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Last Week

Last Week: Rely/Guarantee

Enables Hoare-style reasoning for parallel programs

Allows fine-grained sharing

Improved modularity over Owicki-Gries approach using rely and
guarantee conditions to formulate sharing protocol
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Introduction

This Week: Separation Logic

Enables Hoare-style reasoning about programs with dynamic resource
allocation/deallocation

Main challenges: frame problem and aliasing

Key idea: reasoning should be kept confined to cells that are actually
touched by the program; unmentioned cells remain automatically
unchanged

Supports fine-grained heap partition separation, and allows
generalization of specifications to heaps with other unmentioned cells

Due to Reynolds (1999/2000), Ishtiaq and O’Hearn (2001). Early
ideas already appear in Burstall (1972).
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Introduction Motivation

Reversing an Imperative List

1 j := n i l
2 whi le i != n i l do (
3 k := [ i +1] ;
4 [ i +1] := j ;
5 j := i ;
6 i := k
7 )

i holds the adress of the current element

[i+1] is the location of i’s next pointer

k is a temporary for current next pointer

j holds the address of the previous element

From page 1 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures

Presenter: Sigurd Schneider (Uds) Separation Logic May 16, 2011 4 / 37



Introduction Motivation

Specifying the List Reversal Procedure

Invariant: i,j represent sequences α,
β s.t. rev of initial value α0 is concat
of rev α onto β:

where

But this is not enough because i,j
could share structure.

So disjointness must be asserted:

Even worse, suppose there is some
other list x representing a seq. γ
that shall not be affected:

From page 1/2 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Introduction Overview

Overview

1 Programming Language
Syntax and Semantics
Modelling Memory Faults

2 Assertion Language
Syntax and Semantics
Equivalences and Entailments
Important Fragments

3 Specification Language
Syntax and Semantics
Axioms
Structural Rules
Derived Laws and Weakest Preconditions

4 Revisiting the Initial Example

5 Computability and Complexity

6 Outlook
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Programming Language Syntax and Semantics

Syntax of a Simple Programming Language

〈comm〉 ::= commands

| . . . usual cmds + exps

| 〈var〉 := cons(〈exp〉, . . . , 〈exp〉) allocation

| 〈var〉 := [〈exp〉] lookup

| [〈exp〉] := 〈exp〉 mutation

| dispose 〈exp〉 deallocation

Low level programming language

There are three different forms of assignment

Features a command for deallocation

From page 2 Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Programming Language Syntax and Semantics

Denotational Semantics for Expressions

Values
def
= Z

Atoms ] Addresses ⊆ Z

Heaps
def
= Addresses

fin
⇀ Values

nil ∈ Atoms

Variables
def
= {x , y , . . .}

Stores
def
= Variables

fin
⇀ Values

States
def
= Stores× Heaps

Records of arbitrary size provided by assumption

Denotation of expressions [[e]], and boolean expressions [[b]] as usual
mapping to store-taking functions

Expressions are side-effect free (that’s why there are several different
assignment statements)

From page 3 O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures
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Programming Language Syntax and Semantics

Small Step Semantics for Commands

Allocation
〈v := cons(e1, . . . , en), (s, h)〉 ([s | v : l ], [h |

i∈[1,n]

l + i − 1 : [[ei ]]s])

Lookup

〈v := [e], (s, h)〉 ([s | v : h([[e]]s)], h)
[[e]]s ∈ domh

Mutation

〈[e] := e′, (s, h)〉 (s, [h | [[e]]s 7→ [[e′]]s])
[[e]]s ∈ domh

Deallocation

〈dispose e, (s, h)〉 (s, he(dom(h) \ {[[e]]s}))
[[e]]s ∈ domh

Non-determinism in Allocation.

If [[e]]s 6∈ domh for any command, then it reduces to abort.

From page 3 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Programming Language Modelling Memory Faults

Modelling Memory Faults

abort is an error state indicating a memory fault

For heaps h0, h1 we write h0⊥h1 if domh0 ∩ domh1 = ∅,
and h0 · h1 for their union.

Let h0 ⊆ h:

If 〈c , 〈s, h〉〉 ∗ abort then 〈c , 〈s, h0〉〉 ∗ abort.
(The contraposition is also interesting!)
If 〈c , 〈s, h〉〉 ∗ 〈s ′, h′〉 then either 〈c , 〈s, h0〉〉 ∗ abort
or 〈c , 〈s, h0〉〉 ∗ 〈s ′, h′0〉 where h′0⊥h1 and h′ = h′0⊥h1 (he seemed to
have assumed that h = h0 · h1 and h0⊥h1).
If 〈c , 〈s, h〉〉 ↑ then either 〈c , 〈s, h0〉〉 ∗ abort
or 〈c , 〈s, h0〉〉 ↑.

From page 4 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Assertion Language Syntax and Semantics

The Separation Logic Assertion Language

〈assert〉 ::= assertions

| . . . connectives and quantifiers

| emp empty heap

| 〈exp〉 7→ 〈exp〉 singleton heap

| 〈assert〉 ∗ 〈assert〉 separating conjunction

| 〈assert〉 −∗〈assert〉 separating implication

Idea for ∗ and −∗ from Logic of Bunched Implications?

Features a command for deallocation (As far as I know this is not
present in the intuitionistic version)

? O’Hearn and Pym, The Logic of Bunched Implications

-2mm From page 4 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Assertion Language Syntax and Semantics

A Satisfaction Judgement for Separation Assertions

A satisfaction judgement s, h |= p is defined

s, h |= emp ⇐⇒ domh = ∅
s, h |= e 7→ e ′ ⇐⇒ domh = {[[e]] s} and h([[e]]s) = [[e ′]] s

s, h |= p0 ∗ p1 ⇐⇒ ∃h0, h1.h0⊥h1 ∧ h0 · h1 = h ∧ [[p0]] s h0 ∧ [[p1]] s h1

s, h |= p0 −∗p1 ⇐⇒ ∀h0.(h0⊥h ∧ s, h0 |= p0)⇒ s, h0 · h |= p1

s, h |= ∀x .p ⇐⇒ ∀v ∈ Values.[s | x 7→ v ], h |= p

Propositional constants and connectives as usual

Note that 7→ admits no other cells in the heap

Note non-determinism in definition of ∗
Quantification is available only over Values

From page 4 of O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures
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Assertion Language Syntactic Sugar

Useful Abbreviations

e
·

= e ′
def
= (e = e ′) ∧ emp

e 7→ − def
= ∃x .e 7→ x x not free in e

e ↪→ e ′
def
= e 7→ e ′ ∗ true

e 7→ e1, . . . , en
def
= e 7→ e1 ∗ . . . ∗ e + n − 1 7→ en

e ↪→ e1, . . . , en
def
= e ↪→ e1 ∗ . . . ∗ e + n − 1 ↪→ en

⇔ e ↪→ e1, . . . , en ∗ true

Note that ↪→ permits other things to be in a disjoint fragment of the
heap (but 7→ does not).

From Page 4 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures

and Page 4 of O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures
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Assertion Language Examples

An Overview of Sharing Patterns

From page 4/5 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Assertion Language Examples

More Examples

From page 5 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Assertion Language Equivalences and Entailments

Behaviour of Separating Conjunction

p1 ∗ p2 ⇐⇒ p2 ∗ p1 commutative

(p1 ∗ p2) ∗ p3 ⇐⇒ p1 ∗ (p2 ∗ p3) associative

p ∗ emp ⇐⇒ p neutral element

(p1 ∨ p2) ∗ q ⇐⇒ (p1 ∗ q) ∨ (p2 ∗ q) distributes over ∨
(p1 ∧ p2) ∗ q =⇒ (p1 ∗ q) ∧ (p2 ∗ q)

(∃x .p) ∗ q ⇐⇒ ∃x .(p ∗ q) x not free in q

(∀x .p) ∗ q =⇒ ∀x .(p ∗ q) x not free in q

(p
·

= q) ∗ r ⇐⇒ (p = q) ∧ r

Why are the two missing directions unsound?

From Page 5 Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Assertion Language Equivalences and Entailments

Non-Behaviour of Separating Conjunction

To see the unsoundness of

p =⇒ p ∗ p contraction

p ⇐= q ∗ p weakening

consider a heap {(sx , 1), (sy , 2)} where sx 6= sy , and let p = x 7→ 1 and
q = y 7→ 2. To see the unsoundness of

(p1 ∧ p2) ∗ q ⇐= (p1 ∗ q) ∧ (p2 ∗ q)

(∀x .p) ∗ q ⇐= ∀x .(p ∗ q) x not free in q

consider a heap {(sx , 1), (sy , 2), (sz , 3)}, sx , sy , sz p.w. distinct, and let
q = ∃a.a ↪→ 1 ∨ ∃a.a ↪→ 3, p1 = ∃a.a ↪→ 2 ∧ ∃a.a ↪→ 3, and
p2 = ∃a.a ↪→ 2 ∧ ∃a.a ↪→ 1. (And similarly for ∀).
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Assertion Language Equivalences and Entailments

Interaction of Implication, Separating Conjunction, and
Separating Implication

Separating Conjunction distributes over Implication:

p1 ⇒ p2 q1 ⇒ q2

p1 ∗ q1 ⇒ p2 ∗ q2

Relationship between separating implication and implication:

p1 ∗ p2 ⇒ p3 ⇐⇒ p1 ⇒ (p2 −∗p3)

The following implication is used throughout the paper:

p ∗ (p −∗q)⇒ q

From Page 5 Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Assertion Language Important Fragments

Pure, Intuitionistic, and Exact Assumptions

An assertion is

pure if it is independent from the heap (for every store)
∧ and ∗ coincide

intutitionistic if it is invariant under heap-extension
(p ∗ true)⇒ p and p ⇒ (true−∗p)

strictly exact if any two heaps satisfying the assertion (w.r.t the same
store) are identical, i.e. for strictly exact q:
(q ∗ true) ∧ p ⇒ q ∗ (q −∗p)

domain exact if any two heaps satisfying the assertion (w.r.t the same
store) have the same domain
semi-distributive laws become distributive laws

The classes are defined syntactically based on the contained connectives.
From page 5/6 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Specification Language Syntax and Semantics

Glueing together Commands and Assertions

〈spec〉 ::= specifications

| {〈assert〉}〈comm〉{〈assert〉} partial

| [〈assert〉]〈comm〉[〈assert〉] total

Let V be the free variables in p, c, q

{p}c{q} holds, iff ∀(s, h) ∈ States.s, h |= p implies

it is not the case that 〈c , (s, h)〉 ∗ abort, and
forall (s ′, h′) ∈ States such that 〈c , (s, h)〉 ∗ (s ′, h′)
we have s ′, h′ |= q

[p]c[q] additionally demands termination

abort ensures that c must mention every cell it uses

From page 6 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Specification Language Axioms

Small Axioms

These axioms suffice to get all others using the structural rules

{e 7→ −}[e] := e ′{e 7→ e ′}
{e 7→ −}dispose e{emp}

{x ·
= m}x := cons(e1, . . . , ek ){x 7→ e1[m/x ], . . . ,Ek [m/x ]}

{x ·
= n}x := e{x ·

= e[n/x ]}
{e 7→ n ∧ x = m}x := [e]{x = n ∧ e[m/x ] 7→ n}

x ,m, n are assumed to be distinct variables

From page 5 of O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures
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Specification Language Structural Rules

Consequence and Auxilliary Variable Elimination

AuxVarE
{p}c{q}

{∃x .p}c{∃x .q}
x 6∈ Free(c)

Consequence

p’⇒p {p}c{q} q⇒q’

{p′}c{q′}

From page 6 of O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures
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Specification Language Structural Rules

Variable Substitution

VarSubst
{p}c{q}

({p}c{q})[e1/x1, . . . , ek/xk ]
?

? {x1, . . . , xk} ⊇ Free(p, c , q) and if xi ∈ Modifies(c) then ei is a variable
not free in any other ej .

From page 78 of Reynolds, Introduction to Separation Logic, Lecture Notes
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Specification Language Structural Rules

The Frame Rule

FrameRule
{p}c{q}

{p ∗ r}c{q ∗ r}
Modifies(c) ∩ Free(r) = ∅

p specifies an area of storage + logical properties sufficient for c to
run and (if it terminates) establish q

makes up for the promise of the first slide

tightness: every cell used by c must be allocated or asserted to be
active in p (enforced by semantics)

locality: p only asserts cells actually used by c (programmers burden)

From page 6 of O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures
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Specification Language Structural Rules

Simple Example

FrameRule
{p}c{q}

{p ∗ r}c{q ∗ r}
Modifies(c) ∩ Free(r) = ∅

From page 7 of O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures
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Specification Language Structural Rules

The General Frame Problem

“To most AI researchers, the frame problem is the challenge of
representing the effects of action in logic without having to represent
explicitly a large number of intuitively obvious non-effects.”

“epistemological issue[...:]Is it possible, in principle, to limit the scope
of the reasoning required to derive the consequences of an action?”

“And, more generally, how do we account for our apparent ability to
make decisions on the basis only of what is relevant to an ongoing
situation without having explicitly to consider all that is not relevant?”

From Stanford Enceclopedia of Philosopy, http://plato.stanford.edu/entries/frame-problem/
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Specification Language Structural Rules

Soundness argument for the frame rule

Note crucial use of abort

From page 7 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Specification Language Structural Rules

Completeness of the frame rule

Yang? showed the frame rule is complete in the following sense:

If all we know about a command c is that {p}c{q} is valid,

and if the validity {p′}c{q′} is a semantic consequence of this
knowledge,

then {p′}c{q′} is derivable using the four structural rules.

From page 8 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures

? Yang, Local Reasoning for Stateful Programs, Yang and O’Hearn, A semantic basis for local reasoning
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Specification Language Derived Laws and Weakest Preconditions

Derived Laws

Frame rule yields immediatelly

Same for cons:

From Page 8 of O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures
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Specification Language Derived Laws and Weakest Preconditions

Weakest Preconditions

Using adjunction in consequence step:

Note that the modifies clause of dispose E is empty:

If x 6∈ Free(E ,P, x):

If x 6∈ Free(E ,R) and y 6∈ Free(E ):

From Page 9 of O’Hearn, Reynolds, and Yang, Local Reasoning about Programs that Alter Data Structures

Presenter: Sigurd Schneider (Uds) Separation Logic May 16, 2011 30 / 37



Revisiting the Initial Example

Revisiting the Initial Example

Consider the list reversal program:

Using separation logic we can define

and prove

So whenever it holds that
list (α1 · . . . · αn)(i0, in) we have

Thus i0, . . . , in−1 are p.w. distinct, but
in is not constrained, so it may hold
list (α1 · . . . · αn)(i , i) for any n ≥ 0. I.e.
the following does not define emptiness:

But these implications hold:

From page 9/10 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Revisiting the Initial Example

Revisiting the Initial Example

Example of a command that deletes
the head of the list.

e 7→ e1, e2
def
= e 7→ e1 ∗ e + 1 7→ e2

{e 7→ n ∧ x = m}x := [e]
{x = n ∧ e[m/x ] 7→ n}

From page 10 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Revisiting the Initial Example

Revisiting the Initial Example

Example: Body of the while
loop in the list reversal
procedure

The first lookup step is
justified by AuxVarE and
Lookup.

From page 10 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Computability and Complexity

Computability

Existence of weakest preconditions for each of the axioms ensures
that verification conditions can be derived which ensure the original
specification (why are weakest preconditions needed)

Undecidable, even without arithmetic and without emp, 7→, ∗, −∗ (but
not e ↪→); the idea is to remove separation

On the other hand, if quantification is omitted, validity is decidable,
but NP or worse (without address arithmetic)

MC: model checking, i.e. s, h |= p for specific s, h
VAL: model checking, i.e. s, h |= p for all s, h

From page 15 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Computability and Complexity

Complexity

The results displayed below are Calcagno and Yang; The language does
neither allow quantification nor address arithmetic (or predicates)

From page 15 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Outlook

Future Directions

New forms of inference: Separation Logic is not only theoretically
incomplete, but also practically (proofs must rely on semantic
arguments, i.e. a rule is missing)

Address arithmetic: aliasing is an undecidable sub-problem

Concurrency: priciple of ownership; another problem are systems that
cannot be specified using input/output relation (such as reactive
systems)

Storage allocation and garbage collection

Relationship to type systems

Embedded code pointers

From page 16-18 of Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures
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Outlook

Questions?

Thank you for listening!
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