 5.2. For a setoid-isomorphism
between (BF,=) and (SPT,=), we had to assume FE in addition.

• (BFcts,≡) and (SPT,=)

In this version we tried to replace CTS by description. The Axiom of Description makes it
possible to turn functional relations into functions. We used this fact to obtain a mapping
from continuous boolean functions to prime trees by turning the proof of ∃!t : SPT, JtK ≡ φ
into a mapping. The rest of the development was similar to the previous one, since many of
the results could be reused or easily adapted.
Major differences to the previous isomorphism are, that we have to prove continuity of de-
notations of decision trees (by computing a modulus of continuity) and that PI has to be
assumed in addition to FE to prove a setoid-isomorphism between (BFcts,=) and (SPT,=).

• (BFctsT ,≡) and (SPT,=)

Having identified that the modulus of continuity has to be available in order to avoid the
assumption of axioms, we made the necessary changes to the type for boolean functions by
making the modulus of continuity part of the identity of the function. Almost every result
from the previous two developments could be reused or easily adapted. Unfortunately an
isomorphism using the setoid (BFctsT ,=) instead of (BFctsT ,≡) cannot be proven since the
modulus of continuity is not unique.
No axioms were necessary for this development.

6.2 Possible improvements

• By pairing up every boolean function with its smallest possible modulus of continuity, thereby
making it unique, we could prove that (BFctsT ,=) and (SPT,=) are isomorphic assuming FE
and PI.

• Theorem 5.1 already hinted that with our notion of isomorphism using setoids it might be
possible to establish isomorphisms that are not meaning preserving. Since we where looking
for representatives of boolean functions and we possibly want to do computations on them
we also want them to behave the same as the boolean function they represent. Therefore we
wish to define a type of representatives of boolean functions, whatever their definition (we
will denote boolean functions with BF).
We extend a setoid by adding a denotation for the carrier type T and an additional proof
component saying that if two members of T are equal, then they should have the same deno-
tation.

Booloid :=


T : Type
=T : T → T → Prop
J·K : T → BF
ER : =T is (partial) equivalence relation
P : ∀t1 t2 : T, t1 =T t2 → Jt1K ≡BF Jt2K


A morphism between Booloids (denoted by�B) would then be a mapping that is meaning

56

6.2. Possible improvements

preserving and equality preserving:

(T,=T , J·KT)�B (T′,=T′ , J·KT′) :=

 $: T → T′

EP : ∀t1 t2 : T, t1 =T t2 → $ t1 =T′ $ t2
MP : ∀t : T, JtKT ≡BF J$ tKT′


An isomorphism between Booloids consists of two Booloid-morphisms.
It is, in fact, easy to see that all the setoids mentioned in the previous section (Section 6.1) are
also Booloids and that all the morphisms are meaning preserving.
This makes (Σn PT n,=, λ(n, t). JtK) and (SPT,=, J·K) legitimate representatives of their re-
spective boolean functions, namely (Σn booln → bool,≡Σ, id) and, for example (BFcts,≡, id).

57

Chapter 6. Conclusion and Future Work

58

Bibliography

[1] Robin Adams. Formalized metatheory with terms represented by an indexed family of types.
In Jean-Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types
for Proofs and Programs, volume 3839 of Lecture Notes in Computer Science, pages 1–16. Springer
Berlin / Heidelberg, 2006.

[2] The Coq Proof Assistant. Standard library. http://coq.inria.fr/stdlib/.

[3] Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory, 2000.

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer Verlag,
2004. http://www.labri.fr/publications/l3a/2004/BC04.

[5] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677–691, August 1986.

[6] Adam Chlipala. Certified programming with dependent types. http://adam.chlipala.net/
cpdt/.

[7] Gert Smolka and Chad E. Brown. Introduction to computational logic lecture notes, 2009.

59

http://coq.inria.fr/stdlib/
http://www.labri.fr/publications/l3a/2004/BC04
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

	1 Introduction
	1.1 Motivation and Overview
	1.2 Structure of the thesis

	2 Theory
	2.1 Boolean functions
	2.2 Decision Trees
	2.3 Prime Trees

	3 Preliminaries
	3.1 A two-valued type: bool
	3.2 Coq and the Elim Restriction
	3.3 Functional Extensionality
	3.4 Representing an isomorphism in Coq
	3.4.1 Setoids and partial setoids

	4 Decision trees as a dependent inductive type
	4.1 Cascaded boolean functions
	4.2 Decision trees
	4.2.1 Denotational Completeness for decision trees

	4.3 Prime trees
	4.3.1 Denotational Completeness for prime trees
	4.3.2 Unique existence of prime trees

	5 Simply typed decision trees
	5.1 Simple decision trees
	5.2 Alternative definition of boolean functions
	5.3 Version 1: Using the Axiom of Continuity
	5.3.1 CTS vs. CDP

	5.4 Version 2: Using the Axiom of Description
	5.4.1 Consequences of assuming Description

	5.5 Version 3: Boolean functions as dependent pairs
	5.6 Boolean functions as Stream bool bool

	6 Conclusion and Future Work
	6.1 The isomorphisms
	6.2 Possible improvements

