XDG - A Metagrammatical Framework for Dependency Grammar

Ralph Debusmann

Programming Systems Lab
Universität des Saarlandes
This talk

- introduces a new metagrammatical framework for dependency grammar: eXtensible Dependency Grammar (XDG)
- evolved as a generalisation of Topological Dependency Grammar (TDG) (Duchier and Debusmann 2001)
- metagrammatical: can be instantiated to yield specific grammar formalisms (including TDG itself)
- based on dependency grammar
Dependency grammar

- collection of ideas for natural language analysis
- long history (following Kruijff 2002):
 - Greek and Latin scholars: Thrax, Apollonius, and Priscian
 - Indian: Panini’s formal grammar of Sanskrit (Astadhyayi/Astaka, 350/250 BC)
 - Arabic: Kitab al-Usul of Ibn al-Sarrag (d.928)
 - European: Martinus de Dacia (d.1304), Thomas von Erfurt (14th century)
- modern dependency grammar credited to Tesniere (1959)
- so what are these ideas?
Bagels, Peter has eaten.
1:1-correspondence between words and nodes

Bagels, Peter has eaten.
Head/dependent-asymmetry

Bagels, Peter has eaten.
Grammatical functions (edge labels)

```
Bagels, Peter has eaten.
```

Diagram:

```
obj

subj

vprt

''
Valency (subcategorisation)

```
Bagels, { } Peter { } has { subj, vprt } eaten. { obj }
```

```
obj

subj vprt

obj
```
Dependency and phrase structure

- ideas from dependency grammar adopted by many phrase structure-based grammar formalisms:
  - Government and Binding (GB, Chomsky 1986): X’-theory
  - Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag 1994): e.g. DEPS-feature in modern variants (Bouma, Malouf and Sag 1998)
  - Lexical Functional Grammar (LFG, Bresnan and Kaplan 1982): f-structure
  - Tree Adjoining Grammar (TAG, Joshi 1987): derivation tree
Pure dependency grammar formalisms

- pure dependency grammar formalisms have been less successful:
  - Abhaengigkeitsgrammatik (Kunze 1975)
  - Functional Generative Description (FGD, Sgall et al 1986)
  - Meaning Text Theory (MTT, Melcuk 1988)
  - Word Grammar (Hudson 1990)

- why?
Problems of pure dependency grammar formalisms

- word order: no declarative specification
- syntax-semantics interface: no compositional semantics construction
Word order

- MSc thesis (Debusmann 2001): TDG grammar formalism
- allows declarative specification of word order
- constraint-based parser for TDG (Duchier 1999)
- parser average case efficient (but only small test grammars), although TDG parsing is NP-complete (Koller and Striegnitz 2002)
- TDG parser used for LTAG generation by Koller and Striegnitz 2002, faster than the generator described in Carrol et al 1999
- (Kuhlmann 2002): TDG parser used for parsing Categorial Type Logics (CTL) (Morrill 1994, Moortgat 1997)
Syntax-semantics interface

- goal of PhD research: develop a syntax-semantics interface for dependency grammar
- idea:
  1. generalise TDG into a metagrammatical framework for dependency grammar (XDG)
  2. use XDG to develop the syntax-semantics interface
Roadmap of the talk

1. XDG
   - basic architecture
   - principles (stipulating the well-formedness conditions of analyses)
   - lexicalisation
2. TDG as an instance of XDG
3. syntax-semantics interface
   - Semantic Topological Dependency Grammar (STDG)
   - STDG as another instance of XDG
4. conclusions
eXtensible Dependency Grammar (XDG)

- graph description language
- describes a set of *graph dimensions*
- a graph dimension is a labeled directed graph $G_d(V, E_d)$
- all graph dimensions share the same set $V$ of nodes
- each graph dimension has its own set $E_d$ of labeled edges ($L_d$ set of edge labels, $E_d \subseteq V \times L_d \times V$)
- simple feature structures can be attached to each node (features: functions $V \rightarrow R$, where $R$ is an arbitrary codomain)
- parametrised *principles* stipulate well-formedness conditions
Nodes (arranged in a graph)

\[ v_1 \ldots v_n \]
Graph dimensions
Feature structures
Principles

\[ P_{d_m} \rightarrow v_1 \quad \ldots \quad v_n \]

\[ d_m \]

\[ P_{d_1} \rightarrow v_1 \quad \ldots \quad v_n \]

\[ d_1 \]
Principles (one-dimensional)
Principles (multi-dimensional)
Principle library

- directed acyclic graph *
- tree *
- in
- out *
- order
- projectivity
- climbing
- barriers
- linking *
- covariance *
- contravariance *
- node and edge constraints
- ... (extensible)
Directed acyclic graph

dag($G$): $G$ is a directed acyclic graph.
Tree

tree($G'$): $G$ is a tree.
Out

\[ \text{out}(G_d, f) : \text{The outgoing edges of each node in } G_d \text{ must satisfy the} \]

nodes’ \textit{out specification}. Feature \( f : V \rightarrow (L_d \rightarrow 2^\mathbb{N}) \) maps an out

specification to each node.
Out

\[ \text{Out} \]

\[
\begin{bmatrix}
\text{out} \\
\text{l}_1: \{0\} \\
\text{l}_2: \{1\} \\
\text{l}_3: \{0,1,2,3\}
\end{bmatrix}
\]

\[
\text{v}_1
\]

\[
\begin{bmatrix}
\text{l}_2 \\
\text{l}_3 \\
\text{l}_3
\end{bmatrix}
\]
Out

\[ V_1 \]

\[
\begin{bmatrix}
\text{out : } \\
\text{l}_1 : \{0\} \\
\text{l}_2 : \{1\} \\
\text{l}_3 : \{0,1,2,3\}
\end{bmatrix}
\]

\[ \text{l}_2 \]

\[ \text{l}_3 \]
Out

\[ \text{out:} \quad \begin{bmatrix} \text{l}_1 & \{0\} \\ \text{l}_2 & \{1\} \\ \text{l}_3 & \{0,1,2,3\} \end{bmatrix} \]
Linking

$\text{linking}(G_{d_1}, G_{d_2}, f_1, f_2)$: An edge $(v_1, l, v_2)$ in $G_{d_1}$ is only licensed if $v_1$ realises $l$ by $l' \in L_{d_2}$, and either:

1. there is a corresponding edge $(v_1, l', v_2)$ in $G_{d_2}$, or
2. there is an edge $(v_3, l'', v_2)$ in $G_{d_2}$ and $v_3$ substitutes $l'$ by $l''$.

Feature $f_1 : V \rightarrow (L_{d_1} \rightarrow 2^{L_{d_2}})$ assigns to each node a label realisation function. Feature $f_2 : V \rightarrow (L_{d_2} \rightarrow 2^{L_{d_2}})$ assigns to each node a label substitution function.
Linking

\[ d_1 \quad \text{real: } \left[ l : \{ l' \} \right] \quad d_2 \]

\[ v_1 \rightarrow l \quad v_1 \rightarrow l' \]

\[ v_1 \quad v_2 \]
Linking

\[ d_1 \]

\[ \text{real: } [l : \{l'\}] \]

\[ v_1 \]

\[ \rightarrow \]

\[ v_2 \]

\[ d_2 \]

\[ \text{real: } [l : \{l'\}] \]

\[ v_1 \]

\[ \rightarrow \]

\[ v_2 \]

\[ \text{subs: } [l' : \{l''\}] \]

\[ v_3 \]

\[ \rightarrow \]

\[ v_2 \]

XDG - A Metagrammatical Framework for Dependency Grammar – p.28
Covariance

covariance\((G_{d_1}, G_{d_2}, f)\): Each edge \((v_1, l, v_2)\) in \(G_{d_1}\) where \(l\) is covariant on \(v_1\) is only licensed if \(v_1\) is above \(v_2\) in \(G_{d_2}\). Feature \(f : V \rightarrow 2^{L_{d_1}}\) assigns to each node its set of covariant labels.
Covariance
Contravariance

\[ \text{contravariance}(G_{d_1}, G_{d_2}, f): \] Each edge \((v_1, l, v_2)\) in \(G_{d_1}\) where \(l\) is \textit{contravariant} on \(v_1\) is only licensed if \(v_1\) is below \(v_2\) in \(G_{d_2}\). Feature \(f : V \rightarrow 2^{L_{d_1}}\) assigns to each node its set of contravariant labels.
Contravariance
Lexicalisation

1. from dependency grammar: 1:1-correspondence between nodes and words
2. assign to each word a set of lexical entries (feature structures)
3. select one of the lexical entries, efficient through selection constraint (Duchier 1999)
4. assign the selected entry (feature structure) to the corresponding node
XDG architecture so far
Words

\[ \begin{array}{c}
P_{d_m} \\
\vdots \\
V_1 \\
\vdots \\
V_n \\
\vdots \\
D_m \\
\end{array} \quad \begin{array}{c}
P_{d_1} \\
\vdots \\
V_1 \\
\vdots \\
V_n \\
\vdots \\
D_1 \\
\end{array} \quad \begin{array}{c}
W_1 \\
\vdots \\
W_n \\
\end{array} \]
Lexical entries
Selection
Lexical assignment

\[ P_{d_m} \rightarrow v_1 \rightarrow \ldots \rightarrow v_n \rightarrow d_m \]

\[ P_{d_1} \rightarrow v_1 \rightarrow \ldots \rightarrow v_n \rightarrow d_1 \]
XDG instantiation

• recipe for getting XDG instances:
  1. define graph dimensions
  2. define used principles and parameters
XDG does TDG

- two graph dimensions: $G_{ID}$ and $G_{LP}$

  - ID dimension: Immediate Dominance; edge labels: grammatical functions like $subj$, $obj$ (subject, object)

  - LP dimension: Linear Precedence; edge labels: topological fields (linear positions) like $topf$, $subjf$ (topicalisation field, subject field)
Principles used on the ID dimension

- $\text{tree}(G_{ID})$
- $\text{in}(G_{ID}, in_{ID})$
- $\text{out}(G_{ID}, out_{ID})$
- $\text{nodeconstraints}(\ldots)$
- $\text{edgeconstraints}(G_{ID}, f)$
Principles used on the LP dimension

- $\text{tree}(G_{\text{LP}})$
- $\text{in}(G_{\text{LP}}, \text{in}_{\text{LP}})$
- $\text{out}(G_{\text{LP}}, \text{out}_{\text{LP}})$
- $\text{order}(G_{\text{LP}}, \ldots, \text{on})$
- $\text{projectivity}(G_{\text{LP}})$
- $\text{climbing}(G_{\text{ID}}, G_{\text{LP}})$
- $\text{barriers}(G_{\text{ID}}, G_{\text{LP}}, \text{blocks})$
A woman, every man seems to love.
A woman, every man seems to love.

A woman, every man seems to love.
Syntax-semantics interface

- Semantic Topological Dependency Grammar (STDG)
- new grammar formalism, extends TDG with a syntax-semantics interface to underspecified semantics
- underspecification formalism: Constraint Language for Lambda Structures (CLLS, Egg et al 1998)
- other target semantics formalisms possible
Constraint Language for Lambda Structures (CLLS)

- CLLS based on dominance constraints (Marcus/Hindle/Fleck 1983)
- CLLS structures describe \( \lambda \)-terms
- example: *A woman, every man seems to love.*
- scopally ambiguous: strong and weak reading (quantifier order: \( \exists \forall \) and \( \forall \exists \))
Strong reading
Weak reading
XDG does STDG

- four graph dimensions: $G_{ID}$, $G_{LP}$, $G_{TH}$, $G_{DE}$
- ID and LP dimensions as in TDG
- TH dimension: THematic dag; edge labels: semantic roles like act, pat (actor, patient)
- DE dimension: CLLS DERivation tree; edge labels: CLLS fragment positions like r, s (restriction, scope)
Principles used on the TH dimension

- $\text{dag}(G_{TH})$
- $\text{in}(G_{TH}, in_{TH})$
- $\text{out}(G_{TH}, out_{TH})$
- $\text{linking}(G_{TH}, G_{ID}, \text{real}, \text{subs})$
Principles used on the DE dimension

- $\text{tree}(G_{DE})$
- $\text{in}(G_{DE}, G_{ID})$
- $\text{out}(G_{DE}, G_{DE})$
- $\text{covariance}(G_{DE}, G_{ID}, \text{co})$
- $\text{contravariance}(G_{DE}, G_{ID}, \text{contra})$
A woman, every man seems to love.

A woman, every man seems to love.
STDG analysis

A woman, every man seems to love.
STDG analysis (weak reading)

A woman, every man seems to love.

LP

DE

ID

TH

A woman, every man seems to love.

A woman, every man seems to love.

A woman, every man seems to love.

A woman, every man seems to love.
From STDG to CLLS

- lexicon: words correspond to CLLS fragments (subtrees)
- STDG analysis contains all information to build a CLLS representation of the semantics:
  - DE tree: assembly of fragments/scope
  - TH dag: lambda bindings
A woman, every man seems to love.
A woman, every man seems to love.
A woman, every man seems to love.

TH dag: lambda bindings
TH dag: lambda bindings

A woman, every man seems to love.

A woman, every man seems to love.
Summary

- dependency grammar appealing but pure dependency grammar approaches flawed
- TDG solves the word order problem, but still no syntax-semantics interface
- generalised TDG to XDG
- TDG as an instance of XDG
- syntax-semantics interface: developed STDG as another instance of XDG
State of the art

- proof of concept: STDG syntax-semantics interface works for small example grammar
- new XDG parser system (as efficient as the TDG parser)
- demo offline for those interested
Related work

- interface to information structure (Duchier and Kruijff 2003)
- grammar induction (Korthals 2003)
- Stochastic eXtensible Dependency Grammar (SXDG) (Dienes, Koller and Kuhlmann 2003)
Outlook

- integration of preferences (for e.g. PP attachment, scope)
- search for equivalences between instances of XDG and existing grammar formalisms (find e.g. context-free and mildly context-sensitive XDG instances)
  - Tree Insertion Grammar (TIG, Schabes and Waters 1993)
  - TAG
  - CCG (Steedman 2000), MMCCG (Baldridge and Kruijff 2003)
- development of bigger grammars:
  - handcrafted
  - induced
  - ported
Thank you!

Any questions?
Extra slides
In

\[ \text{out}(G_d, f) : \text{The incoming edges of each node in } G_d \text{ must satisfy the nodes’ } \text{in specification. Feature } f : V \rightarrow (L_d \rightarrow 2^N) \text{ maps an in specification to each node.} \]
\[ \text{in} \]

\[
\begin{align*}
&\mathrm{v}_1 \\
&\quad \uparrow \\
&\quad \mathrm{l}_2 \quad \mathrm{l}_3 \\
&\quad \quad \downarrow \quad \uparrow \\
&\quad \quad \text{in :} \quad \mathrm{l}_3 \\
&\quad \quad \quad \mathrm{l}_1 : \{0\} \\
&\quad \quad \quad \mathrm{l}_2 : \{1\} \\
&\quad \quad \quad \mathrm{l}_3 : \{0,1,2,3\}
\end{align*}
\]
In

\[
\begin{array}{c}
l_2 \quad l_3 \\
\hline
v_1 \\
\hline
\end{array}
\]

\[
\begin{align*}
\text{in} : \\
& l_1 : \{0\} \\
& l_2 : \{1\} \\
& l_3 : \{0,1,2,3\}
\end{align*}
\]
In

\[
\mathbf{V}_1
\]

\[
\text{in:}
\begin{align*}
l_1: \{0\} \\
l_2: \{1\} \\
l_3: \{0, 1, 2, 3\}
\end{align*}
\]
Order

\[ \text{order}(G_d, \prec, f): \] The daughters of each node \( v \) in \( G_d \) must be ordered according to their edge label, and \( v \) itself according to its node label, and the total order \( L_d \) stipulated in \( \prec \). Feature \( f : V \rightarrow L_d \) assigns a node label to each node. We call \( f \) the *on specification* of a node.
Order

\[ l_1 < l_2 < l_3 < l_4 \]

Diagram:

- \( v_1 \) to \( v_2 \) on \( l_2 \)
- \( v_2 \) to \( v_3 \) on \( l_3 \)
- \( v_3 \) to \( v_4 \) on \( l_4 \)
- \( l_1 \) to \( v_2 \)
Order

\[ l_1 < l_2 < l_3 < l_4 \]

Diagram:

- \( v_1 \) is connected to \( v_2 \) by \( l_1 \)
- \( v_2 \) is connected to \( v_3 \) by \( l_2 \) and \( l_3 \)
- \( v_3 \) is connected to \( v_4 \) by \( l_3 \)
$l_1 < l_2 < l_3 < l_4$

Diagram:

- $v_1$ to $v_2$ with label $l_1$
- $v_2$ to $v_3$ with label $l_3$
- $v_3$ to $v_4$ with label $l_3$
- $v_2$ has a condition 'on: $l_2$'

Order

\[ l_1 < l_2 < l_3 < l_4 \]

Diagram:

\[ \text{v1} \quad \text{v2} \quad \text{v3} \quad \text{v4} \]

\[ l_1 \quad \text{on:} \quad l_2 \quad l_4 \quad \text{on:} \quad l_3 \]
Order

\[ l_1 < l_2 < l_3 < l_4 \]

\[ \text{on : } l_2 \]
Projectivity

\[ \text{projectivity}(G) : G \text{ must be projective.} \]
Projectivity
Projectivity
Climbing

\[ \text{climbing}(G_{d_1}, G_{d_2}): G_{d_2} \text{ must be flatter than } G_{d_1}. \]
Climbing

\begin{itemize}
\item $v_1$ \rightarrow $v_2$ \rightarrow $v_3$ \rightarrow $v_1$
\item $v_1$ \rightarrow $v_3$ \rightarrow $v_2$ \rightarrow $v_1$
\end{itemize}
Climbing
Climbing
Climbing
Barriers

\text{barriers}(G_{d1}, G_{d2}, f) \text{: No node may climb through a barrier. Feature } f : V \rightarrow 2^{L_{d1}} \text{ assigns to each node the set of labels for which it acts as a barrier. We call } f \text{ the } \textit{blocking specification} \text{ of a node.}
Barriers
Barriers
Barriers

\[
\begin{align*}
\text{blocks} : \{ l_2, l_3 \} \\
\end{align*}
\]
Node constraints

nodeconstraints($2^c$): Each node must satisfy a set of node constraints written in the simple constraint language $C$:

\[ C ::= \begin{align*}
  x &= y \\
  x &\neq y \\
  x &\in y \\
  x &\notin y \\
  x &\subseteq y \\
  x &\parallel y
\end{align*} \]
Edge constraints

edgeconstraints($G_d, f$): Each edge $(v_1, l, v_2)$ in $G_d$ must satisfy a set of edge constraints written in constraint language $C$. Function $f : L_d \rightarrow 2^C$ maps edge labels to sets of constraints.