
Taking Linguistic Dimensions More Seriously: The New Grammar
Formalism of Extensible Dependency Grammar

Ralph Debusmann
Programming Systems Lab

Saarland University
Saarbrücken, Germany
rade@ps.uni-sb.de

Abstract

We introduce the new grammar formal-
ism of Extensible Dependency Gram-
mar (XDG), enabling us to take the dif-
ferent dimensions of linguistic descrip-
tion more seriously than existing gram-
mar formalisms. XDG treats the dif-
ferent linguistic dimensions as separate,
autonomous dependency graphs. We
show how this allows us to naturally
account for taxing phenomena such as
free word order, control, and quantifier
scope.

1 Introduction

In this paper, we argue that the existing grammar
formalisms do not take the different dimensions of
linguistic description seriously enough. We pro-
pose the new grammar formalism of Extensible
Dependency Grammar (XDG), which deals with
the different linguistic dimensions as different, au-
tonomous dependency graphs.

The autonomous linguistic dimensions of XDG
give rise to numerous advantages. The first is mod-
ularity: Changes in the grammar pertaining only
to one linguistic dimension do not require changes
to other parts of the grammar. Another is per-
spicuity: Grammars can be understood and ex-
tended more easily since the number of interac-
tions between the linguistic dimensions is kept to
a minimum. The third advantage is concurrency:
The autonomous linguistic dimensions can be pro-

cessed in parallel, without any implied direction-
ality.

XDG is based on dependency grammar
(Tesnière, 1959), (Kunze, 1975),(Mel’čuk, 1988),
which is a convenient choice for a number of
reasons. Firstly, dependency trees are intuitive,
graphic and perspicuous, in contrast to e.g. the
more machine-oriented feature structures of
HPSG (Pollard and Sag, 1994). Secondly, using
dependency grammar, we can easily decouple the
linguistic dimensions of syntactic function and
word order, whereas phrase structure grammar
conflates the two. Thirdly, dependency grammar
is convenient for processing: Contrary to phrase
structure grammar, we can assume a finite set of
nodes per analysis. We call this assumption finite
size assumption, and exploit it in our efficient
constraint-based parser for XDG.

This paper is structured as follows. In sec-
tion 2, we introduce the essentials of XDG. There-
after, in section 3, we demonstrate an XDG analy-
sis encompassing five linguistic dimensions, all of
which are treated as different, autonomous struc-
tures. We start from the linguistic dimension of
word order, and go deeper towards the semantics
from then on: to the dimension of syntactic func-
tion, to deep syntax, predicate argument structure
and scope. We describe the multi-dimensional
principles relating the linguistic dimensions to
each other in section 4. In section 5, we present
the XDG parser. Section 6 compares XDG with
other approaches before section 7 rounds up the
paper.

2 Extensible Dependency Grammar

We start with the essentials of XDG. An XDG in-
stance describes an arbitrary number of linguis-
tic dimensions. Each dimension is a dependency
graph, i.e. a directed graph with labeled edges. All
dimensions share the same set of nodes, but have
different edges.

An XDG analysis is a tuple of graphs, one for
each dimension of the XDG instance. Also, an
XDG analysis assigns to each node a finite feature
structure.

Given a set of input constraints (e.g. a 1:1-
mapping of nodes to words in the input), an XDG
analysis is well-formed with respect to an XDG
grammar consisting of set of principles and a lex-
icon. The lexicon consists of finite feature struc-
tures, and is used by the principles to filter out the
ill-formed analyzes.

We distinguish one-dimensional principles,
stipulating constraints on one dimension only,
from multi-dimensional principles. The latter stip-
ulate constraints which must hold between two or
more dimensions.

The XDG lexicon can be built up conveniently
using lexical inheritance, and lexical disjunction
as in the sense of meta-grammar crossings (Can-
dito, 1996).

3 Linguistic Dimensions

In the following, we go through a five-dimensional
XDG analysis of the German sentence glossed in
(1) below:1

Ein gutes Buch versucht jeder Forscher zu lesen.

A good bookacc tries every researchernom to read.

Every researcher tries to read a good book.
(1)

On each dimension, we explain the corresponding
XDG analysis, and the one-dimensional principles
which state the well-formedness conditions on that
dimension. We start with the word order dimen-
sion.

3.1 Word Order

On the word order dimension, we make use of
the traditional theory of topological fields (Höhle,

1We will use the English counterparts to the German
words from here on.

1986). The theory has also been successfully uti-
lized for HPSG in (Kathol, 1995) and (Müller,
1999). It splits up German sentences into five con-
tiguous parts called (like the theory) topological
fields:

Vorfeld (Mittelfeld) Nachfeld (2)

The two round brackets embracing the Mittelfeld
(middle field) are called left and right sentence
brackets. The Mittelfeld contains any number of
dependents. In declarative sentences, the left sen-
tence bracket is occupied by the finite verb, and
the right sentence bracket by its verbal dependents.
The Vorfeld (pre-field) contains one topicalized
dependent, and the Nachfeld (post-field) typically
contains subordinate clauses. In our example, the
NP a good book is in the Vorfeld, the finite verb
tries in the left sentence bracket, the NP every re-
searcher in the Mittelfeld and the verbal depen-
dent read in the right sentence bracket. The Nach-
feld is empty.

3.1.1 Analysis

We encode this topological structure in the fol-
lowing dependency tree:

A good book tries every researcher to read

df af
n

lb

df
n

pf
rb

afdf

mf rbvf

df pf (3)

We connect words and nodes by dotted edges.
Nodes are connected by solid labeled edges. The
dotted edges are labeled by node labels, and the
solid edges by edge labels. The label vf cor-
responds to the Vorfeld, lb to the left sentence
bracket, mf to the Mittelfeld, and rb to the right
sentence bracket. For the two NPs, we use the la-
bels df for determiner field, af for adjective field,
and n for noun field.

3.1.2 Principles

We turn to the question what are the principles
which determine the well-formedness conditions
for the word order dimension. We use the follow-
ing XDG principles:

Tree principle. We require that the dependency
graphs on the word order dimension are trees.

Valency principle. We require that each each
node on the word order dimension must satisfy its
lexical in specification and its lexical out specifica-
tion. The in specification stipulates what incoming
edges are licensed, and the out specification what
outgoing edges are licensed.

As an example, we display the in and out speci-
fications for the finite verb tries below:

tries

[

in : {}
out : {vf?, mf∗, rb?, nf?}

]

(4)

They are read as follows. By its in specification,
tries does not license any incoming edge. By its
out specification, it licenses zero or one outgoing
edges into the Vorfeld (vf?), zero or more outgoing
edges into the Mittelfeld (mf∗), zero or one out-
going edges into the right sentence bracket (rb?),
and zero or one outgoing edges into the Nachfeld
(nf?).

As a second example, consider the in and out
specifications of the noun book:

book

[

in : {vf?, mf?}
out : {df?, af∗}

]

(5)

book can be placed in the Vorfeld or in the Mit-
telfeld (vf? and mf? in the in specification), and
licenses zero or one outgoing determiner field
edges, and zero or more outgoing adjective field
edges (df? and af∗ in the out specification).

Projectivity principle. We require that the de-
pendency graphs on the word order dimension are
projective.

Order principle. We require that the depen-
dency graphs on the word order dimension satisfy
the order principle.

We assign to each node a node label, and stip-
ulate a total order ≺ on the set of node and edge
labels:

df ≺ af ≺ n ≺
vf ≺ lb ≺ mf ≺ rb ≺ nf

(6)

The order principle is only satisfied if for each
node in the dependency graph, the order of its
daughters is compatible with ≺. For instance
all daughters with edge label vf must precede all

daughters with edge label mf. In addition, the or-
der principle requires that the mother is positioned
with respect to its daughters by its node label. In
our example, the finite verb tries has node label lb,
i.e. it must be positioned between the daughters
with edge label vf and the daughters with edge la-
bel mf .

3.2 Syntactic Function

On the linguistic dimension of syntactic function,
we make use of traditional dependency grammar
(Tesnière, 1959), (Kunze, 1975), (Mel’čuk, 1988).

3.2.1 Analysis

We display the XDG analysis on the syntactic
function dimension below:

A good book tries every researcher to read

adj
det

subj vinf

detobj part

(7)

Here, tries is the root. It has two dependents, the
subject researcher (edge label subj) and the infini-
tive read (vinf). researcher has one dependent:
the determiner every (det). read has two depen-
dents: the particle to (part) and the object book
(obj). book also has two dependents, the deter-
miner a and the adjective good (adj).

3.2.2 Principles

Tree principle.

Valency principle. As an example, we show the
in and out specifications for tries:

tries

[

in : {}
out : {subj!, vinf!}

]

(8)

tries does not license any incoming edge (in spec-
ification). It requires precisely one outgoing sub-
ject edge and one outgoing infinitival complement
edge (subj! and vinf! in the out specification).

As another example, we show the in and out
specifications for read:

read

[

in : {vinf?}
out : {obj!, part!}

]

(9)

read can be an infinitival complement (vinf? in the
in specification), and requires an object and a par-
ticle (obj! and part! in the out specification).

3.3 Deep syntax

We introduce the linguistic dimension of deep syn-
tax, which is very similar to the dimension of syn-
tactic function. However, there are two main dif-
ferences. 1) Words without semantic content like
to-particles and expletives are not connected, 2)
The deep syntax includes edges for deep subjects
of embedded non-finite verbs.

3.3.1 Analysis

Here is the XDG analysis on the deep syntax
dimension:

A good book tries every researcher to read

adj
det

subj

vinf

det

obj subj
(10)

Compared with the syntactic function analysis in
(7), there are two differences. 1) The edge from
read to to is removed because the to-particle has
no semantic content, and 2) There is an additional
deep subject edge from read to researcher. Hence,
researcher has two incoming edges in the deep
syntax: it is simultaneously the deep subject of
tries and the deep subject of read. This means that
the dependency graphs on the deep syntax dimen-
sion cannot be trees.

3.3.2 Principles

Dag principle. We require that the dependency
graphs on the deep syntax dimension are directed
acyclic graphs.

Valency principle. Here are the in and out spec-
ifications for read:

read

[

in : {vinf?}
out : {obj!, subj!}

]

(11)

read can be an infinitival complement (vinf? in the
in specification), and requires a deep object and a

deep subject (obj! and subj! in the out specifica-
tion). Contrary to its out specification on the syn-
tactic function dimension, read does not license
any particle edge, but does require a subject edge.

3.4 Predicate Argument Structure

On the linguistic dimension of predicate argument
structure, our goal is to construct a representation
similar to the flat semantic representations devel-
oped for Machine Translation in (Phillips, 1993)
and (Trujillo, 1995), and also used as the basis for
Minimal Recursion Semantics (MRS) (Copestake
et al., 1999).

Our predicate argument structure for the exam-
ple sentence is a multiset of semantic literals such
as the following:

{every (x), researcher (x),
a(y), good(y), book (y),
try(e, x, e

′), read (e′, x, y)}
(12)

Here, x and y are individual variables which are
implicitly universally bound. e and e′ are event
variables in the sense of (Davidson, 1967).

3.4.1 Analysis

We encode this predicate argument structure in
the following dependency graph:

A good book tries every researcher to read

arg1

q

arg1
e

q

arg1arg2
(13)

The dependency graph contains an edge labeled
with q from each noun to its quantifier. The edge
from tries to read labeled e represents that the
event corresponding to tries embeds the event cor-
responding to read. The other edges fill the re-
maining argument positions of the predicates.

We use theory-neutral labels such as arg1 and
arg2 for the argument positions, rather than the-
matic roles. Although thematic roles can be useful
to describe predicate argument structure, there are
too many arguments against using them (Dowty,
1989).

3.4.2 Principles

Dag principle.

Valency principle. Below, we show the in and
out specifications of read:

read

[

in : {e?}
out : {arg1!, arg2!}

]

(14)

read can be an embedded event (e? in the in spec-
ification), and has two arguments (arg1! and arg2!

in the out specification).

3.5 Scope

On the scope dimension, we proceed in a similar
fashion as MRS: The aim of the scope dimension
is to add the information needed to obtain only the
admissible scope readings of a sentence. One of
the two scope readings of our example is the fol-
lowing:

every(x, researcher (x),
a(y, good(y) ∧ book (y),
try(x, read (x, y))))

(15)

(15) represents the the weak reading of our exam-
ple, where the universal quantifier outscopes the
existential quantifier. We use a fairly standard no-
tation for generalized quantifiers: The first argu-
ment slot corresponds to the bound variable of
the quantifier, the second to the restriction, and
the third to the body or scope. We abandon the
event variables of the flat semantic representation;
instead, we properly embed the predicate corre-
sponding to read as an argument of the predicate
corresponding to tries.

3.5.1 Analysis

We encode the weak reading in the following
dependency tree:

A good book tries every researcher to read

q r s

s

qs

(16)

As in the predicate argument dimension, edges la-
beled q indicate go from nouns to their quantifiers.

Edges labeled r go from quantified nouns to their
restriction (e.g. the edge from book to good), and
edges labeled s indicate that the mother outscopes
the daughter. Here, researcher outscopes book,
and book outscopes tries.

Often, it is convenient to underspecify the sco-
pal relationships in a sentence. In our constraint-
based setting, we get underspecification for free:
We can use our parser to get partial parses, and
only enumerate the fully specified readings on de-
mand. We depict a partial parse for our example
sentence below:

A good book tries every researcher to read

q r

s

qs s

(17)

At this stage, the parser already knows that both
quantified nouns researcher and book outscope
tries, but it has not yet committed to either sco-
pal relationship of researcher and book. In the de-
pendency tree, this is represented by two dashed
dominance edges: One from researcher to tries,
and another one from book to tries.

3.5.2 Principles

Tree principle.

Valency principle. Below, we show the in and
out specifications of book:

book

[

in : {s?}
out : {q!, r∗, s!}

]

(18)

book can be in the scope of another node (s? in
the in specification), and requires a quantifier, can
have any number of elements in its restriction, and
takes scope (q!, r∗ and s! in the out specification).

4 Multi-dimensional principles

The principles used so far were one-dimensional,
i.e. they pertained only to one dimension at a time.
Although we emphasize the importance of making
the linguistic dimensions as autonomous as possi-
ble, we must be able to express interrelations be-
tween them. In XDG, we call principles which re-
late more than one dimension multi-dimensional.

Climbing principle. The climbing principle
states that the dependency graph in one dimension
must be flatter than the corresponding dependency
graph in another dimension.

The climbing principle must hold between the
word order and the syntactic function dimension:
Each dependency tree on the word order dimen-
sion must be flatter than the corresponding depen-
dency tree on the syntactic function dimension.

In fact, our example word order tree in (3) is
flatter than the corresponding syntactic function
tree in (7) to allow for topicalization of the NP a
good book.

Linking principle. The lexicalized linking prin-
ciple stipulates that in order for an edge in one di-
mension to be licensed, the daughter must have a
certain incoming edge label in the other dimen-
sion.

As an example, we show how we use the linking
principle to describe how the semantic arguments
of read are realized in the deep syntax:

read

[

link :

[

arg1 : {subj}
arg2 : {obj}

]]

(19)

The link specification states that the first argu-
ment (arg1) of read is realized by the deep sub-
ject (subj), and the second argument (arg2) by the
deep object (obj). By introducing the deep syntax
definition, we do not have to worry about control
(or raising) when we establish this linking.

Co-immediate dominance principle. The lexi-
calized co-immediate dominance principle stipu-
lates that in order for an edge in one dimension
to be licensed, there must a corresponding edge in
the other dimension.

Contra-immediate dominance principle. The
lexicalized contra-immediate dominance principle
stipulates that in order for an edge in one dimen-
sion to be licensed, there must a corresponding
edge in the other dimension, where mother and
daughter are reversed.

As an example, we show the specifications for
co- and contra- immediate dominance of the noun
book:

book

[

coimm : {q}
contraimm : {r}

]

(20)

Here, we use the co-immediate dominance prin-
ciple (coimm feature) to state that in order for
an each edge labeled q on the scope dimen-
sion to be licensed, there must be a correspond-
ing edge on the predicate argument dimension.
We use the contra-immediate dominance princi-
ple (contraimm feature) to state that in order for
an edge labeled r on the scope dimension to be li-
censed, there must be a corresponding edge on the
predicate argument dimension where mother and
daughter are reversed.

Co-dominance principle. The lexicalized co-
dominance principle stipulates that in order for an
edge in one dimension to be licensed, the mother
must dominate the daughter in the other dimen-
sion.

Contra-dominance principle. The lexicalized
contra-dominance principle stipulates that in order
for an edge in one dimension to be licensed, the
daughter must dominate the mother in the other
dimension.

As an example, we show the specifications for
co- and contra- dominance of the verb tries:

tries

[

codom : {e}
contradom : {arg1}

]

(21)

We use the co-dominance principle (codom fea-
ture) to state that each edge labeled e from a
verb to an embedded verb on the predicate argu-
ment dimension implies that the verb takes scope
over the embedded verb. We use the contra-
dominance principle (contradom feature) to state
that each edge labeled arg1 from a verb to a noun
on the predicate argument dimension implies that
the noun takes scope over the verb.

5 Parsing

XDG can already be used for practical experi-
ments: We have written a constraint-based parser
system for XDG based on constraint propaga-
tion (Maruyama, 1990), which is a straightfor-
ward translation of the axiomatization of XDG
into a constraint satisfaction problem on finite sets.
We make use of the selection constraint (Duchier,
1999) to efficiently prune the search space with re-
spect to lexical ambiguity. The XDG parser is con-
current, i.e. all linguistic dimensions are parsed in

parallel. Hence, the XDG parser has no fixed di-
rectionality, and can also be used for generation.
Information can flow from any dimension to any
other: Not only can information from the syntac-
tic influence the semantic dimensions, but also the
other way round.

The worst-case complexity of XDG parsing is
NP-complete. This has been proven for a two-
dimensional instance of XDG (Koller and Strieg-
nitz, 2002), but not for the general case. Still, we
can already say that XDG parsing is decidable be-
cause of the finite size assumption: all the param-
eters of an XDG parse are finite.

Average-case complexity of XDG parsing de-
pends on the grammar, but experiments suggest
that it is always polynomial in practice. For a
small handcrafted grammar of German, we ob-
served polynomial parse times (e.g. 2 seconds
for a 50 word sentence) with an exponent of
2.5. Parsing large grammars (induced from tree-
banks) is also polynomial, although it is far slower
than state-of-the-art one-dimensional dependency
parsers such as the one described in (Carroll and
Briscoe, 2002).

6 Comparison to Other Approaches

XDG is similar to Meaning Text Theory (MTT)
(Mel’čuk, 1988) with its seven strata of represen-
tation. But whereas the the mappings from one
strata to another have not yet been formally speci-
fied, all principles of XDG are completely axiom-
atized.

Lexical-Functional Grammar (LFG) (Bresnan
and Kaplan, 1982) is another similar grammar
formalism. Both LFG and XDG are essentially
dependency-based (although LFG has a context-
free backbone by its c-structure). However, there
are two main differences. Firstly, LFG uses the
functional φ-mapping to get from its c-structure to
the f-structure, where XDG uses relational princi-
ples to interrelate its dimensions. Thus, whereas
LFG is inherently directional, XDG is not. Sec-
ondly, LFG uses feature structures as the represen-
tational device on the f-structure, whereas XDG
uniformly uses arguably more perspicuous depen-
dency graphs on all of its dimensions.

XDG is also similar to HPSG (Pollard and
Sag, 1994). Both approaches are constraint-based,

and essentially dependency-based, as the headed
structures of HPSG encode nothing else but de-
pendencies. The three main differences are the
following. Firstly, HPSG does not recognize the
autonomy of linguistic dimensions. Although
HPSG’s signs include different feature structures
for different linguistic dimensions, they are too
strongly tied to the syntax. Almost each change
in the syntax requires changes in other parts of
the grammar pertaining e.g. to semantics, and
vice versa. Secondly, the machine-oriented fea-
ture structures of HPSG are not at all perspicuous.
Thirdly, HPSG is not completely formally speci-
fied.

7 Conclusion

In this paper, we introduced the new grammar
formalism of Extensible Dependency Grammar
(XDG), which allows us to fulfill our proposal of
taking the different linguistic dimensions more se-
riously. XDG allows to treat the different linguis-
tic dimensions as autonomous structures, repre-
sented in a uniform way as dependency graphs.
We utilize the concept of valency on all linguis-
tic dimensions to give them a higher degree of au-
tonomy. The different linguistic dimensions are
only interrelated as loosely as possible by multi-
dimensional principles.

For purposes of illustration, we explained a five-
dimensional XDG analysis of a German sentence
exhibiting interesting phenomena on the differ-
ent linguistic dimensions: Topicalization on the
word order dimension, control on the deep syn-
tax, and scope ambiguity on the scope dimension.
We demonstrated that by separating the participat-
ing linguistic dimensions, we can cover these phe-
nomena in a natural way.

XDG has already spawned numerous related
work. (Koller and Striegnitz, 2002) used the XDG
parser for generation with Tree Adjoining Gram-
mars and even outran the generator described in
(Carroll et al., 1999). (Kuhlmann, 2002) uses a
version of XDG parser to parse Categorial Type
Logic (CTL) grammars. (Duchier and Kruijff,
2003) introduce Information Structure to XDG.
(Dienes et al., 2003) present SXDG, a version of
XDG equipped with a statistical component.

For the near future, our goal is to improve

XDG and the accompanying linguistic theory. An-
other research goal is to obtain large grammars for
XDG, by grammar induction (NEGRA, PDT) and
by converting from existing grammar resources
(e.g. the XTAG grammar). Especially for parsing
with large grammars, we need to further improve
the XDG parser. One the one hand, we want to im-
prove the efficiency of the pure XDG parser. On
the other, we want to continue developing SXDG,
the version of XDG enhanced with a statistical
component.

References

Joan Bresnan and Ronald Kaplan. 1982. Lexical-
functional grammar: A formal system for grammat-
ical representation. In Joan Bresnan, editor, The
Mental Representation of Grammatical Relations,
pages 173–281. The MIT Press, Cambridge/USA.

Marie-H èléne Candito. 1996. A principle-based hier-
archical representation of LTAG. In Proceedings of
the 16th International Conference on Computational
Linguistics (COLING 1996), Kopenhagen/DEN.

John Carroll and Ted Briscoe. 2002. High precision
extraction of grammatical relations. In Proceedings
of the 19th International Conference on Computa-
tional Linguistics (COLING), Taipei/TW.

John Carroll, Ann Copestake, Dan Flickinger, and Vic-
tor Poznanski. 1999. An efficient chart generator
for (semi-)lexicalist grammars. In Proceedings of
the 7th European Workshop on NLG, pages 86–95,
Toulouse/FRA.

Ann Copestake, Dan Flickinger, and Ivan Sag.
1999. Minimal recursion semantics. an introduc-
tion. Manuscript.

Donald Davidson. 1967. Truth and meaning. Synthese
17, pages 304–323.

Peter Dienes, Alexander Koller, and Marco Kuhlmann.
2003. Statistical A* Dependency Parsing. In
Prospects and Advances in the Syntax/Semantics In-
terface, Nancy/FRA.

David R. Dowty. 1989. On the semantic content of
the notion of “thematic role”. In Gennaro Chierchia,
Barbara H. Partee, and Ray Turner, editors, Proper-
ties, Types and Meanings, volume 2, pages 69–129.
Kluwer, Dordrecht/NL.

Denys Duchier and Geert-Jan M. Kruijff. 2003. Infor-
mation structure in topological dependency gram-
mar. In Proceedings of the 11th Conference of the

European Chapter of the Association for Computa-
tional Linguistics (EACL 2003).

Denys Duchier. 1999. Axiomatizing dependency pars-
ing using set constraints. In 6th Meeting on the
Mathematics of Language (MOL 6), Orlando/USA.

Tilman H öhle. 1986. Der Begriff “Mittelfeld”,
Anmerkungen über die Theorie der topologischen
Felder. In Walter Weiss, Herbert Ernst Wiegand,
and Marga Reis, editors, Akten des 7. Interna-
tionalen Germanisten-Kongresses, pages 329–340,
T übingen/GER. Max Niemeyer Verlag.

Andreas Kathol. 1995. Linearization-Based Ger-
man Syntax. Ph.D. thesis, Ohio State University,
Ohio/USA.

Alexander Koller and Kristina Striegnitz. 2002. Gen-
eration as dependency parsing. In Proceedings of
the 40th Anniversary Meeting of the ACL (ACL
2002), Philadelphia/USA.

Marco Kuhlmann. 2002. Towards a constraint parser
for categorial type logics. Master’s thesis, Divi-
sion of Informatics, University of Edinburgh, Edin-
burgh/UK.

J ürgen Kunze. 1975. Abḧangigkeitsgrammatik.
Akademie Verlag, Berlin/GER.

H. Maruyama. 1990. Structural disambiguation with
constraint propagation. In The Proceedings of the
28th Annual Meeting of the ACL (ACL 1990), pages
31–38, Pittsburgh/USA.

Igor Mel’čuk. 1988. Dependency Syntax: Theory
and Practice. State Univ. Press of New York, Al-
bany/USA.

Stefan M üller. 1999. Deutsche Syntax deklara-
tiv. Head-Driven Phrase Structure Grammar für
das Deutsche. Linguistische Arbeiten 394. Max
Niemeyer Verlag, T übingen/GER.

John .D. Phillips. 1993. Generation of text from logi-
cal formulae. Machine Translation, 8(4):209–235.

Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press,
Chicago/USA.

Lucien Tesni ère. 1959. Eĺements de Syntaxe Struc-
turale. Klincksiek, Paris/FRA.

Indalecio Arturo Trujillo. 1995. Lexicalist Machine
Translation of Spatial Prepositions. Ph.D. thesis,
University of Cambridge, Cambridge/USA.

