A linear functional first-order intermediate
language for verified compilers

Sigurd Schneider, Sebastian Hack, Gert Smolka

ITP 2015, Nanjing

2015-08-24

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

http://www.cs.uni-saarland.de/

SAARLAND
UNIVERSITY

Introduction s

COMPUTER SCIENCE
Binding vs. assignment

Binding Assignment

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Introduction s

COMPUTER SCIENCE
Binding vs. assignment

Binding Assignment

letx=eins

m x is bound in term s
m functional

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Introduction s

COMPUTER SCIENCE
Binding vs. assignment

Binding Assignment
letx=eins X:=e;s
m x is bound in term s m X is a register
m functional m jmperative

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Introduction s

COMPUTER SCIENCE

Binding vs. assignment

Binding Assignment
letx=eins X:=e;s
m x is bound in term s m X is a register
m functional m imperative

SSA-based register assignment
Translation from binding to assignment

Sigurd Schneider A functional IL for verified compilers 2/32

SAARLAND
UNIVERSITY

Intermediate language IL —

COMPUTER SCIENCE

A linear first-order functional language with external calls

s, t:= term
| letx = eins variable binding
| letx = xins external call
| ifethenselset conditional
| e value
| funfx=sint function definition
| fe application

Sigurd Schneider A functional IL for verified compilers 3/32

SAARLAND
UNIVERSITY

Intermediate language IL —

COMPUTER SCIENCE

A linear first-order functional language with external calls

s, t:= term
| letx = eins variable binding
| letx = xins external call
| ifethenselset conditional
| e value
| funfx=sint function definition
| fe application
i First-order CFGs

Functions f, g not first-class

Sigurd Schneider A functional IL for verified compilers 3/32

SAARLAND

Intermediate language IL —
A linear first-order functional language with external calls
s, t:= term
| letx = eins variable binding
| letx = xins external call
| ifethenselset conditional
| e value
| funfx=sint function definition
| fe application
H First-order CFGs

Functions f, g not first-class

Tail-call only intra-procedural
f e only in tail position

Sigurd Schneider A functional IL for verified compilers 3/32

SAARLAND

Intermediate language IL —
A linear first-order functional language with external calls
s, t:= term
| letx = eins variable binding
| letx = xins external call
| ifethenselset conditional
| e value
| funfx=sint function definition
| fe application
i First-order CFGs Linear simpl.
Functions f, g not first-class Restricted sequentialization
Tail-call only intra-procedural letx = eins (not: 5; 1)

f e only in tail position

Sigurd Schneider A functional IL for verified compilers 3/32

SAARLAND

Intermediate language IL —
A linear first-order functional language with external calls
s, t:= term
| letx = eins variable binding
| letx = xins external call
| ifethenselset conditional
| e value
| funfx=sint function definition
| fe application
i First-order CFGs Linear simpl.
Functions f, g not first-class Restricted sequentialization
Tail-call only intra-procedural letx = eins (not: 5; 1)
f e only in tail position External calls realistic
letx = xins

Sigurd Schneider A functional IL for verified compilers 3/32

SAARLAND
UNIVERSITY

Example —

COMPUTER SCIENCE
A functional and an imperative interpretation

Finnm):=nx(n+1)*x...%xkm

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Example —

COMPUTER SCIENCE
A functional and an imperative interpretation

Finnm):=nx(n+1)*x...%xkm

Functional IL

1 let i = 1 in

2 fun £ (3,p) =

3 let c = p <=m in
4 1if c then

s let k =p * j in
6 letm=p+ 1in
7 f (k,m)

s else

CI|

o in f (i,n)

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Example —

COMPUTER SCIENCE

A functional and an imperative interpretation

Finnm):=nx(n+1)*x...%xkm

Functional IL Imperative IL/I
1 let i = 1 in i o= 1
2 fun £ (3,p) = 2 fun £ (3,p) =
3 let c =p <=m in 3 C :=p <=m;
4 1if c then 4 1if c then
s let k =p * j in 5 k i=p o j;
6 letm=p+1in 6 m :=p + 1;
7 f (k,m) 7 f (k,m)
s else s else
9 j 9 J
1o in £ (i,n) 10 in £ (i,n)

Sigurd Schneider A functional IL for verified compilers 4/32

SAARLAND
UNIVERSITY

Example —

COMPUTER SCIENCE
A functional and an imperative interpretation

Finnm):=nx(n+1)*x...%xkm

Functional IL Imperative IL/I

1let i =1 in No closure ' 1 :=1;

2 fun £ (3,p) = created: —=fun f (3,p) =

3 let c = p <=m in goto 3 Ci=p<=m;

4 if c then 4 if c then

s letk=p=jin sk i=p* 3; :

6 letm=p+1in 6 m:i=p + 1; Pa:i;‘:‘f-te" Pa|5|5||n9
in is paralle

; efls(ek’m) ; efls(ek,m) N assignment:

9] 9 3 Jipi=k,m

10 in £ (i,n) 10 in £ (i,n)

Sigurd Schneider A functional IL for verified compilers 4/32

SAARLAND
UNIVERSITY

Example —

COMPUTER SCIENCE

A functional and an imperative interpretation

Finnm):=nx(n+1)*x...%xkm

Functional IL Imperative IL/I
1 let i = 1 in i o= 1
2 fun £ (3,p) = 2 fun £ (3,p) =
3 let c =p <=m in 3 C :=p <=m;
4 1if c then 4 1if c then
s let k =p * j in 5 k i=p o J;
6 letm=p+1in 6 m :=p + 1;
7 f (k,m) 7 f (k,m)
s else s else
9 j 9 J
1o in £ (i,n) 10 in £ (i,n)

Sigurd Schneider A functional IL for verified compilers 4/32

SAARLAND
UNIVERSITY

Example —

COMPUTER SCIENCE

A functional and an imperative interpretation

Finnm):=nx(n+1)*x...%xkm

Functional IL Imperative IL/I
1 let i = 1 in i o= 1
2 fun £ (3,p) = 2 fun £ (3,p) =
3 let c =p <=m in 3 C :=p <=m;
4 1if c then 4 1if c then
s let k =p * j in 5 k i=p o J;
6 let x =p + 1 in 6 m :=p + 1;
7 (k,x) 7 f (k,m)
s else s else
9 j 9 J
1o in £ (i,n) 10 in £ (i,n)

Sigurd Schneider A functional IL for verified compilers 4/32

SAARLAND
UNIVERSITY

Example —

COMPUTER SCIENCE

A functional and an imperative interpretation

Finnm):=nx(n+1)*x...%xkm

Functional IL Imperative IL/I
1 let i = 1 in i o= 1
2 fun £ (3,p) = 2 fun £ (3,p) =
3 let c =p <=m in 3 C :=p <=m;
4 1if c then 4 1if c then
5 let k =p % j in s k :=p % J;
6 let x =p + 1 in 6 X :=p + 1;
7 (k,x) 7 k,x)
s else s else
9 j 9 J
10 in £ (i,n) 10 in £ (i,n)

m When renamed-apart, binding and assignment interchangeable!

Sigurd Schneider A functional IL for verified compilers 4/32

SAARLAND
UNIVERSITY

Overview e
COMPUTER SCIENCE
Translating from the functional to the imperative interpretation

m binding ® assignment

\

m first-order invariant | m low-level

m tail-call m goto

Sigurd Schneider A functional IL for verified compilers 5/32

SAARLAND
UNIVERSITY

Overview —

COMPUTER SCIENCE
Translating from the functional to the imperative interpretation

m binding ® assignment

m first-order m low-level

m tail-call m goto

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Overview —

COMPUTER SCIENCE
Translating from the functional to the imperative interpretation

m binding ® assignment

m first-order m low-level

m tail-call m goto

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Overview —

COMPUTER SCIENCE

Translating from the functional to the imperative interpretation

m binding ® assignment

m first-order m low-level

m tail-call m goto

SSA-based register a

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Related work

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Static single assignment (SSA) —

COMPUTER SCIENCE

Related work

IL SSA
1 let i = 1 1in 1T o= 1
2 fun £ (3,p) = 2 f:
3 3§ = ¢GLK, p o= d(n,x)
4 let c = p <=m 1in 4 C :=n <= m;
5 if c then 5 if c then
6 let k=p = Jjin 6 k :=p * J;
7 let x =p + 1 1in 7 X :1=p + 1;
s f (k,x) 8 goto f
9 else 9 else
0 j 10 return i

n oin £ (i,n)

B SSA e— CPS due to Appel (1998) and Kelsey (1995).

m Chakravarty et al. (2003) reformulates SSA optimization on a
functional language in ANF (Sabry et al. 1993).

m IL is a sub-language (up to system calls)

Sigurd Schneider A functional IL for verified compilers 7/32

SAARLAND
UNIVERSITY

SSA in verified compilers —

COMPUTER SCIENCE

Related work

B CompCertSSA: Barthe et al. (2012)
» Integrates SSA-based optimization passes in CompCert (Leroy
(2009))

VelLLVM: Zhao et al. (2012)
» Verifies some SSA-based passes of LLVM

m SSA for optimizations
» performance of data-flow analyses
m ¢-functions

» no functional language
» underlying semantics uses imperative variables

Sigurd Schneider A functional IL for verified compilers 8/32

SAARLAND
UNIVERSITY

SSA-based register allocation —

COMPUTER SCIENCE

Related work

m SSA-based register allocation (Hack et al. (2006))
» allows phase separation of spilling and register assignment
» |IL version similar to Appel (1992)
» not considered in verified setting so far:
out of SSA + non-SSA register allocation
m Blazy et al. (2010) verify non-SSA register allocation algorithm
(which must include spilling)

m We only considering register assignment, because SSA-based
algorithm allows spilling to be separate phase

Sigurd Schneider A functional IL for verified compilers 9/32

SAARLAND
UNIVERSITY

Functional and imperative semantics —

COMPUTER SCIENCE

Related work

m Beringer et al. (2003) use a language with a functional and
imperative interpretation for proof-carrying code.

m Grail normal form (GNF) sufficient for functional + imperative
semantics to coincide

m Main difference: GNF requires functions to be closure converted,
i.e.|all variables a function body depends on must be parameters

Sigurd Schneider A functional IL for verified compilers 10/ 32

SAARLAND
UNIVERSITY

Contributions —l

COMPUTER SCIENCE

m Coherence

» relates binding and assignment directly

» another perspective on SSA and functional programming
m SSA-based register assignment on IL

» formal correctness proof (using coherence)
» key property from SSA holds on IL:
spilling can be considered separately (not possible without SSA)

m Coq development available online:
www.ps.uni-saarland.de/~sdschn/publications/lvcl5

Sigurd Schneider A functional IL for verified compilers 11/32

www.ps.uni-saarland.de/~sdschn/publications/lvc15

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Semantics and program equivalence

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Semantics of IL and IL/I s e

COMPUTER SCIENCE

Reduction, events, configurations

m Small-step relation 2,

m Decorated with events ¢
d:=T silent event

| v =« external event

m Configurations

IL: (F,V,s) IL/1: (L, V,s)
» F function env. (with closures)
» L block env. (no closures)

» V variable env.
» S program

Sigurd Schneider A functional IL for verified compilers 13/32

SAARLAND

Program equivalence —
COMPUTER SCIENCE
Non-determinism and equivalence
EXTERN
vev
FlV [let x=xins

=X FIV[x~ v]|s

] *, forms a LTS
m Internally deterministic reduction systems (IDRS)
R S SN PN b=T1 T-deterministic
e 2 Oy ANOT 2 0y > 0] =03 action-deterministic
m Configurations are equivalent (=), if they allow the same partial

traces
m:=€e|v|Ll|v=xT

m Sound and complete characterization via (stutter) bisimulation

Sigurd Schneider A functional IL for verified compilers 14/32

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Liveness

Sigurd Schneider A functi | IL for verified compil

SAARLAND
UNIVERSITY

Liveness e e

COMPUTER SCIENCE

Judgment

(LV,s) % (LW,s)

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Liveness e e

COMPUTER SCIENCE

Judgment

V=x W= (LV,s)Z(LW,s)

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Liveness e e

COMPUTER SCIENCE

Judgment

V=x W= (LV,s)Z(LW,s)

A live variables of functions

s program

X set of live variables

m embedded liveness analysis results as annotations in syntax:
funfx : X; =s1ins

m syntactic structure allows for inductive specification
m useful for imperative IL/I
m judgment monotonic in X (larger sets are sound)

Sigurd Schneider A functional IL for verified compilers 16 /32

SAARLAND

leeness UNIVERSITY
Propertles for IL/I COMPUTER SCIENCE
Theorem (Decidability)
A + live s : X decidable.
Theorem (Soundness)
If
H A+ lives: X liveness information sound
LEA A sound for blocks L
V=xW V, W agree on live set X
then

(L,V,s) =~ (L,W,s)

Sigurd Schneider A functional IL for verified compilers 17 /32

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Coherence

Sigurd Schneider A functional IL for verified compilers

SAARLAND

UNIVERSITY
Coherence —l

COMPUTER SCIENCE
Intuition

F.f: WX, s)IV]Ife — F,f:WX,s) |W[x~-V]|s

?

~

F.f:(W,X,s) IVIX—~V]|s

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Coherence —l

COMPUTER SCIENCE
Intuition

F.f: WX, s)IV]Ife — F,f:WX,s) |W[x~-V]|s

?

F.f: W,X,s) [V[IX~V]|s

[1 | then it suffices if W and V agree on X'\ X

Call X \ x globals of function f
Liveness definition is arranged such that context A records globals

Define coherence to ensure environments agree on globals at
every application

Sigurd Schneider A functional IL for verified compilers 19/32

SAARLAND
UNIVERSITY

Coherence —l

COMPUTER SCIENCE
Inductive definition

f available as long as no global rebound

Sigurd Schneider A functional IL for verified compilers

h NI
Coherence —

COMPUTER SCIENCE

Inductive definition

f available as long as no global rebound

not invariant

1 let x = 7 1in
2 fun f O : {x} = x 1in
3 let x = 5 1in
4

L0

Sigurd Schneider A functional IL for verified compilers 20/ 32

h NI
Coherence —

COMPUTER SCIENCE

Inductive definition

f available as long as no global rebound

not invariant

1 let x = 7 1in
2 fun f O : {x} = x 1in
3 let x = 5 1in
4

L0

f unavailable after line 3

Sigurd Schneider A functional IL for verified compilers 20/ 32

Coherence
Inductive definition

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

f available as long as no global rebound

not invariant coherent

let x = 7 1in let x = 7 1in

1 1
2 fun f O : {x} = x 1in 2 fun £ O : {x} = x 1in
3 let x = 5 1in 3 lety =5 1in
s+ £ O 4+ O
f unavailable after line 3 f available in line

Sigurd Schneider A functional IL for verified compilers

4

20/32

h NI
Coherence —

COMPUTER SCIENCE

Inductive definition

f available as long as no global rebound

not invariant coherent

let x = 7 1in let x = 7 1in

1 1
2 fun f O : {x} = x 1in 2 fun £ O : {x} = x 1in
3 let x = 5 1in 3 lety =5 1in
s+ £ O 4+ O
f unavailable after line 3 f available in line 4

Coherence judgment

m ensures s only applies available functions
m defined relative to liveness information

Sigurd Schneider A functional IL for verified compilers 20/ 32

SAARLAND
UNIVERSITY

Coherence —l

COMPUTER SCIENCE
Rules

A — {x} removes definitions from A that require x as global

A—{x} ~cohs

CoH-OP -
A + cohletx = eins

COH-APP Af—ij‘_

A +~coh fy

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Coherence —l

COMPUTER SCIENCE

Rules

A — {x} removes definitions from A that require x as global

A—{x} ~cohs

CoH-OP -
A + cohletx = eins

Af # L

CoOH-APP ———— " —
A Fcohfy

LA]x removes definitions from A that require more globals than X

A;f: X Hcoht L[A;f : X]x +cohs
A Fcohfunfx : X =sint

Sigurd Schneider A functional IL for verified compilers 21 /32

CoOH-FUN

SAARLAND rvﬂlhrzl
UNIVERSITY U3t

Coherence —l

COMPUTER SCIENCE

Results

We define strip(V,X,s) = (X, s) and lift strip pointwise to contexts.

Theorem (Coherence implies invariance)

If
H A ~cohs S is coherent
A+ cohF definitions in F are coherent
A+ lives: X for A X A’ liveness information is sound
V=xW V,W agree on X
F,VEA closures in F agree with V on globals
then

(F,V,S)F =~ (strip F, W, s),

Sigurd Schneider A functional IL for verified compilers 22 /32

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Register assignment

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Register assignment —_—

COMPUTER SCIENCE

m State-of-the-art SSA-based register assignment algorithm
» decouples spilling from assignment:
number of registers bounded by largest live set
» polynomial-time (coalescing is NP-hard)
» critically depends on dominance ordering
m Register assignment for functional language IL
» same properties: register bound, polynomial time
» straight-forward recursion on syntax
m Correctness argument of assignment phase

» does not involve dominance
» via coherence and x-equivalence

Sigurd Schneider A functional IL for verified compilers 24 /32

SAARLAND
UNIVERSITY

Register assignment —_—
Proof overview o ‘
— \\\\\

renamed-apart

\
Sigurd Schneider A functional IL for verified compilers 25 /32

SAARLAND

Register assignment Mﬁv ‘
Proof overview AOMPUTER .
/// \\\\
/”/ IL/1
///
//

renamed-apart

Sigurd Schneider A functional IL for verified compilers 25 /32

SAARLAND
UNIVERSITY

Register assignment —_—

COMPUTER SCIENCE

Proof overview

coherent

a-équiv

Sigurd Schneider A functional IL for verified compilers 25 /32

SAARLAND
UNIVERSITY

Register assignment —_—

COMPUTER SCIENCE

e

Proof overview

coherent

Sigurd Schneider A functional IL for verified compilers 25 /32

SAARLAND
UNIVERSITY

Register assignment —_—

COMPUTER SCIENCE

e

Proof overview

IL - IL/I

coherence

Sigurd Schneider A functional IL for verified compilers 25 /32

SAARLAND
UNIVERSITY

Register assignment —_—

COMPUTER SCIENCE
Overview and example

1 let i = 1 1in

2 fun £ (3,p) =

3 let c = p <=m in
4 1if c then

5 let k =p * j in
6 letm=p+ 1in
7 F (k,m)

s else

s]

o1in f (i,n)

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Register assignment —_—

COMPUTER SCIENCE
Overview and example

1 let i =1 1in

2 fun £ (3,p) =

3 let c = p <=m in
4 1if c then

5 let k =p * j in
6 let x =p + 1 in
7 f (k,x)

s else

s]

10 in £ (i,n)

B Rename apart
» Every assignment can be representedas p: V -V

Sigurd Schneider A functional IL for verified compilers 26/ 32

SAARLAND
UNIVERSITY

Register assignment —_—

COMPUTER SCIENCE
Overview and example

1 Tlet i =1 1in
2 fun f (i,n) =
3 let c = n <=min
4 1if c then
s leti=n=* 1 1in
6 letn=n+1i1n
7 £ (@G,n)
s else
9 1
o1in f (i,n)
B Rename apart
» Every assignment can be representedasp:V -V
Rename with locally injective p

A psis x-equivalent and coherent
B register assignment algorithm yields locally injective renaming

Sigurd Schneider A functional IL for verified compilers 26 /32

SAARLAND
UNIVERSITY

Register assignment —_—

COMPUTER SCIENCE
Overview and example

1 let i = 1 1in 1 lE=ns

2 fun f (i,n) = 2 fun £ (i,n) =
3 let c =n <=min 3 C i=n <=m;
4 1if c then 4 1if c then

5 let i = n * i 1in 5 i i=n =% i;
6 letn=n+11n 6 h:=n+1;
7 f @Gi,n) 7 f G,n)

s else s else

9 1 9 i

10 in £ (i,n) 10 in f (i,n)

B Rename apart
» Every assignment can be representedas p: V -V
Rename with locally injective p
A psis x-equivalent and coherent
B register assignment algorithm yields locally injective renaming

Reinterpret binding as assignment: IL/I

Sigurd Schneider A functional IL for verified compilers 26 /32

SAARLAND
UNIVERSITY

Side Conditions: Liveness and Renamed-Apart ———

COMPUTER SCIENCE

m Call |A and s suitable|if

K s renamed-apart
A+ lives: X liveness sound

* write [s] for X

Sigurd Schneider A functional IL for verified compilers

SAARLAND

Side Conditions: Liveness and Renamed-Apart ——'=
m Call \A and s suitable\ if
K s renamed-apart
A+ lives: X liveness sound
* write [s] for X
s c fv(s) no variable occurs in annotation before it is bound

1 fun £ O : {y} = 7 1in
2 let y = 5 1in
3 F QO

Sigurd Schneider A functional IL for verified compilers 27 /32

SAARLAND

Side Conditions: Liveness and Renamed-Apart ——'=
m Call \A and s suitable\ if

K s renamed-apart

A+ lives: X liveness sound
* write [s] for X

s c fv(s) no variable occurs in annotation before it is bound
1 fun £ O : {y} = 7 1in
2 let y = 5 1in
3 f O

A c fv(s) no global from A bound in s
1 fun £ O : {x} = x 1in 1
2 let y = 5 1in 2 let y =5 1in
3 O 3 f O

Sigurd Schneider A functional IL for verified compilers 27 /32

SAARLAND

Side Conditions: Liveness and Renamed-Apart ——'=
m Call \A and s suitable\ if

K s renamed-apart

A+ lives: X liveness sound
* write [s] for X

s c fv(s) no variable occurs in annotation before it is bound
1 fun £ O : {y} = 7 1in
2 let y = 5 1in
3 f O

A c fv(s) no global from A bound in s
1 fun £ O : {x} = x 1in 1
2 let y = 5 1in 2 let y =5 1in
3 O 3 f O

Sigurd Schneider A functional IL for verified compilers 27 /32

SAARLAND
UNIVERSITY

Local Injectivity —

COMPUTER SCIENCE

Local Injectivity requires p : 'V — "V to be injective on every
live set X that appears in the liveness derivation.

p~X: inverse of p on X,

Sigurd Schneider A functional IL for verified compilers

SAARLAND ehg
Local Injectivity —_—
COMPUTER SCIENCE

Local Injectivity requires p : 'V — "V to be injective on every

live set X that appears in the liveness derivation.

Theorem (A)
If
B A and s suitable
s without unreachable code
p+injs
then
l o (IAls1) +coh (ps)
p injective onfv(s) = p,p M) - ps ~y s

p locally injective

pSs coherent
pSs x-equivalent to s

p~X:inverse of p on X,

Sigurd Schneider A functional IL for verified compilers 28 /32

SAARLAND
UNIVERSITY

Register assignment algorithm —_—
Deﬁnltlon COMPUTER SCIENCE
m Assume fresh : set’V — "V such that fresh X ¢ X for all finite X.
» separation of concerns: correctness and code quality

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Register assignment algorithm —_—
Deﬁnltlon COMPUTER SCIENCE
m Assume fresh : set’V — "V such that fresh X ¢ X for all finite X.
» separation of concerns: correctness and code quality

m rassign yields renaming V -V

Sigurd Schneider A functional IL for verified compilers

SAARLAND

Register assignment algorithm ——!

COMPUTER SCIENCE

Definition
m Assume fresh : set’V — "V such that fresh X ¢ X for all finite X.
» separation of concerns: correctness and code quality
m rassign yields renaming V -V

rassignp (letx = ein's) = rassign(p[x~ y])s
where y = fresh (p([s] \ {x}))
rassign p (if ethen selset) = rassign (rassignp s) t
rassignp e = p
rassignp (fe) = p
rassignp (funfx : X' =sint) = rassign (rassign(p[Xx — y])s)t

where y = freshlist (p([s] \ X)) |X]

rassign recurses on program structure,
while SSA algorithm must process statements in dominance order

Sigurd Schneider A functional IL for verified compilers 29/32

i i : ONVeRsITY B
Register assignment algorithm —

COMPUTER SCIENCE

Correctness and bound on registers

Theorem (B)

Let A and s suitable and p injective on [s]. Then: rassignp s - inj s.

Assume variables totally ordered: xo < x; < x2...

Theorem (Register Bound)

If
B A and s suitable
V finite sets of variables Y: freshY € {xo,..., X|y|}
k is size of largest set of live variables in s
p(fv(s)) € {xo,..., Xn}.
p’ =rassignp s

Then p’ (Vo(s)) S {X0,.. -, Xmaxink}}

Sigurd Schneider A functional IL for verified compilers 30/ 32

SAARLAND
UNIVERSITY

Coqg Development —

COMPUTER SCIENCE

This work is part of a very simple verified compiler
Extraction yields binary that handles the running example
» Efficient finite set library with type classes (Lescuyer 2012)
» Cannot assume set extensionality
» Decision procedures for equivalence on many types
Development almost completely constructive
» UIP required for Paco Library (Hur et al. (2013))
m Formal development contains proofs of
» Backwards translation: IL/I to IL (SSA-construction)
» Dead code elimination
» Sparse conditional constant propagation
» Translation validation for analysis results

Sigurd Schneider A functional IL for verified compilers 31/32

SAARLAND
UNIVERSITY

Conclusion —l

COMPUTER SCIENCE

m Coherence relates binding to assignment
m Correctness proof of register assignment on IL

» same advantages as SSA (register bound)
» correctness via coherence and x-equivalence
» structural recursion instead of dominance ordering

m Coq development is available online!

Twww.ps.uni-saarland.de/~sdschn/publications/1vcl5

Sigurd Schneider A functional IL for verified compilers 32/32

www.ps.uni-saarland.de/~sdschn/publications/lvc15

SAARLAND
UNIVERSITY

Conclusion —l

COMPUTER SCIENCE

m Coherence relates binding to assignment
m Correctness proof of register assignment on IL

» same advantages as SSA (register bound)
» correctness via coherence and x-equivalence
» structural recursion instead of dominance ordering

m Coq development is available online!

Thanks! Questions?

Twww.ps.uni-saarland.de/~sdschn/publications/1vcl5

Sigurd Schneider A functional IL for verified compilers 32/32

www.ps.uni-saarland.de/~sdschn/publications/lvc15

SAARLAND
UNIVERSITY

Thank you for your attention! Questions? | —

COMPUTER SCIENCE

\ Appel, A. W. (1992). Compiling with Continuations. Cambridge, England: Cambridge University
Press.

‘ — (1998). “SSA is Functional Programming”. In: SIGPLAN Notices 33.4.

\ Barthe, G. et al. (2012). “A Formally Verified SSA-Based Middle-End - Static Single Assignment
Meets CompCert”. In: ESOP.

\ Beringer, L. et al. (2003). “Grail: a Functional Form for Imperative Mobile Code”. In: ENTCS 85.1.

‘ Blazy, S. et al. (2010). “Formal Verification of Coalescing Graph-Coloring Register Allocation”. In:
ESOP.

\ Chakravarty, M. M. T. et al. (2003). “A Functional Perspective on SSA Optimisation Algorithms”.
In: ENTCS 82.2.

\ Hack, S. et al. (2006). “Register Allocation for Programs in SSA-Form”. In: CC.
\ Hur, C. et al. (2013). “The power of parameterization in coinductive proof”. In: POPL.

‘ Kelsey, R. A. (1995). “A correspondence between continuation passing style and static single
assignment form”. In: SIGPLAN Not. 30 (3).

‘ Leroy, X. (2009). “Formal Verification of a Realistic Compiler”. In: CACM 52.7.

Sigurd Schneider A functional IL for verified compilers 33/32

SAARLAND
UNIVERSITY

Thank you for your attention! Questions? Il —

COMPUTER SCIENCE

| Lescuyer, S. (2012). Containers: a typeclass-based library of finite sets/maps. URL:
http://coq.inria.fr/pylons/contribs/view/Containers/v8.4.

| Sabry, A. and M. Felleisen (1993). “Reasoning about Programs in Continuation-Passing Style”. In:
LSC6.3-4.

| Zhao, J. et al. (2012). “Formalizing LLVM Intermediate Representation for Verified Program
Transformations”. In: POPL.

Sigurd Schneider A functional IL for verified compilers

http://coq.inria.fr/pylons/contribs/view/Containers/v8.4

, UNIVERSITY
Semantics of IL and IL/I s e

COMPUTER SCIENCE
Common rules

=T |lVv=0nx events

*, small step relation

Sigurd Schneider A functional IL for verified compilers

, UNIVERSITY
Semantics of IL and IL/I s e

COMPUTER SCIENCE
Common rules

¢i=Tl|lv=a events F function env.

(F,V,s) V variable env.
*, small step relation s program

Sigurd Schneider A functional IL for verified compilers

Semantics of IL and IL/I

Common rules

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

pu=Tlv=0 events F function env.
(F,V,s) V variable env.
2, small step relation s program
Op EXTERN
[elV=v veV
FlV |letx = eins FlV [let x=xins
L F|VIx~v]ls = FIVix—v]ls
CoND
[e]lV=v B(v) =i
F |V |ifethen sy else s
-~ FlV]s

Sigurd Schneider A functional IL for verified compilers

35/32

, UNIVERSITY
Semantics IL and IL/I s e

COMPUTER SCIENCE

Differences
IL
ApPP
FuN [elV=V Ff = (W,X,s)
F [V]funfXx=sint F |V |fe
= Ff: (X s) VIt = FIIW[X~7V]]|s

Sigurd Schneider A functional IL for verified compilers

, UNIVERSITY
Semantics IL and IL/I s e

COMPUTER SCIENCE

Differences
IL
APP
FuN [elV=V Ff = (W,X,s)
F [V]funfXx=sint F |V |fe
= Ff: (X s) VIt = FIIW[X~7V]]|s
IL/1
I-App
I-FUN [elv=V Lf = (Xx,s)
L [V]funfx=sint L |V |fe
L Lf: sVt = FIV[x~V]ls

Sigurd Schneider A functional IL for verified compilers

SAARLAND

Program equivalence —_—
Internally deterministic reduction systems o ‘
Definition

A reduction system (RS) is a tuple (£, E, —, T, res), s.t.

B &E,—)isalTS Hres:2-V,

TEE reso = v = g —-terminal

An internally deterministic reduction system (IDRS) additionally
satisfies

o 2, oy ANO 2, oy = 0] =03 action-deterministic

Bo2oro oy b=T T-deterministic

Sigurd Schneider A functional IL for verified compilers 37 /32

SAARLAND
UNIVERSITY

Program equivalence e e

COMPUTER SCIENCE
Trace equivalence

Iome=€e|v]| L] ¢m b#*ET partial trace

o> o poduces 1T

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Program equivalence e e

COMPUTER SCIENCE
Trace equivalence

Iome=€e|v]| L] ¢m b#*ET partial trace

o> o poduces 1T

Definition (Trace equivalence)

o~0 <= Vmop>m < o' >T

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Program equivalence e e

COMPUTER SCIENCE
Trace equivalence

Iome=€e|v]| L] ¢m b#*ET partial trace

o> o poduces 1T

Definition (Trace equivalence)

o~0 <= Vmop>m < o' >T

o~0 bisimilarity

Sigurd Schneider A functional IL for verified compilers

SAARLAND
UNIVERSITY

Program equivalence e e

COMPUTER SCIENCE

Trace equivalence

MIomu=€e|v]L]|¢m b#*ET partial trace
o> o poduces 1T

Definition (Trace equivalence)

o~0 <= Vmop>m < o' >T

4

o~0 bisimilarity

Theorem (Soundness and completeness)

Let (S,E,—,res, T) be an IDRS and 0,0’ € S. Then:
o~0 <= o0

Sigurd Schneider A functional IL for verified compilers 38 /32

SAARLAND
UNIVERSITY

Local Injectivity —

COMPUTER SCIENCE
The problem with unreachable code

1 fun £ O = x 1in
2y

1 fun £ O
2y

]
<
-
=

m {x~y,y~ y}locally injective

m Programs not x-equivalent

Sigurd Schneider A functional IL for verified compilers

	Introduction
	Related work
	Semantics and program equivalence
	Liveness
	Coherence
	Register assignment

