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This presentation

• adding the dimension of Linear Precedence (lp) to the
example grammar

• new:
◦ type definitions
◦ one-dimensional principles (tree, valency, order)
◦ multi-dimensional principles (climbing, barriers)
◦ lexical classes

defdim lp {
...

}
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Defining the new types

deftype "lp.label" {d
p

df n

mf vcf pf v vxf

root r}

deflabeltype "lp.label"

• also used as node labels on the LP dimension

deftype "lp.entry" {in: valency("lp.label")

out: valency("lp.label")

on: iset("lp.label")}

defentrytype "lp.entry"
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Instantiating the lp principles

• re-used from the id dimension:
◦ class of models: graph principle and tree principle
◦ topological subcategorization: valency principle

• new:
◦ constraining word order: order principle
◦ use the solver for parsing: parse principle
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Constraining the class of models

useprinciple "principle.graph" {
dims {D: lp}}

useprinciple "principle.tree" {
dims {D: lp}}

• parameter:
◦ dimension: D (here: lp)
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Constraining topological subcategorization

useprinciple "principle.valency" {
dims {D: lp}
args {In: _.D.entry.in

Out: _.D.entry.out}}

• parameters:
◦ dimension: D (here: lp)
◦ in specification: In (here: lp lexical attribute in)
◦ out specification: Out (here: lp lexical attribute out)
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Constraining word order

useprinciple "principle.order" {
dims {D: lp}
args {On: _.D.entry.on

Order: [d

p

df n

mf vcf pf v vxf

root r]

Projective: true}}

• parameters:
◦ dimension: D (here: lp)
◦ on specification: On (here: lp lexical attribute on)
◦ total order on the set of edge labels: Order
◦ projectivity constraint: Projective
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Use the solver for parsing

useprinciple "principle.parse" {
dims {D: lp}}

• parameter:
◦ dimension: D (here: lp)

• if not used, the solver regards the input as a bag of words
• useful for debugging (e.g. generate all licensed

linearizations)
• demo!
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Introducing the multi dimension

• convenience dimension for multi-dimensional principles
• hold certain lexical features and/or node attributes

◦ blocks_lpid

• instantiate multi-dimensional principles:
◦ restrict the class of models: climbing principle
◦ impose restrictions on climbing: barriers principle

• models: graphs without edges
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Restricting the class of models

useprinciple "principle.climbing" {
dims {D1: lp

D2: id}}

• parameters:
◦ dimensions: D1, D2 (here: lp, id)
◦ the lp dimension is a flattening of the id dimension
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Imposing restrictions on climbing

useprinciple "principle.barriers" {
dims {D1: lp

D2: id

Multi: multi}
args {Blocks: _.Multi.entry.blocks_lpid}}

• parameters:
◦ dimensions: D1, D2, Multi (here: lp, id, multi)
◦ arguments: Blocks (here: lexical attribute
blocks_lpid on the multi dimension)
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Lexicon

• lexical classes
◦ new lexical classes to specify lp and id/lp properties
◦ update existing lexical classes to inherit from them

• lexical entries
◦ apply the updated lexical classes

A Comparative Introduction to XDG: The Linear Precedence Dimension in Action – p.12



Defining new lexical classes: cnoun_lp

defclass "cnoun_lp" {
dim lp {in: {mf? root?}

out: {df?}
on: {n}}

dim multi {blocks_lpid: {det}}}

• a common noun can land in the Mittelfeld or can be root,
offers a determiner field, has node label n, and blocks its
determiner from climbing up

df ≺ n ≺ mf ≺ root
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Defining new lexical classes: fin_lp

• verb 2nd position: rich topological domain

defclass "fin_lp" {
dim lp {in: {root?}

out: {mf* vcf? vxf?}
on: {v}}

dim multi {blocks_lpid: {subj obj vbse vprt vinf part}}}

mf ≺ vcf ≺ v ≺ vxf ≺ root
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Defining new lexical classes: can and noncan

• canonical position: impoverished topological domain

defclass "can" {
dim lp {in: {vcf? root?}

on: {v}
out: {vcf?}}}

• non-canonical position: rich topological domain

defclass "noncan" {
dim lp {in: {vxf? root?}

on: {v}
out: {mf* vcf? vxf?}}}

mf ≺ vcf ≺ v ≺ vxf ≺ root
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Updating lexical classes: cnoun

defclass "cnoun" Word Agrs {
"cnoun_id"

"cnoun_lp"

dim id {agrs: Agrs}
dim lex {word: Word}}

• a common noun inherits from the classes for common
nouns on the id and lp dimensions, has agreements Agrs
and word form Word
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Updating lexical classes: fin

defclass "fin" Word {
"fin_id"

"fin_lp"

dim lex {word: Word}}

• a finite verb noun inherits from the classes for finite verbs on
the id and lp dimensions, and has word form Word
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Updating lexical classes: mainverb

defclass "mainverb" Word1 Word2 Word3 {
"fin" {Word: Word1}

| ("vbse" {Word: Word2} & "can")

| ("vprt" {Word: Word3} & "can")

| ("vinf" {Word: Word2} & ("can" | "noncan"))}

• a mainverb is either finite (word form Word1), a bare
infinitive (Word2) in canonical position, a past participle
(Word3) in canonical position, or a zu-infinitive (Word2) in
either canonical or non-canonical position
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Applying the updated lexical classes

defentry {
"cnoun" {Agrs: {nom acc}

Word: "frau"}}

defentry {
"transitive"

"mainverb" {Word1: "liebt"

Word2: "lieben"

Word3: "geliebt"}}

• lexical entries need not be changed
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