
A linear functional first-order intermediate
language for verified compilers

Sigurd Schneider, Sebastian Hack, Gert Smolka

ITP 2015, Nanjing

2015-08-24

computer science

saarland
university

http://www.cs.uni-saarland.de/

computer science

saarland
universityIntroduction

Binding vs. assignment

Binding Assignment

let x=e in s

x is bound in term s

functional

x := e; s

x is a register

imperative

SSA-based register assignment
Translation from binding to assignment

Sigurd Schneider A functional IL for verified compilers 2 / 32

computer science

saarland
universityIntroduction

Binding vs. assignment

Binding Assignment

let x=e in s

x is bound in term s

functional

x := e; s

x is a register

imperative

SSA-based register assignment
Translation from binding to assignment

Sigurd Schneider A functional IL for verified compilers 2 / 32

computer science

saarland
universityIntroduction

Binding vs. assignment

Binding Assignment

let x=e in s

x is bound in term s

functional

x := e; s

x is a register

imperative

SSA-based register assignment
Translation from binding to assignment

Sigurd Schneider A functional IL for verified compilers 2 / 32

computer science

saarland
universityIntroduction

Binding vs. assignment

Binding Assignment

let x=e in s

x is bound in term s

functional

x := e; s

x is a register

imperative

SSA-based register assignment
Translation from binding to assignment

Sigurd Schneider A functional IL for verified compilers 2 / 32

computer science

saarland
universityIntermediate language IL

A linear first-order functional language with external calls

s, t ::= term

| let x = e in s variable binding

| let x = α in s external call

| if e then s else t conditional

| e value

| fun f x = s in t function definition

| f e application

1 First-order CFGs

Functions f ,g not first-class

2 Tail-call only intra-procedural

f e only in tail position

3 Linear simpl.

Restricted sequentialization
let x = e in s (not: s; t)

4 External calls realistic

let x = α in s

Sigurd Schneider A functional IL for verified compilers 3 / 32

computer science

saarland
universityIntermediate language IL

A linear first-order functional language with external calls

s, t ::= term

| let x = e in s variable binding

| let x = α in s external call

| if e then s else t conditional

| e value

| fun f x = s in t function definition

| f e application

1 First-order CFGs

Functions f ,g not first-class

2 Tail-call only intra-procedural

f e only in tail position

3 Linear simpl.

Restricted sequentialization
let x = e in s (not: s; t)

4 External calls realistic

let x = α in s

Sigurd Schneider A functional IL for verified compilers 3 / 32

computer science

saarland
universityIntermediate language IL

A linear first-order functional language with external calls

s, t ::= term

| let x = e in s variable binding

| let x = α in s external call

| if e then s else t conditional

| e value

| fun f x = s in t function definition

| f e application

1 First-order CFGs

Functions f ,g not first-class

2 Tail-call only intra-procedural

f e only in tail position

3 Linear simpl.

Restricted sequentialization
let x = e in s (not: s; t)

4 External calls realistic

let x = α in s

Sigurd Schneider A functional IL for verified compilers 3 / 32

computer science

saarland
universityIntermediate language IL

A linear first-order functional language with external calls

s, t ::= term

| let x = e in s variable binding

| let x = α in s external call

| if e then s else t conditional

| e value

| fun f x = s in t function definition

| f e application

1 First-order CFGs

Functions f ,g not first-class

2 Tail-call only intra-procedural

f e only in tail position

3 Linear simpl.

Restricted sequentialization
let x = e in s (not: s; t)

4 External calls realistic

let x = α in s

Sigurd Schneider A functional IL for verified compilers 3 / 32

computer science

saarland
universityIntermediate language IL

A linear first-order functional language with external calls

s, t ::= term

| let x = e in s variable binding

| let x = α in s external call

| if e then s else t conditional

| e value

| fun f x = s in t function definition

| f e application

1 First-order CFGs

Functions f ,g not first-class

2 Tail-call only intra-procedural

f e only in tail position

3 Linear simpl.

Restricted sequentialization
let x = e in s (not: s; t)

4 External calls realistic

let x = α in s
Sigurd Schneider A functional IL for verified compilers 3 / 32

computer science

saarland
universityExample

A functional and an imperative interpretation

F(n,m) := n∗ (n+ 1)∗ . . .∗m

When renamed-apart, binding and assignment interchangeable!

Sigurd Schneider A functional IL for verified compilers 4 / 32

computer science

saarland
universityExample

A functional and an imperative interpretation

F(n,m) := n∗ (n+ 1)∗ . . .∗m

Functional IL

1 let i = 1 in
2 fun f (j,p) =
3 let c = p <= m in
4 if c then
5 let k = p * j in
6 let m = p + 1 in
7 f (k,m)
8 else
9 j

10 in f (i,n)

When renamed-apart, binding and assignment interchangeable!

Sigurd Schneider A functional IL for verified compilers 4 / 32

computer science

saarland
universityExample

A functional and an imperative interpretation

F(n,m) := n∗ (n+ 1)∗ . . .∗m

Functional IL

1 let i = 1 in
2 fun f (j,p) =
3 let c = p <= m in
4 if c then
5 let k = p * j in
6 let m = p + 1 in
7 f (k,m)
8 else
9 j

10 in f (i,n)

Imperative IL/I

1 i := 1;
2 fun f (j,p) =
3 c := p <= m;
4 if c then
5 k := p * j;
6 m := p + 1;
7 f (k,m)
8 else
9 j

10 in f (i,n)

When renamed-apart, binding and assignment interchangeable!

Sigurd Schneider A functional IL for verified compilers 4 / 32

computer science

saarland
universityExample

A functional and an imperative interpretation

F(n,m) := n∗ (n+ 1)∗ . . .∗m

Functional IL

1 let i = 1 in
2 fun f (j,p) =
3 let c = p <= m in
4 if c then
5 let k = p * j in
6 let m = p + 1 in
7 f (k,m)
8 else
9 j

10 in f (i,n)

Imperative IL/I

1 i := 1;
2 fun f (j,p) =
3 c := p <= m;
4 if c then
5 k := p * j;
6 m := p + 1;
7 f (k,m)
8 else
9 j

10 in f (i,n)

When renamed-apart, binding and assignment interchangeable!

Parameter passing
in IL/I is parallel
assignment:

j,p := k,m

No closure
created:
goto

Sigurd Schneider A functional IL for verified compilers 4 / 32

computer science

saarland
universityExample

A functional and an imperative interpretation

F(n,m) := n∗ (n+ 1)∗ . . .∗m

Functional IL

1 let i = 1 in
2 fun f (j,p) =
3 let c = p <= m in
4 if c then
5 let k = p * j in
6 let m = p + 1 in
7 f (k,m)
8 else
9 j

10 in f (i,n)

Imperative IL/I

1 i := 1;
2 fun f (j,p) =
3 c := p <= m;
4 if c then
5 k := p * j;
6 m := p + 1;
7 f (k,m)
8 else
9 j

10 in f (i,n)

When renamed-apart, binding and assignment interchangeable!

Sigurd Schneider A functional IL for verified compilers 4 / 32

computer science

saarland
universityExample

A functional and an imperative interpretation

F(n,m) := n∗ (n+ 1)∗ . . .∗m

Functional IL

1 let i = 1 in
2 fun f (j,p) =
3 let c = p <= m in
4 if c then
5 let k = p * j in
6 let x = p + 1 in
7 f (k,x)
8 else
9 j

10 in f (i,n)

Imperative IL/I

1 i := 1;
2 fun f (j,p) =
3 c := p <= m;
4 if c then
5 k := p * j;
6 m := p + 1;
7 f (k,m)
8 else
9 j

10 in f (i,n)

When renamed-apart, binding and assignment interchangeable!

Sigurd Schneider A functional IL for verified compilers 4 / 32

computer science

saarland
universityExample

A functional and an imperative interpretation

F(n,m) := n∗ (n+ 1)∗ . . .∗m

Functional IL

1 let i = 1 in
2 fun f (j,p) =
3 let c = p <= m in
4 if c then
5 let k = p * j in
6 let x = p + 1 in
7 f (k,x)
8 else
9 j

10 in f (i,n)

Imperative IL/I

1 i := 1;
2 fun f (j,p) =
3 c := p <= m;
4 if c then
5 k := p * j;
6 x := p + 1;
7 f (k,x)
8 else
9 j

10 in f (i,n)

When renamed-apart, binding and assignment interchangeable!

Sigurd Schneider A functional IL for verified compilers 4 / 32

computer science

saarland
universityOverview

Translating from the functional to the imperative interpretation

IL IL/I

assignment

low-level

goto

binding

first-order

tail-call

invariant

Sigurd Schneider A functional IL for verified compilers 5 / 32

computer science

saarland
universityOverview

Translating from the functional to the imperative interpretation

IL IL/I

assignment

low-level

goto

binding

first-order

tail-call

coherent

Sigurd Schneider A functional IL for verified compilers 5 / 32

computer science

saarland
universityOverview

Translating from the functional to the imperative interpretation

IL IL/I

assignment

low-level

goto

binding

first-order

tail-call

coherent

α-renaming

Sigurd Schneider A functional IL for verified compilers 5 / 32

computer science

saarland
universityOverview

Translating from the functional to the imperative interpretation

IL IL/I

assignment

low-level

goto

binding

first-order

tail-call

coherent

α-renaming

SSA-based register assignment

Sigurd Schneider A functional IL for verified compilers 5 / 32

computer science

saarland
university

Related work

Sigurd Schneider A functional IL for verified compilers 6 / 32

computer science

saarland
universityStatic single assignment (SSA)

Related work

IL

1 let i = 1 in
2 fun f (j,p) =
3

4 let c = p <= m in
5 if c then
6 let k = p * j in
7 let x = p + 1 in
8 f (k,x)
9 else

10 j
11 in f (i,n)

SSA

1 i := 1;
2 f:
3 j := φ(i,k), p := φ(n,x)
4 c := n <= m;
5 if c then
6 k := p * j;
7 x := p + 1;
8 goto f
9 else

10 return i

SSA � CPS due to Appel (1998) and Kelsey (1995).
Chakravarty et al. (2003) reformulates SSA optimization on a
functional language in ANF (Sabry et al. 1993).
IL is a sub-language (up to system calls)

Sigurd Schneider A functional IL for verified compilers 7 / 32

computer science

saarland
universitySSA in verified compilers

Related work

1 CompCertSSA: Barthe et al. (2012)
ñ Integrates SSA-based optimization passes in CompCert (Leroy

(2009))

2 VeLLVM: Zhao et al. (2012)
ñ Verifies some SSA-based passes of LLVM

SSA for optimizations
ñ performance of data-flow analyses

φ-functions
ñ no functional language
ñ underlying semantics uses imperative variables

Sigurd Schneider A functional IL for verified compilers 8 / 32

computer science

saarland
universitySSA-based register allocation

Related work

SSA-based register allocation (Hack et al. (2006))
ñ allows phase separation of spilling and register assignment
ñ IL version similar to Appel (1992)
ñ not considered in verified setting so far:

out of SSA + non-SSA register allocation

Blazy et al. (2010) verify non-SSA register allocation algorithm
(which must include spilling)

We only considering register assignment, because SSA-based
algorithm allows spilling to be separate phase

Sigurd Schneider A functional IL for verified compilers 9 / 32

computer science

saarland
universityFunctional and imperative semantics

Related work

Beringer et al. (2003) use a language with a functional and
imperative interpretation for proof-carrying code.

Grail normal form (GNF) sufficient for functional + imperative
semantics to coincide

Main difference: GNF requires functions to be closure converted,
i.e. all variables a function body depends on must be parameters

Sigurd Schneider A functional IL for verified compilers 10 / 32

computer science

saarland
universityContributions

Coherence
ñ relates binding and assignment directly
ñ another perspective on SSA and functional programming

SSA-based register assignment on IL
ñ formal correctness proof (using coherence)
ñ key property from SSA holds on IL:

spilling can be considered separately (not possible without SSA)

Coq development available online:
www.ps.uni-saarland.de/~sdschn/publications/lvc15

Sigurd Schneider A functional IL for verified compilers 11 / 32

www.ps.uni-saarland.de/~sdschn/publications/lvc15

computer science

saarland
university

Semantics and program equivalence

Sigurd Schneider A functional IL for verified compilers 12 / 32

computer science

saarland
universitySemantics of IL and IL/I

Reduction, events, configurations

Small-step relation
φ
-→

Decorated with events φ
φ ::= τ silent event

| v = α external event

Configurations

IL: (F ,V , s) IL/I: (L,V , s)

ñ F function env. (with closures)
ñ L block env. (no closures)
ñ V variable env.
ñ s program

Sigurd Schneider A functional IL for verified compilers 13 / 32

computer science

saarland
universityProgram equivalence

Non-determinism and equivalence

Extern
v ∈ V

F |V | let x = α in s
v=α
-→ F |V[x , v] | s

φ
-→ forms a LTS

Internally deterministic reduction systems (IDRS)

ñ σ
φ
-→ σ1 ∧ σ τ

-→ σ2 ⇒ φ = τ τ-deterministic

ñ σ
φ
-→ σ1 ∧ σ

φ
-→ σ2 ⇒ σ1 = σ2 action-deterministic

Configurations are equivalent ('), if they allow the same partial
traces

π ::= ε | v | ⊥ | v = α,π

Sound and complete characterization via (stutter) bisimulation

Sigurd Schneider A functional IL for verified compilers 14 / 32

computer science

saarland
university

Liveness

Sigurd Schneider A functional IL for verified compilers 15 / 32

computer science

saarland
universityLiveness

Judgment

V =X W ⇒ (L,V , s) ?' (L,W , s)

Λ ` live s : X

Λ live variables of functions
s program
X set of live variables

embedded liveness analysis results as annotations in syntax:

fun f x : X1 = s1 in s2

syntactic structure allows for inductive specification

useful for imperative IL/I

judgment monotonic in X (larger sets are sound)

Sigurd Schneider A functional IL for verified compilers 16 / 32

computer science

saarland
universityLiveness

Judgment

V =X W ⇒ (L,V , s) ?' (L,W , s)

Λ ` live s : X

Λ live variables of functions
s program
X set of live variables

embedded liveness analysis results as annotations in syntax:

fun f x : X1 = s1 in s2

syntactic structure allows for inductive specification

useful for imperative IL/I

judgment monotonic in X (larger sets are sound)

Sigurd Schneider A functional IL for verified compilers 16 / 32

computer science

saarland
universityLiveness

Judgment

V =X W ⇒ (L,V , s) ?' (L,W , s)

Λ ` live s : X

Λ live variables of functions
s program
X set of live variables

embedded liveness analysis results as annotations in syntax:

fun f x : X1 = s1 in s2

syntactic structure allows for inductive specification

useful for imperative IL/I

judgment monotonic in X (larger sets are sound)

Sigurd Schneider A functional IL for verified compilers 16 / 32

computer science

saarland
universityLiveness

Properties for IL/I

Theorem (Decidability)

Λ ` live s : X decidable.

Theorem (Soundness)

If

1 Λ ` live s : X liveness information sound

2 L î Λ Λ sound for blocks L

3 V =X W V ,W agree on live set X

then

(L,V , s) ' (L,W , s)

Sigurd Schneider A functional IL for verified compilers 17 / 32

computer science

saarland
university

Coherence

Sigurd Schneider A functional IL for verified compilers 18 / 32

computer science

saarland
universityCoherence

Intuition

F , f : (W, x, s) | V | f e -→ F , f : (W, x, s) | W[x , v] | s

?'
F , f : (W, x, s) | V[x , v] | s

1 If Λ ` live s : X then it suffices if W and V agree on X \ x

2 Call X \ x globals of function f

3 Liveness definition is arranged such that context Λ records globals

4 Define coherence to ensure environments agree on globals at
every application

Sigurd Schneider A functional IL for verified compilers 19 / 32

computer science

saarland
universityCoherence

Intuition

F , f : (W, x, s) | V | f e -→ F , f : (W, x, s) | W[x , v] | s

?'
F , f : (W, x, s) | V[x , v] | s

1 If Λ ` live s : X then it suffices if W and V agree on X \ x

2 Call X \ x globals of function f

3 Liveness definition is arranged such that context Λ records globals

4 Define coherence to ensure environments agree on globals at
every application

Sigurd Schneider A functional IL for verified compilers 19 / 32

computer science

saarland
universityCoherence

Inductive definition

f available as long as no global rebound

not invariant

1 let x = 7 in
2 fun f () : {x} = x in
3 let x = 5 in
4 f ()

f unavailable after line 3

coherent

1 let x = 7 in
2 fun f () : {x} = x in
3 let y = 5 in
4 f ()

f available in line 4

Coherence judgment Λ ` coh s

ensures s only applies available functions

defined relative to liveness information

Sigurd Schneider A functional IL for verified compilers 20 / 32

computer science

saarland
universityCoherence

Inductive definition

f available as long as no global rebound

not invariant

1 let x = 7 in
2 fun f () : {x} = x in
3 let x = 5 in
4 f ()

f unavailable after line 3

coherent

1 let x = 7 in
2 fun f () : {x} = x in
3 let y = 5 in
4 f ()

f available in line 4

Coherence judgment Λ ` coh s

ensures s only applies available functions

defined relative to liveness information

Sigurd Schneider A functional IL for verified compilers 20 / 32

computer science

saarland
universityCoherence

Inductive definition

f available as long as no global rebound

not invariant

1 let x = 7 in
2 fun f () : {x} = x in
3 let x = 5 in
4 f ()

f unavailable after line 3

coherent

1 let x = 7 in
2 fun f () : {x} = x in
3 let y = 5 in
4 f ()

f available in line 4

Coherence judgment Λ ` coh s

ensures s only applies available functions

defined relative to liveness information

Sigurd Schneider A functional IL for verified compilers 20 / 32

computer science

saarland
universityCoherence

Inductive definition

f available as long as no global rebound

not invariant

1 let x = 7 in
2 fun f () : {x} = x in
3 let x = 5 in
4 f ()

f unavailable after line 3

coherent

1 let x = 7 in
2 fun f () : {x} = x in
3 let y = 5 in
4 f ()

f available in line 4

Coherence judgment Λ ` coh s

ensures s only applies available functions

defined relative to liveness information

Sigurd Schneider A functional IL for verified compilers 20 / 32

computer science

saarland
universityCoherence

Inductive definition

f available as long as no global rebound

not invariant

1 let x = 7 in
2 fun f () : {x} = x in
3 let x = 5 in
4 f ()

f unavailable after line 3

coherent

1 let x = 7 in
2 fun f () : {x} = x in
3 let y = 5 in
4 f ()

f available in line 4

Coherence judgment Λ ` coh s

ensures s only applies available functions

defined relative to liveness information

Sigurd Schneider A functional IL for verified compilers 20 / 32

computer science

saarland
universityCoherence

Rules

Λ− {x} removes definitions from Λ that require x as global

Coh-Op
Λ− {x} ` coh s

Λ ` coh let x = e in s

Coh-App
Λf , ⊥

Λ ` coh f y

bΛcX removes definitions from Λ that require more globals than X

Coh-Fun
Λ; f : X ` coh t bΛ; f : XcX ` coh s

Λ ` coh fun f x : X = s in t

Sigurd Schneider A functional IL for verified compilers 21 / 32

computer science

saarland
universityCoherence

Rules

Λ− {x} removes definitions from Λ that require x as global

Coh-Op
Λ− {x} ` coh s

Λ ` coh let x = e in s

Coh-App
Λf , ⊥

Λ ` coh f y

bΛcX removes definitions from Λ that require more globals than X

Coh-Fun
Λ; f : X ` coh t bΛ; f : XcX ` coh s

Λ ` coh fun f x : X = s in t

Sigurd Schneider A functional IL for verified compilers 21 / 32

computer science

saarland
universityCoherence

Results

We define strip(V , x, s) = (x, s) and lift strip pointwise to contexts.

Theorem (Coherence implies invariance)

If

1 Λ ` coh s s is coherent

2 Λ ` coh F definitions in F are coherent

3 Λ′ ` live s : X for Λ � Λ′ liveness information is sound

4 V =X W V ,W agree on X

5 F ,V î Λ closures in F agree with V on globals

then
(F ,V , s)F ' (strip F ,W , s)I

Sigurd Schneider A functional IL for verified compilers 22 / 32

computer science

saarland
university

Register assignment

Sigurd Schneider A functional IL for verified compilers 23 / 32

computer science

saarland
universityRegister assignment

State-of-the-art SSA-based register assignment algorithm
ñ decouples spilling from assignment:

number of registers bounded by largest live set
ñ polynomial-time (coalescing is NP-hard)
ñ critically depends on dominance ordering

Register assignment for functional language IL
ñ same properties: register bound, polynomial time
ñ straight-forward recursion on syntax

Correctness argument of assignment phase
ñ does not involve dominance
ñ via coherence and α-equivalence

Sigurd Schneider A functional IL for verified compilers 24 / 32

computer science

saarland
universityRegister assignment

Proof overview

IL IL/I

coherent

renamed-apart

Sigurd Schneider A functional IL for verified compilers 25 / 32

computer science

saarland
universityRegister assignment

Proof overview

IL IL/I

coherent

renamed-apart

α-equivalent

rename apart

Sigurd Schneider A functional IL for verified compilers 25 / 32

computer science

saarland
universityRegister assignment

Proof overview

IL IL/I

coherent

renamed-apart

α-equivalent

rename apart

α-equivalent

locally injective renaming

Sigurd Schneider A functional IL for verified compilers 25 / 32

computer science

saarland
universityRegister assignment

Proof overview

IL IL/I

coherent

renamed-apart

α-equivalent

rename apart

α-equivalent

locally injective renaming

(register assignment)

Sigurd Schneider A functional IL for verified compilers 25 / 32

computer science

saarland
universityRegister assignment

Proof overview

IL IL/I

coherent

renamed-apart

α-equivalent

rename apart

α-equivalent

locally injective renaming

(register assignment)

coherence

Sigurd Schneider A functional IL for verified compilers 25 / 32

computer science

saarland
universityRegister assignment

Overview and example

1 let i = 1 in
2 fun f (j,p) =
3 let c = p <= m in
4 if c then
5 let k = p * j in
6 let m = p + 1 in
7 f (k,m)
8 else
9 j

10 in f (i,n)

1 Rename apart
ñ Every assignment can be represented as ρ : V → V

2 Rename with locally injective ρ
A ρs is α-equivalent and coherent
B register assignment algorithm yields locally injective renaming

3 Reinterpret binding as assignment: IL/I

Sigurd Schneider A functional IL for verified compilers 26 / 32

computer science

saarland
universityRegister assignment

Overview and example

1 let i = 1 in
2 fun f (j,p) =
3 let c = p <= m in
4 if c then
5 let k = p * j in
6 let x = p + 1 in
7 f (k,x)
8 else
9 j

10 in f (i,n)

1 Rename apart
ñ Every assignment can be represented as ρ : V → V

2 Rename with locally injective ρ
A ρs is α-equivalent and coherent
B register assignment algorithm yields locally injective renaming

3 Reinterpret binding as assignment: IL/I

Sigurd Schneider A functional IL for verified compilers 26 / 32

computer science

saarland
universityRegister assignment

Overview and example

1 let i = 1 in
2 fun f (i,n) =
3 let c = n <= m in
4 if c then
5 let i = n * i in
6 let n = n + 1 in
7 f (i,n)
8 else
9 i

10 in f (i,n)

1 Rename apart
ñ Every assignment can be represented as ρ : V → V

2 Rename with locally injective ρ
A ρs is α-equivalent and coherent
B register assignment algorithm yields locally injective renaming

3 Reinterpret binding as assignment: IL/I

Sigurd Schneider A functional IL for verified compilers 26 / 32

computer science

saarland
universityRegister assignment

Overview and example

1 let i = 1 in
2 fun f (i,n) =
3 let c = n <= m in
4 if c then
5 let i = n * i in
6 let n = n + 1 in
7 f (i,n)
8 else
9 i

10 in f (i,n)

1 i := 1;
2 fun f (i,n) =
3 c := n <= m;
4 if c then
5 i := n * i;
6 n := n + 1;
7 f (i,n)
8 else
9 i

10 in f (i,n)

1 Rename apart
ñ Every assignment can be represented as ρ : V → V

2 Rename with locally injective ρ
A ρs is α-equivalent and coherent
B register assignment algorithm yields locally injective renaming

3 Reinterpret binding as assignment: IL/I

Sigurd Schneider A functional IL for verified compilers 26 / 32

computer science

saarland
universitySide Conditions: Liveness and Renamed-Apart

Call Λ and s suitable if

1 s renamed-apart
2 Λ ` live s : X liveness sound

« write [s] for X

3 s ⊆ fv(s) no variable occurs in annotation before it is bound

1 fun f () : {y} = 7 in
2 let y = 5 in
3 f ()

4 Λ ⊆ fv(s) no global from Λ bound in s

1 fun f () : {x} = x in
2 let y = 5 in
3 f ()

1

2 let y = 5 in
3 f ()

Sigurd Schneider A functional IL for verified compilers 27 / 32

computer science

saarland
universitySide Conditions: Liveness and Renamed-Apart

Call Λ and s suitable if

1 s renamed-apart
2 Λ ` live s : X liveness sound

« write [s] for X

3 s ⊆ fv(s) no variable occurs in annotation before it is bound

1 fun f () : {y} = 7 in
2 let y = 5 in
3 f ()

4 Λ ⊆ fv(s) no global from Λ bound in s

1 fun f () : {x} = x in
2 let y = 5 in
3 f ()

1

2 let y = 5 in
3 f ()

Sigurd Schneider A functional IL for verified compilers 27 / 32

computer science

saarland
universitySide Conditions: Liveness and Renamed-Apart

Call Λ and s suitable if

1 s renamed-apart
2 Λ ` live s : X liveness sound

« write [s] for X

3 s ⊆ fv(s) no variable occurs in annotation before it is bound

1 fun f () : {y} = 7 in
2 let y = 5 in
3 f ()

4 Λ ⊆ fv(s) no global from Λ bound in s

1 fun f () : {x} = x in
2 let y = 5 in
3 f ()

1

2 let y = 5 in
3 f ()

Sigurd Schneider A functional IL for verified compilers 27 / 32

computer science

saarland
universitySide Conditions: Liveness and Renamed-Apart

Call Λ and s suitable if

1 s renamed-apart
2 Λ ` live s : X liveness sound

« write [s] for X

3 s ⊆ fv(s) no variable occurs in annotation before it is bound

1 fun f () : {y} = 7 in
2 let y = 5 in
3 f ()

4 Λ ⊆ fv(s) no global from Λ bound in s

1 fun f () : {x} = x in
2 let y = 5 in
3 f ()

1

2 let y = 5 in
3 f ()

Sigurd Schneider A functional IL for verified compilers 27 / 32

computer science

saarland
universityLocal Injectivity

Local Injectivity ρ ` inj s requires ρ : V → V to be injective on every
live set X that appears in the liveness derivation.

Theorem (A)

If

1 Λ and s suitable

2 s without unreachable code

3 ρ ` inj s ρ locally injective

then

1 ρ (bΛc[s]) ` coh (ρ s) ρs coherent

2 ρ injective on fv(s) =⇒ ρ,ρ−fv(s) ` ρ s ∼α s ρs α-equivalent to s

ρ−X : inverse of ρ on X ,
Sigurd Schneider A functional IL for verified compilers 28 / 32

computer science

saarland
universityLocal Injectivity

Local Injectivity ρ ` inj s requires ρ : V → V to be injective on every
live set X that appears in the liveness derivation.

Theorem (A)

If

1 Λ and s suitable

2 s without unreachable code

3 ρ ` inj s ρ locally injective

then

1 ρ (bΛc[s]) ` coh (ρ s) ρs coherent

2 ρ injective on fv(s) =⇒ ρ,ρ−fv(s) ` ρ s ∼α s ρs α-equivalent to s

ρ−X : inverse of ρ on X ,
Sigurd Schneider A functional IL for verified compilers 28 / 32

computer science

saarland
universityRegister assignment algorithm

Definition

Assume fresh : setV → V such that fresh X ∉ X for all finite X .
ñ separation of concerns: correctness and code quality

rassign yields renaming V → V

rassignρ (let x = e in s) = rassign (ρ[x , y]) s
where y = fresh (ρ([s] \ {x}))

rassignρ (if e then s else t) = rassign (rassignρ s) t
rassignρ e = ρ
rassignρ (f e) = ρ
rassignρ (fun f x : X ′ = s in t) = rassign (rassign (ρ[x , y]) s) t

where y = freshlist (ρ([s] \ x)) |x|

rassign recurses on program structure,
while SSA algorithm must process statements in dominance order

Sigurd Schneider A functional IL for verified compilers 29 / 32

computer science

saarland
universityRegister assignment algorithm

Definition

Assume fresh : setV → V such that fresh X ∉ X for all finite X .
ñ separation of concerns: correctness and code quality

rassign yields renaming V → V

rassignρ (let x = e in s) = rassign (ρ[x , y]) s
where y = fresh (ρ([s] \ {x}))

rassignρ (if e then s else t) = rassign (rassignρ s) t
rassignρ e = ρ
rassignρ (f e) = ρ
rassignρ (fun f x : X ′ = s in t) = rassign (rassign (ρ[x , y]) s) t

where y = freshlist (ρ([s] \ x)) |x|

rassign recurses on program structure,
while SSA algorithm must process statements in dominance order

Sigurd Schneider A functional IL for verified compilers 29 / 32

computer science

saarland
universityRegister assignment algorithm

Definition

Assume fresh : setV → V such that fresh X ∉ X for all finite X .
ñ separation of concerns: correctness and code quality

rassign yields renaming V → V

rassignρ (let x = e in s) = rassign (ρ[x , y]) s
where y = fresh (ρ([s] \ {x}))

rassignρ (if e then s else t) = rassign (rassignρ s) t
rassignρ e = ρ
rassignρ (f e) = ρ
rassignρ (fun f x : X ′ = s in t) = rassign (rassign (ρ[x , y]) s) t

where y = freshlist (ρ([s] \ x)) |x|

rassign recurses on program structure,
while SSA algorithm must process statements in dominance order

Sigurd Schneider A functional IL for verified compilers 29 / 32

computer science

saarland
universityRegister assignment algorithm

Correctness and bound on registers

Theorem (B)

Let Λ and s suitable and ρ injective on [s]. Then: rassignρ s ` inj s.

Assume variables totally ordered: x0 < x1 < x2 . . .

Theorem (Register Bound)

If

1 Λ and s suitable

2 ∀ finite sets of variables Y: fresh Y ∈ {x0, . . . , x|Y |}
3 k is size of largest set of live variables in s

4 ρ(fv(s)) ⊆ {x0, . . . , xn}.
5 ρ′ = rassignρ s

Then ρ′ (VO(s)) ⊆ {x0, . . . , xmax{n,k}}

Sigurd Schneider A functional IL for verified compilers 30 / 32

computer science

saarland
universityCoq Development

This work is part of a very simple verified compiler

Extraction yields binary that handles the running example
ñ Efficient finite set library with type classes (Lescuyer 2012)
ñ Cannot assume set extensionality
ñ Decision procedures for equivalence on many types

Development almost completely constructive
ñ UIP required for Paco Library (Hur et al. (2013))

Formal development contains proofs of
ñ Backwards translation: IL/I to IL (SSA-construction)
ñ Dead code elimination
ñ Sparse conditional constant propagation
ñ Translation validation for analysis results

Sigurd Schneider A functional IL for verified compilers 31 / 32

computer science

saarland
universityConclusion

Coherence relates binding to assignment

Correctness proof of register assignment on IL
ñ same advantages as SSA (register bound)
ñ correctness via coherence and α-equivalence
ñ structural recursion instead of dominance ordering

Coq development is available online1

Thanks! Questions?

1www.ps.uni-saarland.de/~sdschn/publications/lvc15
Sigurd Schneider A functional IL for verified compilers 32 / 32

www.ps.uni-saarland.de/~sdschn/publications/lvc15

computer science

saarland
universityConclusion

Coherence relates binding to assignment

Correctness proof of register assignment on IL
ñ same advantages as SSA (register bound)
ñ correctness via coherence and α-equivalence
ñ structural recursion instead of dominance ordering

Coq development is available online1

Thanks! Questions?

1www.ps.uni-saarland.de/~sdschn/publications/lvc15
Sigurd Schneider A functional IL for verified compilers 32 / 32

www.ps.uni-saarland.de/~sdschn/publications/lvc15

computer science

saarland
universityThank you for your attention! Questions? I

Appel, A. W. (1992). Compiling with Continuations. Cambridge, England: Cambridge University
Press.

— (1998). “SSA is Functional Programming”. In: SIGPLAN Notices 33.4.

Barthe, G. et al. (2012). “A Formally Verified SSA-Based Middle-End - Static Single Assignment
Meets CompCert”. In: ESOP.

Beringer, L. et al. (2003). “Grail: a Functional Form for Imperative Mobile Code”. In: ENTCS 85.1.

Blazy, S. et al. (2010). “Formal Verification of Coalescing Graph-Coloring Register Allocation”. In:
ESOP.

Chakravarty, M. M. T. et al. (2003). “A Functional Perspective on SSA Optimisation Algorithms”.
In: ENTCS 82.2.

Hack, S. et al. (2006). “Register Allocation for Programs in SSA-Form”. In: CC.

Hur, C. et al. (2013). “The power of parameterization in coinductive proof”. In: POPL.

Kelsey, R. A. (1995). “A correspondence between continuation passing style and static single
assignment form”. In: SIGPLAN Not. 30 (3).

Leroy, X. (2009). “Formal Verification of a Realistic Compiler”. In: CACM 52.7.

Sigurd Schneider A functional IL for verified compilers 33 / 32

computer science

saarland
universityThank you for your attention! Questions? II

Lescuyer, S. (2012). Containers: a typeclass-based library of finite sets/maps. URL:
http://coq.inria.fr/pylons/contribs/view/Containers/v8.4.

Sabry, A. and M. Felleisen (1993). “Reasoning about Programs in Continuation-Passing Style”. In:
LSC 6.3-4.

Zhao, J. et al. (2012). “Formalizing LLVM Intermediate Representation for Verified Program
Transformations”. In: POPL.

Sigurd Schneider A functional IL for verified compilers 34 / 32

http://coq.inria.fr/pylons/contribs/view/Containers/v8.4

computer science

saarland
universitySemantics of IL and IL/I

Common rules

φ ::= τ | v = α events

φ
-→ small step relation

(F ,V , s)
F function env.
V variable env.
s program

Op
[[e]]V = v

F |V | let x = e in s
τ
-→ F |V[x , v] | s

Extern
v ∈ V

F |V | let x = α in s
v=α
-→ F |V[x , v] | s

Cond
[[e]]V = v β(v) = i

F |V | if e then s0 else s1
τ
-→ F |V | si

Sigurd Schneider A functional IL for verified compilers 35 / 32

computer science

saarland
universitySemantics of IL and IL/I

Common rules

φ ::= τ | v = α events

φ
-→ small step relation

(F ,V , s)
F function env.
V variable env.
s program

Op
[[e]]V = v

F |V | let x = e in s
τ
-→ F |V[x , v] | s

Extern
v ∈ V

F |V | let x = α in s
v=α
-→ F |V[x , v] | s

Cond
[[e]]V = v β(v) = i

F |V | if e then s0 else s1
τ
-→ F |V | si

Sigurd Schneider A functional IL for verified compilers 35 / 32

computer science

saarland
universitySemantics of IL and IL/I

Common rules

φ ::= τ | v = α events

φ
-→ small step relation

(F ,V , s)
F function env.
V variable env.
s program

Op
[[e]]V = v

F |V | let x = e in s
τ
-→ F |V[x , v] | s

Extern
v ∈ V

F |V | let x = α in s
v=α
-→ F |V[x , v] | s

Cond
[[e]]V = v β(v) = i

F |V | if e then s0 else s1
τ
-→ F |V | si

Sigurd Schneider A functional IL for verified compilers 35 / 32

computer science

saarland
universitySemantics IL and IL/I

Differences

IL

Fun

F |V | fun f x = s in t
τ
-→ F ; f : (V, x, s) |V | t

App
[[e]]V = v Ff = (W, x, s)

F |V | f e
τ
-→ F f |W[x , v] | s

IL/I

I-Fun

L |V | fun f x = s in t
τ
-→I L; f : (x, s) |V | t

I-App
[[e]]V = v Lf = (x, s)

L |V | f e
τ
-→I Lf |V[x , v] | s

Sigurd Schneider A functional IL for verified compilers 36 / 32

computer science

saarland
universitySemantics IL and IL/I

Differences

IL

Fun

F |V | fun f x = s in t
τ
-→ F ; f : (V, x, s) |V | t

App
[[e]]V = v Ff = (W, x, s)

F |V | f e
τ
-→ F f |W[x , v] | s

IL/I

I-Fun

L |V | fun f x = s in t
τ
-→I L; f : (x, s) |V | t

I-App
[[e]]V = v Lf = (x, s)

L |V | f e
τ
-→I Lf |V[x , v] | s

Sigurd Schneider A functional IL for verified compilers 36 / 32

computer science

saarland
universityProgram equivalence

Internally deterministic reduction systems

Definition

A reduction system (RS) is a tuple (Σ,E, -→, τ, res), s.t.

1 (Σ,E, -→) is a LTS

2 τ ∈ E
3 res : Σ→ V⊥

4 resσ = v ⇒ σ -→-terminal

An internally deterministic reduction system (IDRS) additionally
satisfies

5 σ
φ
-→ σ1 ∧ σ

φ
-→ σ2 ⇒ σ1 = σ2 action-deterministic

6 σ
φ
-→ σ1 ∧ σ τ

-→ σ2 ⇒ φ = τ τ-deterministic

Sigurd Schneider A functional IL for verified compilers 37 / 32

computer science

saarland
universityProgram equivalence

Trace equivalence

Π 3 π ::= ε | v | ⊥ | φπ φ , τ partial trace

σ .π σ poduces π

Definition (Trace equivalence)

σ ' σ ′ :⇐⇒ ∀π,σ .π ⇐⇒ σ ′ .π

σ ∼ σ ′ bisimilarity

Theorem (Soundness and completeness)

Let (S,E, -→, res, τ) be an IDRS and σ,σ ′ ∈ S. Then:

σ ∼ σ ′ ⇐⇒ σ ' σ ′

Sigurd Schneider A functional IL for verified compilers 38 / 32

computer science

saarland
universityProgram equivalence

Trace equivalence

Π 3 π ::= ε | v | ⊥ | φπ φ , τ partial trace

σ .π σ poduces π

Definition (Trace equivalence)

σ ' σ ′ :⇐⇒ ∀π,σ .π ⇐⇒ σ ′ .π

σ ∼ σ ′ bisimilarity

Theorem (Soundness and completeness)

Let (S,E, -→, res, τ) be an IDRS and σ,σ ′ ∈ S. Then:

σ ∼ σ ′ ⇐⇒ σ ' σ ′

Sigurd Schneider A functional IL for verified compilers 38 / 32

computer science

saarland
universityProgram equivalence

Trace equivalence

Π 3 π ::= ε | v | ⊥ | φπ φ , τ partial trace

σ .π σ poduces π

Definition (Trace equivalence)

σ ' σ ′ :⇐⇒ ∀π,σ .π ⇐⇒ σ ′ .π

σ ∼ σ ′ bisimilarity

Theorem (Soundness and completeness)

Let (S,E, -→, res, τ) be an IDRS and σ,σ ′ ∈ S. Then:

σ ∼ σ ′ ⇐⇒ σ ' σ ′

Sigurd Schneider A functional IL for verified compilers 38 / 32

computer science

saarland
universityProgram equivalence

Trace equivalence

Π 3 π ::= ε | v | ⊥ | φπ φ , τ partial trace

σ .π σ poduces π

Definition (Trace equivalence)

σ ' σ ′ :⇐⇒ ∀π,σ .π ⇐⇒ σ ′ .π

σ ∼ σ ′ bisimilarity

Theorem (Soundness and completeness)

Let (S,E, -→, res, τ) be an IDRS and σ,σ ′ ∈ S. Then:

σ ∼ σ ′ ⇐⇒ σ ' σ ′

Sigurd Schneider A functional IL for verified compilers 38 / 32

computer science

saarland
universityLocal Injectivity

The problem with unreachable code

1 fun f () = x in
2 y

1 fun f () = y in
2 y

{x , y , y , y} locally injective

Programs not α-equivalent

Sigurd Schneider A functional IL for verified compilers 39 / 32

	Introduction
	Related work
	Semantics and program equivalence
	Liveness
	Coherence
	Register assignment

