
Projektseminar ‘Sprachtechnologie’ (Sommersemester 1998)

An Implementation of ‘Finite-State
Methods in NLP: Algorithms’

Ralph Debusmann
Universität des Saarlandes

Computerlinguistik
rade@coli.uni-sb.de

September 19, 2002

Contents

1. Introduction 2

2. Finite-state automata 3
2.1. Basics . 3
2.2. An example . 3
2.3. Encoding finite-state automata . 4
2.4. Operating on encoded automata . 4
2.5. Nesting operations . 5
2.6. Support predicates . 6

3. Operations on finite-state automata 6
3.1. Unary operations . 6

3.1.1. cat . 7
3.1.2. complement . 7
3.1.3. complete . 7
3.1.4. cp and cp rep . 8
3.1.5. det and det rep . 9
3.1.6. inv . 11
3.1.7. mini . 11
3.1.8. rev . 13
3.1.9. sig . 13
3.1.10. string . 14

1

3.2. Binary operations . 14
3.2.1. cp and cp rep . 14
3.2.2. , (intersection) . 15
3.2.3. ; (union) . 16

4. Implementation 17
4.1. scan-predicate . 17
4.2. A speciman operation . 18

4.2.1. Redefinition of start/2 . 19
4.2.2. Redefinition of trans/4 . 19
4.2.3. Redefinition of final/2 . 19

5. Minimize operation 19
5.1. Algorithm part . 20

5.1.1. minimize-predicate . 20
5.1.2. minimize1-predicate . 21
5.1.3. minimize2-predicate . 21
5.1.4. minimizea-predicate . 23
5.1.5. minimizei-predicate . 23

5.2. Construction part . 24

6. Conclusion 25

A. Portability 25
A.1. Getting it started . 25
A.2. Dynamic predicates . 26
A.3. Multifile predicates . 27
A.4. append/3, member/2 and name/2-predicates 27

1. Introduction

This paper describes ‘Fistame’, a partial implementation of [KK], written using the
Prolog programming language. Fistame provides a framework for easy encoding of and
working with finite-state automata.

The paper is divided into six sections (plus an appendix). Following this brief
overview, Section 2 is made up of an informal introduction to finite-state automata
(henceforth ‘FSAs’) in general, followed by a description of how to encode and operate
upon them within Fistame in particular. Section 3 hereafter serves to expose the vari-
ous operations Fistame provides, before Section 4 goes into more detail with revealing
their concrete implementation. Section 5 is then solely dedicated to a rather advanced
implemented algorithm (‘minimize’). Section 6 settles the paper with some concluding
remarks.

2

2. Finite-state automata

This section serves to briefly introduce finite-state automata in general and shows how
to encode and operate upon them within the Fistame framework. Its starting point is
an informal exposition of some basic knowledge about finite-state automata.

2.1. Basics

Finite-state automata are abstract devices which can be applied to recognize (i.e. accept
or reject) strings of a regular language. FSAs encode regular languages using the two
atomic concepts ‘state’ and ‘transition over a symbol’.

In the process of recognizing a string, it is scanned from left to right, symbol by
symbol. At any point during the scan, a string symbol passed by must correspond to
a transition over that symbol in the recognizing FSA if the string is to be accepted. If
more than one such transition (over the same symbol) is possible from (at least) one
state in the FSA, it is called ‘non-deterministic’, otherwise it is said to be ‘deterministic’.

Whereas the starting point for scanning a string is its leftmost symbol, FSAs must
have a certain state explicitly marked as the ‘start state’1. In addition, at least one state
must be labelled as ‘final state’. Given these prerequisites, a string is accepted by an
FSA A if it has been scanned until its end and A is in a final state. Otherwise the string
is rejected.

2.2. An example

a

ba

4

321

c

Figure 1: A1. Numbered circles (aka vertices, nodes) represent states, arrows (aka edges)
transitions.

The FSA A1 accepts strings of the regular language L1 = abc∗, i.e. ab, abc, abcc etc.
The number of cs at the end of a string in L1 may be unbounded (Kleene star). A1

1Fistame supports only one start state per FSA, as opposed to the widely used notion of allowing FSAs
to bear more than one state of this kind. However, as a workaround, the det-operation allows to
conflate multiple start states into one.

3

is composed of four states: S1 = {1, 2, 3, 4}. State 1 is the start state (represented in
Figure 1 by an arrow entering the circle representing it) and state 3 the only final state
(Figure 1: double concentric circle). A1 bears four transitions, the first from (state) 1
over (symbol) a to (state) 2, the second from 1 over a to 4, the third from 2 over b to
3 and the fourth from 3 over c back to 3. The latter ‘implements’ the iteration needed
to account for the unbounded number of strings which abc∗ denotes. The signature of
A1 is Σ = {a, b, c}, made up of all the symbols over which at least one transition takes
place.

Note that state 4 has only been incorporated into A1 for explanatory purposes in
the later course of this section (Section 2.5). It could also have been dropped and still
A1 would recognize the same language (abc∗).

2.3. Encoding finite-state automata

Encoding FSAs for use within the Fistame framework is quite straightforward. This is
A1 in Fistame notation:

start(a1,1).

trans(a1,1,a,2).

trans(a1,1,a,4).

trans(a1,2,b,3).

trans(a1,3,c,3).

final(a1,3).

First of all, in Fistame every FSA needs to have a unique (lowercase) name, in this
case a1. By start(fsa,1), Fistame is told that the start state of a1 is state 1 and
final(a1,3) tells it that state 3 is a final state. Transitions are encoded via the trans-
predicate. For instance, trans(a1,1,a,2) means that a1 bears a transition from state
1 over a to state 2. Note that unmarked states (those which are neither start nor final
states) do not have to be spelt out explicitly. Also note that the order of appearance of
the start-, trans- and final-predicates is arbitrary.

2.4. Operating on encoded automata

Properly encoded automata may now be operated upon by any of Fistame’s built-in
operations2. The simplest and most common operation is to print out an FSA via cat:

1 ?- scan(cat(a1)).

automaton a1

start state 1

from 1 over a to 2

from 1 over a to 4

2Of course, Fistame should have been started in the first place. See Appendix A on how to choose a
suitable startup file for your Prolog interpreter.

4

state 2

from 2 over b to 3

final state 3

from 3 over c to 3

state 4

Yes

Like any other operation on automata Fistame provides, cat must be headed by the
scan-predicate, the backbone for all operations. A detailed explanation of scan is given
in Section 4. Supplementing unary operations like cat, Fistame also provides binary
operations (copy, intersection and union).

2.5. Nesting operations

Fistame operations may be combined or ‘nested’:

2 ?- scan(cat(rev(a1))).

automaton rev(a1)

start state s0

state s0

from s0 over ep to 3

state 3

from 3 over b to 2

from 3 over c to 3

state 2

from 2 over a to 1

final state 1

Yes

Here, a1 is reversed by the rev-operation before it is printed out. For reasons ex-
plained in Section 3, rev adds a new state s0 and an ‘epsilon transition’3 from this state
to the final state (state 3) of a1.

You might have noticed another peculiarity of the reversed automaton: It lacks state
4 from the ‘unreversed’ a1. This is because state 4 is a ‘dead state’ in a1—it is non-
final and there are no transitions from it to any other state. In other words, since no
transition ‘went out’ from it, after all transitions of a1 have been reversed, none will find
its way back ‘into’ it.

3The ‘epsilon’ (ε) is a special symbol denoting the empty word (encoded as ep in Fistame). FSAs
without ε-transitions are called ‘ε-free’.

5

2.6. Support predicates

Fistame includes a couple of ‘support predicates’, which differ in some respects from its
‘operations’. Above all, support predicates may not be nested like the latter (because
they are not utilizing the scan-predicate as their backbone). For instance, the accept-
predicate checks whether an FSA accepts a given string or not:

3 ?- accept(a1,abccc).

Yes

4 ?- accept(a1,aabccc).

No

remove removes a given FSA from the Prolog database:

5 ?- remove(a1).

Yes

6 ?- scan(cat(a1)).

No

Finally, the reset-predicate removes all automata from the Prolog database and
then reloads the Fistame example automata from ‘examples.pl’:

7 ?- reset.

operations compiled, 0.14 sec, 8,012 bytes.

examples compiled, 0.10 sec, 5,424 bytes.

Yes

3. Operations on finite-state automata

After a rather short exposition of finite-state automata and about how the Fistame
implementation deals with them in the preceding section, the upcoming section will
concentrate on exhibiting the full range of operations on FSAs available. Examples will
be used throughout to visualize the operations’ effects. We begin by fleshing out the
unary operations provided, followed by an explanation of the binary ones.

3.1. Unary operations

Two unary operations have already been discussed in Section 2, viz. cat (print an
automaton) and rev (reverse an automaton). This subsection concentrates on explaining
these and the remaining unary operations (taking only one argument). Their order is
alphabetical.

6

3.1.1. cat

The cat-operation prints out an automaton:

1 ?- scan(cat(a1)).

automaton a1

start state 1

from 1 over a to 2

from 1 over a to 4

state 2

from 2 over b to 3

final state 3

from 3 over c to 3

state 4

Yes

3.1.2. complement

complement is a nested operation made up of three operations (in this order: complete,
det (determinize) and inv (inverse)). It generates out of an FSA the complement au-
tomaton, which accepts the complement regular language:

1 ?- scan(cp(complement(a1),a1c)).

Yes

2 ?- accept(a1c,abcc).

No

3 ?- accept(a1c,abcca).

Yes

In the above example, a1c becomes the complement automaton of a1 by means of
the cp-operation (step 1), i.e. a1c accepts only strings which are not in the language
denoted by a1. This is checked for two strings (abcc and abcca) with the accept-support
predicate in steps 2-3.

3.1.3. complete

The complete-operation adds to an ‘incomplete’ FSA formerly implicit transitions to a
dead state, thereby ‘completing’ it: Every state of a complete automaton must be the
starting point for transitions over all symbols from its signature:

7

1 ?- scan(cat(complete(a1))).

automaton complete(a1)

start state 1

from 1 over a to 2

from 1 over a to 4

from 1 over b to dead

from 1 over c to dead

state 2

from 2 over b to 3

from 2 over a to dead

from 2 over c to dead

final state 3

from 3 over c to 3

from 3 over a to dead

from 3 over b to dead

state dead

from dead over a to dead

from dead over b to dead

from dead over c to dead

state 4

from 4 over a to dead

from 4 over b to dead

from 4 over c to dead

Yes

3.1.4. cp and cp rep

cp and cp rep can be used to ‘carbon copy’ one FSA onto a new one. The two operations
described here are unary (taking only one argument), specialized counterparts of those
explained in 3.2.1.

1 ?- scan(cp(rev(a1))).

Yes

2 ?- scan(cat(copy)).

automaton copy

start state s0

from s0 over ep to 3

state 3

from 3 over b to 2

from 3 over c to 3

8

state 2

from 2 over a to 1

final state 1

Yes

The reverse FSA of a1 is here copied onto a new FSA with the name copy. Note
that if an FSA called copy already had existed, the cp-operation would have overwritten
it without giving notice.

cp rep performs the same operation as cp: It also copies an FSA onto a new one.
In addition, it removes all ε-transitions of the former:

3 ?- scan(cp_rep(rev(a1))).

Yes

4 ?- scan(cat(copy)).

automaton copy

start state s0

from s0 over b to 2

from s0 over c to 3

state 2

from 2 over a to 1

final state 1

state 3

from 3 over b to 2

from 3 over c to 3

Yes

3.1.5. det and det rep

The det- and det rep-operations can be used to create a deterministic FSA out of a
non-deterministic one. It also allows to conflate multiple start states into one. For
explanatory reasons, we will now introduce the new FSA a2:

1 ?- scan(cat(a2)).

automaton a2

start state 1

from 1 over a to 2

from 1 over a to 4

state 2

from 2 over b to 3

final state 3

9

from 3 over c to 3

state 4

from 4 over ep to 2

Yes

a2 is nearly equal to a1, the only difference being a new transition from state 4 over
ε to state 2. Still it accepts the same regular language abc∗, and is non-deterministic, as
is a1: There are two transitions originating from state 1 over the symbol a (one to state
2 and one to state 4).

2 ?- scan(cat(det(a2))).

automaton det(a2)

start state [1]

from [1] over a to [2, 4]

state [2, 4]

from [2, 4] over b to [3]

from [2, 4] over ep to [2]

state [2]

from [2] over b to [3]

final state [3]

from [3] over c to [3]

Yes

After applying the det-operation on a2, the two transitions transitions 1 over a to 2
and 1 over a to 4 have been merged into a single transition ([1] over a to [2, 4]), resulting
in a deterministic FSA.

The det rep-operation also makes a given FSA deterministic. In addition, it removes
all epsilon transitions from the result:

3 ?- scan(cat(det_rep(a2))).

automaton det_rep(a2)

start state [1]

from [1] over a to [2, 4]

state [2, 4]

from [2, 4] over b to [3]

final state [3]

from [3] over c to [3]

Yes

After applying det rep, not only has a2 been determinized but also has the ε-
transition from state [2, 4] to state [2] been removed (as well as state [2] itself).

10

3.1.6. inv

The inv-operation ‘inverts’ an automaton, i.e. all non-final states become final states
and vice-versa:

1 ?- scan(cat(inv(a1))).

automaton inv(a1)

start state 1

final state 1

from 1 over a to 2

from 1 over a to 4

final state 2

from 2 over b to 3

state 3

from 3 over c to 3

final state 4

Yes

In this example, a1 is inversed, resulting in all the non-final states 1, 2 and 4 becoming
final states and state 3 losing this status.

3.1.7. mini

mini is one rather advanced Fistame-operation. It ‘minimizes’ an FSA, such that the
outcome is the ‘minimal’ automaton (using a minimal number of states) recognizing
exactly the same regular language as the original one. The algorithm conflates any two
states which bear an equivalent ‘suffix set’4 into one single state. The algorithm used
for Fistame is a slightly abridged version of an algorithm by [Hop71], further expatiated
upon in Section 5.

Let us introduce another FSA (a3) for explanatory purposes:

1 ?- scan(cat(a3)).

automaton a3

start state 1

from 1 over a to 2

from 1 over b to 3

state 2

from 2 over a to 4

final state 4

state 3

4We (quite informally) define the ‘suffix set’ of a state as the set containing all strings recognizable if
you used that state as the start state.

11

from 3 over a to 4

Yes

a

3

b

a

a

21 4

Figure 2: a3 graphically.

This finite-state automaton is now to be minimized. It includes exactly two states
(2 and 3) which have the same suffix set S = {a}: Both states bear one transition over
a to the final state 4 and are therefore conflated during the minimizing process. The
results (graphical and textual) are:

a a

[2, 3] [4][1]

b

Figure 3: a3 minimized.

2 ?- scan(cat(mini(a3))).

automaton mini(a3)

start state [1]

from [1] over a to [2, 3]

from [1] over b to [2, 3]

state [2, 3]

from [2, 3] over a to [4]

final state [4]

Yes

12

Note that the rather verbose output of the underlying algorithm has been left out
in the textual depiction above. Also, two more complex example FSAs for the mini-
operation can be found as a4 and a5 in ‘examples.pl’.

3.1.8. rev

As already discussed in Section 2, rev reverses an FSA:

1 ?- scan(cat(rev(a1))).

automaton rev(a1)

start state s0

state s0

from s0 over ep to 3

state 3

from 3 over b to 2

from 3 over c to 3

state 2

from 2 over a to 1

final state 1

Yes

Like in the example above, the rev-operation always introduces a new state (here:
s0) and ε-transitions from this state to all final states of the FSA to be reversed. This
‘trick’ is employed because Fistame supports only one start state per FSA (as already
noted). It ensures that all final states of the original FSA act as start states in the
reversed FSA.

3.1.9. sig

The sig-operation asserts the signature of an automaton into the Prolog database.
Applied on a1 for example, the Prolog-predicates symbol(a1,a), symbol(a1,b) and
symbol(a1,c) are asserted:

1 ?- scan(sig(a1)).

Yes

2 ?- listing(symbol).

symbol(a1, a).

symbol(a1, b).

symbol(a1, c).

Yes

13

sig is no clear-cut ‘operation’, because it is not of any use for other operations put on
top of it. Nevertheless, it is useful for the formulation of several of Fistame’s operations.
For instance, it is employed within the mini-operation (Section 5).

3.1.10. string

With the string-operation you are able to generate an ‘artificial’ FSA out of a given
string, which accepts only that string and no other:

1 ?- scan(cat(string(abc))).

automaton string(abc)

start state [a, b, c]

from [a, b, c] over a to [b, c]

state [b, c]

from [b, c] over b to [c]

state [c]

from [c] over c to []

final state []

Yes

3.2. Binary operations

In addition to its unary operations, Fistame also implements four binary operations,
which are addressed in the following subsection.

3.2.1. cp and cp rep

cp and cp rep can be used to ‘carbon copy’ one FSA onto a new one. The two operations
described here are binary, generalized counterparts of those expounded in 3.1.4.

1 ?- scan(cp(rev(a1),a42)).

Yes

2 ?- scan(cat(a42)).

automaton a42

start state s0

from s0 over ep to 3

state 3

from 3 over b to 2

from 3 over c to 3

state 2

from 2 over a to 1

14

final state 1

Yes

The reverse FSA of a1 is here copied onto a new FSA with the name a42. Note that
if an FSA called a42 already had existed, the cp-operation would have overwritten it.

cp rep performs the same operation as cp: It also copies an FSA onto a new one.
In addition, it removes all ε-transitions of the former:

3 ?- scan(cp_rep(rev(a1),a4711)).

Yes

4 ?- scan(cat(a4711)).

automaton a4711

start state s1

from s1 over b to 2

from s1 over c to 3

state 2

from 2 over a to 1

final state 1

state 3

from 3 over b to 2

from 3 over c to 3

Yes

3.2.2. , (intersection)

The comma , stands for the operation of intersecting two finite-state automata. In
the example below, the automata a1 and the a6 are to be intersected. a6 is an FSA
recognizing only two strings, that is to say ab and ba (or more formally, it recognizes the
regular language ab ∪ ba):

a

21 3

a

b

b

Figure 4: FSA 6 (a6) graphically.

15

1 ?- scan(cat(a6)).

automaton a6

start state 1

from 1 over a to 2

from 1 over b to 2

state 2

from 2 over b to 3

from 2 over a to 3

final state 3

Yes

Intersected with a1 (recognizing abc∗), the resulting FSA a2001 only recognizes the
string ab, and no other string:

2 ?- scan(cp((a1,a6),a2001)).

Yes

3 ?- accept(a2001,abccc).

No

4 ?- accept(a2001,ab).

Yes

3.2.3. ; (union)

The ;-operation models the counterpart of intersection: the operation of union. The
union of a1 and a6 for instance is an FSA recognizing the regular language abc∗ ∪ ba

(i.e. both strings of the form abc∗ and the strings ab and ba):

1 ?- scan(cp((a1;a6),a192)).

Yes

2 ?- accept(a192,abccc).

Yes

3 ?- accept(a192,ba).

Yes

16

4. Implementation

After the brief listing and explanation of the available operations which made up the
previous section, this one is concerned with revealing their implementation.5

4.1. scan-predicate

The scan-predicate is the backbone for all operations Fistame offers and therefore war-
rants a detailed explanation. This will be done by elaborating upon the Prolog code of
the scan-predicate (‘scan.pl’) in a step by step fashion.

The first four lines to be discussed make up the toplevel predicate scan:

1 scan(A):-

2 retractall(state(A,_)),

3 start(A,S),

4 scan_state(A,S).

Line 1 is filled by the head of the unary predicate scan(A) — its single argument
being the FSA A to scan. Line 2 then provides for the removal of all predicates with the
pattern state(A,), which are to be used later to take notice of already scanned states.
The code in line 3 unifies the variable S with the start state of the FSA A, and line 4
initiates the scanning process by calling the scan state-predicate.

scan state habors the most important part of the code in ‘scan.pl’:

5 scan_state(A,S):-

6 state(A,S),!.

7 scan_state(A,S):-

8 assert(state(A,S)),

9 do_process_state(A,S),

10 (setof(D,X^trans(A,S,X,D),Ds)

11 -> scan_states(A,Ds)

12 ; true

13).

Let us first concentrate on the main clause of the predicate, i.e. lines 7-13. After
unifying the two arguments A and S with the to-be-scanned FSA and the to-be-scanned
state respectively, line 8 uses the Prolog built-in assert-predicate to mark state S as
already scanned. Line 9 then calls the do process state-predicate:

14 do_process_state(A,S):-

15 final(A,S).

16 do_process_state(A,S):-

5Note that this and the next section assume some familiarity with the Prolog programming language.
If you only want to ‘consume’ Fistame and have no ambition whatsoever to understand its inner
workings or to enhance it, it is advisable to skip them.

17

17 process_state(A,S).

18 do_process_state(_,_).

do process state is only used by the cat-operation and thus does not deserve a
very deep exposition. In short, it can be used to gain access to ‘ordinary’ states (neither
‘start states’ nor ‘final states’).

Let us return to the scan state-predicate (lines 10-13). These lines are the core of
the scan-predicate as a whole. They are built according to a special Prolog construction
similar to ‘if-then-else’-constructions in imperative languages likes ‘Basic’. The first part
(the ‘if’) is line 10, line 11 is the ‘then’-part and line 12 the ‘else’-part. In the ‘if’-part,
the setof-predicate is applied, looking for all states D which are the destination of a
transition originating from state S over any symbol X. The result of this operation, i.e.
all states reachable from S, is a list bound to the variable Ds (‘destinations’). This list
is then further processed by the scan states-predicate6:

19 scan_states(A,[S|Ss]):-

20 scan_state(A,S),

21 scan_states(A,Ss).

22 scan_states(_,[]).

scan states (not to confuse with the scan state-predicate) traverses this list of
‘destinations’. In so doing, it calls scan state on every destination state in the list until
the end of the list is attained.

To finalize this description of the inner workings of the scan-predicate, let us look
at lines 5-6. The code contained herein represents the ‘termination condition’ of the
scan state-predicate. It ensures that the predicate (and with it the entire ‘scan’-
process) does not end up in an infinite loop (in the case of self-referential states) by
checking whether the state to be scanned next has already been scanned. If this is the
case, lines 5-6 prevent the execution of lines 7-13 by utilizing the Prolog-‘Cut’-operator.

4.2. A speciman operation

To understand the inner workings of Fistame entirely, you should also be given an
explanation of how operations are defined on top of the scan-predicate. Therefore, this
section deals with a simple ‘speciman operation’, namely (det) for ‘determinization’. Its
Prolog code (taken from ‘operations.pl’) looks like this:

1 start(det(A),Ss):-

2 setof(X,start(A,X),Ss).

3 trans(det(A),Ss,X,Ds):-

4 setof(D,S^(member(S,Ss),trans(A,S,X,D)),Ds).

6If setof could not find any ‘destinations’, the ‘else’-part (line 12) ensures that the scan state-predicate
returns ‘true’ nevertheless, to keep the ‘scan’-process going.

18

5 final(det(A),Ss):-

6 member(S,Ss),

7 final(A,S).

The det-operations consists of redefinitions of three predicates, namely start/2,
trans/4 and final/2. Hence, let us plunge into separate explanations of these.

4.2.1. Redefinition of start/2

The redefinition of start/2 takes place in line 1-2. An intuitive verbalization of this
code would be ‘the start state of the determinized version of FSA A is a conflation of all
start states of A into a single one Ss’. This idea is expressed using the setof-predicate,
resulting in a list of all start states of A in the ‘state list’ Ss. If an FSA had start states
1 and 2 for instance, det(A) would have the single start state [1, 2].

4.2.2. Redefinition of trans/4

This redefinition (lines 3-4) bears a strong resemblance to the one above (start/2).
Again the setof-predicate is employed, this time to fuse all transitions over any symbol
X in FSA A starting from state S (which has to be in the list of states denoted by the
‘state list’ Ss of det(A)) and going to state D into the destination ‘state list’ Ds. Thence,
if FSA A possessed two transitions, one from 1 over a to 2 and the other one from 1 over
a to 3, these would be fused into a single transition [1] over a to [2, 3].

4.2.3. Redefinition of final/2

The final redefinition (lines 5-7) asserts that a state (i.e. state list) in the determinized
FSA is a final state if one of the members of its state list bore the property of being a
final state. Therefore, if A had the final state 1, all states resembling state lists like [1,

2] or [1, 2, 3] etc. would be final states in det(A).

5. Minimize operation

Jutting out from the other operations is the mini-operation used to minimize the number
of states in an finite-state automaton, the underlying algorithm being an abridged version
of [Hop71]. This standing out not only results from it being the most comprehensive
of all operations from ‘operations.pl’, but also because it is the only one to require a
separate source code file (‘minimize.pl’). This section is intended to clarify the algorithm
and its actual implemention for Fistame.

The mini-operation in Fistame is split into two main parts—the first being the algo-
rithm itself (in the file ‘minimize.pl’), the second being the construction of a minimized
automaton out of the upshot of the former (‘operations.pl’). They are to be elaborated
upon in this order.

19

5.1. Algorithm part

The algorithm used for minimizing an FSA in Fistame is an abridged version of an algo-
rithm by [Hop71]. Its most salient feature is polynomial computation time, as opposed
to earlier algorithms which required an exponential amount of time. To understand
the principles behind it, we will expatiate upon the upper levels of its Fistame Prolog
implementation, similar to my elaboration upon the scan-predicate above.

5.1.1. minimize-predicate

The toplevel predicate in ‘minimize.pl’ is minimize, and it also is the starting point in
elaborating upon the entire algorithm:

1 minimize(M):-

2 scan(sig(M)),

3 setof(S,state(sig(M),S),Ss),

4 setof(X,symbol(M,X),Xs),

5 split(M,Ss,final,SC,BC),

6 cleara(M),

7 cleari(M),

8 pusha(M,SC),

9 pushi(M,BC),

10 assert(pseudo(M,BC)),

11 minimize1(M,Xs),

12 geti(M,IC),

13 format(’~nInactive = ~w~n’,[IC]).

The one argument minimize takes is the FSA M (line 1). In line 2, the sig-operation
is used to put (assert) into the Prolog database all symbols of M. As a side effect, the
scan-predicate also asserts all states of M: As they are marked as being visited, the
predicate state(sig(M),S) is asserted for all states of FSA M. Now in lines 3-4, the set
of all states of M is bound to the variable Ss, and the set of all symbols (i.e. the signature)
of M is bound to Xs.

Line 5 marks the first ‘split’-process. The list of all states of M, Ss, is here split
using the final-predicate as the ‘splitting criterion’. The result of split are two lists
of states (called ‘classes’ or ‘partitions’), bound to the variables SC and BC. SC is bound
to the smaller resulting class, BC to the bigger. ‘splitting’ or ‘partitioning’ is the main
ingredient in the process of minimizing an FSA—classes comprising states are split until
a minimum number of these classes is attained.

Travelling along, lines 6-10 harbor a couple of further initialization steps. They
concern the two ‘global’ lists which are to be used extensively later in the algorithm,
namely the ‘active list’ and the ‘inactive list’. The active list will carry state classes which
are to be used ‘actively’ for further split-operations, whereas the inactive list carries
classes which are not used actively for splitting purposes any longer. cleara erases any
formerly existing active list (line 6) and cleari does the same for any existing inactive

20

list (both for the automaton M). After that, the smaller class from the split above (SC)
is put (‘pushed’) on the active, the bigger class (BC) on the inactive list.

Line 10 then copes with a small clumsiness of the algorithm: Since the first split
(line 5) was different from succeeding ones in employing the final-predicate (instead of
marked, see below), the bigger resulting class of this split (BC) is marked as ‘pseudoac-
tive’. This ‘quirk’ is not very important for seeing the whole picture, but it has to be
dealt with to retain soundness.

Finishing up, line 11 calls the minimize1-predicate to initiate the recursive process
of minimization after the above initialization steps (Lines 12-13 below just fetch the
resulting list of inactive classes from minimize1 and print it out).

5.1.2. minimize1-predicate

The minimization algorithm implemented in Fistame contains two nested recursive loops,
the first of which is minimize1 and the second minimize2. Let us focus on minimize1

first:

14 minimize1(M,Xs):-

15 (popa(M,AC)

16 -> format(’Minimize using ~w~n’,[AC]),

17 pushi(M,AC),

18 minimize2(M,AC,Xs),

19 minimize1(M,Xs)

20 ; true

21).

This predicate operates similar to a ‘WHILE DO’-loop in some rather old-fashioned
languages. Its input arguments are the FSA to be minimized (M) and its signature (Xs).
Now WHILE there is at least one active class AC on the list of active classes (line 15), it
uses this class to continue the minimization process. Line 17 then pushes AC on the list of
inactive classes, before minimize2 is invoked (line 18). Subsequently, line 19 recursively
calls minimize1 again and thus completes the ‘WHILE DO’ loop, enacting the role of
the ‘DO’.

Line 20 is reached when there are no more classes to ‘pop’ off the list of active classes.
It returns true to the caller predicate (minimize).

5.1.3. minimize2-predicate

This is a printout of the first part of the minimize2-predicate:

22 minimize2(_,_,[]).

23 minimize2(M,AC,[X|Xs]):-

24 format(’ Use symbol ~w~n’,[X]),

25 geta(M,ACs1),

26 geti(M,ICs1),

27 format(’ Active = ~w~n Inactive = ~w~n’,[ACs1,ICs1]),

21

While line 22 is the termination condition of the predicate, line 23 shows that
minimize2 takes three arguments, the first again being the FSA to be minimized, the
second being an active class and the last again being the signature of FSA M. minimize2
traverses the latter in a tail-recursive fashion. Line 22 finalizes minimize2: It is triggered
when the third argument—the signature list—is empty.

Line 24-27 are used to print out information about the getting on of the predicate.
It prints out the symbol which is currently used for splitting (line 24), and then unifies
ACs1 and ICs1 with the full active and inactive lists of classes (25-26). Line 27 prints
them out.

Following now is the more important part of minimize2, viz. lines 28-41:

28 mark(M,AC,X,1),

29 (setof(S,marked(M,S),Ss)

30 -> format(’ Mark: ~w~n’,[Ss]),

31 geta(M,ACs),

32 cleara(M),

33 minimizea(M,ACs),

34 geti(M,ICs),

35 cleari(M),

36 minimizei(M,ICs),

37 mark(M,AC,X,0),

38 minimize2(M,AC,Xs)

39 ; format(’ Mark: -~n’,[]),

40 minimize2(M,AC,Xs)

41).

First of all, the mark-predicate ‘marks using the active class’ (line 28): Every state
which is the source of a transition over the symbol currently unified with X into one of
the members of the class (state list) presently unified with AC is ‘marked’. Subsequently,
this is used in line 29 to produce a list Ss comprising all these marked states.

If the result of line 29 was that no state had been marked and thus Ss had been
unified with the empty list, the ‘else’-part of the ‘if-then-else’-construction residing in
lines 29-41 is triggered. Here, it is printed out that no state could be marked (line 39)
and minimize2 is called recursively to deal with the next symbol from the signature of
M.

The ‘then’-part of minimize2 (lines 30-38) begins with a printout of the list of all
marked states Ss (line 30). Hereafter, the variable ACs is bound with the list of active
classes (line 31), and the latter is cleared in line 32. This is to prepare the forthcoming
call of the minimizea-predicate (line 33, ‘minimize active list’, to be explicated below).
The same what happened to the active list in lines 31-33 then occurs to the inactive list
in lines 34-36. After that, like 37 serves to remove all the markings done in line 29, before
line 38 recursively calls minimize2 to deal with the next symbol from M’s signature.

Now what remains to illustrate are the two predicates used in minimize2—minimizea

for ‘minimize active class list’ and minimizei for ‘minimize inactive class list’.

22

5.1.4. minimizea-predicate

This is the Prolog code making up the minimizea-predicate:

42 minimizea(_,[]).

43 minimizea(M,[C|Cs]):-

44 split(M,C,marked,SC,BC),

45 pusha(M,BC),

46 pusha(M,SC),

47 format(’ Split active ~w into~n ~w

and~n ~w~n’,[C,SC,BC]),

48 minimizea(M,Cs).

The job of this predicate is to traverse the active list given to it as its second argument
by minimize2, and to try to split every class contained in it. This is done in line 44,
which forms one of the two absolute core lines in the entire file ‘minimize.pl’ together
with line 51 below. In line 44, class C is split according to the marked-predicate criterion
into the smaller resulting class SC and the bigger BC. Both split classes are then pushed
on the active list (lines 45-46) and the result of the partitioning is printed out (line 47).
Line 48 recursively calls minimizea to repeat this process until the end of the active list
is reached.

5.1.5. minimizei-predicate

minimizei follows a very similar path as minimizea. This is the code listing:

49 minimizei(_,[]).

50 minimizei(M,[C|Cs]):-

51 split(M,C,marked,SC,BC),

52 pusha(M,SC),

53 (pseudo(M,C)

54 -> pusha(M,BC),

55 retract(pseudo(M,C))

56 ; pushi(M,BC)

57),

58 format(’ Split inactive ~w into~n ~w

and~n ~w~n’,[C,SC,BC]),

59 minimizei(M,Cs).

Here, line 51 is crucial—it splits the given inactive list into SC and BC respectively.
Then, in line 52, it pushes the smaller resulting class SC onto the active list. Lines 53-
57 hereafter deal with the already mentioned clumsiness which first cropped up in the
toplevel minimize-predicate. By means of an ‘if-then-else’-construction, it is ensured
that if a split class is marked as ‘pseudo-active’, the bigger chunk BC of the two resulting
splits is put on the active list (line 54, ‘then’-part) rather than on the inactive list (line

23

56, ‘else’-part). As can be deduced from line 55, the ‘then’-part is only executed once in
the entire algorithm: In line 10 above only one class was given the ‘pseudo-active’-flag,
which is removed in line 55.

Line 58 and 59 conclude the minimizei-predicate and with it the exposition of the
algorithm part of the minimization process by printing out the result of the above split
and by recursively calling the predicate until the end of the inactive list is found.

5.2. Construction part

Let us now concentrate on the easier part of the operation—the construction of a min-
imized automaton mini(A) out of a FSA A. This work is done in ‘operations.pl’, and
that is the code needed for it:

1 start(mini(A),C):-

2 ensure_minimized(A),

3 inactive(A,Cs),

4 member(C,Cs),

5 member(S,C),

6 start(A,S).

7 trans(mini(A),[S|C1s],X,C2):-

8 ensure_minimized(A),

9 inactive(A,Cs),

10 member([S|C1s],Cs),

11 member(C2,Cs),

12 member(D,C2),

13 trans(A,S,X,D).

14 final(mini(A),C):-

15 ensure_minimized(A),

16 inactive(A,Cs),

17 member(C,Cs),

18 member(S,C),

19 final(A,S).

The first part (lines 1-6) states what conditions have to be fulfilled for a start state
in mini(A). Line 2 ensures that the automaton A must have been minimized in the first
place, using the algorithm explained above. ensure minimized is a support predicate
taken from ‘support.pl’. It minimizes FSA A if it has not yet been minimized and does
nothing otherwise, since repeating the minimization process would just mean a waste
of time. Line 3 after that unifies the list of inactive classes (which is the result of the
minimization process) with the variable Cs. Now if a state (class) C is in this list of
inactive classes and if at least one single state S within this class is a start state of FSA
A, then C is a start state in mini(A).

24

The second part (line 7-13) of the definition of the mini-operation travels along
similarly. First (line 8), A is ensured to have been minimized. Then Cs is unified with
the resulting inactive list of classes. Now a transition over a symbol X in FSA mini(A)

must be justified by a transition from S over this symbol to D in the original FSA A.
State S must be a single state member of one of the resulting inactive classes, and D must
also be member of one (the same or another) of the resulting classes. Only transitions
which fulfill these conditions are transitions of the minimized automaton.

The final part of the construction of a minimized FSA mini(A) is depicted in lines
14-19. They express equal constraints on final states of mini(A) as lines 1-6 did on start
states: Every final state C of the minimized FSA must be warranted by at least one final
state S in the original automaton A (which is an element of the state class C).

6. Conclusion

Within the space of the previous five sections, you should have been made familiar with
Fistame, a partial implementation of [KK]. After a short overview in Section 1, the
paper moved on to introducing the concept of finite-state automata and their encoding
and operation upon in the Fistame framework. Section 3 concentrated on exposing all
of the built-in operations of Fistame, whilst Section 4 elaborated on the most important
implementational issues. Section 5 followed a similar track by explicating the mini-
operation used for minimizing the number of states in an FSA.

Some thanks. I’d like to thank Martin Kay for coming over to Saarbrücken in sum-
mer 1998 and delivering the ‘Sprachtechnologie’-course in the first place and Carsten
Brockmann for sorting out several nasty LaTeX-problems and much support while im-
plementing the minimize-operation.

A. Portability

Fistame is programmed such as to enable it to run on virtually any decent Prolog distri-
bution. It has been successfully tested on three of the most popular Prolog distributions,
namely SWI-Prolog (SunOS, Win95, AmigaOS), SICStus Prolog 3 (SunOS) and Quintus
Prolog 3.2 (SunOS). To ensure that you have no trouble running Fistame using these or
other Prolog distributions on any computer running any operating system, the following
subsections flesh out several portability issues. With the help of these, you should be
able to get Fistame up and running on your favorite Prolog platform quite quickly.

A.1. Getting it started

Fistame consists of eight files, all of which should reside in one single directory. The files
are:

Quintus32.pl examples.pl minimize.pl scan.pl

SICStus3.pl fistame.pl operations.pl support.pl

25

To start Fistame up, your Prolog interpreter must be able to locate these files in the
first place. One way to ensure that is to change over to the Fistame home directory
before starting the Prolog interpreter. After that, you need to locate and consult a
‘startup file’ suiting your Prolog setup. ‘fistame.pl’ is a generic file (working perfectly on
SWI-Prolog), while ‘Quintus32.pl’ and ‘SICStus3.pl’ are slightly altered versions of the
same file for use with Quintus Prolog 3.2 and SICStus Prolog 3 respectively. Following
the generic path, this is about what will happen:

[rade@top] (.../rade/Prolog) $ cd fistame/

[rade@top] (.../Prolog/fistame) $ pl

Welcome to SWI-Prolog (Version 3.1.0)

Copyright (c) 1993-1998 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- [fistame].

scan compiled, 0.00 sec, 2,184 bytes.

support compiled, 0.01 sec, 5,440 bytes.

minimize compiled, 0.00 sec, 7,996 bytes.

operations compiled, 0.01 sec, 9,144 bytes.

examples compiled, 0.01 sec, 4,536 bytes.

fistame compiled, 0.03 sec, 30,424 bytes.

Yes

The startup file uses the ensure loaded-directive to consult all necessary files. If
your Prolog distribution does not support this directive, you might have to change this
line (file location of the line in brackets):

(Quintus32.pl, SICStus3.pl, fistame.pl)

:- ensure_loaded([scan,support,minimize,operations,examples]).

A.2. Dynamic predicates

Your Prolog interpreter must be able to declare certain predicates as ‘dynamic’. Usu-
ally, this is done by the dynamic-directive (SWI-Prolog, SICStus and Quintus Prolog).
There are dynamic-directives at the beginnings of the files ‘fistame.pl’ (and also ‘Quin-
tus32.pl’and ‘SICStus3.pl’), ‘operations.pl’ and ‘examples.pl’, so change these if your
Prolog distribution employs a different syntax.

(Quintus32.pl, SICStus3.pl, fistame.pl)

:- dynamic state/2,symbol/2,counter/2.

(operations.pl)

:- dynamic start/2,trans/4,final/2.

26

(examples.pl)

:- dynamic start/2,trans/4,final/2.

A.3. Multifile predicates

In addition to the ability to handle ‘dynamic’ predicates, your Prolog interpreter should
also be able to cope with ‘multifile’-predicates. ‘Multifile’-predicates are predicates whose
definitions are scattered around different source code files but still belong together. In
Fistame, there are four predicates possessing this status, viz. the ones used to encode
FSAs: start/2, trans/4, final/2. These are employed in ‘examples.pl’ to encode
FSAs, as well as in ‘operations.pl’, where there are used to define the Fistame operations
(dealt with in Section 3). The directive for enabling these predicates to appear in both
files is multifile in most modern Prologs (SWI-Prolog, Quintus 3.2, SICStus Prolog
3):

(operations.pl)

:- multifile start/2,trans/4,final/2.

(examples.pl)

:- multifile start/2,trans/4,final/2.

To run Fistame on your, possibly different Prolog setup, you might have to notify
your interpreter in another way of these ‘multifile’-predicates.

A.4. append/3, member/2 and name/2-predicates

Fistame makes use of the append/3, member/2 and name/2-predicates. In distributions
like SWI-Prolog, these predicates are available right from the start. Some distributions
(Quintus Prolog 3.2, SICStus Prolog 3), however, do need to have some or all of them
loaded into their predicate database separately. This is the line from SICStus3.pl which
makes sure that append/3, member/2 and name/2 are available to SICStus Prolog 3:

(SICStus3.pl)

:- use_module(library(lists)).

This line can be left out if your Prolog supports these predicates without further ado
(like SWI-Prolog).

Another variant is brought into play by Quintus Prolog 3.2, which does have the
append/3 and name/2-predicates loaded by the start of the interpreter, but lacks the
member/2-predicate. These are the lines to mend the generic startup file ‘fistame.pl’ to
get by this:

(Quintus32.pl)

member(X,[X|_]).

member(X,[_|Xs]):-

member(X,Xs).

27

References

[Hop71] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
In Z. Kohavi, editor, The Theory of Machines and Computations, pages 189–
196. Academic Press, New York, 1971.

[KK] Ronald M. Kaplan and Martin Kay. Finite-state methods in natural-language
processing: Algorithms.

28

