COMPLETENESS OF THE CONNECTION GRAPH PROOF PROCEDURE

FOR UNIT-REFUTABLE CLAUSE SETS

Gert Smolka
Institut fur Informatik I, Universitdt Karlsruhe
7500 Karlsruhe 1, West Germany
September 1982

ABSTRACT. In this paper it is shown that R. Kowalski's connection graph proof procedure
/Ko75/ terminates with the empty clause for every unit-refutable clause set, provided an
exhaustive search strategy is employed. This result holds for unrestricted tautology de-

letion, whereas subsumption requires certain precautions.

The results are shown for an improved version of the connection graph resolution rule
which generatesfewer links than the original one. The new inference rule not only leads

to a smaller search space but it also permits a more efficient implementation.

The proofs are based on refutation trees as in /HR78/ and are applied immediately at
the general level. Hence the unsolved problems resulting from the classical lifting tech-

niques in the context of connection graphs are avoided.

Finally a counterexample is presented at the propositional level which shows that un-
restricted deletion of tautologies destroys completeness for non-unit-refutable clause

sets.

1. INTRODUCTION

R. Kowalski's connection graph proof procedure /Ko75/ is an inference system for
clause graphs based on resolution /Ro65/. Each link (i.e. edge) of a clause graph indi-
cates a possible application of the clause graph resolution rule which replaces a link
by its resolvent. There is no search for new links connecting the resolvent, but they
are obtained from the links connecting the parent clauses by a mechanism called inherit-
ance. Consequently, a link that does not exist for a parent clause cannot be inherited
by the resolvent. This is but 6ne of the major sources of search space reduction, but
also a source of the theoretical problems. Once the resolvent is generated, thé link
resolved upon is deleted and the wn-reduction (a generalisation of the purity principle
in /Ro65/) is performed on the graph. The removal of the links resolved upon, the subse-
quent n-reduction, and the inheritance mechanism lead to the deletion of many clauses.
This considerable search space reduction is enhanced even more by two rules allowing the

elimination of tautologies and subsumed clauses.

In Proceedings of the 6th German Workshop on Artificial Intelligence, Informatik
Fachberichte 58, pages 191-204, Springer-Verlag, Berlin, 1982.

A logical calculus is said to be complete, if there exisis a proof for every valid
formula. In automated theorem proving however, we are interested in the stronger require-
ment that a search strategy for the calculus will actually find this proof. For that rea-
son a search strategy is said to be complete, if it terminates with a proof whenever

there exists one.

Now, the completeness problem of the connection graph proof procedure is to show that
each non-backtracking and exhaustive search strategy for the Kowalski-calculus (the
clause graph inference system described above) is complete, i.e. terminates with the
empty clause whenever the initial clause set was unsatisfiable. A search strategy for the
Kowalski~calculus is non-backiracking, if it does not require the reconstruction of a
graph obtained earlier in the derivation sequence. And it is called exhawstive, if each
link generated in the inference process is deleted again after a finite number of steps.
Note that a link can be deleted either because it is rescolved upon or as a consequence

of the other deletion rules (e.g. the n-reduction).

In spite of the attemptsof Brown /Br76/, Siekmann and Stephan /S576, 5880/, and Bibel
/Bi81a, Bi81lb/, the connection graph proof procedure completeness‘problem is still un-
solved. The difficulties arise from the fact that the Kowalski-calculus is not commuta-
tive. An inference system is commutative, if an inference step 8 remains applicable after
the application of an inference step a, provided 8 was applicable before the application -
of a. Contrary to most classical refinements for resolution (e.g. Merge or Linear), the
Kowalski-calculus is not commutative, since resolution upon a link can cause further de-
letions of links by the subsequent wn-reduction. Thus even an exhaustive search strategy

cannot actually resolve upon every link generated in the inference process.

To solve the completeness problem of the connection graph proof procedure, a new proof
technique had to be developped in order to handle the dynamic aspects of an inference
process running on a non-commutative inference system. Our proof is based on the follow-
ing idea first mentioned in /SS76, SS80/: The initial graph of an unsatisfiable clause
set contains an unsatisfiable subgraph, called the keanel. A non-negative integer com-
plexity is defined for the kernel. If this complexity is zero, the graph contains the
empty clause. Resolution upon a link within the kernel transforms the kernel and strict-
ly reduces its complexity, whereas resolution upon a link not belonging to the kernel

does not affect the kernel at all.

But how can we define the kernel? How is the kernel transformed by the inference rules
and what is a convenient measure for the kernel complexity? A first attempt may be to
define the kernel as the projection of its resoclution refutation, i.e. every link and
every clause of the initial graph used in this refutation constitute the kernel. However,
this idea turned out to be father urisuccessful, since it leads to very complicated trans-

formetions which are not manageable.

The difficulties can be overcome by condensing the resolution refutations to a more

simple structure representing a whole class of resolution refutations at once. This is

2

achieved using Shostak's refutation graphs /Sh76/. Since the Shostak refutation graph
for the kernel consists only of variants of clauses occurring in the kernel, its projec-
tion onto the kernel is a simple superposition. It turns out that one resolution step
within the Kernel results in one or more resolution steps upon the corresponding refuta-

tion graph.

A major advantage of this new proof technique is that it leads to a clearer understand-
ing of the effects of the clause graph resolution and of the deletion rules for tautolo-
gies and subsumed clauses. For example it turns out that Bibel's conditions for the re-
moval of tautclogies and subsumed clauses (see /Bi8lc/) are also adequate in the light

of the new proof technique,

In addition the new proof technique led to a significant improvement of the clause
graph resolution rule. The new rule presented in this paper generates fewer links than
the versions defined by Kowalski /Ko75/, Bruynooghe /Br75, Ko79/, and Bibel /Bi8la,
Bi8lc/. It has the additional advantage that its implementation is more efficient than

the rules previously proposed.

In this paper we consider only the case of‘unit—refutable clause sets., A separate in-
vestigation of this subcase appears to be indispensable, since several of the stronger
results shown here do not hold for the general case. For example the omission of factor-
ing, the restriction of resolution to unit-links, and suprisingly the unrestricted dele-
tion of tautologies preserve completeness for unit-refutable sets but not for the gen-

eral case.

Unit-refutable clause sets are of great practical importance in automated theorem
proving, since on the one hand there are very efficient refutation techniques known for
this special class (see /Ch70, Ku72, HW74, Oh82/), and on the other hand they are general
enough to include the well-investigated Horn sets, within which it is possible to express
for example the axioms of group theory or of Boolean algebras. Unit-refutable clause sets
are distinguished from general clause sets by the fact that their unsatisfiability can be

characterized by refutation trees instead by refutation graphs containing cycles.

The reader is expected to be familiar with the basic notions of resolution-based theo-
rem proving (see e.g. /Lo78/), and with the main ideas and notions concerning confluent
relations (see /HuB80/). For space limitations the proofs are only sketched or omitted
entirely. The complete proofs are contained in /Sm82/. The author is currently working
on completeness results concerning the general case and these will be presented in a

later paper.

2. CLAUSE GRAPHS

A clause graph is a data structure for a set of clauses, where the edges indicate possi-

ble resolutions. As the examples on the next page suggest, clause graphs are not graphs

?

(a) [Pxa|Pxx—{Pya|Pyy] (b) {R[PI

[Ra]

(¢) [Fo—Px]oy—GalRz[Qo}—0u] (@) I% (Flo—3] i@

(e) l‘fﬁﬂ'r QP Flat {_L_J:@R

at all in the conventional sense. Each node represents a clause and is drawn as a chain
of contiguous cells labeled with the literals of the clause. The edges in clause graphs

are called links. Each link connects two literals which are potentially complementary,

i.e. the literals can be made complementary by applying some substitution, after renam-

ing the variables. The following definitions formalize these intentions:
2.1 Nodes. The following symbols are nodes: ki, ko, k3, ...

: . a . ; s as
2.2 Literal Occurrences. A literal occurrence L~ is an ordered pair <L,a> consisting

of a literal L and a node a.

2.3 Links. A link LaKb is an unordered pair {La,Kb) consisting of two literal occur-
rences 1%and Kb such that L and X are potentially complementary. An autolink is a link

LaKb such that a=b.

2.4 Clause Graphs. A clause graph is a tripel <NODES,C,LINKS> such that:

(a) NODES is a finite, possibly empty set of nodes.

(b) C is a mapping NODES — Clauses. Instead of C(a) we write C,.

{c) LINKS is a set of links such that each LaKb 6 LINKS satisfies the following condi-
tions: a 6NODES, L 6C,, b €NODES, and K €Cy.

(d) For any two different nodes a,b 6 NODES the clauses C; and Cp have no variables in
common.

Let G =<NODES,C,LINKS> be a clause graph. A node a [literal occurrence La, link %] is

called a node in G [literal occurrence in G, link in G], if a GNODES [a €NODES and L €C,,

£ §LINKS]. A unit-link in G is a link 1% in G such that |Cy| =1 or |Cy| =1. A 1-link in

G is a non-autolink % =LaKb in G such that the binary resolvent indicated by & (the

clause (0C, -oL)U(oC, - oK) where gisan mgu of L and K) is a tautology. A link LaKb in

G is said to be incident with a literal occurrence Me [a node ¢, a clause c] in ¢, if
M® =12 or Me=Kb [c=a or c=b, C=Cy Or C=Cb}. The number of nodes in § is denoted by

|Gl := [NODES|. S(§) :={C,| a GNODES} denotes the set of all clauses occurring in G. G is

called total, if for any two potentially complementary literal occurrences L2 and Kb in

G LaKb is a link in §. G is called satisfiable [unsatisfiable], if S(§) is satisfiable

[unsatisfiable]. The clause graph with no nodes is called the empty clause graph and de-

noted by (). Each clause graph G such that |G| =1 and S{(§) = {0} is denoted by (O).

2.5 Subgraphs. Let G = <NODES,C,LINKS> and G' =<NODES',C',LINKS'> be two clause graphs.

A

G is said to be a subgraph of G', if NODES & NODES', LINKS C LINKS', and if C is the re-
striction of C' to NODES. The relation C defined by § C G' :<==> § is a subgraph of §'

is a partial order on the set of all clause graphs.

2.6 Basic Operations on Clause Graphs. Let G be a clause graph, ¢ a link, a a node,

and C a clause. Then the addition or the deletion of a link or a node is defined as fol-
lows:

-~ G -% denotes the graph which results from & by the deletion of L.

- G +% denotes the graph which results from G by the addition of £. The operation is

only defined, if the literal occurrences of & are literal occurrences in G.

G - a denotes the maximal subgraph of G not containing a.
- § +<a,C denotes the graph which results from g by the addition of a such that C5 =C.
The operation is only defined, if a is not a node in G and if § and C have no

variables in common.

2.7 1-Reduced Clause Graphs. A literal occurrence La in a clause graph G is said to

be pure in G, if no non-autolink in § is incident with La. A clause graph G containing
no literal occurrences which are pure in § is said to be T-reduced. The binary relation.
—5 defined by

G—— G' :<==> There is a literal occurrence L? in G such

that 12 is pure in § and ' =G ~a

is obviously Noetherian. Since —— is locally confluent, —§ is alsc confluent and the
unique ——+-normal form 7(G) exists for each clause graph . It is easy to show that 7(g)

is always the maximal w-reduced subgraph of §.

2.8 The Initial Clause Graph QS of a Clause Set S. Let S be a clause set. Let S' be
the clause set obtained from S by the deletion of all tautclogies and by renaming vari-
ables so that different clauses contain different variables. Let G' be a total clause
graph with S(¢')=5' and |S(G')| =|S'|. Then 7(§') is called an initial clause graph of S.
Since two initial clause graphs of S are equal modulo the renaming of variables and no-
des, each initial clause graph of § is said to be the initial clause graph of S and is de-

noted by gS.

3. RESOLUTION AND THE ELIMINATION RULES FOR CLAUSE GRAPHS

In order to get an inference system, we now introduce three inference rules for clause
graphs. The p-rule replaces a non-autolink by the corresponding resolvent. The T-rule de-
letes a node if its clause is a tautology. The O-rule deletes a node which is subsumed by

another node, i.e. by its clause and by its links.

3.1 The p-Rule. The p-rule consists of an adding and of a deletion part. The adding
part replaces a non-autolink % by the corresponding resolvent. Thereby, the links con-

necting the resolvent are obtained exclusively from the links connecting the parent

)

clauses (i.e. the clauses being incident with &) by a mechanism called inheritance. The
deletion part first deletes the link % and then performs a n-reduction on the graph. The

adding part of the clause graph resolution rule is defined by:

Adgonithm o ;
Input: + G, : clause graph;

o

L = fo? : non-autolink in G ;
Constants: © := most general unifier of L, and K, ;
R := (0C, - 0L,) U(0Cy = 0K); -- resolvent corresponding to ¢
6 := renaming substitution so that
R and ¢ have no variables in common;
) ¢ := node that does not occur in QL;
Variables: G : clause graph := G ;
L, K, M : literals; d, e : nodes;
7: G = G + <c, R>;
2: For all L 6C,
2.7 Choose K, d -— significant ancestor
such that d ¢ {a,b} and K&Cy and L = 80K;
2.2: ‘ For all M, e
such that MeKd is a 1link in G and
L and K are potentially complementary
2.2.1: G =G+ LS
Output: g.

The diagram below illustrates the effect of p,:

e a=d b
N - N (e —k [[P ... 7
\ [
\ l 8o
7% NN 7 _
c

Each literal of the resolvent is obtained from one or several literal occurrences (the
so-called ancestors) in the parent clauses. In step 2.1 the algorithm p, indeterministic-

ally chooses one of these ancestors, the so-called significant ancestor. Only links

connecting significant ancestors are relevant for the inheritance mechanism. We call this

mono-inheritance. Kowalski's original rule performs multi-inheritance, i.e. each link

connecting an ancestor is relevant for the inheritance mechanism. Obviously, mono-inher-
itance not only generates fewer links in case of a merge, but also leads to a more effi-~
cient implementation. All completeness results known for the connection graph proof pro-

cedure hold also when mono-inheritance is used instead of multi-inheritance.

Note that a graph resulting from the application of p, to a total graph is total
again. In cases where e=a or e=b {(a, b, and ¢ are displayed in the diagram above) the

effect of the inheritance mechanism is rather sophisticated. For a further discussion

6

see /Ko79/. Thé complete clause graph resolution rule is defined by:

Algornithm o;
Input: [} clause graph;

L non-autolink in §;
Variable: G clause graph := G;
7: G = p,(G,0); — adding part
2: G = n(G=-12); —- deletion part
Output: g.

The deletion part of e can delete substantial parts of the graph. As an example con-
sider graph (e) in section 2, which is f-reduced and unsatisfiable. An application of o
to the link PP reduces graph (e) to the empty graph, regardless of the choice of the sig-
nificant ancestors. Note that Kowalski's original rule deletes only the two parent nodes,

because it generates a new link to each of the two occurrences of Q.

An important point of the clause graph resolution rule is that a deleted link is not
inherited by the resolvent. Thus, one deleted link can cause several missing links later
on. This reduction effect is increased by the subsequent T-reduction. In addition, mono-
inheritance allows the choice of that ancestor as significant that is incident with the

fewest number of links.
3.2 The T1-Rule.

Adgonithm =,
Input: G : clause graph;
a : node in § such that Ca is a tautology;

Ouzput: n(G-a).

3.3 The 0-Rule. Let C and D be clauses. An S-substitution from D to C is a substitu-
tion © such that 8D C C and |®D| = |D|. D subsumes C, if there exists an S-Substitution

g from D to C. D subsumes C strictly, if D subsumes C, and if D is not a variant of C.

Our definition of subsumption differs from 6-subsumption as defined in /Lo78/. The rea-

son is:

3.3.1 Lemma. There is no infinite sequence C1C5Cg... of clauses such that C_ 4 strict-

ly subsumes Cp for all n2>1.

Proof. The complexity of a clause C={L;,...,L,} may be defined by {c] :=|Ll| TR
+ 1Lyl - |var(C)|, where ILil denotes the length of the literal L, as a string and
[var(C)| is the number of different variables occurring in C. It is not hard to show
that [c]>[D] holds for any two clauses C and D such that D subsumes C strictly. Hence

(]

an infinite sequence C;C5C3... as above is impossible.

The links in a clause graph are of significant importance because of the inheritance
mechanism and the w-reduction. In particular, a node a cannot be eliminated just because
there exists another node b such that.Cb subsumes C,. It was first pointed out by Bibel

/Bi8lc/ that b has to "subsume' a also by its links.

+

3.3.2 The Subsumption Elimination Property. Let G be a clause graph. A node a in §

is said to satisfy the subsumption elimination property (SEP) in G, if there exists a
node b in G different from a such that Cb subsumes Ca with an S-substitution 6, and if
for each literal L €C, and for each link MeeLa in G also MeLb is a link in §. The dia-

gram below illustrates the SEP: b

’
LW 7|
’

I

B)) NP

A node a in G is said to satisfy the SEP strictly, if a satisfies the SEP in G and Ca is

e a

strictly subsumed by Cb‘ The subsumption elimination rule for clause graphs is given by:

Adgonithm o,
Input: G : clause graph;
a : node that satisfies the SEP in G;
Output: 1(G-a),
3.4 The Inference Relations ™» ', " ', 6 ", and . The relations —5—, —7,

T ", and T are binary relations on the set of all clause graphs and are defined as:
- 9'%%“’§’ iff G and & are proper input data for p and G' is a possible output.

- G5 G' iff there exists a link % such that G—%—§'.

- G 5—G' iff G and a are proper input data for ¢ and §' is a possible output.

- G5 G' iff there exists a node a such that G—2—g,

- g'ég"g‘ iff G and a are proper input data for v and G' is a possible output.

- G G' iff there exists a node a such that G-2—~g,

- GG iff §—5—~G' or G—5—§' or G—G'.

4. REDUCED REFUTATION GRAPHS

This paper is concerned with confluence and completeness properties of the inference
system defined by ——. In order to show these properties we introduce a second inference
system which consists of two rules applicable to special clause graphs, called reduced

refutation graphs.

4.1 Clause Trees. A trail of a clause graph G is an alternating sequence apglia...

a,_1%na,, n20 of nodes and links in G, such that all links are distinct and each link
is incident with the two nodes immediately preceding and following it. This trail joins
ag and a, and may also be denoted ajay...a, (the links being evident by context). It is
called a cycle if a, =a, and n>1. A clause graph is connected if every pair of nodes is
joined by a trail. A clause graph is acylic if it has no cycles. Obviously, an acyclic

clause graph contains no autolinks. A clause tree is a connected acyclic clause graph,

in which each literal occurrence is incident with exactly one link. Obviously, any clause

tree is np-reduced. As an example, graph (c) in section 2 is a clause tree.

4.2 Refutation Trees. A non-empty clause tree R is called a refutation tree, if there

exists a substitution & such that for each link LaKb in R £ is a unifier of L and K. ¢
is called a unifier for R. For each refutation tree there exists a most general unifier.
Graph (¢) in section 2 is a refutation tree with {x/b, y/a, z/a, u/b} as a most general

unifier. Any refutation tree with only one node contains the empty clause.

4.3 1-Trails. Let ® be a refutation tree. A trail ag%j@i...8n.31%8pn, 0 >0 of R is
called a T-trail of R, if there exists a unifier £ for R and two literals L &Ca, and
K&8C,, such that { is a unifier of L and K, L% is not incident with %;, and k%n is not

incident with &, A T-trail indicates a potential tautology.

4.4 Reduced Refutation Trees (RR-Trees). An RR-tree is a refutation tree containing

no T-trails. An RR-tree R is said to be an RR-tree for a clause set S, if each clause in

R is a variant of a clause in S. Obviously, an RR-tree contains no tautologies and no

1-links. Graph (c) in section 2 is an RR-tree.

4.5 Theorem. Let R be an RR-tree, and R—%}—»ﬂ'. Then R' is an RR-tree which contains

the resolvent corresponding to g.

The diagram below illustrates the effect of the application of p to an RR-tree R:

| | . % I | |
Yl ... I%II ||| | Jli’-.- l"&\\ e N 7 ... Y ... N
R - R

The significant ancestors are drawn hatched. Resolution upon % results in merging the

two parent clauses incident to & and in deleting the lower parts of the tree R.

Note that the restriction of - to RR-trees is Noetherian and confluent. The —p—-

normal form of each RR-tree is (0O).

4.6 Theorem. The following statements about a set S of clauses are equivalent:
(a) S has a unit-refutation.
(b) S plus its factors has a unit-refutation without factoring and without tautologies.
(¢c) S has an input-refutation.
(d) S plus its factors has an input-refutation without factoring and without tautologies.

(e) S plus its factors has an RR-tree.

The equivalence of (a) and (c¢) was shown by Chang /Ch70/. A weaker version of theorem
4.6 using refutation trees only is proved in /HR78/. A detailled proof of theorem 4.6
is included in /Sm82/.

Let R be an RR-tree. Then each deduction R-jfh+(0) corresponds to a resolution refuta-
tion of S(R) without factoring and without tautologies. Thus R represents a whole class

of refutations for S(R). This class always contains a unit- and an input-refutation. A

3

unit-refutation is obtained by a deduction ﬂ—31»(0) in which only unit-links are
resolved upon. Note that each RR-tree different from (0) contains at least one unit-link.
An input-refutation is obtained by a linear deduction R—Bi»(D), i.e. after the first

p-step only links connecting the newly generated resolvent are resolved upon.

4.6 The oR-Rule. Let R be an RR-tree, a a node in R, D ={Ll,...,Ln} a clause, and 8
an S-substitution from D to C, (i.e. 8D C C, and [6D] = [D|). The application of the op-

rule to <R,a,D,®> is defined according to the diagram below:

a
I

a
N l |
(T [l T o T
[I

a,D, e

R o)

/QI

The graph R' results from R by replacing Ca by D and by deleting the lower part of R. In
/Sm82/ the following theorem is proved:

4.7 Theorem. Let R be an RR-tree, and R‘?ﬁ‘*ﬂ‘. Then R' is an RR-tree.

5. KERNELS AND THEIR TRANSFORMATIONS

5.1 Projections. Let G = <NODES,C,LINKS> and G' =<NODES',C',LINKS'> be two clause
graphs. A projection ¢f G into G' is an ordered pair <*,n> such that:
(a) ~ is a function NODES —+ NODES' such that for each node a in [# Cé is a variant of
C,. We write & instead of “(a).
(b) n is a substitution such that =Cy =C§ for all nodes a in G.

(c) For each link % =LaKb in ¢ the link § =nLauKb is a link in G'.

We write <~,m>: G—G', if <",7> is a projection of G into G'. In a context where °
and 1 are not relevant, <*,n> is abbreviated to <>: G——G'. If <: G——G', then
image(G,G',<>) denotes the subgraph of G' which consists of the nodes {8| a is node in G}
and the links {f| ¢ is link in G} . We write image(G) instead of image(G,G',<>), if G'

and <> are evident from the context.

5.2 Kernels. A kernel of a clause graph § is an ordered pair <R,n> consisting of an
RR-tree R and a projection <>: R——G. The complexity of a kernel <R,n> is defined
as || (i.e. the number of nodes in R). Obviously, if <R,n> is a kernel of G with com-
plexity 1, then G contains the empty clause, because R = (0). The diagram on the next page

gives an example of a kernel <R,<”,n>> of a clause graph G.

5.3 Theorem (Kernel Properties). Let <R,<>> be a kernel of a clause graph G. Then

image(R) is an unsatisfiable andn-reduced subgraph of § containing no tautologies and no

t-links. If image(R) 4+ (0) then image(R) contains a unit-non-t~link.

5.4 Theorem (Initialisation). For any unit-refutable clause set S that contains its

factors, there exists a Kernel of the initial graph gs.

10

1 m={y/x}

s
R

: image(R,G', <", n>)

Theorem 5.4 is a direct consequence of theorem 4.6. Since image(R) is m-reduced (the-
orem 5.3), the application of the p~, o-, and t-rule to a node or a link not in image(R)
does not affect the kernel at all. If a link £ in image(R) is resolved upon, the kernel

is transformed by resolving upon each link in R which is mapped onto % by <>:

5.5 Theorem (p-Transformation). Let § and §' be clause graphs with Q-—%—+§‘, and let

<R,<>> be a kernel of G. Then there exists a kernel <R',<>'> of §' such that:
2
GG’

<] I <>

R —> R’

)

If & is in image(R), then [R] >|R'|. If % is not in image(R), then R=R' and <>=<>',

Since <> may map more than one link in R onto %, the resolution step at the G-level
may result in several'résolution steps at the R-level. Each resolution step at the R-
level decreases the complexity of the kernel, i.e. the number of nodes of the corres-
ponding RR-tree. Since a kernel contains no tautologies (see theorem 5.3), it is not af-

fected by the t-rule:

5.6 Theorem (T1-Transformation). Let G and G' be clause graphs with G ——§'. Then,

each kernel of G is also a kernel of §'.

5.7 Theorem (o-Transformation). Let § and G' be clause graphs with g-—%—+g', and let

<R,<>> be a kernel of §. Then there exists a kernel <R',<>'> of §' such that:

G+ ¢
<> I I <!
R R *, R

If a is in image(R), then ﬂ~ﬁ§+ﬂ', whereby & strict o -step projects to strict o -steps.

R
If a is not in image(R), then R=R' and <> =<>',

6. COMPLETENESS THEOREMS AND COUNTEREXAMPLES

A refutation of a clause graph G is a deduction § [9 G, such that Qn

1
contains the empty clause. Since a refutation of G corresponds to a resolution refuta-

tion of S(G), the following theorem holds:

6.1 Theorem (Soundness). Let S be a clause set. Then S is unsatisfiable if there ex-

ists a refutation of gs.

Obviously, the converse of the soundness theorem does not hold, because the infer-
ence system —* has no device to generate factors. We have not provided a factoring rule
because it is not necessary for URFC-sets (unit-refutable clause sets containing their

factors), as the following theorem shows:

6.2 Theorem (Confluence). Let S be a URFC-set, and let G be a graph with gs—-*—»g.
Then there exists a refutation 5 —~&H 5 .- 5 Gn» 06S(G,) of G, in which only

unit-non-T-links are resolved upon.

Proof. Let S and G be as above. The existence of a kernel <R,<>> of G follows from
the theorems 5.4, 5.5, 5.6, and 5.7. If G does not contain the empty clause, it follows
from theorem 5.3 that image(R) contains a unit-non-t-link %. Since resolution upon & de~
creases the complexity of the kernel, after at most |R] steps the empty clause will be

generated. (]

This shows that the inference system — is complete for URFC-sets, i.e. for each
such S there exists a refutation of gs. In addition, we know that —— is confluent for
URFC-sets modulo an appropriate equivalence relation, i.e. for any such S and for any
graph § with gs-——i+g there exists a refutation of §. The confluence property implies

that backtracking is not necessary when searching for a refutation of gs. But since there

exist infinite deductions gs ~ Gy Go—* ... even for URFC-sets, we need a condi-~

tion to guarantee the termination of the search:

6.3 Theorem {Termination). Let S be a URFC-set, and let G be a graph with gs——iag.

Then there exists no infinite deduction §—§; Gp — ... satisfying the following
conditions:

(a) None of the graphs gi contains the empty clause.

{b) Each unit-non-T-link is deleted again.

(c) Backward subsumption is applied only strictly.

In the context of a deduction a o-step is called a backward subsumption step, if it

does not delete a resolvent which was generated in the step preceding immediately.

Proof. By contradiction there exists an infinite deduction as above. As a consequence

of the theorems in section 5, there exist RR-trees and projections such that

— ——
Y % S g,
<>o[<>lI <>ZI <>iI
%, x ., —t, 2
7‘\0 R 721 R RZ R cedes TR /Qi_r".....

where —g— is defined as —g~:= 5 —~U5g* . Since IR, > iRyl 2 ... 22 holds, there exists
a number m such that 2 < |Rp| =|Rm+1] =... . Thus, from R , on, only strict op-steps can
be applied at the R-level. However by lemma 3.3.1, only a finite number of successive
strict OR—steps are possible. Hence there exists a number n such that Rn==ﬂn+l =,.,. and
>, =%>pn41=... . Thus for all i2>n, image(R,) C G; holds. That contradicts the fact that
image(ﬂn) contains a unit-non-t1-link (theorem 5.3). []

12

As a consequence of the theorems 6.2 and 6.3, every non-backtracking strategy termi-
nates with the generation of the empty clause for any URFC-set, provided each unit-non-
1-link has a finite chance to be deleted. This result also holds if every tautology and
every subsumed resolvent is immediately deleted. Furthermore, strict backward subsumption

is possible.

Graph (a) in section 2 is the initial graph of a unit-refutable clause set that does
not contain its factors. Each of the four links is a 1-link. Consequently, there exists
a deduction starting with Graph (a) and ending with the empty graph. Thus, the Kowalski-
Calculus is not confluent for unit-refutable clause sets which do not contain their fac-

tors.

6.4 Non-Confluence of the Kowalski-Calculus for Propositional Clause Sets. The theo-

rems 6.2 and 6.3 do not hold even for unsatisfiable propositional clause sets, although
at the propositional level factoring is not necessary. As an example consider the fol-

lowing deduction:

P P P P P P P
| Rg2) 405) 5355
Q Q D > Q Q T I Q Q o ~
R R R R E'R R R KR R R R
P P P P P
- 5 | r'E? =
Q Q T Q Q) " 1Q e Q
FFR R R R R R R R R R R

The propositional clause graphs in this deduction are given in a matrix representation
similiar to the one used by Bibel in /Bi8lc/. Each column represents a node of the graph.
Instead of the existing links only the missing links are drawn by dotted lines. Note that
the first matrix above represents graph (b) in section 2. In order to display the nodes
and links of a graph in matrix representation, the columns of the matrix are numbered
consecutively, such that L"L™ denotes the link that joins the literal L in the nth column

and the literal L in the mth column.

The first graph in the deduction above is the initial graph of the unaatiaﬁLable
clause set {PR, QR, PR, QR}. The last graph is satisfiable and the empty graph can be
deduced by further applications of the p- and the t-rule. Therefore, unrestricted dele-
tion of tautologies as proposed in /Ko75, Ko79/ is admissable for URFC-sets, but even for

general propositional clause sets it is inconsistent and causes the loss of completeness.

Bibel /BiBlc/ defines a restriction of the t-rule similiar to the SEP (see 3.3.2). In
/Sm82/ we have shown an equivalent of theorem 6.2 for propositional clause sets and the
restricted t-rule. But contrary to URFC-sets the equivalent of theorem 6.3 does not hold:
In /SmB2/ we give a counterexample for an infinite deduction starting from the initial
graph of an unsatisfiable propositional clause set which only uses the p~-rule and the

restricted 1-rule and in which each node is deleted after a finite number of steps. Hence

13

the restriction of /Bi8lc/ is too weak to ensure termination.

ACKNOWLEDGEMENT. I would like to thank Jorg Siekmann and Norbert Eisinger for many

stimulating discussions and their invaluable assistance and advice in the preparation

of this work.

REFERENCES

Bi8la
Bi8lb

Bi8lc
Br75

Br76
Ch70
HR78
Hu80
HW74
Ko7%

Ko75
Ku72

Lo78
Oh82

Sh76
Sm82

S876

SS80

W. BIBEL, A strong completeness result for the connection graph proof procedure.
Technische Universitzt Minchen, 1981.

W. BIBEL, On the completeness of connection graph resolution. Proc. of GWAI-81,
Springer Informatik Fachberichte 47, 1981, 246-247.

W. BIBEL, On matrices with connections. J. ACM 28,4 (Oct. 1981), 633-645.

M. BRUYNOOGHE, The inheritance of links in a connection graph. Report CW2, Katho-
like Universiteit Leuven, 197S.

F. BROWN, Notes on chains and connection graphs. Personal Notes, Dep. of Computa-
tion and logic, Edinburgh University, 1976.

C.L. CHANG, The unit proof and the input proof in theorem proving. J. ACM 17,4
(Oct. 1970), 698-707.

M.C. HARRISON and N. RUBIN, Another generalisation of resolution. J. ACM 25,3
(Oct. 1978), 341-351. '

G. HUET, Confluentreductions: abstract properties and applications to term re-
writing systems. J. ACM 27,4 (Oct. 1980), 787-821.

L. HENSCHEN and L. WOS, Unit refutations and Horn-sets. J. ACM 22,4 (Oct. 1974),
590-605.

R. KOWALSKI, A proof procedure using connection graphs. J. ACM 22,4 (Oct. 19757,
572~595.

R. KOWALSKI, Logic for préblem solving. North Holland, 1879.

D. KUEHNER, Some special purpose resolution systems. 1972. In Meltzer and Michie
(Eds), Machine intelligence 7. Edinburgh University Press, 1972.

D.W. LOVELAND, Automated theorem proving: a logical basis. North Holland, 1978.
H.J. OHLBACH, Terminator: an efficient proof procedure for unit-refutable clause
sets. Univeréitét Karlsruhe, Institut fiir Informatik I, to éppear 1982.

R.E. SHOSTAK, Refutation gréphs. Artif. Int. 7 (1976), 823-835.

G. SMOLKA, Einige Ergebnisse zur Vollstdndigkeit der Beweisprozedur von Kowalski.
Diplomarbeit, Universitidt Karlsruhe, Institut flir Informatik I, 1982.

J.H. SIEKMANN and W. STEPHAN, Completeness and soundness of the connection graph
proof procedure. Universitidt Karlsruhe, Institut fir Informatik I, 1976.

J.H. SIEKMANN and W. STEPHAN, Completeness and consistency of the connection graph

proof procedure. Universitdt Karlsruhe, Institut flr Informatik I, 1980.

1%

