
Multi-dimensional Graph Configuration
for Natural Language Processing

Ralph Debusmann1, Denys Duchier2, and Marco Kuhlmann1

1 Programming Systems Lab, Saarland University, Saarbrücken, Germany
{rade,kuhlmann}@ps.uni-sb.de

2 Équipe Calligramme, LORIA, Nancy, France
duchier@loria.fr

Abstract Many tasks in computational linguistics can be regarded as
configuration problems. In this paper, we introduce the notion of lexic-
alised multi-dimensional configuration problems (lmcps). This class of
problems both has a wide range of linguistic applications, and can be
solved in a straightforward way using state-of-the-art constraint pro-
gramming technology. The paper falls into two main parts: We first
present examples for linguistic configuration problems and show how to
formalise them as constraint satisfaction problems. In the second part,
we introduce Extensible Dependency Grammar (xdg), a framework for
the development of linguistic resources in the context of lmcps.

1 Introduction

Various tasks in computational linguistics can be regarded as configuration prob-
lems (cps). The input to a configuration problem is a set of components; the
output is a selection from these components and an assembly of the selected
components that satisfies certain problem-specific constraints [1].

In this paper, we introduce a particular class of cps called lexicalised multi-
dimensional configuration problems (lmcps). A configuration problem is lexical-
ised when, as is the case in many linguistic applications, the ambiguity involved
in choosing the components to assemble is stipulated by a lexicon. A multi-di-
mensional configuration problem is one where several mutually constraining cps
have to be solved at once.

lmcps are a natural way to formalise linguistic tasks that involve multiple
levels of description—e.g., syntactic structure, linear precedence, and predic-
ate/argument structure. They have two major benefits: First, they strike a
balance between complete modularity and tight integration of the developed
resources—each linguistic dimension is characterised using its own set of well-
formedness conditions; interactions between different dimensions are specified at
an interface level. Second, lmcps can be solved in a straightforward way using
state-of-the-art constraint programming technology.

Plan of the paper We start by giving three examples for linguistic tasks that
can be understood as configuration problems (Section 2). We then sketch how



to encode such problems into constraints on finite sets of integers (Section 3),
and how to extend this encoding to lmcps (Sections 4 and 5). In Section 6,
we then provide an introduction to Extensible Dependency Grammar (xdg), a
development environment for linguistic modelling that embraces the approach
of lmcps. Section 7 concludes the paper with an outline of future work.

2 Configuration Problems in NLP

In this section, we argue that many tasks in computational linguistics can be
usefully regarded as instances of configuration problems. We do so by giving three
representative examples for which constraint-based processing techniques have
been developed: semantic assembly, surface realisation, and syntax analysis.

2.1 Semantic Assembly

We first turn to the task of assembling the semantic representation of a sentence
from the individual fragments of representation contributed by its words in the
context of scope ambiguity. Consider the following sentence:

(1) Every researcher deals with a problem.

This sentence has two readings, which may be disambiguated by the following
continuations:

(1a) . . . Some of these problems may be unsolvable.
(1b) . . . This problem is his funding.

If represented in terms of Montague-style semantics, the two readings could be
rendered as follows:

∀x : researcher(x) → ∃y : problem(y) ∧ (deal with)(x, y) (1a)
∃y : problem(y) ∧ ∀x : researcher(x) → (deal with)(x, y) (1b)

Notice that both these terms are made up of exactly the same ‘material’:

∀x : (researcher(x) → . . . ) , ∃y : (problem(y) ∧ . . . ) , (deal with)(x, y) .

The only difference between the two readings is the relative ordering of the term
fragments: in (1a), the universal quantifier takes scope over the existential quan-
tifier; in (1b), it is the other way round. Formalisms for scope underspecification
[2,3,4] aim for a compact representation of this kind of ambiguity: they can be
used to describe the common parts of a set of readings, and to express constraints
on how these fragments can be ‘plugged together’.

The left half of Fig. 1 shows an underspecified graphical representation of
the two readings of (1) in the formalism of dominance constraints [4]. The solid
edges in the picture mark the term fragments that are shared among all read-
ings. Two fragments can combine by ‘plugging’ one into an open ‘hole’ of the



∧→

∀x ∃y

researcher(x) problem(y)

(deal with)(x,y)

every 
researcher

a problem

deal with

a problem

every 
researcher

deal with

Figure 1. A dominance constraint for the two readings of (1), and its two solutions

other. The dashed edges mark dominance requirements, where dominance means
ancestorship in the final configuration of the term fragments. For instance, the
fragments for ‘every researcher’ and for ‘a problem’ dominate the ‘deal with’
fragment, i.e. both must be ancestors of the latter in any complete term tree.
With the given dominance requirements, exactly two configurations of the frag-
ments are possible (shown schematically in the right half of Fig. 1); these two
configurations correspond to the readings (1a) and (1b).

2.2 Surface realisation

Surface realisation is the sub-task of natural language generation that maps a
semantic representation to a grammatical surface string. More specifically, for
some given grammar, surface realisation takes as its input a bag of semantic
descriptions, φ, and returns a syntax tree containing a verbalisation of φ.

Here we discuss surface realisation for Tree Adjoining Grammar (tag) [5].
One of the underlying design principles of many tag grammars is semantic
minimality : each lexical entry (elementary tree) of a tag grammar corresponds
to an atomic semantics. Surface realisation then can be reduced to the problem
of selecting for each semantic atom a matching elementary tree, and assembling
these trees into a derivation tree using the standard tag operations that combine
grammatical structures: substitution and adjunction [6].

We illustrate this by means of an example. Assume that we want to realise
the following (event-based) input semantics using some given tag grammar G:3

x = Peter, see(e, x, y), indef(y), fat(y), rabbit(y) .

In a first step, we need to choose for each of the semantic atoms an element-
ary tree from G that verbalises their semantics. A sample selection of trees is
shown in Fig. 2. The dashed arrows in the figure indicate a way to compose the
chosen elementary trees by means of substitution and adjunction; for example,
3 Note that all atoms are considered to be ground.



the tree realising the semantic atom fat(y) can adjoin into the root node (labelled
with N) of the tree realising the semantics of rabbit(y). Fig. 3 shows the resulting
derivation tree for the sentence. In a post-processing step, this derivation tree
can be transformed into a derived tree, whose yield is a possible realisation of
the intended semantics.

S

NP↓ VP

V NP↓

sees NP

Det N↓

a

NP

Peter

N

rabbit

N

N*Adj

fat

see(e,x,y )

fat(y )

rabbit(y )

x  = Peter

indef(y )

Figure 2. Configuring tag elementary trees for surface realisation

NP

N

NP

Peter sees rabbita

N

fat
x = Peter see(e,x,y ) indef(y ) rabbit(y )fat(y )

Figure 3. tag derivation tree for the configuration in Fig. 2

2.3 Syntactic Analysis

Our final example for a linguistic configuration problem is the parsing of de-
pendency grammars. As we have seen, surface realisation can be reduced to the
configuration of a labelled tree in which the nodes are labelled with lexical entries



(elementary trees), and the edges are labelled with sites for substitution and ad-
junction. It has often been noted that these derivation trees closely resemble
dependency trees.

A dependency tree for a sentence s is a tree whose nodes are labelled with the
words of s, and whose (directed) edges are labelled with assymmetric grammat-
ical relations (like subject-of or adverbial-modifier-of ). Given an edge u −ρ→ v
in a dependency tree, u is called the head of u, v is called the dependent of v,
and ρ is the grammatical relation between the two. A dependency grammar con-
sists of a lexicon and a valency assignment for the lexical entries that specifies
the grammatical relations a given entry must or may participate in as head and
as dependent. A dependency tree is licensed by a given grammar if for every
edge u −ρ→ v, the relation ρ is a grammatical relation licensed by the lexical
entries for u and v.

det

subj

det
obj

Ein Buch hat gelesender

vpp

Student

Lexical entry function subcat
ein det −
Buch subj ∨ obj det
hat − subj ∧ vpp
der det −
Student subj ∨ obj det
gelesen vpp obj

Figure 4. A dependency tree for (2), and a licensing lexicon

The left half of Fig. 4 shows a dependency tree for the German sentence

(2) Ein
a

Buch
book

hat
has

der
the

Student
student

gelesen.
read

‘The student has read a book.’

The right half of the figure shows a valency assignment with which this tree
would be licensed: it specifies possible incoming edges and required outgoing
edges. For example, the lexical entry for Student can act both as a subject and
an object dependent of its head, and itself requires a dependent determiner.

3 Graph Configuration Problems

The problems described in the previous section have this in common: in each
task, we are given a number of graph fragments, and have to plug them together
(under constraints) to obtain a complete assembly. We call this class of problems
graph configuration problems.

For such problems, we represent the plugging of a fragment w into another
fragment w′ by means of a directed labelled edge w −`→ w′, which makes expli-
cit that a resource of type ` supplied by w′ is being matched with a corresponding



resource requirement in w. In the dependency parsing example, fragments can
provide resources whose types are grammatical functions like subject-of.

We are thus led to the notion of (finite) labelled graphs. Consider given a
finite set L of labels. A L-labelled graph (V,E) consists of a set V of nodes and
a set E ⊆ V × V ×L of directed labelled edges between them. We can interpret
each label ` as a function from nodes to sets of nodes defined a follows:

`(w) = {w′ | w −`→ w′ ∈ E }

(In graph theoretical terms, the set `(w) is the set of immediate successors of w
that can be reached by traversing an edge labelled with `.) Duchier [7] developed
this set-based approach and showed e.g. how to formulate a constraint system
that precisely characterises all labelled trees which can be formed from the finite
set of nodes V and the finite set of edge labels L. This system is expressed in
terms of finite set variables `(w), daughters(w), down(w) and eqdown(w), and a
global variable roots:

V = roots ] ]{ daughters(w) | w ∈ V }
∧ |roots| = 1
∧ ∀w ∈ V

(∀` ∈ L `(w) ⊆ V )
∧ eqdown(w) = {w} ] down(w)
∧ down(w) = ∪{ eqdown(w′) | w′ ∈ daughters(w) }
∧ daughters(w) = ]{ `(w) | ` ∈ L}

(3)

By taking advantage of the constraint programming support available in a system
such as Mozart/Oz, this formal characterisation of finite labelled trees can be
given a straightforward computational interpretation.

Using this approach as a foundation, we can encode graph configuration
problems with additional constraints. For example, each node typically offers a
specific subset of resources. Such a restriction can be enforced by posing con-
straints on the cardinality of `(w) (for ` ∈ L), e.g. |`(w)| = 0 for a resource not
offered by w and |`(w)| = 1 for a resource offered exactly once. This is how we
can model subcategorisation in the application to dependency parsing.

4 Lexicalised Configuration Problems

For linguistic configuration tasks, it is not realistic to assume that the fragments
to be plugged together are given explicitly right from the start. For example, in
the surface realisation problem, there may be several alternative ways to verbalise
the same atomic semantics. Similarly, in the syntax analysis problem, one word
may have several readings, alternative subcategorisation frames, or alternative
linearisation constructions.

We therefore generalise the previous view by replacing each fragment with a
finite collection of fragments from which one must be selected. Since in linguistic
contexts, the mapping from nodes to collections of alternative fragments is often
stipulated by a lexicon, we call such problems lexicalised configuration problems.



The challenge now is to adapt the constraint-based approach outlined in
Section 3 to gracefully handle lexical ambiguity. Let’s consider again the de-
pendency parsing application. As described earlier, for a given set V of words,
we can model the possible dependency trees as the solutions of the constraint
system (3), and enforce subcategorisation frames using cardinality constraints
on `-daughter sets `(w). If we now assume that w has k lexical entries, each
one may stipulate a different cardinality constraint for `(w). Clearly, in order to
avoid combinatorial explosion, we do not want to try all possible combinations
of selections for the given words. Instead, we would like to take advantage of
constraint propagation to avoid non-deterministic choices.

What we want is an underspecified representation of the lexical entry that is
ultimately chosen in a form that can be easily integrated into a constraint-based
formulation. This is the purpose of the selection constraint

X = 〈Y1, . . . , Yn〉[I] ,

whose declarative semantics is X = YI . All of X, Yi and I may be variables,
and propagation takes place in both directions: into X in a manner similar to
constructive disjunction, and into I whenever a Yk becomes incompatible with X
(and thus k can be removed from the domain of I).

We have implemented support for selection constraints for finite-domain in-
teger (FD) and finite integer set variables (FS). This support can easily be lifted
over feature structures as follows:〈 f1 = v1

1
...

fp = v1
p

 , . . . ,

 f1 = vk
1

...
fp = vk

p

〉
[I] =

 f1 = 〈v1
1 , . . . , vk

1 〉[I]
...

fp = 〈v1
p, . . . , vk

p〉[I]

 (4)

In this manner, we can use the selection constraints for complex lexical entries.
Notice how features f1 through fp are constrained by concurrent selection con-
straints which are all covariant because they share the same selector variable I.

5 Multi-dimensional Configuration Problems

In the previous section, we have introduced the notion of lexicalised graph con-
figuration problems, and suggested how they can be encoded into systems of con-
traints that are adequately supported by corresponding constraint technology.
In the present section, we generalise this notion to multi-dimensional configur-
ation problems—problems that consist of several individual configuration tasks
that mutually constrain each other. The motivation for this generalisation is the
insight that many phenomena in natural language take advantage from splitting
them up into more than one dimension of linguistic description. We illustrate
this idea with the treatment of German word order phenomena in Topological
Dependency Grammar (tdg).



Consider again the sentence from the dependency parsing example presented
in Section 2, here repeated for convenience:

(5) Ein
a

Buch
book

hat
has

der
the

Student
student

gelesen.
read

‘The student has read a book.’

The sentence illustrates object topicalisation in German. Starting from the ‘ca-
nonically’ ordered sentence

(6) Der
The

Student
student

hat
has

ein
a

Buch
book

gelesen.
read

‘The student has read a book.’

sentence (5) may be construed as the result of the fronting of ein Buch (the
object of the verb), and a successive movement of der Student (the subject) to
the now vacant object position. However, a far more natural and perspicuous
account is obtained when one separates constituency and linear precedence, and
describes word order variation as a relation between those two structures.

Fig. 5 shows the analysis of (5) using Topological Dependency Grammar
(tdg) [8]). tdg dedicates one dimension to immediate dominance (id) and an-
other to linear precedence (lp). Each dimension has its own set of well-formed-
ness conditions (called principles): both the id and the lp structures are required
to be trees, but lp structures must also be ordered and projective. Moreover, a
multi-dimensional principle called climbing constrains the lp tree to be a flat-
tening of the id tree.

det

subj

det
obj

Ein Buch hat gelesender

vpp

Student

(a) Immediate Dominance

nvf
mf

nvf

vf

Ein Buch hat gelesender

vcf

Student

(b) Linear Precedence

Figure 5. Topicalisation

The parsing task of tdg is an example for a multi-dimensional graph config-
uration problem according to the characterisation above: to find the structures
licensed by a given input, one has to find all triples (V, Tid, Tlp) in which Tid is
a well-formed id structure on V, Tlp is a well-formed lp structure on V, and the



climbing relation holds between them. Section 6 describes an extended version
of this model with additional dimensions for deep syntax, predicate/argument
structure, and scope.

The constraint encoding presented in the previous section can be extended
to multi-dimensional configuration problems as follows:

– Every lexical entry now contains a sub-lexical entry for each dimension. In
this manner, lexical entries simultaneously constrain all dimensions. Figure 6
illustrates the selection constraint operating simultaneously on 3 dimensions
over 3-dimensional lexical entries.

– Multi-dimensional principles are expressed as global constraints that relate
several dimensions to one another.

I

CI

BI

A6

1

AI

B6

C6

2 3 4 5 6

Figure 6. Multi-dimensional selection

Lexicalised multi-dimensional configuration problems yield a modular and
scalable framework for modelling linguistic phenomena. How do they relate to
other approaches? lmcps most closely resemble the parallel grammar architec-
ture proposed by Sadock and Jackendoff [9,10], where a number of semi-autonom-
ous modules (the dimensions in an lmcp) operate in parallel and interact through
bi-directional interfaces (multi-dimensional principles). With various formalisms
like Lexical Functional Grammar (lfg) [11] and Meaning-Text Theory (mtt)
[12], lmcps share the idea of distinguishing several representational structures.
In contrast to these formalisms, however, lmcps do not presuppose a layered
representation, where only adjacent layers can share information directly, nor
do they assume that information can flow only in one direction: multi-dimen-
sional principles can connect arbitrary dimensions, and they are not required to
be functional. Given that all dimensions share the same set of nodes, multi-di-
mensional graphs also exhibit many of the benefits that arise through the tight
integration of information that is obtained in formalisms like hpsg [13].



6 Extensible Dependency Grammar

In this section, we introduce Extensible Dependency Grammar (xdg) [14], our
flagship instance of a development environment for lexicalised multi-dimensional
configuration problems. xdg is a generalization of tdg from the previous section.
It supports the use of an arbitrary number of dimensions of linguistic represent-
ation, and of arbitrary principles stating the well-formedness conditions of these
structural dimensions.

6.1 Example

Rather than giving a formal definition of xdg, we propose a five-dimensional
sample grammar and illustrate it with the following sentence, an English passive
construction paraphrasing the ubiquitous linguistic example ‘Every man loves a
woman’:

(7) By every man, a woman is loved.

In the following, we give a quick tour through the five dimensions of our sample
grammar to show what aspects of linguistic analysis they cover.

ID dimension The id dimension (id stands for immediate dominance) repres-
ents the linguistic aspect of grammatical function. It was introduced already for
tdg in Section 5. We display the id analysis of (7) below:

det
subj

By every man isa

vpp

woman loved

det
subj

pobj (8)

Here, ‘woman’ is the subject (edge label subj) of the finite verb ‘is’; ‘a’ is the
determiner (edge label det) of ‘woman’; ‘loved’ is the verbal past participle (vpp)
of ‘is’; ‘by’ is the prepositional object (pobj) of ‘loved’; ‘man’ is the prepositional
complement (pcomp) of ‘by’; ‘every’ is the determiner of ‘man’.

LP dimension The lp dimension (lp for linear precedence) describes word
order, and has also already been introduced in Section 5. On the lp dimension,
edge labels name word positions.4

4 Following work on tdg, we adopt the convention to suffix lp edge labels with an ‘f’
for ‘field’ to better distinguish them from id edge labels.



pf

detf nounf

finf

detf nounf infinf

detf

topf

By every man isa

vppf

woman loved

detf

pcompf sub
jf

(9)

In the lp analysis, the finite verb ‘is’ is the root of the sentence; ‘by’ is in the
topicalisation position (topf); ‘woman’ is in the subject position (subjf); ‘loved’
is in the verbal past participle position (vppf). Furthermore, ‘man’ is in the
prepositional complement position of ‘by’ (pcompf); ‘every’ is in the determiner
position of ‘man’ (detf); ‘a’ is in the determiner position of ‘woman’ (detf).

On the lp dimension, we additionally annotate the nodes with node labels
(displayed on the dotted projection edges connecting nodes and words). These
are required for specifying the relative order of mothers and their daughters. For
example, a determiner in the determiner position of a noun (edge label detf)
must precede the noun itself (node label nounf).

DS dimension The ds dimension (ds for deep syntax ) represents an interme-
diate structure between syntax and semantics: this In dimension, constructions
such as control, raising and passive are already resolved to enable a more seam-
less transition to semantics. Furthermore, function words such as the preposition
‘by’ and ‘to’-particles are not connected, since they have no impact on the se-
mantics. Below is an example ds analysis:5

detd

subjd

By every man isa

subd

woman loved

detd objd
(10)

Here, ‘loved’ is subordinated to ‘is’ (edge label subd); ‘man’ is the deep subject
(subjd) of ‘loved’; ‘woman’ is the deep object (objd); ‘every’ is the determiner of
‘man’; ‘a’ is the determiner of ‘woman’.

Notice that in this example, the relations of deep subject and deep object do
not match the relations of subject and prepositional object on the id dimension,
due to the passive construction: whereas in the id analysis, ‘woman’ is the subject
of the auxiliary ‘is’ and ‘by’ is the prepositional object of ‘loved’, the ds analysis
5 We adopt the convention to suffix ds edge labels with ‘d’ for ‘deep’ to better distin-

guish them from id edge labels.



mirrors the underlying predicate/argument structure more closely by making
‘woman’ the deep object of ‘loved’, and ‘man’ its deep subject.

Semantics disentangled The last two dimensions of our sample grammar
represent semantics. Sticking to our dictum of modularity, we use them to dis-
entangle two aspects of semantics which are usually conflated in representations
based on predicate logic: the introduction and binding of individual variables
(pa dimension) and the hierarchical relationships between the predicates (sc di-
mension). The pa dimension (pa for predicate/argument structure) tells us which
individual variables are introduced by which quantifiers, and how these variables
fill the argument slots of the predicates. It does not tell us anything about the
hierarchical structure in which the predicates are arranged in the formula; this
is relegated to the sc dimension (sc for scope structure).

Here is the pa analysis for sentence (7):

arg

arg1

By every man isa woman loved

arg2

arg

(11)

In this example analysis, think of the quantifier ‘every’ as introducing a vari-
able x, and ‘a’ introducing a variable y. The predicate ‘man’ binds x, and ‘wo-
man’ binds y. Finally, x is the first argument of the predicate expressed by
‘loved’, and y is the second argument.

Here is a corresponding sc analysis:

s

s

By every man isa

r

woman loved

r
(12)

Here, ‘a’ has ‘woman’ in its restriction (edge label r) and ‘every’ in its scope (edge
label s); ‘every’ has ‘man’ in its restriction and ‘loved’ in its scope. Notice that
this is only one of the two possible scope readings of the sentence—the ‘strong’
reading where the existential quantifier outscopes the universal quantifier. The
sc analysis representing the other, ‘weak’ reading is depicted below.



s

s

By every man isa

r

woman loved

r

(13)

With predicate/argument structure and scope structure disentangled, we are
able to easily construct a flat semantic representation useful e.g. for machine
translation [15]. To this end, we extract the information present in the pa di-
mension, without taking the sc dimension into account. To obtain a ‘complete’
semantic representation (reflecting both variable binding and the hierarchical
structure of the formula), we have to combine the information from the pa and
the sc dimension. We will give an example of how to do this below.

Semantics construction Suppose that the lexicon contains for each semantic-
ally contentful word a pa expression and an sc expression as follows:

pa sc

every ∀〈_〉 every(〈r〉 → 〈s〉)
a ∃〈_〉 some(〈r〉 ∧ 〈s〉)
man man(〈arg〉) man
woman woman(〈arg〉) woman
love love(〈arg1〉, 〈arg2〉) love

Starting from these expressions, we can make use of the pa and sc analyses to
construct the final semantics of the sentence.

First, we instantiate the underscores in the pa expressions with fresh indi-
vidual variables, and the arguments of the predicates with the variables associ-
ated to the quantifiers their argument edges point to. This yields the following
description of the pa dimension:

every : ∀x , a : ∃y , man : man(x) , woman : woman(y) , love : love(x, y)

We then replace the slot arguments of the sc expressions by the respective
dependents in an sc analysis, say (12). This yields the following sc description:

every : every(man → love) , a : some(woman ∧ every(man → love)) ,

man : man , woman : woman , love : love

Now we combine the two descriptions to obtain a complete formula: we simply
replace the constants in the sc description by the corresponding pa expressions.

every : ∀x(man(x) → love(x, y)) ,

a : ∃y(woman(x) ∧ ∀x(man(x) → love(x, y))) ,

man : man(x) , woman : woman(x) , love : love(x, y)



The expression at the root of the sc analysis (12)—the expression corresponding
to the quantifier a—is the formula we are after: the ‘strong’ reading of the
sentence, in which the existential quantifier outscopes the universal quantifier.

6.2 Principles and the lexicon

Parsing sentences using xdg amounts to solving a lexicalised multi-dimensional
configuration problem in the sense presented in Section 5: The well-formedness
of an analysis is determined by the interaction of grammatical principles and the
lexicon. The principles stipulate restrictions on one or more dimensions. They
are controlled by and interact through the feature structures assigned to the
nodes from the lexicon.

In the current setup of xdg, concrete principles are taken from an extens-
ible library of parametric principles. This library already contains the necessary
principles to model the syntax and semantics for large fragments of German
and English, and smaller fragments of Arabic, Czech and Dutch. We present a
representative subset of it below.

tree(d) stipulates that dimension d must be a tree. In the example above, we
use this principle on the id, lp and sc dimensions.

dag(d) stipulates that dimension d must be a directed acyclic graph. We use this
principle on the ds and pa dimensions, which need not necessarily be trees.

valency(d) stipulates that, for each node on a dimension d, incoming and out-
going edges must be licensed by the lexical valency (cf. the valency lexicon
given in Fig. 4). This is a key principle in xdg, and is used on all dimensions.
Note that in contrast to the previous principles, it is a lexicalised principle.

ordered(d,≺) stipulates that, for each node w on a given dimension, the set
containing w and its daughters is ordered according to the order≺, defined on
node and edge labels. We use this principle on the lp dimension to constrain
the order of the words in a sentence; we can use it e.g. to require that
determiners (detf) precede nouns (nounf).

projective(d) stipulates that dimension d must be a projective graph. We use this
principle on the lp dimension to exclude lp trees with crossing edges.

climbing(d1, d2) The climbing principle is two-dimensional; it stipulates that a
given dimension d1 must be flatter than a given dimension d2. We use it to
state that the lp dimension (9) must be flatter than the id dimension (8).

linking(d1, d2) Like the climbing principle, the linking principle relates two di-
mensions. It allows us to specify, for each node on the participating dimen-
sions, what edges on dimension d1 leaving w correspond to what edges on
dimension d2 leaving w. In particular, we use it to stipulate that e.g. the
first argument of ‘loved’ (arg1) on the pa dimension (11) must be realised by
the deep subject (subjd) on the ds dimension (10), and the second argument
(arg2) by the deep object (objd).



contradominant(d1, d2) The contra-dominance principle is yet another lexical-
ised two-dimensional principle. We use it to stipulate that, for each pair
(w1, w2) of nodes on the participating dimensions, an edge w1 −ρ→ w2

on dimension d1 must correspond to a (contravariant) sequence of edges
w2 −σ1→ · · · −σk→ w2 on dimension d2. In particular, this allows us to
stipulate that the semantic arguments of verbal predicates on the pa dimen-
sion must dominate (be an ancestor of) these predicates on the sc dimension.
For instance, the first semantic argument of ‘loved’ on the pa dimension—in
(11), this is the determiner ‘every’ of the noun phrase ‘every man’—must
dominate ‘loved’ on the sc dimension (analyses (12) and (13)).

6.3 Solving xdg descriptions

Extending the encoding presented in Sections 3 and 4, we have implemented a
constraint solver for xdg descriptions using the Mozart/Oz programming sys-
tem [16,17]. One of the major benefits of using constraint programming to solve
lmcps like the ones that can be specified using xdg is that constraint solving can
operate concurrently on all dimensions: the solver can infer information about
one dimension from information on any other dimension. In this way, syntactic
information can trigger inferences in semantics, and vice versa. Moreover, the
same solver can be used for parsing and generation with xdg grammars: the
only difference between the two tasks is the form of the input (words for the
parsing task, semantic atoms for generation).

Because xdg allows us to write grammars with completely free word order,
xdg solving is an np-complete problem [6]. However, the runtime behaviour of
the solver on hand-written natural language grammars is excellent in practice:
constraint propagation is both fast and effective, and permits the enumeration
of solutions to the configuration problem with few or no failures. This indicates
that there may be fragments of the general problem of solving xdg descriptions
that can be solved in polynomial time.

6.4 Underspecification

Similar to mrs [3] and clls [4], xdg supports the use of underspecification.
Indeed, underspecification is a very natural concept in the context of xdg con-
straint solving: an underspecified xdg analysis is a partial xdg dependency
graph where not all of the edges are fully determined. We show an underspe-
cified xdg analysis for the sc dimension below.

By every man isa

r

woman loved

r

s
s

(14)



In this analysis, the edges from ‘every’ to ‘man’ and from ‘a’ to ‘woman’ (both
labelled r) are already determined, i.e. we know that ‘man’ is in the restriction
of ‘every’, and that ‘woman’ is in the restriction of ‘a’. However, the scopal
relationship between the two quantifiers is yet unknown. Still, the xdg constraint
solver has already inferred that both quantifiers dominate the verb ‘loved’, as
indicated by the dotted dominance edges. This partial analysis abstracts over
both fully specified analyses (12) and (13) above.

Whereas in mrs and clls, only scopal relationships can be underspecified,
xdg allows to underspecify any of its dimensions. For example, underspecifica-
tion on the syntactic dimensions can be used to compactly represent pp-attach-
ment ambiguities.

7 Conclusion and future work

We proposed lexicalised multi-dimensional configuration problems (lmcps) as
a common metaphor for a wide range of tasks in computational linguistics, in-
cluding semantic assembly, surface realisation, and syntactic analysis. We then
presented Extensible Dependency Grammar (xdg) as a development environ-
ment for lmcps, and showed how to use it to model the syntax and semantics
of natural language in an integrated fashion. We think that lmcps provide an
interesting framework for research in computational linguistics both on the the-
oretical and on the algorithmic side. In the remainder of this section, we outline
possible directions for future work in this area.

Formal aspects Graph configuration takes a descriptional approach to modelling
natural language: problems are characterised in terms of description languages
(like the lexicon in xdg); solutions to the problems are valid interpretations of
such descriptions with respect to the intended models (like finite labelled graphs
in the case of xdg).

One of the major questions is how this description-based approach relates to
other—in particular, generative—approaches to nlp. More specifically, we want
to find out how standard tasks like parsing cfgs, tags, or ccgs can be encoded
as graph configuration problems. This will give us a better understanding of the
expressive power of graph configuration, and might also allow us to compare
distinct syntactic and semantic formalisms on the basis of their ‘configurational
core’—i.e., their underlying configuration problems.

Polynomial fragments While unrestricted graph configuration is np-complete,
the constraint propagation techniques employed in the xdg solver usually do
an excellent job on hand-written grammars. This indicates that those grammars
might belong to a natural fragment of xdg for which specialised polynomial
algorithms can be found. Furthermore, following up on the encoding issue men-
tioned above, we will explore whether the polynomial complexity of e.g. the
parsing problems of cfgs and tags is mirrored by special properties of their
formulation as lmcps.



Import of linguistic resources Using the encodings of other syntactic and se-
mantic formalisms, it will be possible to import existing linguistic resources like
large-scale grammars and syntactic and semantic corpora into the graph con-
figuration framework. We will then be able to evaluate the feasibility of the
constraint-based processing architecture outlined above on real-world data, and
see if the descriptional and methodological benefits that lmcps provide are relev-
ant in linguistic practice. This line of research has already led to very interesting
results with respect to the development of syntax/semantics interfaces for de-
pendency grammar [14].

References

1. Mittal, S., Frayman, F.: Towards a generic model of configuration tasks. In:
Proceedings of the International Joint Conference on Artificial Intelligence, Morgan
Kaufmann (1989) 1395–1401

2. Bos, J.: Predicate logic unplugged. In: Proceedings of the 10th Amsterdam Col-
loquium. (1996) 133–143

3. Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics.
an introduction. Journal of Language and Computation (2004) To appear.

4. Egg, M., Koller, A., Niehren, J.: The constraint language for lambda structures.
Journal of Logic, Language, and Information (2001)

5. Abeillé, A., Rambow, O.: Tree Adjoining Grammar: An Overview. In: Tree Adjoin-
ing Grammars: Formalisms, Linguistic Analyses and Processing. CSLI Publications
(2000)

6. Koller, A., Striegnitz, K.: Generation as dependency parsing. In: Proceedings of
ACL 2002, Philadelphia/USA (2002)

7. Duchier, D.: Configuration of labeled trees under lexicalized constraints and prin-
ciples. Research on Language and Computation 1 (2003) 307–336

8. Duchier, D., Debusmann, R.: Topological dependency trees: A constraint-based
account of linear precedence. In: Proceedings of ACL 2001, Toulouse/FRA (2001)

9. Sadock, J.M.: Autolexical Syntax. University of Chicago Press (1991)
10. Jackendoff, R.: Foundations of Language. Oxford University Press (2002)
11. Bresnan, J., Kaplan, R.: Lexical-functional grammar: A formal system for gram-

matical representation. In Bresnan, J., ed.: The Mental Representation of Gram-
matical Relations. The MIT Press, Cambridge/USA (1982) 173–281

12. Mel’čuk, I.: Dependency Syntax: Theory and Practice. State Univ. Press of New
York, Albany/USA (1988)

13. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. University of
Chicago Press, Chicago/USA (1994)

14. Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.:
A relational syntax-semantics interface based on dependency grammar. In: Pro-
ceedings of COLING. (2004)

15. Trujillo, I.A.: Lexicalist Machine Translation of Spatial Prepositions. PhD thesis,
University of Cambridge, Cambridge/USA (1995)

16. Smolka, G.: The Oz Programming Model. In van Leeuwen, J., ed.: Computer
Science Today. Lecture Notes in Computer Science, vol. 1000. Springer-Verlag,
Berlin (1995) 324–343

17. Mozart Consortium: The Mozart-Oz website (2004) http://www.mozart-oz.org/.


