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This talk

• introduces a new meta grammar formalism for dependency
grammar: Extensible Dependency Grammar (XDG)

• graph description language
• generalisation of Topological Dependency Grammar (TDG)

(Duchier and Debusmann ACL 2001)
• meta grammar formalism: can be instantiated to yield specific

grammar formalisms (including TDG itself)
• based on dependency grammar
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Dependency grammar

• collection of ideas for natural language analysis
• long history (following Kruijff 2002):

◦ Greek and Latin scholars: Thrax, Apollonius, and Priscian
◦ Indian: Panini’s formal grammar of Sanskrit

(Astadhyayi/Astaka, 350/250 BC)
◦ Arabic: Kitab al-Usul of Ibn al-Sarrag (d.928)
◦ European: Martinus de Dacia (d.1304), Thomas von Erfurt

(14th century)
• modern dependency grammar credited to Tesniere (1959)
• so what are these ideas?
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Words

eaten.hasPeterBagels,
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1:1-correspondence between words and nodes

eaten.hasPeterBagels,
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Head/dependent-asymmetry

eaten.hasPeterBagels,
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Grammatical functions (edge labels)

eaten.has

obj

vprtsubj

PeterBagels,
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Valency (subcategorisation)

eaten.has

{ obj }

obj

vprtsubj

Peter

 { }

Bagels,

{ } { subj, vprt }
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Dependency and phrase structure

• ideas from dependency grammar adopted by many phrase
structure-based grammar formalisms:
◦ Government and Binding (GB, Chomsky 1986): X’-theory
◦ Head-driven Phrase Structure Grammar (HPSG, Pollard and

Sag 1994): e.g. DEPS-feature in modern variants (Bouma,
Malouf and Sag 1998)

◦ Lexical Functional Grammar (LFG, Bresnan and Kaplan
1982): f-structure

◦ Tree Adjoining Grammar (TAG, Joshi 1987): derivation tree
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Pure dependency grammar formalisms

• pure dependency grammar formalisms have been less successful:
◦ Abhaengigkeitsgrammatik (Kunze 1975)
◦ Functional Generative Description (FGD, Sgall et al 1986)
◦ Meaning Text Theory (MTT, Melcuk 1988)
◦ Word Grammar (Hudson 1990)

• why?
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Problems of pure dependency grammar formalisms

• parsing: no parsers
• word order: no declarative specification
• syntax-semantics interface: no compositional semantics

construction
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Parsing

• Duchier (MOL 1999) constraint-based parser for dependency
grammar

• average case efficient (but only small test grammars), although
NP-complete in the worst case

• (Koller and Striegnitz ACL 2002): parser used for LTAG
generation, than the generator described in (Carrol et al 1999)

• (Kuhlmann MSc 2002): parser used for parsing Categorial Type
Logics (CTL)
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Word order

• (Duchier and Debusmann ACL 2001), (Debusmann MSc 2001):
Topological Dependency Grammar (TDG) grammar formalism

• allows declarative specification of word order
• parsing: Duchier’s constraint-based parser
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Syntax-semantics interface

• goal of my PhD research: develop a syntax-semantics interface
for dependency grammar

• idea:
1. generalise TDG into a metagrammatical framework for

dependency grammar (XDG)
2. use XDG to develop the syntax-semantics interface
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Roadmap of the talk

1. XDG
• basic architecture
• principles
• lexicalisation

2. TDG as an instance of XDG

3. syntax-semantics interface
• Semantic Topological Dependency Grammar (STDG)
• STDG as another instance of XDG

4. conclusions
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Extensible Dependency Grammar (XDG)

• graph description language
• describes a set of graph dimensions
• a graph dimension is a labeled directed graph Gd(V,Ed)

• all graph dimensions share the same set V of nodes
• each graph dimension has its own set Ed of labeled edges (Ld set

of edge labels, Ed ⊆ V × Ld × V )
• simple feature structures can be attached to each node (features:

functions V → R, where R is an arbitrary codomain)
• parametrised principles stipulate well-formedness conditions
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Nodes (arranged in a graph)

vn. . .v1
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Graph dimensions
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Feature structures
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Principles
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Principles (one-dimensional)
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Principles (multi-dimensional)
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Principle library

• directed acyclic graph *
• tree *
• in *
• out *
• order
• projectivity
• climbing
• barriers
• linking *
• covariance and contravariance *
• node and edge constraints
• ... (extensible)
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Directed acyclic graph

dag(G): G is a directed acyclic graph.
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Tree

tree(G): G is a tree.
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In

out(Gd, f): The incoming edges of each node in Gd must satisfy the

nodes’ in specification. Feature f : V → 2Ld maps an in specification to

each node.
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In

v1

l1

{ l1, l2 }in :
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In

v1

{ l1, l2 }in :

l2
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In

{ l1, l2 }in :
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In

v1

l3

in : { l1, l2 }
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Out

out(Gd, f): The outgoing edges of each node in Gd must satisfy the

nodes’ out specification. Feature f : V → (Ld → 2N) maps an out

specification to each node.
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Out

v1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

l2

l3
l3

l3

Dependency Grammar as Graph Description – p.29



Out

v1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

l2

l3
l3

Dependency Grammar as Graph Description – p.29



Out

v1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

l2

l3

Dependency Grammar as Graph Description – p.29



Out

v1

l3: {0,1,2,3}

l2: {1}

l1: {0}
out :

l2

Dependency Grammar as Graph Description – p.29



Out

v1
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Out

v1
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Linking

linking(Gd1
, Gd2

, f): An edge (v1, l, v2) in Gd1
is only licensed if there

is a corresponding edge (v3, l
′, v2) in Gd2

, and v1 links l to l′. Feature

f : V → (Ld1
→ 2Ld2 ) assigns to each node a linking specification.
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Linking

v1
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Linking
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Linking
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Linking

d1 d2
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Linking

d1 d2
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Covariance

covariance(Gd1
, Gd2

, f): Each edge (v1, l, v2) in Gd1
where l is covariant

on v1 is only licensed if v1 is above v2 in Gd2
. Feature f : V → 2Ld1

assigns to each node its set of covariant labels.
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Covariance

d1

v1

2v

co : { l }

l
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Covariance
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Covariance

d2d1
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2v
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v2

1v
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Contravariance

contravariance(Gd1
, Gd2

, f): Each edge (v1, l, v2) in Gd1
where l is con-

travariant on v1 is only licensed if v1 is below v2 in Gd2
. Feature

f : V → 2Ld1 assigns to each node its set of contravariant labels.
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Lexicalisation

1. from dependency grammar: 1:1-correspondence between nodes
and words

2. assign to each word a set of lexical entries (feature structures)

3. select one of the lexical entries, efficient through selection
constraint (Duchier MOL 1999)

4. assign the selected entry (feature structure) to the corresponding
node
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XDG architecture so far
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Words
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Lexical entries
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Selection
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Lexical assignment
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XDG instantiation

• recipe for getting XDG instances:
1. define graph dimensions
2. define used principles and parameters
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XDG does TDG

• two graph dimensions: GID and GLP

• ID dimension: Immediate Dominance; edge labels: grammatical
functions like subj, obj (subject, object)

• LP dimension: Linear Precedence; edge labels: topological fields
(linear positions) like topf, subjf (topicalisation field, subject field)
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Principles used on the ID dimension

• tree(GID)

• in(GID, inID)

• out(GID, outID)

• nodeconstraints(. . .)

• edgeconstraints(GID, f)
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Principles used on the LP dimension

• tree(GLP)

• in(GLP, inLP)

• out(GLP, outLP)

• order(GLP, . . . , on)

• projectivity(GLP)

• climbing(GID, GLP)

• barriers(GID, GLP, blocks)
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TDG analysis

A woman, every man seems to love.

obj

subj vinf

ID
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TDG analysis

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

LP

ID
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Syntax-semantics interface

• Semantic Topological Dependency Grammar (STDG)
• new grammar formalism, extends TDG with a syntax-semantics

interface to underspecified semantics
• underspecification formalism: Constraint Language for Lambda

Structures (CLLS, Egg, Niehren, Ruhrberg, Xu 1998)
• other target semantics formalisms possible
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Constraint Language for Lambda Structures (CLLS)

• CLLS based on dominance constraints (Marcus/Hindle/Fleck
1983)

• CLLS structures describe λ-terms
• example: A woman, every man seems to love.
• scopally ambiguous: strong and weak reading (quantifier order:

∃∀ and ∀∃)
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Strong reading

@

@ lam

@

@ lam

@

seem @

@ var

varlove

every man

womana
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Weak reading

@

@ lam

every man @

@ lam

womana @

seem @

@ var

varlove
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XDG does STDG

• four graph dimensions: GID, GLP, GTH, GDE

• ID and LP dimensions as in TDG
• TH dimension: THematic dag; edge labels: semantic roles like act,

pat (actor, patient)
• DE dimension: CLLS DErivation tree; edge labels: CLLS fragment

positions like r, s (restriction, scope)
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Principles used on the TH dimension

• dag(GTH)

• in(GTH, inTH)

• out(GTH, outTH)

• linking(GTH, GID, link)
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Principles used on the DE dimension

• tree(GDE)

• in(GDE, inDE)

• out(GDE, outDE)

• covariance(GDE, GTH, co)

• contravariance(GDE, GTH, contra)
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STDG analysis

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

LP

ID
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STDG analysis

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

A woman, every man seems to love.

prop

act

pat

LP

ID TH
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STDG analysis (strong reading)

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

A woman, every man seems to love.

prop

act

pat

LP

ID TH

DE

A woman, every man seems to love.

s

s

s
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STDG analysis (weak reading)

A woman, every man seems to love.

topf
subjf vcf

A woman, every man seems to love.

obj

subj vinf

A woman, every man seems to love.

s

s

s

A woman, every man seems to love.

prop

act

pat

LP

ID TH

DE
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From STDG to CLLS

• lexicon: words correspond to CLLS fragments (subtrees)
• STDG analysis contains all information to build a CLLS

representation of the semantics:
◦ DE tree: assembly of fragments/scope
◦ TH dag: lambda bindings
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Words correspond to CLLS fragments

a woman

@

@

lam

every man

@

@

lam

seem

@

@

@ var

love var

to love.

CLLS

every manA woman, seems
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DE tree: assembly of fragments

a woman

@

@

lam

every man

@

@

lam
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@

@

@ var

love var

DE

to love.
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seemsevery manA woman,
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TH dag: lambda bindings

a woman

@

@

lam

every man

@
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lam
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TH dag: lambda bindings

a woman

@

@

lam

every man

@

@

lam

seem

@

@

@ var

love var

DE

to love.

s

s

s

to love.

prop

TH CLLS

seems

seemsevery man

every man

A woman,

A woman,

pat

act

Dependency Grammar as Graph Description – p.61



Summary

• dependency grammar appealing but pure dependency grammar
approaches flawed

• (Duchier MOL 99) solves the parsing problem
• TDG (Duchier and Debusmann ACL 2001), (Debusmann MSc

2001) solves the word order problem
• but still no syntax-semantics interface
• generalised TDG to XDG
• TDG as an instance of XDG
• syntax-semantics interface: developed STDG as another instance

of XDG

Dependency Grammar as Graph Description – p.62



State of the art

• proof of concept: STDG syntax-semantics interface works for
small example grammar

• new XDG parser (as efficient as the TDG parser)
• new XDG parser system (statically typed frontend, XML support)
• demo
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Related work

• interface to information structure (Duchier and Kruijff EACL 2003)
• grammar induction (Korthals and Kruijff 2003) (Korthals MSc

2003)
• Stochastic Extensible Dependency Grammar (SXDG) (Dienes,

Koller and Kuhlmann PASSI 2003)
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XDG people

• a number of people are involved in XDG:
• Lille: Joachim Niehren
• Nancy: Denys Duchier
• Saarbrücken: Ondrej Bojar, Peter Dienes, Alexander Koller,

Christian Korthals, Geert-Jan Kruijff, Marco Kuhlmann, Mathias
Möhl, Stefan Thater
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Outlook

• integration of preferences (for e.g. PP attachment, scope)
• search for equivalences between instances of XDG and existing

grammar formalisms (find e.g. context-free and mildly
context-sensitive XDG instances)
◦ Tree Insertion Grammar (TIG, Schabes and Waters 1993)
◦ TAG (Joshi 1987)
◦ CCG (Steedman 2000), MMCCG (Baldridge and Kruijff 2003)

• development of bigger grammars:
◦ handcrafted
◦ induced (Penn Treebank, TIGER, Prague Dependency

Treebank)
◦ ported (XTAG)
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Thank you!

Any questions?
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