
A Comparative Introduction to XDG: The
Immediate Dominance Dimension in Action

Ralph Debusmann

and

Denys Duchier

Programming Systems Lab, Saarland University, Saarbrücken, Germany

and

Équipe Calligramme, LORIA, Nancy, France

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.1



This presentation

• introduce the XDG Development Kit (XDK)
• the XDK provides:

◦ facilities to cook your own multi-dimensional grammar
formalism

◦ metagrammar facilities to organize the lexicon effectively
• implement an example grammar fragment made up of the

dimensions id and lex

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.2



XDK: Making life easy

• for grammar writers
• adopts a software engineering perspective to ease grammar

engineering:
◦ modules (dimensions, principles, lexical abstractions)
◦ re-usability
◦ composition

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.3



Structuring the lexicon

• unfeasible to write the individual lexical entries directly
• abstractions: lexical classes
• combining the descriptions:

◦ conjunction (inheritance)
◦ disjunction (alternations)

• descriptions compiled into individual lexical entries
• two goals:

◦ improve grammar engineering
◦ enable the statement of linguistic generalizations

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.4



Defining a dimension

defdim id {
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% define types

...

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% use principles

...

}

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.5



Defining types

• XDK: provides static typing to ensure the coherence of the
grammar, ease debugging:
◦ need to define types

• for each dimension
• e.g. domains, type constructors for sets, records etc.
• three special types picked out for each dimension:

◦ edge labels
◦ lexical entry record
◦ node attributes record

• each node:
[

entry : . . .

attrs : . . .

]

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.6



Defining types contd.

• XDK: multi-dimensional
• i.e. for each node:

















dim1 :

[

entry : . . .

attrs : . . .

]

. . .

dimn :

[

entry : . . .

attrs : . . .

]

















A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.7



Defining domain types

deftype "id.label" {det subj obj vbse vprt vinf part root}

deftype "id.agr" {nom acc}

• root: additional root node for convenience:

einen roman maria zu schreiben verspricht .

det

obj part

subj vinf

root

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.8



Defining valency types

valency("id.label")

• specialized type constructor for the valency principle
(subcategorization):

Roman :

[

in : {subj?, obj?, iobj?}

out : {det!, adj∗, prep?, rel?}

]

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.9



Defining set types

• idea: having two sets, how to combine them? (inheritance)
• two natural possibilities:

◦ intersection
◦ union

• we want both possibilities for different kinds of sets:
◦ intersective sets
◦ accumulative sets

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.10



Set types: Examples

• set of possible agreements:

deftype "id.agrs" iset("id.agr")

{nom, acc} ∩ {acc} = {acc}

• set of agreeing edge labels:

deftype "id.agree" set("id.label")

{det} ∪ {adj} = {det, adj}

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.11



Defining record types

deftype "id.attrs" {agr: "id.agr"}

deftype "id.entry" {in: valency("id.label")

out: valency("id.label")

agrs: "id.agrs"

agree: set("id.label")

govern: map("id.label" "id.agrs")}

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.12



Defining map types

map("id.label" "id.agrs")

• functional type
• shorthand for records having the same type at each feature







f1 : t

. . .

fn : t







A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.13



Picking out the special types

• edge labels domain:
deflabeltype "id.label"

• lexical entry subrecord:
defentrytype "id.entry"

• node attributes subrecord:
defattrstype "id.attrs"

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.14



Instantiating the principles

• well-formedness conditions
• principles can be:

◦ one-dimensional
◦ multi-dimensional

• taken from an extensible principle library
• parametrized

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.15



Constraining the class of models

useprinciple "principle.graph" {
dims {D: id}}

useprinciple "principle.tree {
dims {D: id}}

• parameters:
◦ dimension: D (here: id)

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.16



Constraining subcategorization

useprinciple "principle.valency" {
dims {D: id}
args {In: _.D.entry.in

Out: _.D.entry.out}}

• parameters:
◦ dimension: D (here: id)
◦ in specification: In (here: lexical attribute in)
◦ out specification: Out (here: lexical attribute out)

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.17



Constraining case assignment

• idea: assign a case to each node
• lexically? too uneconomical
• optimization: lexically assign a set of possible cases and

pick out one of these for each node:

∀v ∈ V : agr(v) ∈ agrs(v)

• generalized, parametric agr principle from the XDK principle
library:

∀v ∈ V : F1(v) ∈ F2(v)

useprinciple "principle.agr" {
dims {D: id}
args {Agr: _.D.attrs.agr

Agrs: _.D.entry.agrs}}

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.18



Constraining case agreement

• idea: heads can make certain dependents agree with them
• e.g. in German the determiner and adjective dependents of

nouns must agree with the nouns:

∀h
l
→ d : l ∈ agree(h) ⇒ agr(h) = agr(d)

• generalized, parametric agreement principle from the XDK
principle library:

∀h
l
→ d : l ∈ F1(h) ⇒ F2(h) = F3(d)

useprinciple "principle.agreement" {
dims {D: id}
args {Agr1: ^.D.attrs.agr

Agr2: _.D.attrs.agr

Agree: ^.D.entry.agree}}
A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.19



Constraining case government

• idea: heads can govern the case of certain dependents
• e.g. in German and English, finite verbs require their

subjects to be nominative:

∀h
l
→ d : agr(d) ∈ govern(h)(l)

• generalized, parametric government principle from the XDK
principle library:

∀h
l
→ d : F1(d) ∈ F2(h)(l)

useprinciple "principle.government" {
dims {D: id}
args {Agr2: _.D.attrs.agr

Govern: ^.D.entry.govern}}

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.20



Defining the lex dimension

• special dimension
• models: graphs without edges
• purpose: assign a word form to each lexical entry

defdim lex {
defentrytype {word: string}

}

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.21



Example lexical classes

defclass "fin_id" {
dim id {in: {root?}

out: {subj!}
govern: {subj: {nom}}}}

• a finite verb can optionally be root, and requires a subject in
nominative case

defclass "transitive" {
dim id {out: {obj!}

govern: {obj: {acc}}}}

• a transitive verb requires an object in accusative case

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.22



Using inheritance, parameters and con-
junction

defclass "fin" Word {
"fin_id"

dim lex {word: Word}}

• definition of a parametric class: parameter Word
• a finite verb inherits from the class of finite verbs for the id

dimension, and has word form Word

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.23



Using parameters and disjunction

defclass "mainverb" Word1 Word2 Word3 {
"fin" {Word: Word1}

| "vbse" {Word: Word2}
| "vprt" {Word: Word3}
| "vinf" {Word: Word2}}

• instantiation of a parametric class
• a main verb is either finite (word form Word1), a bare

infinitive (Word2), a past participle (Word3), or a zu-infinitive
(Word2)

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.24



Defining lexical entries

• idea: describe how to actually generate lexical entries

defentry {
"cnoun" {Agrs: {nom acc}

Word: "frau"}}

defentry {
"transitive"

"mainverb" {Word1: "liebt"

Word2: "lieben"

Word3: "geliebt"}}

• defentry-expressions describe a set of lexical entries
• use the same language as for lexical classes
• must be assigned a word form

A Comparative Introduction to XDG: The Immediate Dominance Dimension in Action – p.25


	This presentation
	XDK: Making life easy
	Structuring the lexicon
	Defining a dimension
	Defining types
	Defining types contd.
	Defining domain types
	Defining valency types
	Defining set types
	Set types: Examples
	Defining record types
	Defining map types
	Picking out the special types
	Instantiating the principles
	Constraining the class of models
	Constraining subcategorization
	Constraining case assignment
	Constraining case agreement
	Constraining case government
	Defining the lex dimension
	Example lexical classes
	Using inheritance, parameters and conjunction
	Using parameters and disjunction
	Defining lexical entries

