
Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling as the Combination of
Relaxed Context-Free Grammars

in a Model-Theoretic Grammar Formalism

Ralph Debusmann

Programming Systems Lab, Saarbrücken, Germany

MTS@10, ESSLLI 07, Trinity College, Dublin, August 15, 2007
Revised Version

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Overview

Introduction

Extensible Dependency Grammar (XDG)

Axiomatization of LCFG in XDG

Scrambling as the Combination of Relaxed LCFGs

Conclusions

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Introduction

Overview

Introduction

Extensible Dependency Grammar (XDG)

Axiomatization of LCFG in XDG

Scrambling as the Combination of Relaxed LCFGs

Conclusions

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Introduction

MTS and the Shadow of GES

◮ 1996: first ESSLLI workshop on MTS

◮ (Pullum and Scholz 2001): (work on MTS so far) “has been
done in the shadow of GES. It has largely focused on
comparing MTS and GES.”

◮ (Rogers 2004) steps out of the shadow: uses MTS to explore
extensions of a GES framework (TAG)

◮ (Debusmann 2007 MTS): uses MTS to explore extensions of
CFG, based on Extensible Dependency Grammar (XDG)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Introduction

Extensible Dependency Grammar (XDG)

◮ model-theoretic meta grammar formalism (Debusmann 2006)

◮ multi-dimensional: models tuples of dependency graphs
◮ “meta”:

1. axiomatize your own dependency-based grammatical theory
2. extend it
3. prototype and verify it using the XDG Development Kit (XDK)

(Debusmann, Duchier and Niehren 2004)

◮ extensions:
1. add/remove constraints
2. combine grammars (XDG closed under intersection and union)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Introduction

Extending CFG

◮ this paper: apply some of these extensions to CFG

◮ starting point: modular model of lexicalized context-free
grammar (LCFG) in XDG (Debusmann 2006)

◮ new handle on CFG:
1. relax CFG constraints, e.g. allow discontinuous constituents
2. combine CFGs and relaxed CFGs (e.g. intersect them)

◮ with this degree of extensibility: how far can we take CFG?

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Overview

Introduction

Extensible Dependency Grammar (XDG)

Axiomatization of LCFG in XDG

Scrambling as the Combination of Relaxed LCFGs

Conclusions

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Dependency Graph

◮ XDG analyses: tuples of dependency graphs

◮ countless definitions for “dependency graph” in the literature

◮ how do we define it?

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Dependency Graph
Words

1
Mary

{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

⇓

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Dependency Graph
Nodes

1
Mary

{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

⇓

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Dependency Graph
Labeled Edges

1
Mary

{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

⇓

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Dependency Graph
Node Attributes

1
Mary

{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

⇓

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Dependency Graph
Node Attributes

1
Mary

{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

⇓

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Dependency Graph
Node Attributes

1
Mary

{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

⇓

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Dependency Graph
Formal Definition

1
Mary

{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

Definition

Given finite sets of edge labels L, words W, attributes A and values
U , a dependency graph is a quintuple (V,E,<,nw,na), where:

1. V = {1, . . . ,n}

2. E ⊆V ×V ×L

3. < ⊆V ×V

4. nw∈V →W

5. na∈V → A→U

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Graph

Semantic Dependency Graph

1
Mary

{

in : {ag∗,pat∗}
out : {}
link : {}

}

2
wants

{

in : {th∗}
out : {ag!,th!}
link : {th 7→ vinf}

}

3
to

{

in : {}
out : {}
link : {}

}

4
eat

{

in : {th∗}
out : {ag!,pat?}
link : {pat 7→ obj}

}

5
spaghetti

{

in : {ag∗,pat∗}
out : {}
link : {}

}

6
today

{

in : {}
out : {th!}
link : {}

}

th

ag
th

ag pat

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Multigraph

Dependency Multigraph

SYN

1
Mary

{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

SEM

1
Mary

{

in : {ag∗,pat∗}
out : {}
link : {}

}

2
wants

{

in : {th∗}
out : {ag!,th!}
link : {th 7→ vinf}

}

3
to

{

in : {}
out : {}
link : {}

}

4
eat

{

in : {th∗}
out : {ag!,pat?}
link : {pat 7→ obj}

}

5
spaghetti

{

in : {ag∗,pat∗}
out : {}
link : {}

}

6
today

{

in : {}
out : {th!}
link : {}

}

th

ag
th

ag pat

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Dependency Multigraph

Dependency Multigraph
Formal Definition

SYN
1

Mary
{

in : {subj?,obj?}
out : {}

order : {}

}

2
wants

{

in : {}
out : {subj!,vinf!,adv∗}

order : subj < ↑ < vinf < adv

}

3
to

{

in : {part?}
out : {}

order : {}

}

4
eat

{

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

}

5
spaghetti

{

in : {subj?,obj?}
out : {}

order : {}

}

6
today

{

in : {adv?}
out : {}

order : {}

}

subj vinf adv

part obj

SEM
1

Mary
{

in : {ag∗,pat∗}
out : {}
link : {}

}

2
wants

{

in : {th∗}
out : {ag!,th!}
link : {th 7→ vinf}

}

3
to

{

in : {}
out : {}
link : {}

}

4
eat

{

in : {th∗}
out : {ag!,pat?}
link : {pat 7→ obj}

}

5
spaghetti

{

in : {ag∗,pat∗}
out : {}
link : {}

}

6
today

{

in : {}
out : {th!}
link : {}

}

th

ag
th

ag pat

Definition

Given L, W, A, U , and a finite set of dimensions D, a dependency
multigraph is a quintuple (V,E,<,nw,na), where:

1. V = {1, . . . ,n}

2. E ⊆V ×V ×L×D

3. < ⊆V ×V

4. nw∈V →W

5. na∈V → D → A→U

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Grammar

Grammar

Definition

An XDG grammar is a triple G = (MT, lex,P), where:

1. MT: multigraph type (determines the dimensions, words,
labels, attributes and values)

2. lex: lexicon

3. P: principles

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Grammar

Principles
Definition

Definition

XDG principles φ ∈ P are defined in a FOL:

t ::= c | x

φ ::= ¬φ | φ1 ∧φ2 | ∃x : φ | t = t ′

| v
l

−→d v′

| v < v′

| w(v) = w
| (t1 . . . tn) ∈ ad(v)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Grammar

Principles
Transitive Closure

◮ FOL cannot express the transitive closure of the edge relation
◮ choices:

1. go for a more expressive logic (e.g. MSO)
2. encode it in the model, idea from XPath research e.g. (Filiot et

al. 2007)

◮ XDG in practice: no other need to go > FOL, so 2.

◮ dependency multigraph defined over the labeled dominance
relation: (V,E+,<,nw,na)

Definition

v
l

−→d →
∗
d v′ ∈ E+ iff on d, there is an edge from v to another node

v′′ labeled l , and a path of n≥ 0 edges from v′′ to v′.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Grammar

Principles
Labeled Dominance Relation and Other Relations

Dominance

v→+
d v′

def
= ∃l : v

l
−→d →

∗
d v′

Labeled Edge

v
l

−→d v′
def
= v

l
−→d →

∗
d v′∧¬∃v′′ : v→+

d v′′∧v′′→+
d v′

Edge

v→d v′
def
= ∃l : v

l
−→d v′

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Grammar

Principles
Definition (revised)

Definition

XDG principles φ ∈ P are defined in a FOL:

t ::= c | x

φ ::= ¬φ | φ1 ∧φ2 | ∃x : φ | t = t ′

| v
l

−→d →
∗
d v′

| v < v′

| w(v) = w
| (t1 . . . tn) ∈ ad(v)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Grammar

Principles
Examples

◮ predefined e.g.:
◮ tree
◮ DAG (directed acyclic graph)
◮ projectivity
◮ valency
◮ order
◮ linking

◮ easy to define new principles:
1. only knowledge of FOL required
2. can immediately be prototyped and verified in the XDG

Development Kit

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Models

Models

Definition

The set of models m Gof a grammar G = (MT, lex,P) contains all
multigraphs M which:

1. have multigraph type MT

2. satisfy the lexicon lex

3. satisfy the conjunction of the principles in P

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

String Language

String Language

Definition

The string language L G of an XDG grammar G is the set of strings
of its models:

L G = {nw 1 . . .nw |V| | (V,E+,<,nw,na) ∈ m G}

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Closure Properties

Closure Properties

◮ proven in (Debusmann 2007 MTS): string languages licensed
by XDG grammars closed under:

◮ intersection
◮ union

◮ proof idea: given two grammars G1 and G2 with disjoint
dimensions and defined over same set of words:

1. union their dimensions, labels, attributes and values
2. multiply out their lexicons
3. combine the conjunction of their principles with ∧

(intersection), ∨ (union)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Recognition Problems

Recognition Problems

◮ given a grammar G and a string s, is s in L G?
◮ complexity (Debusmann 2007 FO):

◮ universal recognition problem: both G and s are variable:
PSPACE-complete

◮ fixed recognition problem: G is fixed and s is variable:
NP-complete

◮ instance recognition problem: the principles are fixed, and the
lexicon and s are variable: NP-complete

◮ specific instances of XDG (e.g. LCFG) can be less complex

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

XDG

Parsing Problem

Parsing Problem

◮ given a grammar G and an input string s= a1 . . .an, find all
M = (V,E+,<,nw,na) ∈ m Gsuch that:

1. V = {1, . . . ,n}
2. nw= {i 7→ ai | 1 ≤ i ≤ n}
3. < = {(v,v′) | v < v′}

◮ input string completely determines the set of nodes, only finite
number of edges between nodes added, but no nodes!

◮ “fixed size property”: efficient parsing of XDG grammars using
constraint programming (Schulte 2002)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Axiomatization of LCFG in XDG

Overview

Introduction

Extensible Dependency Grammar (XDG)

Axiomatization of LCFG in XDG

Scrambling as the Combination of Relaxed LCFGs

Conclusions

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Axiomatization of LCFG in XDG

LCFG in XDG

◮ LCFG recap:
◮ an LCFG is a CFG where each rule has precisely one terminal

symbol on its right hand side
◮ LCFG corresponds directly to projective dependency grammar

(Gaifman 1965), (Kuhlmann 2007)

◮ (Debusmann 2006): model-theoretic axiomatization of LCFG
in XDG based on (McCawley 1968)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Axiomatization of LCFG in XDG

Axiomatization
Idea

◮ derivation trees of LCFG correspond directly to projective
dependency trees in XDG

◮ example:

a

a b

b

S

B

BS

1
a

2
a

3
b

4
b

S

B

B

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Axiomatization of LCFG in XDG

Axiomatization
Principles

◮ XDG model of LCFG uses four principles:
1. tree
2. projectivity
3. valency
4. order

◮ lexical entries for the valency and order principles model the
production rules of the LCFG

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Axiomatization of LCFG in XDG

Axiomatization
Production Rules

◮ each LCFG production rule corresponds to a lexical entry in
XDG

◮ lexical entry constrains:
◮ incoming/outgoing edges
◮ order of the outgoing edges

A→ B1 . . .BkaBk+1 . . .Bn

B1! Bn!

Bk! Bk+1!
...

a

A!

...

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Overview

Introduction

Extensible Dependency Grammar (XDG)

Axiomatization of LCFG in XDG

Scrambling as the Combination of Relaxed LCFGs

Conclusions

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Scrambling

◮ theory of topological fields to describe German word order
(Herling 1821), (Erdmann 1886):

1. verbs positioned in the “verb-cluster” at the right end
2. verbs preceded by the non-verbal dependents in the

“Mittelfeld”
3. scrambling: elements of the Mittelfeld can be freely permuted

◮ example:

Mittelfeld verb cluster
(dass) John1 Mary1 Peter2 Tiere3 füttern3 helfen2 sah1

(that) John1 Mary1 Peter2 animals3 feed3 help2 saw1

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

LCFG

◮ LCFG GID modeling the example:

S → NP NP VP sah VP → NP VP helfen
VP → NP füttern NP → John
NP → Mary NP → Peter
NP → Tiere

◮ example analysis:
S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Discontinous Analyses

◮ GID undergenerates: does not allow NPs in the Mittelfeld to
occur in more than one permutation

◮ does not license discontinuous analyses such as:
S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere
◮ what can we do now? CFGs cannot model discontinuous

analyses...

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

First Idea
Relax the LCFG

◮ first idea:
1. axiomatize the LCFG GID in XDG
2. use the additional expressive power in XDG to allow

discontinuous constituents, by dropping the projectivity
principle

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Relaxed LCFG

◮ problem: overgeneration, e.g. also licenses:

S

NP

John

NP

Mary

VP

VPNP

Peter NP

sah

füttern

Tiere

helfen

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Second Idea
Topological LCFG

◮ second idea: create a new, topological LCFG called GLP in the
spirit of topological fields theory (Kathol 1995), (Gerdes and
Kahane 2001), (Duchier and Debusmann 2001)

◮ GLP orders all NPs to the left of the verbs:

S → MF VC sah VC → VC helfen
VC → füttern MF → John
MF → John MF MF → Mary
MF → Mary MF MF → Peter
MF → Peter MF MF → Tiere
MF → Tiere MF

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Topological LCFG Analysis

◮ example analysis:
S

MF

MF

VC

VCMF

MFJohn

Mary

Peter

sah

helfen

füttern

Tiere

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Topological LCFG Review

◮ GLP does license the correct string language

◮ problem: GLP loses the syntactic dependencies between the
verbs and their non-verbal dependents

◮ renders grammar practically useless: impossible to get from a
GLP analysis to the semantics of a sentence

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Third Idea
Intersection

◮ original LCFG: undergenerated
◮ ideas for remedying:

1. axiomatize GID in XDG and relax it: overgeneration
2. topological LCFG GLP : essential syntactic dependencies lost

◮ third idea: axiomatize both GID and GLP in XDG, and use the
additional expressive power to intersect them!

◮ two grammars “help out” each other:
1. GLP : avoids overgeneration
2. GID: still represents the essential syntactic dependencies

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Scrambling

Example ID/LP Analysis

◮ example analysis:

ID

S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere LP

S

MF

MF

VC

VCMF

MFJohn

Mary

Peter

sah

helfen

füttern

Tiere

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Conclusions

Overview

Introduction

Extensible Dependency Grammar (XDG)

Axiomatization of LCFG in XDG

Scrambling as the Combination of Relaxed LCFGs

Conclusions

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Conclusions

Summary

◮ introduced model-theoretic meta grammar formalism of
Extensible Dependency Grammar (XDG)

◮ in XDG, any dependency-based grammar formalism can be
axiomatized model-theoretically

◮ once axiomatized, it can easily be extended
◮ using an axiomatization of CFG, we have explored:

1. the relaxation of the CFG contiguity criterion
2. the intersection of CFGs and relaxed CFGs

◮ lead us to a model of scrambling, one of the most complicated
phenomena in syntax, as the combination of two grammars
formulated in one of the simplest of all grammar formalisms

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Conclusions

Beyond CFG

◮ also axiomatized in XDG:
◮ TAG (Joshi 1987), axiomatization: (Debusmann 2007

(unpublished))
◮ Dominance Constraints (Egg et al. 2001), axiomatization:

(Debusmann 2006)
◮ Polarized Unification Grammars (PUG) (Kahane 2006),

axiomatization: (Lison 2006)

◮ once axiomatized: can freely combine them!

◮ combine TAG (for syntax) and Dominance Constraints (for
semantics) etc.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Conclusions

Blatant Advertisement

◮ interested? why not pick your own favorite grammar
formalism, and:

1. axiomatize it
2. extend it
3. combine it with other formalisms

◮ XDG homepage: just look for “xdg” with Google
◮ papers
◮ talks
◮ ESSLLI 2004 course
◮ mailing list

◮ development kit

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Conclusions

Thanks for your attention!

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

References

References I

Pierre Boullier.
Range Concatenation Grammars.
In Proceedings of IWPT 2000, Trento/IT, 2000.

David Chiang.
Uses and abuses of intersected languages.
In Proceedings of TAG+7, pages 9–15, Vancouver/CA, 2004.

Ralph Debusmann.
Extensible Dependency Grammar: A Modular Grammar Formalism Based
On Multigraph Description.
PhD thesis, Universität des Saarlandes, 2006.

Ralph Debusmann.
The complexity of First-Order Extensible Dependency Grammar.
Technical report, Saarland University, 2007.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

References

References II

Ralph Debusmann, Denys Duchier, and Joachim Niehren.
The XDG grammar development kit.
In Proceedings of the MOZ04 Conference, Charleroi/BE, 2004.

Denys Duchier and Ralph Debusmann.
Topological dependency trees: A constraint-based account of linear
precedence.
In Proceedings of ACL 2001, Toulouse/FR, 2001.

Markus Egg, Alexander Koller, and Joachim Niehren.
The Constraint Language for Lambda Structures.
Journal of Logic, Language, and Information, 2001.

O. Erdmann.
Grundzüge der deutschen Syntax nach ihrer geschichtlichen Entwicklung
dargestellt.
Erste Abteilung, Stuttgart/DE, 1886.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

References

References III

Emmanuel Filiot, Joachim Niehren, Jean-Marc Talbot, and Sophie Tison.
Polynomial time fragments of xpath with variables.
In Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, Beijing/CN, 2007.

Haim Gaifman.
Dependency systems and phrase-structure systems.
Information and Control, 8(3):304–337, 1965.

Kim Gerdes and Sylvain Kahane.
Word order in German: A formal dependency grammar using a topological
hierarchy.
In Proceedings of ACL 2001, Toulouse/FR, 2001.

S.H.A. Herling.
Über die Topik der deutschen Sprache, 1821.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

References

References IV

Aravind K. Joshi.
An introduction to tree-adjoining grammars.
In Alexis Manaster-Ramer, editor, Mathematics of Language, pages
87–115. John Benjamins, Amsterdam/NL, 1987.

Sylvain Kahane.
Polarized unification grammars.
In Proceedings of ACL 2006, pages 137–144, Sydney/AU, 2006.

Andreas Kathol.
Linearization-Based German Syntax.
PhD thesis, Ohio State University, Ohio/US, 1995.

Marco Kuhlmann.
Drawings as Models of Syntactic Structure.
PhD thesis, Universität des Saarlandes, 8 2007.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

References

References V

Pierre Lison.
Implémentation d’une interface sémantique-syntaxe basée sur des
grammaires d’unification polarisées.
Master’s thesis, Univesité Catholique de Louvain, 2006.

J. D. McCawley.
Concerning the base component of a Transformational Grammar.
Foundations of Language, 4:243–269, 1968.

I. Dan Melamed.
Multitext grammars and synchronous parsers.
In Proceedings of HLT-NAACL 2003 Edmonton/CA, 2003.

I. Dan Melamed, Giorgio Satta, and Benjamin Wellington.
Generalized Multitext Grammars.
In Proceedings of ACL 2004, Barcelona/ES, 2004.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

References

References VI

Geoffrey K. Pullum and Barbara C. Scholz.
On the distinction between model-theoretic and generative-enumerative
syntactic frameworks.
Logical Aspect of Computational Linguistics: 4th International Conference,
Berlin/DE, 2001.

James Rogers.
On scrambling, another perspective.
In Proceedings of TAG+7, Vancouver/CA, 2004.

Christian Schulte.
Programming Constraint Services, volume 2302 of Lecture Notes in
Artificial Intelligence.
Springer-Verlag, 2002.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Tree Principle

◮ four conditions:
1. there must be no cycles
2. there is precisely one node without a mother (the root)
3. all nodes have zero or one mothers
4. all differently labeled subtrees must be disjoint

Definition

treed =
∀v : ¬(v→+

d v) ∧
∃!v : ¬∃v′ : v′→d v ∧
∀v : ((¬∃v′ : v′→d v)∨ (∃!v′ : v′→d v)) ∧

∀v : ∀v′ : ∀l : ∀l ′ : v
l

−→d →
∗
d v′ ∧ v

l ′
−→d →

∗
d v′ ⇒ l = l ′

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Projectivity Principle

◮ forbids crossing edges by stipulating that all nodes positioned
between a head and a dependent must be below the head

Definition

projectivityd =
∀v,v′ :
(v→d v′ ∧ v < v′ ⇒∀v′′ : v < v′′∧v′′ < v′ ⇒ v→+

d v′′)∧
(v→d v′ ∧ v′ < v⇒∀v′′ : v′ < v′′∧v′′ < v⇒ v→+

d v′′)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Valency Principle
Intuition

◮ lexically constrains the incoming and outgoing edges of each
node on a dimension d

◮ graphical lexical entry:

eat

vinf?

part! adv*obj?

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Valency Principle
Lexical Attributes

◮ attributes and types, given set of labels L = dl d:

{

in : 2L×{!,+,?,∗}

out : 2L×{!,+,?,∗}

}

◮ example:

{

in : {(vinf,?)}
out : {(part, !),(obj,?),(adv,∗)}

}

◮ syntactic sugar:

{

in : {vinf?}
out : {part!,obj?,adv∗}

}

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Valency Principle
Definition

Definition

valencyd =
∀v : ∀l :

((l , !) ∈ ind(v) ⇒ ∃!v′ : v′
l

−→d v) ∧

((l ,+) ∈ ind(v) ⇒ ∃v′ : v′
l

−→d v) ∧

((l ,?) ∈ ind(v) ⇒ ¬∃v′ : v′
l

−→d v ∨ ∃!v′ : v′
l

−→d v) ∧
(¬(l , !) ∈ ind(v) ∧ ¬(l ,+) ∈ ind(v) ∧ ¬(l ,?) ∈ ind(v) ∧

¬(l ,∗) ∈ ind(v) ⇒ ¬∃v′ : v′
l

−→d v) ∧

((l , !) ∈ outd(v) ⇒ ∃!v′ : v
l

−→d v′) ∧
. . .

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Order Principle
Intuition

◮ lexically constrains the order of the outgoing edges of each
node on a dimension d

◮ graphical lexical entry:

eat

part advobj

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Order Principle
Lexical Attributes

◮ attribute and type, given set of labels L = dl d

{

order : 2L×L
}

◮ example:

order : {(part,↑),(part,obj),
(part,adv),(↑,obj),
(↑,adv),(obj,adv)}

◮ syntactic sugar:

{

order : part < ↑ < obj < adv
}

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Order Principle
Definition

Definition

orderd =

∀v : ∀v′ : ¬v
↑

−→d v′ ∧
∀v : ∀l : ∀l ′ : (l , l ′) ∈ orderd(v) ⇒

(l = ↑ ⇒ ∀v′ : v
l ′

−→d v′ ⇒ v < v′) ∧

(l ′ = ↑ ⇒ ∀v′ : v
l

−→d v′ ⇒ v′ < v) ∧

(∀v′ : ∀v′′ : v
l

−→d v′ ∧ v
l ′

−→d v′′ ⇒ v′ < v′′)

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Linking Principle
Intuition

◮ lexically constrains the realization of dependents on a
dimension d1 on another dimension d2

◮ graphical lexical entry:

eat

(obj)
pat

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Linking Principle
Lexical Attributes

◮ attribute and type, given set of labels L1 = dl d1 and L2 = dl d2:

{

link : 2L1×L2
}

◮ example:
{

link : {(pat,obj)}
}

◮ syntactic sugar:

{

order : {pat 7→ obj}
}

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Linking Principle
Definition

Definition

linkingd1,d2
=

∀v : ∀v′ : ∀l : ∀l ′ :

v
l

−→d1
v′ ∧ (l , l ′) ∈ linkd1(v) ⇒ v

l ′
−→d2

v′

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Lexical Entry

◮ lexical entry for “eat”:

eat 7→

SYN :

in : {vinf?}
out : {part!,obj?,adv∗}

order : part < ↑ < obj < adv

SEM :

in : {th∗}
out : {ag!,pat?}
link : {pat 7→ obj}

, . . .

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Principles

Graphical Lexical Entry

◮ graphical lexical entry for “eat”:

SYN

eat

↓
vinf?

part! adv*obj?

< obj < advpart <

SEM eat

th*

ag!
(obj)
pat?

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Grammars

Grammar 1
Language, Example Analysis

◮ equally many as, bs and cs in any order:

L1 = {s∈ (a∪b∪ c)+ | |w|a = |w|b = |w|c}

◮ one dimension: ID (“immediate dominance”):

ID

1

a

2

b

3

b

4

c

5

c

6

a

cb

cb a

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Grammars

Grammar 1
Principles, Lexicon

◮ uses tree and valency principles

◮ lexical entries for valency principle:

ID

a

a?

b!
a?

c!

b

b! c!

c

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Grammars

Grammar 2
Language, Example Analysis

◮ arbitrary many as followed by arbitrary many bs followed by
arbitrary many cs:

L2 = a+b+c+

◮ one dimension: LP (“linear precedence”):

LP

1

a

2

a

3

b

4

c

5

c

6

c

7

c

333321

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Grammars

Grammar 2
Principles, Lexicon

◮ uses tree, valency and order principles

◮ lexical entries for valency and order principles:

LP

a

1*
2+

3+

1!

a

2!

b c

3!

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Grammars

Grammar 3
Language, Example Analysis

◮ intersection of G1 and G2:

L3 = L1 ∩L2 = {s∈ anbncn | n≥ 1}

◮ models: multigraphs with two dimensions (ID and LP):

ID
1

a

2

a

3

b

4

b

5

c

6

c

cb

cba

LP
1

a

2

a

3

b

4

b

5

c

6

c

33221

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Example Grammars

Grammar 3
Principles, Lexicon

◮ combines the principles of G1 and G2:
1. ID: tree, valency
2. LP: tree, projectivity, valency, order

◮ lexicon: product of the lexicons of G1 and G2:

ID a

a?

b!
a?

c!

a

a?

b!
a?

c!

b

b! c!

c

LP a

1*
2+

3+

1!

a

2!

b c

3!

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Use or Abuse of Intersection?

Scrambling in Range Concatenation Grammars

◮ (Boullier 2000): structures generated by the two combined
grammars are correlated only by their yields

◮ (Chiang 2004): only constrains the tail end of otherwise
independent parallel processes (“weak parallelism”)

◮ not enough control: treatment of scrambling in (Boullier 2000)
must rely on nonexistent information in the surface string.

Scrambling as the Combination of Relaxed Context-Free Grammars in a Model-Theoretic Grammar Formalism (Ralph Debusmann)

Extra Slides

Use or Abuse of Intersection?

Extensible Dependency Grammar

◮ more fine-grained control:
1. dimensions of XDG are synchronized by the input string and

the corresponding nodes (shared among all dimensions)
2. allows to stipulate any number of additional constraints to

correlate the two intersected grammars

◮ linking constraints could be used to synchronize the rules of
the two combined CFGs a la Multitext grammars (Melamed
2003), (Melamed et al. 2004)

	Introduction
	Extensible Dependency Grammar (XDG)
	Dependency Graph
	Dependency Multigraph
	Grammar
	Models
	String Language
	Closure Properties
	Recognition Problems
	Parsing Problem

	Axiomatization of LCFG in XDG
	Scrambling as the Combination of Relaxed LCFGs
	Conclusions
	References
	Extra Slides
	Example Principles
	Example Grammars
	Use or Abuse of Intersection?

