
Hausarbeit für das Hauptseminar Dependenzgrammatik SoSe 99

An Introduction to Dependency Grammar

Ralph Debusmann

Universität des Saarlandes

Computerlinguistik

rade@coli.uni-sb.de

January 2000

Contents

1 Introduction 2

2 Basic Concepts 2

2.1 The Intuition . 2
2.2 Robinson’s Axioms . 3
2.3 The Dependency Relation . 4

3 Dependency Grammar and PSG 5

3.1 The Hays and Gaifman DG . 5
3.2 DG Set Against CFG . 6
3.3 The Issue Of Projectivity . 8

4 Separating Dependency Relations And Surface Order 10

4.1 A non-projective Dependency Grammar 10
4.2 Non-projective Dependency Trees . 10
4.3 Separate Specification of Word Order . 12

5 Dependency Grammar Formalisms 12

6 Conclusion 13

1

1 Introduction

Many linguists consider Dependency Grammar (DG) to be inferior to established phrase
structure based theories like GB (Chomsky 1986), LFG (Kaplan & Bresnan 1982) and
HPSG (Pollard & Sag 1994). The aim of this article is to remedy this state of affairs by
seeking to make those unconvinced of DG perceive the benefits it offers.

To this end, section 2 makes the reader acquainted with the basic concepts of DG,
before section 3 sets the theory against phrase structure based theories, arguing that
it has considerable advantages in the analysis of languages with relatively free word
order (e.g. German, Finnish, Japanese, Korean, Latin, Russian ...). Section 4 describes
Duchier’s (1999) DG axiomatization as a prototypical example of a DG that separates
dependencies and surface order. Thereafter, section 5 proceeds with an overview of
current Dependency Grammar formalisms and section 6 rounds the paper up.

2 Basic Concepts

This section serves to make those interested in Dependency Grammar aquainted with
its basic concepts. It starts by illustrating the intuition behind DG.

2.1 The Intuition

Modern Dependency Grammar has been created by the French linguist Lucien Tesnière
(1959), but as Covington (1990) argues, DG has already been used by traditional gram-
marians since the Middle Ages. The observation which drives DG is a simple one: In a
sentence, all but one word depend on other words. The one word that does not depend
on any other is called the root1 of the sentence. A typical DG analysis of the sentence
A man sleeps is demonstrated below in (1):

(1) a depends on man

man depends on sleep

sleep depends on nothing (i.e. is the root of the sentence)

or, put differently

a modifies man

man is the subject of sleep

sleep is the matrix verb of the sentence

This is Dependency Grammar.

1The root is alternatively termed main or central element.

2

Dependencies are motivated by grammatical function, i.e. both syntactically and
semantically. A word depends on another either if it is a complement or a modifier of
the latter. In most formulations of DG for example, functional heads or governors (e.g.
verbs) subcategorize for their complements. Hence, a transitive verb like ‘love’ requires
two complements (dependents), one noun with the grammatical function subject and
one with the function object. This notion of subcategorization or valency is similar
to HPSG’s SUBCAT-list and even closer resembles LFG’s functional completeness and
coherence criteria.

Figure 1 represents the analysis of (1) graphically (dependent lexemes and categories
below their heads). In Tesnière’s terminology, dependency graphs (or dependency trees)
of this form are called stemmas. The left graph in figure 1 exhibits a real stemma, with
its nodes labeled by words, the right one a virtual stemma, its nodes labeled by lexical
categories. Nowadays, it is however common practice to use an equivalent representation
which collapses both stemmas into one tree (figure 2), and this is also adopted for the rest
of this article. Unlike Tesnière’s stemma, this representation also includes information
about the surface order of the analyzed string (written under the dividing line from left
to right).

man

sleeps

a

V

N

Det

Figure 1: Stemma representations of A man sleeps

V

Det

a

N

sleepsman

Figure 2: Dependency tree for A man sleeps

2.2 Robinson’s Axioms

Loosely based on Tesnière’s formulation, Hays (1964) and Gaifman (1965) were the first
to study the mathematical properties of DG. Their results will be presented in section

3

3. A couple of years later, Robinson (1970) formulated four axioms to govern the well-
formedness of dependency structures, depicted below in (2):

(2) 1. One and only one element is independent.

2. All others depend directly on some element.

3. No element depends directly on more than one other.

4. If A depends directly on B and some element C intervenes between them
(in the linear order of the string), then C depends directly on A or B or
some other intervening element.

The first three of these axioms fairly elegantly capture the essential conditions for
the well-formedness of dependency structures, i.e. that they shall be trees. Axioms 1 and
2 state that in each sentence, one and only one element is independent and all others
depend directly on some other element. Axiom 3 states that if an element A depends
directly on another one B, it must not depend on a third one C. This requirement is often
referred to as single-headedness or uniqueness and is assumed in most DG formulations,
starting from Tesnière’s.

The fourth axiom is often called the requirement of projectivity and (roughly speak-
ing) disallows crossing edges in dependency trees. Tesnière did not impose this condition,
and not without reason. I will argue in section 3 that if enforced, it deprives Dependency
Grammar of its most relevant asset.

2.3 The Dependency Relation

To round up this account of basic DG concepts, I will restate the notion of dependency
as a binary relation R, ranging over the elements W of a sentence. A mapping M maps
W to the actual words of a sentence (for an example, see figure 3). Now for w1, w2 ∈ W ,
〈w1, w2〉 ∈ R asserts that w1 is dependent on w2. The properties of R presented are, as
Robinson’s (1970) axioms, nothing else but treeness constraints on dependency graphs.

Mary loves another Mary

ww 3w w421

Figure 3: Example mapping M (w1...w4 ∈ W)

(3) 1. R ⊂ W × W

2. ∀w1w2...wk−1wk ∈ W : 〈w1, w2〉 ∈ R ... 〈wk−1, wk〉 ∈ R : w1 6= wk (acyclic-
ity)

3. ∃!w1 ∈ W : ∀w2 ∈ W : 〈w1, w2〉 /∈ R (rootedness)

4. ∀w1w2w3 ∈ W : 〈w1, w2〉 ∈ R∧〈w1, w3〉 ∈ R → w2 = w3 (single-headedness)

4

From acyclicity follows that R is also asymmetrical (i.e. ∀w1w2 ∈ W : 〈w1, w2〉 ∈
R → 〈w2, w1〉 /∈ R). The asymmetry of R is accounted for in dependency trees by an
implicitly assumed ordering from top to bottom, i.e. for every two elements connected by
a dependency edge, the lower one depends on the upper one. Asymmetry also guarantees
that R is irreflexive (∀w1 ∈ W : 〈w1, w1〉 /∈ R). Moreover, observe that condition 4 is
a counterpart to Robinson’s single-headedness axiom 3. The projectivity requirement is
not reflected by any of the conditions in (3).

3 Dependency Grammar and PSG

This section sets Dependency Grammar against phrase structure based approaches. It
begins with a description of a DG formulation developed by Hays (1964) and Gaifman
(1965).

3.1 The Hays and Gaifman DG

A couple of years after Tesnière had defined DG, Hays (1964) and Gaifman (1965) were
the first to study its mathematical properties. Their aim was to find a mathematical
axiomatization of DG to facilitate development of parsing and generation algorithms,
and they came up with a formulation of DG that is still highly influential among DG
theorists (e.g. Lai & Huang 1998, Lombardo & Lesmo 1998).

The intuition behind Hays and Gaifman’s axiomatization is this: If a dependency
relation R (as defined in section 2.3) holds for 〈w1, x〉...〈wk, x〉, all wi (i ∈ {1...k}) are
dependent on x (or alternatively, x governs all wi or is the head of all wi). Hays and
Gaifman use the following rule (plus two special case rules) to capture this notion:

(4) 1. x(w1, ..., ∗, ..., wk) : w1...wk are dependent on x

2. x(∗) : x is a leaf node

3. ∗(x) : x is a sentence root node

The star ∗ indicates the position of governor x in the linear order of words2 w1...wk.
Such a DG for the sentence John loves a woman consists of five rules. (5) and figure

4 depict these and a dependency tree analyzing the sentence respectively.

(5) ∗(V)
V (N, ∗, N)
N(Det, ∗)
N(∗)
Det(∗)

The attentive reader will note the addition of dotted lines connecting the lexical
category nodes with the words of the sentence. They shall depict a projection of the
lexical categories onto the words of the sentence.

2Actual Hays and Gaifman DG rules are expressed over categories instead of words.

5

V

N N

John loves a woman

Det

Figure 4: Hays and Gaifman DG analysis of John loves a woman

To conclude the explanation of Hays and Gaifman DGs, (6) shows how such DGs
look like in formal terms:

(6) DG = 〈R,L,C, F 〉

R a set of dependency rules over the auxiliary symbols C
L a set of terminal symbols (lexemes)
C a set of auxiliary symbols (lexical categories)
F an assignment function (F : L → C)

A Hays and Gaifman DG (HGDG) complies with all of Robinson’s axioms (section
2.2) for well-formed dependency structures, and to axiom 4 (projectivity) in particular.
Graphically, this condition requires that no projection edge is to be crossed by any
dependency edge in HGDG analysis trees.

3.2 DG Set Against CFG

By specifying the mathematical properties of DG, Hays (1964) and Gaifman (1965) did
not only aim at easing development of algorithms for DG parsing and generation, but
also at being able to formally set DG against Context-Free Grammars (CFGs). Hays
(1964) for instance establishes that DGs as defined in section 3.1 are weakly equivalent
to CFGs in the sense that:

(7) • they have the same terminal alphabet;

• for every string over that alphabet, every structure attributed by either
grammar corresponds to a structure attributed by the other.

So both CFG and HGDG are able to produce corresponding analyses for any string,
but the analysis structures assigned to these strings are not necessarily the same. Thus
as Hays (1964) points out, CFG and HGDG are not strongly equivalent. It is not possible
to map any CFG to a corresponding HGDG that attributes equivalent tree structures
to any string, simply because HGDG cannot produce nonterminal nodes other than

6

preterminals. The reverse however is possible. (8) exhibits a proof procedure to map
any HGDG to a corresponding CFG attributing equivalent structures to any string
analyzed. This procedure has been applied to (9), to generate its corresponding CFG
(10).

(8) DG = 〈R,L,C, F 〉: A Hays and Gaifman DG consists of a set of dependency
rules R, a set of terminal symbols L, a set of nonterminal symbols C and an
assigment function F (F : L → C).

CFG = 〈P, T,N, S〉: A CFG consists of sets of production rules P , terminal
symbols T , nonterminal symbols N and start symbols S.

I will now present a proof procedure to map any DG of the kind Hays and
Gaifman proposed onto a CFG attributing equivalent analysis trees to any string.
To this end, every DG rule must be converted into one or more CFG production
rules. Recall that these are the three rule types of a Hays and Gaifman DG:

1. x(w1, ..., ∗, ..., wk) : w1...wk are dependent on x

2. x(∗) : x is a leaf node

3. ∗(x) : x is a sentence root node

Rules of the first type are converted to CFG rules using the following procedure:
Collect all terminal symbols that are of category x in a set X, i.e. X = F−1(x).
Now postulate a CFG production rule for each y ∈ X:

x → w1 ... y ... wk

Rules of the second type are a special case of the first type. For each y ∈ X,
postulate:

x → y

Rules of the third type are not converted to production rules but make up the
set of start symbols S for the corresponding CFG. Hence S is the union of all
auxiliary symbols contained in rules of the type ∗(x).

Finally, the set of terminal symbols T of the corresponding CFG is equal to the
set of terminal symbols L of the Hays and Gaifman DG. The set of nonterminal
symbols N is equal to the set of auxiliary symbols C.

(9) DG = 〈R,L,C, F 〉

R = {∗(V), V (N, ∗, N), N(Det, ∗), N(∗),Det(∗)}
L = {loves, woman, John, a}

7

C = {V,N,Det}
F (loves) = V
F (woman) = N
F (John) = N
F (a) = Det

(10) CFG = 〈P, T,N, S〉

P = {V → N loves N,N → Det woman,N → Det John,N → woman,
N → John,Det → a}
T = L
N = C
S = {V }

As can be seen from (8), a CFG converted from a HGDG must have one and only
one terminal symbol on the right hand side of any production rule. This resembles the
Greibach Normal Form, where each production rule is of the form A → a x1 ... xn, where
a must be a terminal symbol and all x1 nonterminal symbols. Greibach Normal Forms

are, as HGDG, weakly equivalent to CFG.
Figure 5 now depicts an analysis of John loves a woman using the CFG given in

(10). As can be seen, the analysis tree of the same sentence using a converted CFG is
equivalent to the dependency tree from figure 4, except that the dotted projection edges
are replaced by solid edges from preterminal to terminal nodes.

V

N N

John loves

Det

womana

Figure 5: CFG analysis tree using (10)

Using this result, it is easy to see that the projectivity condition must hold for all
analyses of a Hays and Gaifman DG:

(11) Violating the projectivity condition would require crossing edges in dependency
trees resulting from such a DG. But as every DG can be mapped 1:1 to a CFG
that generates exactly the same structures, and because in CFG analysis trees,
crossing edges can not occur, crossing edges can also not occur in dependency
trees resulting from the analysis of a HGDG. Hence projectivity is a consequence
of the definition of the HGDG.

8

3.3 The Issue Of Projectivity

In the previous section, an examination of Hays and Gaifman’s axiomatization of DG
has lead to the conclusion that such a DG is merely a notational variant of CFG. So
why not simply stop here and quit doing any research on dependency grammars?

Because DGs of the form Hays and Gaifman proposed do not represent Dependency
Grammar in general. If they did, i.e. if dependency trees in general had to be projective,
perfectly sensible DG analyses had to be abandoned, especially when analyzing languages
with a high degree of word order variation like Latin, Russian or German. Consider for
instance the analysis of the Latin sentence ultima Cumaei venit iam carminis aetas,
taken from Covington (1990). Figure 6 displays a perfectly intuitive analysis of the
sentence in terms of dependency, but if one complied to the condition of projectivity, it
had to be abandoned and other, probably less intuitive solutions seeked.

has-
come

V

N

Adj
Adj N

Adv

nom.

last Cumean

gen. gen. nom.

now song epoch

ultima Cumaei venit carminis aetasiam

Figure 6: Non-projective DG analysis of The last epoch of the Cumean Song has now

arrived. in Latin (Vergil, Eclogues IV.4)

If the latter sounds familiar to the reader, it is because this is precisely what PSG
theorists do when confronted with discontinuous constituents or other word order vari-
ation phenomena. In generative syntax for instance, one solution are scrambling rules

(e.g. Ross 1967). But at least insofar as computational linguistics is concerned, these
rules are like any other rules involving transformations — they become unfeasible if one
proceeds to implement efficient parsing algorithms.

Another solution for treating discontinuous constituents in a phrase structure based
framework has been pioneered (and then rejected) by Uszkoreit (1986, 1987), in the
paradigm of ID/LP formalisms like GPSG (Gazdar, Klein, Pullum & Sag 1985). He
proposed to replace the transformationalists’ scrambling rules by flattening rules that
discard constituent structure and make most words hang directly from the S node. The
problem with this approach is that a flat structure is no structure or tree at all — it
only claims that the words below the S -node form a sentence. Imagine how hard a task
it would constitute to construct a semantics out of such a syntactic description.

A recent proposal on treating discontinuous constituents in HPSG is due to Müller
(e.g. Müller 1999) and makes use of word order domains to describe extraposition and

9

permutability of constituents in German. Constraining analysis trees to binary branching
ones, Müller (1999) utilizes the shuffle-Relation (see Reape 1994) to allow for discon-
tinuous constituents. Müller’s (1999) proposal does succeed in providing a treatment
of German scrambling phenomena within the HPSG framework, but since in HPSG,
word order is not totally separable from other syntactic (functional) considerations, his
analyses lack the elegance of non-projective dependency analyses like the one exhibited
in Figure 6.

So none of the three popular solutions for the treatment of discontinuous phrase
structure based theories described above is perfect, and that stems from the inability
of PSG to totally separate word order from configurational or dependency issues. The
same difficulties consequently plague projective Dependency Grammars based on the
Hays and Gaifman axiomatization, since these are just notational variants of CFG. But
there is a feasible escape route. As will be shown in the next section, all these problems
can be solved by employing a non-projective3 formulation of DG, separating dependency
relations from surface order.

4 Separating Dependency Relations And Surface Order

In this section, I will present a formulation of a Dependency Grammar that succeeds in
cleanly separating dependency relation and surface order, and by this means also lifts
the projectivity condition. The approach described is due to Duchier (1999).

4.1 A non-projective Dependency Grammar

Duchier’s (1999) DG can be regarded as a 7-tuple consisting of finite sets

(12) DG = 〈Words,Cats,Agrs, Comps,Mods, Lexicon,Rules〉

where Words is a set of strings of fully inflected word forms, Cats a set of lexical
categories such as V for verb and N for noun, and Agrs a set of agreement tuples such as
〈masc sing 3 nom〉. The union of Comps and Mods forms the set of all role types Roles
(e.g. subject, adv). Furthermore, Lexicon is a set of lexical entries like the one shown
in (13):

(13)














string loves

cat V

agr 〈sing 3 nom〉

comps
{

subject, object
}















Finally, Rules is a family of binary predicates Γρ for each ρ ∈ Roles called role

constraints.

3Interestingly, the founder of modern DG, Tesnière, has never imposed anything like the projectivity

constraint.

10

4.2 Non-projective Dependency Trees

Duchier (1999) assumes an infinite set Nodes of nodes and defines a labeled directed edge
to be an element of Nodes×Nodes×Roles. Hence, given a set V ⊆ Nodes representing
the words of a sentence and a set E ⊆ V × V × Roles of labeled edges between these
nodes, 〈V, E〉 is a directed graph with labeled edges. For these graphs, Duchier (1999)
imposes treeness contraints like those in section 2.2 (Robinson’s first three axioms) or
section 2.3 (dependency relation R).

Every node of a dependency tree now contributes a word to the sentence, whose
position is represented by a mapping index from nodes to integers. Furthermore, every
node must be assigned syntactic features, which will be realized by a mapping entry
from nodes to lexical entries. A dependency tree is then defined as a 4-tuple:

(14) T = 〈V, E , index, entry〉

An analysis of the Latin sentence from section 3.3 in Duchier’s (1999) DG is shown
in figure 7.

V

N

Adj
Adj N

Adv

Cumaei venit carminis aetasiamultima

adj
adj

adv subject

genitive

1 2 3 4 5 6

1















string ultima

cat Adj

agr 〈fem sing 3 nom〉

comps {}

mods {}















2















string Cumaei

cat Adj

agr 〈fem sing 3 gen〉

comps {}

mods {}















3

















string venit

cat V

agr 〈fem sing 3 nom〉

comps
{

subject
}

mods
{

adv
}

















4















string iam

cat Adv

agr 〈〉

comps {}

mods {}















5

















string carminis

cat N

agr 〈fem sing 3 gen〉

comps {}

mods
{

adj
}

















6

















string aetas

cat N

agr 〈fem sing 3 nom〉

comps {}

mods
{

genitive,adj
}

















Figure 7: Analysis of the Latin sentence, edges annotated with functional labels

11

The outstanding feature of Duchier (1999) is that he defines the well-formedness
of dependency trees without reference to word order. In addition to basic treeness

constraints, the only constraints he imposes upon dependency structures are valency

constraints and role constraints. Roughly, the former express that each complement role
(comps, e.g. subject, object) of a node must be licensed by exactly one complement
dependent, and that modifiers (mods, e.g. adv, adj) can optionally occur as dependents.
The latter specify additional restrictions Γρ for each ρ ∈ Roles, e.g. that adjectives may
only modify nouns.

4.3 Separate Specification of Word Order

Nothing has been said as yet about word order in Duchier’s (1999) approach. Clearly,
even languages like Latin do have some restrictions on word order variation that need
to be captured to avoid overgeneration. For example, prepositions must appear before
the noun they modify in the linear order of words.

An easy solution for specifying word order constraints is by using role constraints:
Γpreposition(w1, w2) : i < j would constrain prepositions to stand before their noun
dependents.

Sometimes, it is more adequate to specify conditions about the linear order of more
than two nodes at a time. In this case, role constraints do not suffice, since they can
only specify binary conditions. For the English language one would for instance wish
to express that noun phrases typically look like this: Det < Adj < N , i.e. a noun
may be preceded by adjectives and a determiner, but the determiner always precedes
the adjectives (if realized). In Duchier’s (1999) axiomatization, this requirement can be
expressed as shown below:

(15) Seq(det(w), adj(w), n(w))

(15) constrains the determiner to always precede the adjectives and the adjectives to
precede the noun they modify4.

As can be seen, Duchier (1999) has created a non-projective DG which very cleanly
separates dependency relations and word order. Such DGs are able to declaratively and
precisely describe grammars of natural languages with any degree of word order vari-
ation. Duchier has already developed highly efficient parsers for English and German,
applying state-of-the-art constraint technology embedded in the Oz Programming Lan-
guage (Mozart 1998). And because of the semantic nature of dependency analyses, it
is fairly easy to extend Duchier (1999) with a semantics component. In the CHORUS-
project at the University of Saarland, an underspecified semantics construction module
has been seamlessly integrated into Duchier’s parsers.

4Furthermore, the determiner is optional, and an unrestricted number of adjectives may be placed

between it and the noun.

12

5 Dependency Grammar Formalisms

This section provides an overview of current DG flavors, with an emphasis on how these
formulations of DG cope with word order variation.

Functional Generative Description (Sgall, Hajicova & Panevova 1986)

Sgall et al. assume a language-independent underlying order, represented as a
projective dependency tree, mapped via ordering rules to the concrete surface
realization. The theory is multistratal, distinguishing five levels of representation.

Dependency Unification Grammar (Hellwig 1986)

DUG defines a tree-like data structure for the representation of syntactic analyses.
The theory is non-projective and handles surface order using positional features.
By these, also partial orderings and discontinuities can be handled.

Meaning Text Theory (Mel’čuk 1988)

Mel’čuk’s formalism assumes seven strata of representation, and uses rules for
mapping unordered dependency trees of surface-syntactic representations onto the
annotated lexeme sequences of deep-morphological representations. Discontinuities
are accounted for by global ordering rules.

Word Grammar (Hudson 1990)

WG is based on general graphs instead of trees. The ordering of two linked words is
specified together with their dependency relation, and extraction of, e.g. objects
is analyzed by establishing an additional dependency called visitor between the
verb and the extractee. Hence WG does not cleanly separate dependencies from
word order.

Functional Dependency Grammar (Järvinen & Tapanainen 1997)

FDG distinguishes between dependency rules and rules for surface linearization. It
follows Tesnière’s model in not only in being non-projective but also by adopting
Tesnière’s notion of nuclei. Nuclei are the primitive elements of FDG structures,
possibly consisting of multiple lexemes.

Bröker (1998)

Surface order and dependency structures constitute two separate pieces of infor-
mation. Bröker links structurally dissimilar word order domain structures to de-
pendency trees to achieve a lexicalized, declarative and formally precise natural
language description.

This list is not entirely complete, but should provide a first brief overview of current
DG formalisms and their methods for dealing with word order in particular.

13

6 Conclusion

The aim of this article was to get through to those that think of Dependency Grammar
as being inferior to phrase structure based approaches, often because of a lack of famil-
iarity with the theory. Therefore, the basic DG concepts have been presented in section
2, starting from the original intuition and closing with the specification of a formal de-
pendency relation R. The next section (section 3) set DG against phrase structure based
theories, beginning with a presentation of the Hays and Gaifman DG and a compari-
son with Context-Free Grammar. Section 3 went on with discussing the requirement of
projectivity, and ended up in proposing to drop this constraint to be able to adequately
analyze word order variation. Hereafter, section 4 described Duchier’s (1999) axioma-
tization as a prototypical example of a non-projective DG, before section 5 continued
with an overview of current DG flavors, with an emphasis on how they treat word order
variation.

All in all I think that DGs have undeniable advantages for describing languages with
a higher degree of word order variation than English. But these advantages can only
crop up if one lifts the constraint of projectivity and treats surface order separately from
dependency. An argument by Rambow & Joshi (1994), stating that no well-behaved

parsers for such DGs exist and that for this reason, non-projective DGs are hampered,
can be turned down by mentioning recent advances (e.g. Bröker 1998, Duchier 1999,
Järvinen & Tapanainen 1997) alone.

Last but not least, I wish to thank Denys Duchier, Malte Gabsdil, Christian Pietsch
and Stefan Thater for useful criticism and suggestions in the course of writing this article.

References

Bröker, N. (1998), Separating surface order and syntactic relations in a dependency
grammar, in ‘COLING-ACL 98 - Proc. of the 17th Intl. Conf. on Computational
Linguistics and 36th Annual Meeting of the ACL.’, Montreal/CAN.

Chomsky, N. (1986), Knowledge of Language, Its Nature, Origin, and Use, Praeger, New
York/NY.

Covington, M. A. (1990), A dependency parser for variable-word-order languages, Re-
search Report AI-1990-01, Artificial Intelligence Programs, University of Georgia,
Athens/GA.

Duchier, D. (1999), Axiomatizing dependency parsing using set constraints, in ‘Sixth
Meeting on Mathematics of Language’, Orlando/FL.

Gaifman, H. (1965), ‘Dependency systems and phrase-structure systems’, Information

and Control 8(3), 304–337.

Gazdar, G., Klein, E., Pullum, G. & Sag, I. (1985), Generalized Phrase Structure Gram-

mar, B. Blackwell, Oxford/UK.

14

Hays, D. G. (1964), ‘Dependency theory: A formalism and some observations’, Language

40, 511–525.

Hellwig, P. (1986), Dependency unification grammar, in ‘Proc. of the 11th Int. Conf. on
Computational Linguistics’, pp. 195–198.

Hudson, R. A. (1990), English Word Grammar, B. Blackwell, Oxford/UK.

Järvinen, T. & Tapanainen, P. (1997), A dependency parser for english, Technical report,
Department of General Linguistics, University of Helsinki, Helsinki/FIN.

Kaplan, R. M. & Bresnan, J. (1982), Lexical-functional grammar: A formal system for
grammatical representation, in J. Bresnan & R. Kaplan, eds, ‘The Mental Repre-
sentation of Grammatical Relations’, MIT Press, Cambridge/MA, pp. 173–281.

Lai, T. B. & Huang, C. (1998), Complements and adjuncts in dependency grammar pars-
ing emulated by a constrained context-free grammar, in ‘Processing of Dependency-
based Grammars: Proceedings of the Workshop, COLING-ACL 98’, Montral/CAN,
pp. 102–108.

Lombardo, V. & Lesmo, L. (1998), Unit coordination and gapping in dependency the-
ory, in ‘Processing of Dependency-based Grammars: Proceedings of the Workshop,
COLING-ACL 98’, Montral/CAN, pp. 11–20.

Mel’čuk, I. (1988), Dependency Syntax: Theory and Practice, State Univ. Press of New
York, Albany/NY.

Mozart (1998). http://www.mozart-oz.org/.

Müller, S. (1999), Deutsche Syntax deklarativ. Head-Driven Phrase Structure Grammar

für das Deutsche, number 394 in ‘Linguistische Arbeiten’, Max Niemeyer Verlag,
Tübingen.

Pollard, C. & Sag, I. (1994), Head-Driven Phrase Structure Grammar, Univ. of Chicago
Press, Chicago/IL.

Rambow, O. & Joshi, A. K. (1994), A formal look at dependency grammars and
phrase-structure grammars, with special consideration of word-order phenomena,
in L. Wanner, ed., ‘Current Issues in Meaning-Text Theory’, Pinter, London/UK.

Reape, M. (1994), ‘Domain union and word order variation in german’.

Robinson, J. J. (1970), ‘Dependency structures and transformation rules’, Language

46, 259–285.

Ross, J. R. (1967), Constraints on Variables in Syntax, PhD thesis, MIT.

Sgall, P., Hajicova, E. & Panevova, J. (1986), The Meaning of the Sentence in its Se-

mantic and Pragmatic Aspects, D. Reidel, Dordrecht/NL.

15

Tesnière, L. (1959), Eléments de Syntaxe Structurale, Klincksiek, Paris/FRA.

Uszkoreit, H. (1986), Categorial unification grammar, in ‘COLING 86,’, pp. 187–194.

Uszkoreit, H. (1987), Word Order and Constituent Structure in German, CSLI, Stan-
ford/CA.

16

