
A Comparative Introduction to XDG: Adding
the Scope Dimension

Ralph Debusmann

and

Denys Duchier

Programming Systems Lab, Saarland University, Saarbrücken, Germany

and

Équipe Calligramme, LORIA, Nancy, France

A Comparative Introduction to XDG: Adding the Scope Dimension – p.1



This presentation

• adding the SCope (sc) dimension to the example grammar
• new:

◦ type definitions
◦ one-dimensional principles (tree, valency)
◦ multi-dimensional principles (ldominance)
◦ lexical classes

A Comparative Introduction to XDG: Adding the Scope Dimension – p.2



Defining the new types

• edge labels:

deftype "sc.label" {r s a del root}

deflabeltype "sc.label"

• lexical entries:
deftype "sc.entry" {in: valency("sc.label")

out: valency("sc.label")}

defentrytype "sc.entry"

A Comparative Introduction to XDG: Adding the Scope Dimension – p.3



Instantiating the sc principles

• all principles re-used from the other dimensions (id, lp, ds,
pa):
◦ class of models: graph principle, tree principle
◦ scope valency

A Comparative Introduction to XDG: Adding the Scope Dimension – p.4



Class of models, scope valency

useprinciple "principle.graph" {
dims {D: sc}}

useprinciple "principle.tree" {
dims {D: sc}}

useprinciple "principle.valency" {
dims {D: sc}
args {In: _.D.entry.in

Out: _.D.entry.out}}

A Comparative Introduction to XDG: Adding the Scope Dimension – p.5



Extending the multi dimension

• add lexical attributes for multi-dimensional principles:

defentrytype {%% id/lp multi-dimensional attributes

blocks_lpid: set("id.label")

%% ds/id multi-dimensional attributes

link2_dsid: map("ds.label" iset("id.label"))

link2_idds: map("id.label" iset("ds.label"))

%% pa/ds multi-dimensional attributes

link1_pads: map("pa.label" set("ds.label"))

link2_pads: map("pa.label" iset("ds.label"))

%% sc/pa multi-dimensional attributes

lcodom_pasc: map("pa.label" set("sc.label"))

lcontradom_pasc: map("pa.label" set("sc.label"))}

• instantiate multi-dimensional principles:
◦ inducing dominance relationships: ldominance principle

(pa/sc)
A Comparative Introduction to XDG: Adding the Scope Dimension – p.6



Inducing dominance relationships

useprinciple "principle.ldominance" {
dims {D1: pa

D2: sc

Multi: multi}
args {LCodom: _.Multi.entry.lcodom_pasc

LContradom: _.Multi.entry.lcontradom_pasc}}

• from pa to sc dimension
• declarative semantics:

h
l

→1 d ⇒ (F1(l) 6= ∅ ⇒ l
′ ∈ F1(l) ∧ h

l
′

→2 . . . →2 d) ∧

(F2(l) 6= ∅ ⇒ l
′′ ∈ F2(l) ∧ d

l′′

→2 . . . →2 h)

A Comparative Introduction to XDG: Adding the Scope Dimension – p.7



Lexicon

• lexical classes:
◦ new lexical classes to specify sc and pa/sc properties
◦ update existing lexical classes to inherit from them

• lexical entries:
◦ apply the updated lexical classes

A Comparative Introduction to XDG: Adding the Scope Dimension – p.8



Defining new lexical classes: root_sc, part_sc

defclass "root_sc" {
dim sc {in: {}

out: {root* del*}}}

• the additional root node collects arbitrary many roots, and
arbitrary many deleted nodes

defclass "part_sc" {
dim sc {in: {del!}}}

• particles are deleted

A Comparative Introduction to XDG: Adding the Scope Dimension – p.9



Defining new lexical classes: cont, nocont

defclass "cont" {
dim pa {in: {root!|arge!}}
dim sc {in: {r? s? a? root?}}}

• words with semantic content, i.e. present on the sc
dimension

defclass "nocont" {
dim pa {in: {del!}}
dim sc {in: {del!}}}

• words with no semantic content, i.e. deleted on the sc
dimension

A Comparative Introduction to XDG: Adding the Scope Dimension – p.10



Defining new lexical classes: cnoun_sc, det_sc

defclass "cnoun_sc" {
dim sc {in: {r? s? root?}}}

• a common noun can either be in the restriction or scope of
another node, or it can be root

defclass "det_sc" {
dim sc {in: {r? s? root?}

out: {r! s!}}}

• determiners can either be in the restriction or scope of
another node, or it can be root, and they have a restriction
and a scope

A Comparative Introduction to XDG: Adding the Scope Dimension – p.11



Updating lexical classes: cnoun

defclass "cnoun" Word Agrs {
"cnoun_id"

"cnoun_lp"

"cnoun_ds"

"cnoun_pa"

"cnoun_sc"

dim id {agrs: Agrs}
dim lex {word: Word}}

• a common noun inherits from the classes for common
nouns on the id, lp, ds, pa and sc dimensions, has
agreements Agrs and word form Word

A Comparative Introduction to XDG: Adding the Scope Dimension – p.12



Updating lexical classes: det

defclass "det" Word Agrs {
"det_id"

"det_lp"

"det_ds"

"det_pa"

"det_sc"

dim id {agrs: Agrs}
dim lex {word: Word}}

• a determiner inherits from the classes for common nouns
on the id, lp, ds, pa and sc dimensions, has agreements
Agrs and word form Word

A Comparative Introduction to XDG: Adding the Scope Dimension – p.13



Updating lexical classes: arg1subjd

defclass "arg1subjd" {
dim pa {out: {arg1!}}
dim multi {link1_pads: {arg1: {subjd}}

link2_pads: {arg1: {subjd detd}}
lcontradom_pasc: {arg1: {s}}}}

• require an arg1 realized by the deep subject or a
determiner below the deep subject, and is s-dominated by
the arg1

A Comparative Introduction to XDG: Adding the Scope Dimension – p.14



Defining new lexical classes: arge

defclass "arge" Label {
"vcdLabel" {Label: Label}
dim pa {out: {arge!}}
dim sc {out: {a!}}
dim multi {link2_pads: {arge: {vcd}}

lcodom_pasc: {arge: {a}}}}

• require an event argument realized by the deep verbal
complement, and a-dominate it

A Comparative Introduction to XDG: Adding the Scope Dimension – p.15


	This presentation
	Defining the new types
	Instantiating the sc principles
	Class of models, scope valency
	Extending the multi dimension
	Inducing dominance relationships
	Lexicon
	Defining new lexical classes: root_sc, part_sc
	Defining new lexical classes: cont, nocont
	Defining new lexical classes: cnoun_sc, det_sc
	Updating lexical classes: cnoun
	Updating lexical classes: det
	Updating lexical classes: arg1subjd
	Defining new lexical classes: arge

