
A Comparative Introduction to XDG: The
Linear Precedence Dimension in Action

Ralph Debusmann

and

Denys Duchier

Programming Systems Lab, Saarland University, Saarbrücken, Germany

and

Équipe Calligramme, LORIA, Nancy, France

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.1



This presentation

• adding the dimension of Linear Precedence (lp) to the
example grammar

• new:
◦ type definitions
◦ one-dimensional principles (tree, valency, order)
◦ multi-dimensional principles (climbing, barriers)
◦ lexical classes

defdim lp {
...

}

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.2



Defining the new types

deftype "lp.label" {d
p

df n

mf vcf pf v vxf

root r}

deflabeltype "lp.label"

• also used as node labels on the LP dimension

deftype "lp.entry" {in: valency("lp.label")

out: valency("lp.label")

on: iset("lp.label")}

defentrytype "lp.entry"

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.3



Instantiating the lp principles

• re-used from the id dimension:
◦ class of models: graph principle and tree principle
◦ topological subcategorization: valency principle

• new:
◦ constraining word order: order principle
◦ use the solver for parsing: parse principle

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.4



Constraining the class of models

useprinciple "principle.graph" {
dims {D: lp}}

useprinciple "principle.tree" {
dims {D: lp}}

• parameter:
◦ dimension: D (here: lp)

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.5



Constraining topological subcategorization

useprinciple "principle.valency" {
dims {D: lp}
args {In: _.D.entry.in

Out: _.D.entry.out}}

• parameters:
◦ dimension: D (here: lp)
◦ in specification: In (here: lp lexical attribute in)
◦ out specification: Out (here: lp lexical attribute out)

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.6



Constraining word order

useprinciple "principle.order" {
dims {D: lp}
args {On: _.D.entry.on

Order: [d

p

df n

mf vcf pf v vxf

root r]

Projective: true}}

• parameters:
◦ dimension: D (here: lp)
◦ on specification: On (here: lp lexical attribute on)
◦ total order on the set of edge labels: Order
◦ projectivity constraint: Projective

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.7



Use the solver for parsing

useprinciple "principle.parse" {
dims {D: lp}}

• parameter:
◦ dimension: D (here: lp)

• if not used, the solver regards the input as a bag of words
• useful for debugging (e.g. generate all licensed

linearizations)
• demo!

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.8



Introducing the multi dimension

• convenience dimension for multi-dimensional principles
• hold certain lexical features and/or node attributes

◦ blocks_lpid

• instantiate multi-dimensional principles:
◦ restrict the class of models: climbing principle
◦ impose restrictions on climbing: barriers principle

• models: graphs without edges

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.9



Restricting the class of models

useprinciple "principle.climbing" {
dims {D1: lp

D2: id}}

• parameters:
◦ dimensions: D1, D2 (here: lp, id)
◦ the lp dimension is a flattening of the id dimension

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.10



Imposing restrictions on climbing

useprinciple "principle.barriers" {
dims {D1: lp

D2: id

Multi: multi}
args {Blocks: _.Multi.entry.blocks_lpid}}

• parameters:
◦ dimensions: D1, D2, Multi (here: lp, id, multi)
◦ arguments: Blocks (here: lexical attribute
blocks_lpid on the multi dimension)

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.11



Lexicon

• lexical classes
◦ new lexical classes to specify lp and id/lp properties
◦ update existing lexical classes to inherit from them

• lexical entries
◦ apply the updated lexical classes

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.12



Defining new lexical classes: cnoun_lp

defclass "cnoun_lp" {
dim lp {in: {mf? root?}

out: {df?}
on: {n}}

dim multi {blocks_lpid: {det}}}

• a common noun can land in the Mittelfeld or can be root,
offers a determiner field, has node label n, and blocks its
determiner from climbing up

df ≺ n ≺ mf ≺ root

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.13



Defining new lexical classes: fin_lp

• verb 2nd position: rich topological domain

defclass "fin_lp" {
dim lp {in: {root?}

out: {mf* vcf? vxf?}
on: {v}}

dim multi {blocks_lpid: {subj obj vbse vprt vinf part}}}

mf ≺ vcf ≺ v ≺ vxf ≺ root

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.14



Defining new lexical classes: can and noncan

• canonical position: impoverished topological domain

defclass "can" {
dim lp {in: {vcf? root?}

on: {v}
out: {vcf?}}}

• non-canonical position: rich topological domain

defclass "noncan" {
dim lp {in: {vxf? root?}

on: {v}
out: {mf* vcf? vxf?}}}

mf ≺ vcf ≺ v ≺ vxf ≺ root

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.15



Updating lexical classes: cnoun

defclass "cnoun" Word Agrs {
"cnoun_id"

"cnoun_lp"

dim id {agrs: Agrs}
dim lex {word: Word}}

• a common noun inherits from the classes for common
nouns on the id and lp dimensions, has agreements Agrs
and word form Word

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.16



Updating lexical classes: fin

defclass "fin" Word {
"fin_id"

"fin_lp"

dim lex {word: Word}}

• a finite verb noun inherits from the classes for finite verbs on
the id and lp dimensions, and has word form Word

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.17



Updating lexical classes: mainverb

defclass "mainverb" Word1 Word2 Word3 {
"fin" {Word: Word1}

| ("vbse" {Word: Word2} & "can")

| ("vprt" {Word: Word3} & "can")

| ("vinf" {Word: Word2} & ("can" | "noncan"))}

• a mainverb is either finite (word form Word1), a bare
infinitive (Word2) in canonical position, a past participle
(Word3) in canonical position, or a zu-infinitive (Word2) in
either canonical or non-canonical position

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.18



Applying the updated lexical classes

defentry {
"cnoun" {Agrs: {nom acc}

Word: "frau"}}

defentry {
"transitive"

"mainverb" {Word1: "liebt"

Word2: "lieben"

Word3: "geliebt"}}

• lexical entries need not be changed

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.19


	This presentation
	Defining the new types
	Instantiating the lp principles
	Constraining the class of models
	Constraining topological subcategorization
	Constraining word order
	Use the solver for parsing
	Introducing the multi dimension
	Restricting the class of models
	Imposing restrictions on climbing
	Lexicon
	Defining new lexical classes: cnoun_lp
	Defining new lexical classes: fin_lp
	Defining new lexical classes: can and noncan
	Updating lexical classes: cnoun
	Updating lexical classes: fin
	Updating lexical classes: mainverb
	Applying the updated lexical classes

