
Dependency Grammar as Graph Description

Ralph Debusmann

Programming Systems Lab

Universität des Saarlandes

Dependency Grammar as Graph Description – p.1

This talk

• introduces a new meta grammar formalism for dependency
grammar: Extensible Dependency Grammar (XDG)

• graph description language
• generalisation of Topological Dependency Grammar (TDG)

(Duchier and Debusmann ACL 2001)
• meta grammar formalism: can be instantiated to yield specific

grammar formalisms (including TDG itself)
• based on dependency grammar

Dependency Grammar as Graph Description – p.2

Dependency grammar

• collection of ideas for natural language analysis
• long history (following Kruijff 2002):

◦ Greek and Latin scholars: Thrax, Apollonius, and Priscian
◦ Indian: Panini’s formal grammar of Sanskrit

(Astadhyayi/Astaka, 350/250 BC)
◦ Arabic: Kitab al-Usul of Ibn al-Sarrag (d.928)
◦ European: Martinus de Dacia (d.1304), Thomas von Erfurt

(14th century)
• modern dependency grammar credited to Tesniere (1959)
• so what are these ideas?

Dependency Grammar as Graph Description – p.3

Words

eaten.hasPeterBagels,

Dependency Grammar as Graph Description – p.4

1:1-correspondence between words and nodes

eaten.hasPeterBagels,

Dependency Grammar as Graph Description – p.5

Head/dependent-asymmetry

eaten.hasPeterBagels,

Dependency Grammar as Graph Description – p.6

Grammatical functions (edge labels)

eaten.has

obj

vprtsubj

PeterBagels,

Dependency Grammar as Graph Description – p.7

Valency (subcategorisation)

eaten.has

{ obj }

obj

vprtsubj

Peter

 { }

Bagels,

{ } { subj, vprt }

Dependency Grammar as Graph Description – p.8

Dependency and phrase structure

• ideas from dependency grammar adopted by many phrase
structure-based grammar formalisms:
◦ Government and Binding (GB, Chomsky 1986): X’-theory
◦ Head-driven Phrase Structure Grammar (HPSG, Pollard and

Sag 1994): e.g. DEPS-feature in modern variants (Bouma,
Malouf and Sag 1998)

◦ Lexical Functional Grammar (LFG, Bresnan and Kaplan
1982): f-structure

◦ Tree Adjoining Grammar (TAG, Joshi 1987): derivation tree

Dependency Grammar as Graph Description – p.9

Pure dependency grammar formalisms

• pure dependency grammar formalisms have been less successful:
◦ Abhaengigkeitsgrammatik (Kunze 1975)
◦ Functional Generative Description (FGD, Sgall et al 1986)
◦ Meaning Text Theory (MTT, Melcuk 1988)
◦ Word Grammar (Hudson 1990)

• why?

Dependency Grammar as Graph Description – p.10

Problems of pure dependency grammar formalisms

• parsing: no parsers
• word order: no declarative specification
• syntax-semantics interface: no compositional semantics

construction

Dependency Grammar as Graph Description – p.11

Parsing

• Duchier (MOL 1999) constraint-based parser for dependency
grammar

• average case efficient (but only small test grammars), although
NP-complete in the worst case

• (Koller and Striegnitz ACL 2002): parser used for LTAG
generation, than the generator described in (Carrol et al 1999)

• (Kuhlmann MSc 2002): parser used for parsing Categorial Type
Logics (CTL)

Dependency Grammar as Graph Description – p.12

Word order

• (Duchier and Debusmann ACL 2001), (Debusmann MSc 2001):
Topological Dependency Grammar (TDG) grammar formalism

• allows declarative specification of word order
• parsing: Duchier’s constraint-based parser

Dependency Grammar as Graph Description – p.13

Syntax-semantics interface

• goal of my PhD research: develop a syntax-semantics interface
for dependency grammar

• idea:
1. generalise TDG into a metagrammatical framework for

dependency grammar (XDG)
2. use XDG to develop the syntax-semantics interface

Dependency Grammar as Graph Description – p.14

Roadmap of the talk

1. XDG
• basic architecture
• principles
• lexicalisation

2. TDG as an instance of XDG

3. syntax-semantics interface
• Semantic Topological Dependency Grammar (STDG)
• STDG as another instance of XDG

4. conclusions

Dependency Grammar as Graph Description – p.15

Extensible Dependency Grammar (XDG)

• graph description language
• describes a set of graph dimensions
• a graph dimension is a labeled directed graph Gd(V,Ed)

• all graph dimensions share the same set V of nodes
• each graph dimension has its own set Ed of labeled edges (Ld set

of edge labels, Ed ⊆ V × Ld × V)
• simple feature structures can be attached to each node (features:

functions V → R, where R is an arbitrary codomain)
• parametrised principles stipulate well-formedness conditions

Dependency Grammar as Graph Description – p.16

Nodes (arranged in a graph)

vn. . .v1

Dependency Grammar as Graph Description – p.17

Graph dimensions

vn

vn

. . .

. . .

v1

v1 dm

d1

.

.

.

Dependency Grammar as Graph Description – p.18

Feature structures

vn

...

vn
...

. . .

. . .

v1

...

v1
...

dm

d1

.

.

.

Dependency Grammar as Graph Description – p.19

Principles

vn

...

vn
...

. . .

. . .

v1

...

v1
...

Pd1

Pdm dm

d1

.

.

.

Dependency Grammar as Graph Description – p.20

Principles (one-dimensional)

vn

...

vn
...

. . .

. . .

v1

...

v1
...

Pd1

Pdm dm

d1

.

.

.

Dependency Grammar as Graph Description – p.21

Principles (multi-dimensional)

vn

...

vn
...

. . .

. . .

v1

...

v1
...

Pd1

Pdm dm

d1

.

.

.

Dependency Grammar as Graph Description – p.22

Principle library

• directed acyclic graph *
• tree *
• in *
• out *
• order
• projectivity
• climbing
• barriers
• linking *
• covariance and contravariance *
• node and edge constraints
• ... (extensible)

Dependency Grammar as Graph Description – p.23

Directed acyclic graph

dag(G): G is a directed acyclic graph.

Dependency Grammar as Graph Description – p.24

Tree

tree(G): G is a tree.

Dependency Grammar as Graph Description – p.25

In

out(Gd, f): The incoming edges of each node in Gd must satisfy the

nodes’ in specification. Feature f : V → 2Ld maps an in specification to

each node.

Dependency Grammar as Graph Description – p.26

In

v1

l1

{ l1, l2 }in :

Dependency Grammar as Graph Description – p.27

In

v1

{ l1, l2 }in :

l2

Dependency Grammar as Graph Description – p.27

In

{ l1, l2 }in :

Dependency Grammar as Graph Description – p.27

In

v1

l3

in : { l1, l2 }

Dependency Grammar as Graph Description – p.27

Out

out(Gd, f): The outgoing edges of each node in Gd must satisfy the

nodes’ out specification. Feature f : V → (Ld → 2N) maps an out

specification to each node.

Dependency Grammar as Graph Description – p.28

Out

v1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

l2

l3
l3

l3

Dependency Grammar as Graph Description – p.29

Out

v1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

l2

l3
l3

Dependency Grammar as Graph Description – p.29

Out

v1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

l2

l3

Dependency Grammar as Graph Description – p.29

Out

v1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

l2

Dependency Grammar as Graph Description – p.29

Out

v1

l2 l1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

Dependency Grammar as Graph Description – p.29

Out

v1

l3: {0,1,2,3}

l1: {0}

l2: {1}out :

Dependency Grammar as Graph Description – p.29

Linking

linking(Gd1
, Gd2

, f): An edge (v1, l, v2) in Gd1
is only licensed if there

is a corresponding edge (v3, l
′, v2) in Gd2

, and v1 links l to l′. Feature

f : V → (Ld1
→ 2Ld2) assigns to each node a linking specification.

Dependency Grammar as Graph Description – p.30

Linking

v1

2v

l

l : { l’ }link:

d1

Dependency Grammar as Graph Description – p.31

Linking

v1

2v

l

l : { l’ }link:

2v

v3

d1 d2

Dependency Grammar as Graph Description – p.31

Linking

d1 d2

v1

2v

l

l : { l’ }link:

2v

v3 l’

Dependency Grammar as Graph Description – p.31

Linking

d1 d2

2v

v3
v1

2v

l’’

l

l : { l’ }link:

Dependency Grammar as Graph Description – p.31

Linking

d1 d2

2v

v1

2v

l

l : { l’ }link:

Dependency Grammar as Graph Description – p.31

Covariance

covariance(Gd1
, Gd2

, f): Each edge (v1, l, v2) in Gd1
where l is covariant

on v1 is only licensed if v1 is above v2 in Gd2
. Feature f : V → 2Ld1

assigns to each node its set of covariant labels.

Dependency Grammar as Graph Description – p.32

Covariance

d1

v1

2v

co : { l }

l

Dependency Grammar as Graph Description – p.33

Covariance

d2d1

v1

2v

co : { l }

l
v

v

1

2

Dependency Grammar as Graph Description – p.33

Covariance

d2d1

v1

2v

co : { l }

l
v2

1v

Dependency Grammar as Graph Description – p.33

Contravariance

contravariance(Gd1
, Gd2

, f): Each edge (v1, l, v2) in Gd1
where l is con-

travariant on v1 is only licensed if v1 is below v2 in Gd2
. Feature

f : V → 2Ld1 assigns to each node its set of contravariant labels.

Dependency Grammar as Graph Description – p.34

Lexicalisation

1. from dependency grammar: 1:1-correspondence between nodes
and words

2. assign to each word a set of lexical entries (feature structures)

3. select one of the lexical entries, efficient through selection
constraint (Duchier MOL 1999)

4. assign the selected entry (feature structure) to the corresponding
node

Dependency Grammar as Graph Description – p.35

XDG architecture so far

vn

...

vn
...

. . .

. . .

v1

...

v1
...

Pd1

Pdm dm

d1

.

.

.

Dependency Grammar as Graph Description – p.36

Words

wn

vn

...

vn
...

. . .

. . .

w1

v1

...

v1
...

Pd1

Pdm dm

d1

.

.

.

Dependency Grammar as Graph Description – p.37

Lexical entries

wn

vn

...

...

vn
...

. . .

. . .

w1

v1

...

...

v1
...

Pd1

Pdm dm

d1

.

.

.

Dependency Grammar as Graph Description – p.38

Selection

. . .

. . .

Pd1

Pdm

v1

...

v1
...

w1

...

vn

...

vn
...

wn

...

dm

d1

.

.

.

Dependency Grammar as Graph Description – p.39

Lexical assignment

. . .

. . .

Pd1

Pdm

w1

vn

wn

dm

d1

.

.

.

......

......

... ...

v1

v1 vn

Dependency Grammar as Graph Description – p.40

XDG instantiation

• recipe for getting XDG instances:
1. define graph dimensions
2. define used principles and parameters

Dependency Grammar as Graph Description – p.41

XDG does TDG

• two graph dimensions: GID and GLP

• ID dimension: Immediate Dominance; edge labels: grammatical
functions like subj, obj (subject, object)

• LP dimension: Linear Precedence; edge labels: topological fields
(linear positions) like topf, subjf (topicalisation field, subject field)

Dependency Grammar as Graph Description – p.42

Principles used on the ID dimension

• tree(GID)

• in(GID, inID)

• out(GID, outID)

• nodeconstraints(. . .)

• edgeconstraints(GID, f)

Dependency Grammar as Graph Description – p.43

Principles used on the LP dimension

• tree(GLP)

• in(GLP, inLP)

• out(GLP, outLP)

• order(GLP, . . . , on)

• projectivity(GLP)

• climbing(GID, GLP)

• barriers(GID, GLP, blocks)

Dependency Grammar as Graph Description – p.44

TDG analysis

A woman, every man seems to love.

obj

subj vinf

ID

Dependency Grammar as Graph Description – p.45

TDG analysis

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

LP

ID

Dependency Grammar as Graph Description – p.45

Syntax-semantics interface

• Semantic Topological Dependency Grammar (STDG)
• new grammar formalism, extends TDG with a syntax-semantics

interface to underspecified semantics
• underspecification formalism: Constraint Language for Lambda

Structures (CLLS, Egg, Niehren, Ruhrberg, Xu 1998)
• other target semantics formalisms possible

Dependency Grammar as Graph Description – p.46

Constraint Language for Lambda Structures (CLLS)

• CLLS based on dominance constraints (Marcus/Hindle/Fleck
1983)

• CLLS structures describe λ-terms
• example: A woman, every man seems to love.
• scopally ambiguous: strong and weak reading (quantifier order:

∃∀ and ∀∃)

Dependency Grammar as Graph Description – p.47

Strong reading

@

@ lam

@

@ lam

@

seem @

@ var

varlove

every man

womana

Dependency Grammar as Graph Description – p.48

Weak reading

@

@ lam

every man @

@ lam

womana @

seem @

@ var

varlove

Dependency Grammar as Graph Description – p.49

XDG does STDG

• four graph dimensions: GID, GLP, GTH, GDE

• ID and LP dimensions as in TDG
• TH dimension: THematic dag; edge labels: semantic roles like act,

pat (actor, patient)
• DE dimension: CLLS DErivation tree; edge labels: CLLS fragment

positions like r, s (restriction, scope)

Dependency Grammar as Graph Description – p.50

Principles used on the TH dimension

• dag(GTH)

• in(GTH, inTH)

• out(GTH, outTH)

• linking(GTH, GID, link)

Dependency Grammar as Graph Description – p.51

Principles used on the DE dimension

• tree(GDE)

• in(GDE, inDE)

• out(GDE, outDE)

• covariance(GDE, GTH, co)

• contravariance(GDE, GTH, contra)

Dependency Grammar as Graph Description – p.52

STDG analysis

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

LP

ID

Dependency Grammar as Graph Description – p.53

STDG analysis

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

A woman, every man seems to love.

prop

act

pat

LP

ID TH

Dependency Grammar as Graph Description – p.54

STDG analysis (strong reading)

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

A woman, every man seems to love.

prop

act

pat

LP

ID TH

DE

A woman, every man seems to love.

s

s

s

Dependency Grammar as Graph Description – p.55

STDG analysis (weak reading)

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

A woman, every man seems to love.

s

s

s

A woman, every man seems to love.

prop

act

pat

LP

ID TH

DE

Dependency Grammar as Graph Description – p.56

From STDG to CLLS

• lexicon: words correspond to CLLS fragments (subtrees)
• STDG analysis contains all information to build a CLLS

representation of the semantics:
◦ DE tree: assembly of fragments/scope
◦ TH dag: lambda bindings

Dependency Grammar as Graph Description – p.57

Words correspond to CLLS fragments

a woman

@

@

lam

every man

@

@

lam

seem

@

@

@ var

love var

to love.

CLLS

every manA woman, seems

Dependency Grammar as Graph Description – p.58

DE tree: assembly of fragments

a woman

@

@

lam

every man

@

@

lam

seem

@

@

@ var

love var

DE

to love.

s

s

s

CLLS

seemsevery manA woman,

Dependency Grammar as Graph Description – p.59

TH dag: lambda bindings

a woman

@

@

lam

every man

@

@

lam

seem

@

@

@ var

love var

DE

to love.

s

s

s

to love.

prop

pat

TH CLLS

act

every man

every manA woman,

A woman,

seems

seems

Dependency Grammar as Graph Description – p.60

TH dag: lambda bindings

a woman

@

@

lam

every man

@

@

lam

seem

@

@

@ var

love var

DE

to love.

s

s

s

to love.

prop

TH CLLS

seems

seemsevery man

every man

A woman,

A woman,

pat

act

Dependency Grammar as Graph Description – p.61

Summary

• dependency grammar appealing but pure dependency grammar
approaches flawed

• (Duchier MOL 99) solves the parsing problem
• TDG (Duchier and Debusmann ACL 2001), (Debusmann MSc

2001) solves the word order problem
• but still no syntax-semantics interface
• generalised TDG to XDG
• TDG as an instance of XDG
• syntax-semantics interface: developed STDG as another instance

of XDG

Dependency Grammar as Graph Description – p.62

State of the art

• proof of concept: STDG syntax-semantics interface works for
small example grammar

• new XDG parser (as efficient as the TDG parser)
• new XDG parser system (statically typed frontend, XML support)
• demo

Dependency Grammar as Graph Description – p.63

Related work

• interface to information structure (Duchier and Kruijff EACL 2003)
• grammar induction (Korthals and Kruijff 2003) (Korthals MSc

2003)
• Stochastic Extensible Dependency Grammar (SXDG) (Dienes,

Koller and Kuhlmann PASSI 2003)

Dependency Grammar as Graph Description – p.64

XDG people

• a number of people are involved in XDG:
• Lille: Joachim Niehren
• Nancy: Denys Duchier
• Saarbrücken: Ondrej Bojar, Peter Dienes, Alexander Koller,

Christian Korthals, Geert-Jan Kruijff, Marco Kuhlmann, Mathias
Möhl, Stefan Thater

Dependency Grammar as Graph Description – p.65

Outlook

• integration of preferences (for e.g. PP attachment, scope)
• search for equivalences between instances of XDG and existing

grammar formalisms (find e.g. context-free and mildly
context-sensitive XDG instances)
◦ Tree Insertion Grammar (TIG, Schabes and Waters 1993)
◦ TAG (Joshi 1987)
◦ CCG (Steedman 2000), MMCCG (Baldridge and Kruijff 2003)

• development of bigger grammars:
◦ handcrafted
◦ induced (Penn Treebank, TIGER, Prague Dependency

Treebank)
◦ ported (XTAG)

Dependency Grammar as Graph Description – p.66

Thank you!

Any questions?

Dependency Grammar as Graph Description – p.67

	This talk
	Dependency grammar
	Words
	1:1-correspondence between words and nodes
	Head/dependent-asymmetry
	Grammatical functions (edge labels)
	Valency (subcategorisation)
	Dependency and phrase structure
	Pure dependency grammar formalisms
	Problems of pure dependency grammar formalisms
	Parsing
	Word order
	Syntax-semantics interface
	Roadmap of the talk
	Extensible Dependency Grammar (XDG)
	Nodes (arranged in a graph)
	Graph dimensions
	Feature structures
	Principles
	Principles (one-dimensional)
	Principles (multi-dimensional)
	Principle library
	Directed acyclic graph
	Tree
	In
	In
	Out
	Out
	Linking
	Linking
	Covariance
	Covariance
	Contravariance
	Lexicalisation
	XDG architecture so far
	Words
	Lexical entries
	Selection
	Lexical assignment
	XDG instantiation
	XDG does TDG
	Principles used on the ID dimension
	Principles used on the LP dimension
	TDG analysis
	Syntax-semantics interface
	Constraint Language for Lambda Structures (CLLS)
	Strong reading
	Weak reading
	XDG does STDG
	Principles used on the TH dimension
	Principles used on the DE dimension
	STDG analysis
	STDG analysis
	STDG analysis (strong reading)
	STDG analysis (weak reading)
	From STDG to CLLS
	Words correspond to CLLS fragments
	DE tree: assembly of fragments
	TH dag: lambda bindings
	TH dag: lambda bindings
	Summary
	State of the art
	Related work
	XDG people
	Outlook
	Thank you!

