
Extensible Dependency Grammar

Extensible Dependency Grammar:
A Modular Grammar Formalism Based On

Multigraph Description

Ralph Debusmann

Programming Systems Lab, Saarbrücken, Germany

Promotionskolloquium, November 3, 2006

Extensible Dependency Grammar

What the thesis is about

Extensible Dependency Grammar (XDG)

new grammar formalism for natural language

explores the combination of:
1 dependency grammar
2 model theory
3 parallel architecture

results:
1 modularity: grammars can be extended by any linguistic

aspect, each modeled independently
2 emergence: complex linguistic phenomena emerge as the

intersection of the linguistic aspects

Extensible Dependency Grammar

Overview

1 Introduction

2 Formalization

3 Implementation

4 Application

5 Conclusions

Extensible Dependency Grammar

Introduction

Overview

1 Introduction

2 Formalization

3 Implementation

4 Application

5 Conclusions

Extensible Dependency Grammar

Introduction

Dependency Grammar

Dependency Grammar

traditional (Chomsky 1957): syntax of natural language
analyzed in terms of phrase structure grammar:

hierarchically arranges substrings called phrases
nodes labeled by syntactic categories

S

NP

Det N

VP

V

Every baby wants Part V

VP

to eat

Extensible Dependency Grammar

Introduction

Dependency Grammar

Dependency Grammar

dependency grammar (Tesnière 1959):
hierarchically arranges words
edges labeled by grammatical functions
mothers: heads, daughters: dependents

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Dependency Grammar

Advantages

flexibility: dependency analyses need not be trees but can be
arbitrary graphs

need not be ordered

perfectly suited for modeling linguistic aspects other than
syntax, e.g. predicate-argument structure, where the models
are unordered DAGs

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

traditional: generative perspective on grammar (Chomsky
1957):

1 start with the empty set
2 use production rules to generate the well-formed models

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

traditional: generative perspective on grammar (Chomsky
1957):

1 start with the empty set
2 use production rules to generate the well-formed models

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

traditional: generative perspective on grammar (Chomsky
1957):

1 start with the empty set
2 use production rules to generate the well-formed models

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

traditional: generative perspective on grammar (Chomsky
1957):

1 start with the empty set
2 use production rules to generate the well-formed models

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

traditional: generative perspective on grammar (Chomsky
1957):

1 start with the empty set
2 use production rules to generate the well-formed models

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

model theory: eliminative perspective (Rogers 1996):
1 start with the set of all possible models
2 use well-formedness conditions to eliminate all

non-well-formed models

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

model theory: eliminative perspective (Rogers 1996):
1 start with the set of all possible models
2 use well-formedness conditions to eliminate all

non-well-formed models

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

model theory: eliminative perspective (Rogers 1996):
1 start with the set of all possible models
2 use well-formedness conditions to eliminate all

non-well-formed models

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

model theory: eliminative perspective (Rogers 1996):
1 start with the set of all possible models
2 use well-formedness conditions to eliminate all

non-well-formed models

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Model Theory

model theory: eliminative perspective (Rogers 1996):
1 start with the set of all possible models
2 use well-formedness conditions to eliminate all

non-well-formed models

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Every baby wants to eat

part

vinfsubj

det

Extensible Dependency Grammar

Introduction

Model Theory

Advantage

declarativity: constraints describe the well-formed models
independently of any underlying mechanisms

Extensible Dependency Grammar

Introduction

Parallel Architecture

Parallel Architecture

traditional: syntacto-centric architecture (Chomsky 1965):
only syntax modeled independently
other linguistic aspects obtained by functional interfaces

interface

interface

Phonology

Syntax

Semantics

syntactic well−formedness

Extensible Dependency Grammar

Introduction

Parallel Architecture

Parallel Architecture

parallel architecture (Jackendoff 2002), (Sadock 1991):
all linguistic aspects modeled independently
relational interfaces

interface

interface

Phonology

Syntax

Semantics

syntactic well−formedness

semantic well−formedness

interface

phonological well−formedness

Extensible Dependency Grammar

Introduction

Parallel Architecture

Advantages

modularity: linguistic aspects can be modeled largely
independently of each other

emergence: complex phenomena emerge as the intersection
of the linguistic aspects

Extensible Dependency Grammar

Introduction

Extensible Dependency Grammar (XDG)

Extensible Dependency Grammar (XDG)

combines:
1 flexibility from dependency grammar
2 declarativity from model theory
3 modularity and emergence from the parallel architecture

models: dependency multigraphs, i.e. tuples of dependency
graphs

share the same set of nodes

arbitrary many components called dimensions

Extensible Dependency Grammar

Introduction

Extensible Dependency Grammar (XDG)

Example Multigraph

SYN Every
{

in = {det?}
out = {}

. . .

}

baby
{

in = {subj?,obj?, . . .}
out = {det!,adj∗, . . .}

. . .

}

wants
{

in = {root?}
out = {subj!,vinf!, . . .}

. . .

}

to
{

in = {part?}
out = {}

. . .

}

eat
{

in = {vinf?}
out = {part!,adv∗, . . .}

. . .

}

partdet

vinfsubj

SEM Every
{

in = {det!}
out = {}

. . .

}

baby
{

in = {ag∗,pat∗, . . .}
out = {det!}

. . .

}

wants
{

in = {root!,th∗, . . .}
out = {ag!,th!}

. . .

}

to
{

in = {del!}
out = {}

. . .

}

eat
{

in = {root!,th∗, . . .}
out = {ag!}

. . .

}

ag
th

ag

det

Extensible Dependency Grammar

Introduction

Related Work

Related Work

phrase structure grammar:
Generative Grammar (Chomsky 1957, 1965, 1981, 1995)
Tree Adjoining Grammar (Joshi 1987)
Combinatory Categorial Grammar (Steedman 2000)
Head-driven Phrase Structure Grammar (Pollard/Sag 1994)
Lexical-Functional Grammar (Bresnan 2001)

dependency grammar:
Functional Generative Description (Sgall et al. 1986)
Meaning Text Theory (Mel’čuk 1988)
Constraint Dependency Grammar (Menzel/Schröder 1998)
Topological Dependency Grammar (Duchier/Debusmann
2001)

Extensible Dependency Grammar

Formalization

Overview

1 Introduction

2 Formalization

3 Implementation

4 Application

5 Conclusions

Extensible Dependency Grammar

Formalization

Dependency Multigraphs

Dependency Multigraphs

tuples (V,D,W,w,L,E,A,a)

SYN

1

Every
{

in = {det?}
out = {}

. . .

}

2

baby
{

in = {subj?,obj?, . . .}
out = {det!,adj∗, . . .}

. . .

}

3

wants
{

in = {root?}
out = {subj!,vinf!, . . .}

. . .

}

4

to
{

in = {part?}
out = {}

. . .

}

5

eat
{

in = {vinf?}
out = {part!,adv∗, . . .}

. . .

}

partdet

vinfsubj

SEM

1

Every
{

in = {det!}
out = {}

. . .

}

2

baby
{

in = {ag∗,pat∗, . . .}
out = {det!}

. . .

}

3

wants
{

in = {root!,th∗, . . .}
out = {ag!,th!}

. . .

}

4

to
{

in = {del!}
out = {}

. . .

}

5

eat
{

in = {root!,th∗, . . .}
out = {ag!}

. . .

}

ag
th

ag

det

Extensible Dependency Grammar

Formalization

Dependency Multigraphs

Relations

3 relations:
1 labeled edge
2 strict dominance
3 precedence

SYN

1

Every
{

in = {det?}
out = {}

. . .

}

2

baby
{

in = {subj?,obj?, . . .}
out = {det!,adj∗, . . .}

. . .

}

3

wants
{

in = {root?}
out = {subj!,vinf!, . . .}

. . .

}

4

to
{

in = {part?}
out = {}

. . .

}

5

eat
{

in = {vinf?}
out = {part!,adv∗, . . .}

. . .

}

partdet

vinfsubj

SEM

1

Every
{

in = {det!}
out = {}

. . .

}

2

baby
{

in = {ag∗,pat∗, . . .}
out = {det!}

. . .

}

3

wants
{

in = {root!,th∗, . . .}
out = {ag!,th!}

. . .

}

4

to
{

in = {del!}
out = {}

. . .

}

5

eat
{

in = {root!,th∗, . . .}
out = {ag!}

. . .

}

ag
th

ag

det

Extensible Dependency Grammar

Formalization

Dependency Multigraphs

Grammar

G = (MT,P), characterizes set of multigraphs:
1 MT: multigraph type determining dimensions, words, edge

labels
2 P: set of principles constraining the set of well-formed

multigraphs of type MT

principles P formulated in a higher order logic

signature determined by MT

Extensible Dependency Grammar

Formalization

Dependency Multigraphs

Models and String Language

the models of G = (MT,P) are all multigraphs which:
1 have multigraph type MT
2 satisfy all principles P

the string language of a grammar G are all strings ssuch that:
1 there is a model of G with as many nodes as words in s
2 concatenation of the words of the nodes yields s

Extensible Dependency Grammar

Formalization

Principles

Principles

formulas in higher order logic

characterize the well-formed multigraphs of a specific
multigraph type

predefined principle library from which grammars can be built
like with lego bricks (Debusmann et al. 2005 FGMOL), e.g.:

tree principle
valency principle
order principle

Extensible Dependency Grammar

Formalization

Principles

Tree Principle

given a dimension d, there must be:
1 no cycles
2 precisely one node without an incoming edge (the root)
3 each node must have at most one incoming edge

∀v : ¬(v→+
d v) ∧

∃1v : ¬∃v′ : v′→d v ∧
∀v : ¬∃v′ : v′→d v ∨ ∃1v′ : v′→d v

Extensible Dependency Grammar

Formalization

Principles

Valency Principle

lexically constrains the incoming and outgoing edges of the
nodes

characterized by fragments, e.g.:

a

a?

b!
a?

c!
ID

,
b

b!

ID

,

ID

c!

c

Extensible Dependency Grammar

Formalization

Principles

Grammar 1

together with the tree principle, the fragments yield our first
grammar

string language: equally many as, bs and cs in any order:

L1 = {w∈ (a∪b∪c)+ | |w|a = |w|b = |w|c}

why? as arranged in a chain, each a has precisely one
outgoing edge to b and one to c:

a

a?

b!
a?

c!
ID

,
b

b!

ID

,

ID

c!

c

Extensible Dependency Grammar

Formalization

Principles

Example Analyses

a

a?

b!
a?

c!
ID

,
b

b!

ID

,

ID

c!

c

⇓

ID

1

b

2

c

3

a

cb

Extensible Dependency Grammar

Formalization

Principles

Example Analyses

a

a?

b!
a?

c!
ID

,
b

b!

ID

,

ID

c!

c

⇓

ID

1

a

2

b

3

b

4

c

5

c

6

a

cb

cb a

Extensible Dependency Grammar

Formalization

Principles

Order Principle

lexically constrains:
1 the order of the outgoing edges of the nodes depending on

their edge labels
2 the order of the mother with respect to the outgoing edges,

also depending on their edge labels

characterized by ordered fragments, e.g.:

< 1 < 2 < 3

a

↓

1*
2+

3+

LP

Extensible Dependency Grammar

Formalization

Principles

Grammar 2

string language: one or more a followed by one or more bs
followed by one or more cs:

L2 = {w∈ a+b+c+}

tree, valency and order principles and the fragments below:

< 1 < 2 < 3

a

↓

1*
2+

3+

LP

∨

↓

1!

a

LP

,

↓

LP

2!

b

,

↓

LP

c

3!

idea: a is always root, licensing zero or more outgoing edges
labeled 1 to as, and one or more labeled 2 to bs and 3 to cs,
where the as precede the bs precede the cs:

Extensible Dependency Grammar

Formalization

Principles

Example Analyses

< 1 < 2 < 3

a

↓

1*
2+

3+

LP

∨

↓

1!

a

LP

,

↓
LP

2!

b

,

↓
LP

c

3!

⇓

LP

1

a

2

b

3

c

32

Extensible Dependency Grammar

Formalization

Principles

Example Analyses

< 1 < 2 < 3

a

↓

1*
2+

3+

LP

∨

↓

1!

a

LP

,

↓
LP

2!

b

,

↓
LP

c

3!

⇓

LP

1

a

2

a

3

b

4

c

5

c

6

c

7

c

333321

Extensible Dependency Grammar

Formalization

Principles

Intersection of Dimensions

intersection of the two languages L1 and L2 yields the string
language of n as followed by n bs followed by n cs:

L1 ∩L2 = {w∈ anbncn | n≥ 1}

modeled by intersecting dimensions:
1 ID dimension of grammar 1 ensures that there are equally

many as, bs and cs
2 LP dimension of grammar 2 orders the as before the bs before

the cs

Extensible Dependency Grammar

Formalization

Principles

Example Analyses

< 1 < 2 < 3

a

↓

1*
2+

3+

LP

a

a?

b!
a?

c!
ID

∨

a

a?

b!
a?

c!
ID

↓
1!

a

LP

,

↓

LP

2!

b

b

b!

ID

,

ID

c!

c

↓

LP

3!

c

⇓

ID
1

a

2

b

3

c

cb

LP
1

a

2

b

3

c

32

Extensible Dependency Grammar

Formalization

Principles

Example Analyses

< 1 < 2 < 3

a

↓

1*
2+

3+

LP

a

a?

b!
a?

c!
ID

∨

a

a?

b!
a?

c!
ID

↓
1!

a

LP

,

↓
LP

2!

b

b

b!

ID

,

ID

c!

c

↓
LP

3!

c

⇓

ID
1

a

2

a

3

b

4

b

5

c

6

c

cb

cba

LP
1

a

2

a

3

b

4

b

5

c

6

c

33221

Extensible Dependency Grammar

Formalization

Principles

Scrambling

German subordinate clauses: nouns followed by the verbs:

(dass) ein Mann Cecilia die Nilpferde füttern sah
(that) a man Cecilia the hippos feed saw

“(that) a man saw Cecilia feed the hippos”

all permutations of the nouns grammatical, i.e., also:

(dass) ein Mann die Nilpferde Cecilia füttern sah
(dass) die Nilpferde ein Mann Cecilia füttern sah
(dass) die Nilpferde Cecilia ein Mann füttern sah
(dass) Cecilia ein Mann die Nilpferde füttern sah
(dass) Cecilia die Nilpferde ein Mann füttern sah

Extensible Dependency Grammar

Formalization

Principles

Idealization

idealized language:

SCR = {σ(n[1], . . . ,n[k])v[k]...v[1] | k≥ 1 and σ a permutation}

grammar: ID dimension pairs verbs and nouns, LP dimension
orders nouns before verbs

v

v

ID

LP

n!

v?

2?

↓

1*

1<2< ∨
v

v

ID

LP

n!

v?

v!

2!

2?

↓

2< ,

↓

ID

LP

n

n

1!

n!

Extensible Dependency Grammar

Formalization

Principles

Example Analyses

v

v

ID

LP

n!

v?

2?
↓

1*

1<2< ∨
v

v

ID

LP

n!

v?

v!

2!

2?
↓

2< , ↓

ID

LP

n

n

1!

n!

⇓

ID
1

n

2

n

3

v

4

v

vn

n

LP
1

n

2

n

3

v

4

v

211

Extensible Dependency Grammar

Formalization

Principles

Example Analyses

v

v

ID

LP

n!

v?

2?

↓

1*

1<2< ∨
v

v

ID

LP

n!

v?

v!

2!

2?

↓

2< , ↓

ID

LP

n

n

1!

n!

⇓

ID
1

n

2

n

3

n

4

v

5

v

6

v

vn

vn

n

LP
1

n

2

n

3

n

4

v

5

v

6

v

2111

2

Extensible Dependency Grammar

Formalization

Expressivity

Expressivity

can model lexicalized context-free grammar (constructive
proof in thesis)
can go far beyond context-free grammar:

anbncn already non-context free
can model TAG (Debusmann et al. 2004 TAG+7): mildly
context-sensitive
cross-serial dependencies (thesis): also mildly
context-sensitive
scrambling: beyond the mildly context-sensitive Linear
Context-Free Rewriting Systems (LCFRS) (Becker et al. 1992)

put to use in an elegant account of German word order
phenomena in (Duchier/Debusmann 2001), (Debusmann
2001), (Bader et al. 2004)

Extensible Dependency Grammar

Formalization

Complexity

Complexity

recognition problem: NP-hard (reduction to SAT in thesis)
(Debusmann/Smolka 2006)

restrictions on principles:
first-order: upper bound in PSPACE
polynomially testable: upper bound in NP

all principles written so far first-order

all principles implemented as polynomially testable constraints
in Mozart/Oz

i.e., practical upper bound: in NP

Extensible Dependency Grammar

Implementation

Overview

1 Introduction

2 Formalization

3 Implementation

4 Application

5 Conclusions

Extensible Dependency Grammar

Implementation

Implementation

how to process an NP-hard problem?

constraint programming (Schulte 2002), (Apt 2003): solving of
constraint satisfaction problems (CSPs)
CSPs stated in terms of:

1 constraint variables, here on finite sets of integers
2 constraints on them

solutions of a CSP determined by two interleaving processes:
1 propagation: application of deterministic inference rules
2 distribution: non-deterministic choice

XDG parsing regarded as a CSP in Mozart/Oz (Smolka 1995),
based on techniques developed in (Duchier 1999, 2003)

Extensible Dependency Grammar

Implementation

Modeling Dependency Multigraphs

dependency graphs: nodes identified with integers, each node
associated with a set of finite set of integers variables, e.g.:

1

a

2

a

3

b

4

b

5

c

6

c

cb

cba

1 7→

eq = {1}
mothers= {}

up = {}
daughters= {2,3,5}

down= {2,3,4,5,6}
. . .

dependency multigraphs: variables duplicated for each
dimension

Extensible Dependency Grammar

Implementation

Modeling Principles

principles can now be transformed into constraints on finite
sets of integers

e.g. the tree principle:
for Node in Nodes do

%% no cycles
{FS.disjoint Node.eq Node.down}

%% one root
{FS.card Roots}=:1

%% at most one incoming edge
{FS.card Node.mothers}=<:1

end

Extensible Dependency Grammar

Implementation

Features

concurrent: all dimensions processed in parallel

reversible: can be used for parsing and generation
(Koller/Striegnitz 2002), (Debusmann 2004)

supports underspecification: e.g. of quantifier scope, PP
attachment (Debusmann et al. 2004 COLING)

efficient for handcrafted grammars

first successful experiments in large-scale parsing with the
XTAG grammar (> 100.000 lexical entries) after thesis
submission

Extensible Dependency Grammar

Implementation

Grammar Development Kit

extensive grammar development kit built around the constraint
parser (35000 code lines): XDG Development Kit (XDK)
(Debusmann et al. 2004 MOZ)

example grammars (24000 additional lines):
German grammar developed in (Debusmann 2001)
Arabic grammar developed in (Odeh 2004)
toy grammars for Czech, Dutch and French
implementations of all example grammars in the thesis

graphical user interface

complete documentation (200+ pages)
application:

successfully used for teaching (ESSLLI 2004, FoPra)
module in an engine for interactive fiction (Koller et al. 2004)

Extensible Dependency Grammar

Application

Overview

1 Introduction

2 Formalization

3 Implementation

4 Application

5 Conclusions

Extensible Dependency Grammar

Application

Application to Natural Language

English example grammar developed in the thesis models
fragments of:

syntax
semantics
phonology
information structure

interfaces:
relational syntax-semantics interface (Korthals/Debusmann
2002), (Debusmann et al. 2004 COLING)
relational phonology-information structure interface
(Debusmann et al. 2005 CICLING)

Extensible Dependency Grammar

Application

Syntax

based on topological analysis of German
(Duchier/Debusmann 2001)

ID dimension: models grammatical functions

LP dimension: models word order using topological fields
intersection of ID/LP leads to the emergence of complex
English word order phenomena:

topicalization
wh-questions
pied piping

Extensible Dependency Grammar

Application

Topicalization

ID

1

Mary

2

Peter

3

tries

4

to

5

find

subj vinf

obj part

LP

1

Mary

2

Peter

3

tries

4

to

5

find

rbfvfvvf

vvf

Extensible Dependency Grammar

Application

Semantics

PA dimension: models predicate-argument structure

SC dimension: models quantifier scope

supports scope underspecification

interface to the Constraint Language for Lambda Structures
(CLLS) (Egg et al. 2001)

Extensible Dependency Grammar

Application

Example (Weak Reading)

PA

1

Every

2

man

3

loves

4

a

5

woman

det

patag

det

SC

1

Every

2

man

3

loves

4

a

5

woman

s q

sq

Extensible Dependency Grammar

Application

Example (Strong Reading)

PA

1

Every

2

man

3

loves

4

a

5

woman

det

patag

det

SC

1

Every

2

man

3

loves

4

a

5

woman

s q

sq

Extensible Dependency Grammar

Application

Example (Underspecification)

PA

1

Every

2

man

3

loves

4

a

5

woman

det

patag

det

SC

1

Every

2

man

3

loves

4

a

5

woman

qq

s
s

Extensible Dependency Grammar

Application

Phonology

PS dimension: models prosody

sentence divided into prosodic constituents marked by
boundary tones

prosodic constituents headed by pitch accents

Extensible Dependency Grammar

Application

Example

PS

1

Marcel_L+H*

2

proves_LH%

3

completeness_H*_LL%

4

.

pa1

bt1 pa2bt2

Extensible Dependency Grammar

Application

Information Structure

IS dimension

sentence divided into information structural constituents using
the theme/rheme dichotomy

information structural constituents: divided into focus and
background

Extensible Dependency Grammar

Application

Example

IS

1

Marcel_L+H*

2

proves_LH%

3

completeness_H*_LL%

4

.

bg

rhth

Extensible Dependency Grammar

Application

Syntax-Semantics Interface

relational interface between ID and PA dimensions

modular modeling: independent of word order (LP) and
quantifier scope (SC)

intersection of ID/PA leads to the emergence of:
control/raising
auxiliary constructions (e.g. passives)

supports underspecification of PP-attachment

Extensible Dependency Grammar

Application

Control/Raising and Passive Example

ID
1

Peter

2

seems

3

to

4

have

5

been

6

persuaded

7

to

8

sleep

part

vinf

vprt

vprtpart

vinfsubj

PA
1

Peter

2

seems

3

to

4

have

5

been

6

persuaded

7

to

8

sleep

ag

th
pat

th

Extensible Dependency Grammar

Application

Phonology-Semantics Interface

relational interface between PS and IS dimensions

modular modeling: independent of any other linguistic aspect

based on the prosodic account of information structure
developed in (Steedman 2000)

intersection of PS and IS dimensions leads e.g. to the
emergence of the unmarked theme ambiguity phenomenon

Extensible Dependency Grammar

Application

Unmarked Theme Example

PS

1

Marcel_LH%

2

proves

3

completeness_H*_LL%

4

.

ua

bt1 pa2bt2

IS

1

Marcel_LH%

2

proves

3

completeness_H*_LL%

4

.

bg

rhumth

Extensible Dependency Grammar

Application

Unmarked Theme Example

PS

1

Marcel_LH%

2

proves

3

completeness_H*_LL%

4

.

ua

bt1 pa2bt2

IS

1

Marcel_LH%

2

proves

3

completeness_H*_LL%

4

.

rhumth umth

Extensible Dependency Grammar

Conclusions

Overview

1 Introduction

2 Formalization

3 Implementation

4 Application

5 Conclusions

Extensible Dependency Grammar

Conclusions

Summary

Summary

with XDG, explored combination of dependency grammar,
model theory and parallel architecture
formalization:

higher order logic
expressivity: far beyond context-free grammar
practical complexity: NP-complete

implementation:
parser based on constraint programming in Mozart/Oz
comprehensive grammar development kit (XDK)

application:
example grammar modeling fragments of natural language
syntax, semantics, phonology and information structure

main results:
1 new degree of modularity
2 phenomena emerge by the intersection of individual

dimensions, without further stipulation

Extensible Dependency Grammar

Conclusions

Selected Publications

Selected Publications I

Ralph Debusmann, Denys Duchier, Alexander Koller, Marco
Kuhlmann, Gert Smolka, and Stefan Thater.
A relational syntax-semantics interface based on dependency
grammar.
In Proceedings of COLING 2004, Geneva/CH, 2004.

Ralph Debusmann, Denys Duchier, Marco Kuhlmann, and
Stefan Thater.
TAG as dependency grammar.
In Proceedings of TAG+7, Vancouver/CA, 2004.

Extensible Dependency Grammar

Conclusions

Selected Publications

Selected Publications II

Ralph Debusmann, Denys Duchier, and Joachim Niehren.
The XDG grammar development kit.
In Proceedings of the MOZ04 Conference, volume 3389 of
Lecture Notes in Computer Science, pages 190–201,
Charleroi/BE, 2004. Springer.

Ralph Debusmann, Denys Duchier, and Andreas Rossberg.
Modular grammar design with typed parametric principles.
In Proceedings of FG-MOL 2005, Edinburgh/UK, 2005.

Ralph Debusmann, Oana Postolache, and Maarika Traat.
A modular account of information structure in Extensible
Dependency Grammar.
In Proceedings of the CICLING 2005 Conference, Mexico
City/MX, 2005. Springer.

Extensible Dependency Grammar

Conclusions

Selected Publications

Selected Publications III

Ralph Debusmann and Gert Smolka.
Multi-dimensional dependency grammar as multigraph
description.
In Proceedings of FLAIRS-19, Melbourne Beach/US, 2006.
AAAI.

Alexander Koller, Ralph Debusmann, Malte Gabsdil, and
Kristina Striegnitz.
Put my galakmid coin into the dispenser and kick it:
Computational linguistics and theorem proving in a computer
game.
Journal of Logic, Language and Information, 13(2):187–206,
2004.

Extensible Dependency Grammar

Conclusions

Selected Publications

Selected Publications IV

Christian Korthals and Ralph Debusmann.
Linking syntactic and semantic arguments in a
dependency-based formalism.
In Proceedings of COLING 2002, Taipei/TW, 2002.

Extensible Dependency Grammar

Conclusions

Selected Publications

Selected Publications by Other Authors I

Ondrej Bojar.
Problems of inducing large coverage constraint-based
dependency grammar.
In Proceedings of the International Workshop on Constraint
Solving and Language Processing, Roskilde/DK, 2004.

Peter Dienes, Alexander Koller, and Marco Kuhlmann.
Statistical A* dependency parsing.
In Prospects and Advances in the Syntax/Semantics Interface,
Nancy/FR, 2003.

Alexander Koller and Kristina Striegnitz.
Generation as dependency parsing.
In Proceedings of ACL 2002, Philadelphia/US, 2002.

Extensible Dependency Grammar

Conclusions

Selected Publications

Selected Publications by Other Authors II

Christian Korthals.
Unsupervised learning of word order rules, 2003.
Diploma thesis.

Pierre Lison.
Implémentation d’une interface sémantique-syntaxe basée sur
des grammaires d’unification polarisées.
Master’s thesis, Univesité Catholique de Louvain, 2006.

Jorge Pelizzoni and Maria das Gracas Volpe Nunes.
N:M mapping in XDG - the case for upgrading groups.
In Proceedings of the International Workshop on Constraint
Solving and Language Processing, Sitges/ES, 2005.

Extensible Dependency Grammar

Conclusions

Future Work

Future Work

formalization:
strengthen relation to other grammar formalisms
formalize XDG in a weaker logic than HOL, e.g. MSO

implementation:
make use of new constraint technology, e.g. Gecode
(Schulte/Tack 2005)
automatically generate principle propagators from
EMSO-specifications (Tack et al. 2006)

Extensible Dependency Grammar

Conclusions

Future Work

Thank you!

Extensible Dependency Grammar

References

References I

Krzysztof R. Apt.
Principles of Constraint Programming.
Cambridge University Press, 2003.

Tilman Becker, Owen Rambow, and Michael Niv.
The derivational generative power, or, scrambling is beyond LCFRS.
Technical report, University of Pennsylvania, 1992.

Joan Bresnan.
Lexical Functional Syntax.
Blackwell, 2001.

Noam Chomsky.
Syntactic Structures.
Janua linguarum. Mouton, The Hague/NL, 1957.

Noam Chomsky.
Aspects of the Theory of Syntax.
MIT Press, Cambridge/US, 1965.

Noam Chomsky.
Lectures on Government and Binding: The Pisa Lectures.
Foris Publications, 1981.

Extensible Dependency Grammar

References

References II

Noam Chomsky.
The Minimalist Program.
MIT Press, 1995.

Denys Duchier.
Axiomatizing dependency parsing using set constraints.
In Proceedings of MOL 6, Orlando/US, 1999.

Denys Duchier.
Configuration of labeled trees under lexicalized constraints and principles.
Research on Language and Computation, 1(3–4):307–336, 2003.

Markus Egg, Alexander Koller, and Joachim Niehren.
The Constraint Language for Lambda Structures.
Journal of Logic, Language, and Information, 2001.

Ray Jackendoff.
Foundations of Language.
Oxford University Press, 2002.

Aravind K. Joshi.
An introduction to tree-adjoining grammars.
In Alexis Manaster-Ramer, editor, Mathematics of Language, pages
87–115. John Benjamins, Amsterdam/NL, 1987.

Extensible Dependency Grammar

References

References III

Igor Mel’čuk.
Dependency Syntax: Theory and Practice.
State Univ. Press of New York, Albany/US, 1988.

Wolfgang Menzel and Ingo Schröder.
Decision procedures for dependency parsing using graded constraints.
In Proceedings of the COLING/ACL 1998 Workshop Processing of
Dependency-based Grammars, Montréal/CA, 1998.

Carl Pollard and Ivan A. Sag.
Head-Driven Phrase Structure Grammar.
University of Chicago Press, Chicago/US, 1994.

James Rogers.
A model-theoretic framework for theories of syntax.
In Proceedings of ACL 1996, 1996.

Jerrold M. Sadock.
Autolexical Syntax.
University of Chicago Press, 1991.

Christian Schulte.
Programming Constraint Services, volume 2302 of Lecture Notes in
Artificial Intelligence.
Springer-Verlag, 2002.

Extensible Dependency Grammar

References

References IV

Christian Schulte and Guido Tack.
Views and iterators for generic constraint implementations.
In Christian Schulte, Fernando Silva, and Ricardo Rocha, editors,
Proceedings of the Fifth International Colloqium on Implementation of
Constraint and Logic Programming Systems, pages 37–48, Sitges/ES,
2005.

Petr Sgall, Eva Hajicova, and Jarmila Panevova.
The Meaning of the Sentence in its Semantic and Pragmatic Aspects.
D. Reidel, Dordrecht/NL, 1986.

Gert Smolka.
The Oz programming model.
In Jan van Leeuwen, editor, Computer Science Today, Lecture Notes in
Computer Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin/DE,
1995.

Mark Steedman.
The Syntactic Process.
MIT Press, Cambridge/US, 2000.

Guido Tack, Christian Schulte, and Gert Smolka.
Generating propagators for finite set constraints.
In Fréderic Benhamou, editor, 12th International Conference on Principles
and Practice of Constraint Programming, volume 4204 of Lecture Notes in
Computer Science, pages 575–589. Springer, 2006.

Lucien Tesnière.
Eléments de Syntaxe Structurale.
Klincksiek, Paris/FR, 1959.

	Introduction
	Dependency Grammar
	Model Theory
	Parallel Architecture
	Extensible Dependency Grammar (XDG)
	Related Work

	Formalization
	Dependency Multigraphs
	Principles
	Expressivity
	Complexity

	Implementation
	Application
	Conclusions
	Summary
	Selected Publications
	Future Work

	References

