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This presentation

• introduce the XDG Development Kit (XDK)
• the XDK provides:

◦ facilities to cook your own multi-dimensional grammar
formalism

◦ metagrammar facilities to organize the lexicon effectively
• implement an example grammar fragment made up of the

dimensions id and lex
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XDK: Making life easy

• for grammar writers
• adopts a software engineering perspective to ease grammar

engineering:
◦ modules (dimensions, principles, lexical abstractions)
◦ re-usability
◦ composition
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Structuring the lexicon

• unfeasible to write the individual lexical entries directly
• abstractions: lexical classes
• combining the descriptions:

◦ conjunction (inheritance)
◦ disjunction (alternations)

• descriptions compiled into individual lexical entries
• two goals:

◦ improve grammar engineering
◦ enable the statement of linguistic generalizations
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Defining a dimension

defdim id {
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% define types

...

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% use principles

...

}
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Defining types

• XDK: provides static typing to ensure the coherence of the
grammar, ease debugging:
◦ need to define types

• for each dimension
• e.g. domains, type constructors for sets, records etc.
• three special types picked out for each dimension:

◦ edge labels
◦ lexical entry record
◦ node attributes record

• each node:
[

entry : . . .

attrs : . . .

]
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Defining types contd.

• XDK: multi-dimensional
• i.e. for each node:
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Defining domain types

deftype "id.label" {det subj obj vbse vprt vinf part root}

deftype "id.agr" {nom acc}

• root: additional root node for convenience:

einen roman maria zu schreiben verspricht .

det

obj part

subj vinf

root
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Defining valency types

valency("id.label")

• specialized type constructor for the valency principle
(subcategorization):

Roman :

[

in : {subj?, obj?, iobj?}

out : {det!, adj∗, prep?, rel?}

]
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Defining set types

• idea: having two sets, how to combine them? (inheritance)
• two natural possibilities:

◦ intersection
◦ union

• we want both possibilities for different kinds of sets:
◦ intersective sets
◦ accumulative sets
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Set types: Examples

• set of possible agreements:

deftype "id.agrs" iset("id.agr")

{nom, acc} ∩ {acc} = {acc}

• set of agreeing edge labels:

deftype "id.agree" set("id.label")

{det} ∪ {adj} = {det, adj}
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Defining record types

deftype "id.attrs" {agr: "id.agr"}

deftype "id.entry" {in: valency("id.label")

out: valency("id.label")

agrs: "id.agrs"

agree: set("id.label")

govern: map("id.label" "id.agrs")}
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Defining map types

map("id.label" "id.agrs")

• functional type
• shorthand for records having the same type at each feature


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f1 : t

. . .

fn : t






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Picking out the special types

• edge labels domain:
deflabeltype "id.label"

• lexical entry subrecord:
defentrytype "id.entry"

• node attributes subrecord:
defattrstype "id.attrs"
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Instantiating the principles

• well-formedness conditions
• principles can be:

◦ one-dimensional
◦ multi-dimensional

• taken from an extensible principle library
• parametrized
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Constraining the class of models

useprinciple "principle.graph" {
dims {D: id}}

useprinciple "principle.tree {
dims {D: id}}

• parameters:
◦ dimension: D (here: id)
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Constraining subcategorization

useprinciple "principle.valency" {
dims {D: id}
args {In: _.D.entry.in

Out: _.D.entry.out}}

• parameters:
◦ dimension: D (here: id)
◦ in specification: In (here: lexical attribute in)
◦ out specification: Out (here: lexical attribute out)
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Constraining case assignment

• idea: assign a case to each node
• lexically? too uneconomical
• optimization: lexically assign a set of possible cases and

pick out one of these for each node:

∀v ∈ V : agr(v) ∈ agrs(v)

• generalized, parametric agr principle from the XDK principle
library:

∀v ∈ V : F1(v) ∈ F2(v)

useprinciple "principle.agr" {
dims {D: id}
args {Agr: _.D.attrs.agr

Agrs: _.D.entry.agrs}}
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Constraining case agreement

• idea: heads can make certain dependents agree with them
• e.g. in German the determiner and adjective dependents of

nouns must agree with the nouns:

∀h
l
→ d : l ∈ agree(h) ⇒ agr(h) = agr(d)

• generalized, parametric agreement principle from the XDK
principle library:

∀h
l
→ d : l ∈ F1(h) ⇒ F2(h) = F3(d)

useprinciple "principle.agreement" {
dims {D: id}
args {Agr1: ^.D.attrs.agr

Agr2: _.D.attrs.agr

Agree: ^.D.entry.agree}}
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Constraining case government

• idea: heads can govern the case of certain dependents
• e.g. in German and English, finite verbs require their

subjects to be nominative:

∀h
l
→ d : agr(d) ∈ govern(h)(l)

• generalized, parametric government principle from the XDK
principle library:

∀h
l
→ d : F1(d) ∈ F2(h)(l)

useprinciple "principle.government" {
dims {D: id}
args {Agr2: _.D.attrs.agr

Govern: ^.D.entry.govern}}
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Defining the lex dimension

• special dimension
• models: graphs without edges
• purpose: assign a word form to each lexical entry

defdim lex {
defentrytype {word: string}

}
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Example lexical classes

defclass "fin_id" {
dim id {in: {root?}

out: {subj!}
govern: {subj: {nom}}}}

• a finite verb can optionally be root, and requires a subject in
nominative case

defclass "transitive" {
dim id {out: {obj!}

govern: {obj: {acc}}}}

• a transitive verb requires an object in accusative case
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Using inheritance, parameters and con-
junction

defclass "fin" Word {
"fin_id"

dim lex {word: Word}}

• definition of a parametric class: parameter Word
• a finite verb inherits from the class of finite verbs for the id

dimension, and has word form Word
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Using parameters and disjunction

defclass "mainverb" Word1 Word2 Word3 {
"fin" {Word: Word1}

| "vbse" {Word: Word2}
| "vprt" {Word: Word3}
| "vinf" {Word: Word2}}

• instantiation of a parametric class
• a main verb is either finite (word form Word1), a bare

infinitive (Word2), a past participle (Word3), or a zu-infinitive
(Word2)
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Defining lexical entries

• idea: describe how to actually generate lexical entries

defentry {
"cnoun" {Agrs: {nom acc}

Word: "frau"}}

defentry {
"transitive"

"mainverb" {Word1: "liebt"

Word2: "lieben"

Word3: "geliebt"}}

• defentry-expressions describe a set of lexical entries
• use the same language as for lexical classes
• must be assigned a word form
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