
COMPLETENESS OF THE CONNECTION GRAPH PROOF PROCEDURE

FOR UNIT-REFUTABLE CLAUSE SETS

ABSTRACT. In this paper it is shown that R. Kowalski's connection graph proof procedure

/Ko75/ terminates with the empty clause for every unit-refutable clause set, provided an

exhaustive search strategy is employed. This result holds for unrestricted tautology de-

letion, whereas subsumption requires certain precautions.

The results are shown for an improved version of the connection graph resolution rule

which generatesfewer links than the original one. The new inference rule not only leads

to a smaller search space but it also permits a more efficient implementation.

The proofs are based on refutation trees as in /HR78/ and are applied immediately at

the general level. Hence the unsolved problems resulting from the classical lifting tech-

niques in the context of connection graphs are avoided.

Finally a counterexample is presented at the propositional level which shows that un-

restricted deletion cf tautologies destroys completeness for non-unit-refutable clause

sets.

1. INTRODUCTION

R. Kowalski's connection graph proof procedure /Ko75/ is an inference system for

clause graphs based on resolution /Ro65/. Each link (i.e. edge) of a clause graph indi-

cates a possible application of theclause graph resolution rule which replaces a link

by its resolvent. There is no search for new links connecting the resolvent, hut they

are obtained from the links connecting the parent clauses by a mechanism calledinherit~

ance. Consequently, a link that does not exist for a parent clause cannot be inherited

by the resolvent. This is but one of the major sources of search space reduction, but

also a source of the theoretical problems. Once the resolvent is generated, the link

resolved upon is deleted and the w-reduction (a generalisation of the purity principle

in /Ro65/) is performed on the graph. The removal of the links resolved upon, the subse~

quent w-reduction, and the inheritance mechanism lead to the deletion of many clauses.

This considerable search space reduction is enhanced even more by two rules allowing the

elimination of tautologies and subsumed clauses.
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A logical calculus is said to be complete, if there ~~Z4 a proof for every valid

formula. In automated theorem proving however, we are interested in the stronger require-

ment that a search strategy for the calculus will actually find this proof. For that rea-

san a search strategy is said to be complete, if it terminates with a proof whenever

there exists ODe.

Now, :the comple:tene-1'1 plLoblem of- :the col1Jlec:U.on f}/l-aph pILOOf- PILoceciwLe is to show that

each non-backtracking and exhaustive search strategy for the Kowa1-1RL-Calcu1u-1 (the

clause graph inference system described above) is complete, i.e. terminates with the

empty clause whenever the initial clause set was unsatisfiable. A search strategy for the

Kowalski-calculus is non-back~ackLn~, if it does not require the reconstruction of a

graph obtained earlier in the derivation sequence. And it is called exhQU,(jtLve, if each

link generated in the inference process is deleted again after a finite number of steps.

Note that a link can be deleted either because it is resolved uran or as a consequence

of the ether deletion rules (e.g. the TI-reduction).

In grite of the attemptsof Brown /Br76/, Siekmann and Stephan /SS76, SS80/, and Bibel

/Bi81a, Bi81b/, the .connection graph proof procedure completeness problem is still un-

solved. The difficulties arise from the fact that the Kowalski-calculus is not commuta-

tive. An inference system is commilZatLve, if an inference ster ß remains applicable after

the application of an inference ster a, provided ß was applicable before the application

of a. Contrary to most classical refinements for resolution (e.g. Merge or Linear), the

Kowalski-calculus is not commutative, since resolution uran a link can cause further de-

letions oflinks by the subsequent TI-reduction. Thus even an exhaustive search strategy

cannot actually resolve uran every link generated in the inference process.

To salve the completeness problem of the connection graph proof procedure, a new proof

technique bad to be developped in order to handle the dynamic aspects of an inference

process running on a non-commutative inference system. Our proof is based on the follow-

ing idea first mentioned in /5576, 5580/: The initial graph of an unsatisfiable clause

set contains an unsatisfiable subgraph, called the k~el. A non-negative integer com-

plexity is defined für the kerneI. If this complexity is zero, the graph contains the

empty clause. Resolution upon a link within the kernel transforms the kernel and strict-

ly reduces its complexity, whereas resolution upon a link not belonging to the kernel

does not affect the kernel at all.

But how can we define the kerneI? How is the kernel transformed by the inference rules

and what is a convenient measure for the kernel complexity? A first attempt may be to

define the kerne 1 as the projection of its resolution refutation, i.e. every link and

every clause of the initial graph used in this refutation constitute the kerneI. However,

this idea turned out to be rather unsuccessful, since it leads to very complicated trans-

formations which are not manageable.

The difficulties can be overcome by condensing the resolution refutations to a more

simple structure representing a whole class of resolution refutations at once. This is

~
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achieved using Shostak's refutation graphs /Sh76/. Since the Shostak refutation graph

for the kernel consists only of variants of clauses occurring in the kernel, its projec-

tion ente the kernel is a simple superposition. It turns out that one resolution step

within the kernel results in ODe or more resolution steps upon the corresponding refuta-

tion graph.

A major advantage of this new proof technique is that it leads to a clearer understand-

ing of the effects of the clause graph resolution and of the deletion rules for tautolo-

gies and subsumed clauses. For example it turns out that Bibel's conditions for the re-

moval of tautologies and subsumed clauses (see /Bi81c/) are also adequate in the light

of the new proof technique.

In addition the new proof technique led to a significant improvement of the clause

graph resolution rule. The new rule presented in this paper generates fewer links than

the versions defined by Kowalski /Ko75/, Bruynooghe /Br75, Ko79/, and Bibel /Bi8Ia,

Ei8Ic/. It hag the additional advantage that its implementation is more efficient than

the rules previously proposed.

In this paper we consider onlythe case of unit-refutable clause sets. Aseparate in-

vestigation of this subcase appears to be indispensable, since several of the strenger

results shown here do not hold für the general case. For example the omission of factor-

ing, the restriction of resolution to unit-links, and suprisingly the unrestricted dele-

tion of tautologies preserve completeness für unit-refutable sets hut not für the gen-

eral case.

Unit-refutable clause sets are of great practical importance in automated theorem

proving, sinGe on the one hand there are very efficient refutation techniques known for

this special class (see /Ch70, Ku72, HW74 , Oh82/) , and on the ether hand they are general

enough to include the well-investigated Horn sets, within which it is possible to express

for example the axioms of group theory or of Boolean algebras. Unit-refutable clause sets

are distinguished from general GlauBe sets by the fact that their unsatisfiability can be

characterized by refutation trees instead by refutation graphs containing cycles.

The reader is expected to be familiar with the basic notions of resolution-based theo-

rem proving (see e.g. /L078/) , and with the main ideas and notions concerning confluent

relations (see /Hu80/). For space limitations the proofs are only sketched or omitted

entirely. The complete proofs are contained in /Sm82/. The author is currently working

on completeness results concerning the general case and these will be presented in a

later paper.

2. CLAUSE GRAPHS

A clause graph is a data structure for a set of clauses, where the edges indicate possi-

ble resolutions. As the examples on the next page suggest, clause graphs are not graphs

q
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at all in the conventional sense. Each node represents a clause and is drawn as a chain

of contiguous cella labeled with the literals of the clause. The edges in clause graphs

are called links. Each link connects two literals which are potentially complementary,

i.e. the literals can be made complementary by applying seme substitution, after renam-

ing the variables. The following definitions formalize these intentions:

2.1 Nodes. The following symbols are nodes: kl' k2' k3' ... .

2.2 Literal Occurrences. A literal occurrence La is an ordered pair <L,a> consisting

of a literal Land anode a.

2.3 Links. A link LaKb is an unordered pair {La,Kb} consisting of two literal occur-

rences Laand Kb such that Land Kare potentially complementary. An autolink is a link

abL K such that a = b.

2.4 Clause Graphs. A clause graph is a tripel <NODES,C,LINKS> such that:

(a) NODES is a finite, possibly empty set of nodes.

(b) C is a mapping NODES - Clauses. Instead of C (a) we wri te Ca'

(c) LINKS is a set of links such that each LaKb ~LINKS satisfies the following condi-

tions: a ~NODES, L ~Ca' b ~NODES, and K ~Cb'

(d) For any two different nodes a, b ~ NODES the clauses Ca and Cb have no variables in

common.

Let ~=<NODES.C,LINKS> be a clause graph. Anode a [literal occurrence La, link t] is

called a node in ~ [li teral occurrence in ~, link in ~], i f a ~ NODES [a ~ NODES and L ~ Ca'

t G LINKS]. A uni t-link in ~ is a link L aKb in ~ such that I Ca I = 1 or I Cb I = 1. A ,-link in

~ is a non-auto link t = L aKb in ~ such that the binary resol vent indicated by t (the

clause (aCa - aL) U (aCb - aK) where 0 is an mgu of Land in is a tautology. A link L aKb in

~ is said to be incident with a literal occurrence Me [a node c, a clause C] in~, if

Me = La or Me = Kb [c = a or c = b, C = Ca or C = Cb ]. The number of nodes in ~ is denoted by

I~I := I NODES I. S(~) := {Ca I a ~ NODES} denotes the set of all clauses occurring in ~. ~ is

called total, if for any two potentially complementary literal occurrences La and Kb in

~ LaKb is a link in~. ~ is called satisfiable [unsatisfiable] , if S(~) is satisfiable

[unsatisfiable]. The clause graph with no nodes is called the empty clause graph and de-

noted by (). Each clause graph ~ such that I~I = 1 and S(~) = {O} is denoted by (0).

2.5 Subgraphs. Let fi = <NODES,C,LINKS> and fi' = <NODES' ,C' ,LINKS'> be two c1ause graphs.

~~

(b)
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~ is said to be a subgraph of ~', if NODES C NODES', LINKS C LINKS', and if C is the re-

striction of C' to NODES. The relationC defined by ~ C~' :<==> ~ is a subgraph of~'

is a partial order on the set of all clause graphs.

2.6 Basic Operations on Clause Graphs. Let ~ be a elause graph, t a link, a anode,

end C a elause. Then the addition or the deletion of a link or anode is defined as fol-

lews:

- ~ - t denotes the graph whieh resul ts from ~ by the deletion of t.

- ~ +t denotes the graph whieh results from ~ by the addition of t. The operation is

only defined, if the literal'oeeurrenees of t are literal oeeurrenees in~.

- ~ - adenotes the maximal subgraph of ~ not eontaining a.

- ~+<a,c> denotes the graph whieh results from ~ by the addition of a such that Ca=C,

The operation is only defined, if a is not anode in ~ end if ~ end C have no

variables in eommon.

2.7 ~-Redueed Clause Graphs. A literal oeeurrenee La in a elause graph ~ is seid to

be pure in ~I if no non-autolink in ~ is ineident with La. A elause graph ~ eontaining

no literal oeeurrenees whieh are pure in ~ is said to be ~-redueed. The binary relation

~ defined by
~ ~ ~, :< ==> There is a li teral oeeurrenee La in ~ such

that La is pure in ~ and~' =~-a

is obviously Noetherian. Sinee ~ is loeally eonfluent, -w-+ is also eonfluent end the

lqIique ~-normal form ~(~) exists for eaeh elause graph~. It is easy to show that ~(~)

is always the maximal ~-redueed subgraph of~.

2.8 The Initial Clause Graph ~S of a Clause Set S. Let S be a elause set. Let S' be

the elause set obtained from S by the deletion of all tautologies end by renaming vari-

ables so that different elauses eontain. different variables. Let~' be a total elause

graph with S(~')=S' end IS(~I)I = Is'l. Then 1I(~1) is ealled an initial clause graph of S.

Sinee two initial elause graphs of S are equal module the renaming of variables end no-

des, eaeh initial elause graph of S is seid to be the initial elause graph of Sand is de-

noted by ~S'

3. RESOLUTION AND THE ELIMINATION RULES FOR CLAUSE GRAPHS

In order to get ~~ inferenee system, we now introduee three inferenee rules for elause

graphs. The p-rule replaees a non-autolink by the eorresponding resolvent. The \-rule de-

letes anode if its elause is a tautology. The o-rule deletes anode whieh is subsumed by

another node, i.e. by its elause and by its links.

3.1 The p-Rule. The p-rule eonsists of an adding end of a deletion part. The adding

part replaees a non-autolink t by the eorresponding resolvent. Thereby, the links eon-

neeting the resolvent are obtained exelusively from the links eonneeting the parent

3. RESOLUTION AND THE ELIMINATION RULES FOR CLAUSE GRAPHS
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clauses (i.e. the clauses being incident with t) by a mechanism called inheritance. The

deletion part first deletes the link t and then performs a ~-reduction on the graph. The

adding part of the clause graph resolution rule is defined by:

A)'~n..dJun Po ;

Jnput:. ~o: clausegraphj

t = ~a~b : non-autolink in ~ j
COn4tanZ~: cr:= most general unifier of ~ and ~ j

R := (crca - cr~)U(crCb - cr~); -- resolvent corresponding to t

e := renaming substitution so that

eR and ~ have no variables in commonj

c := node that does not occur in ~oj

Vcvzi..ab)'(UJ: ~: clause graph: = ~o j

L, K, M : literals; d, e : nodes;

1: ~ := ~ + <c, R>;

2: For all L ~ Cc
2.1: Choose K, d -- significant ancestor

such that d ~ {a,b} and K ~ Cd and L = ecrKj

2.2: For all M, e

such that MeKd is a link in ~ and

Land Kare potentially complementary

2.2.1: ~ := ~ + MeLcj

Ou:tput: ~ .
The diagram below illustrates the effect of~:

e a = d
" "-

I IMI, IK,
\
\

\
? '. I~ ... I~

""'c

Each literal of the resolvent is obtained from one or several literal occurrences (the

so-called ancestors) in the parent clauses. In step 2.1 the algorithm Po indeterministic-

ally chooses one of these ancestors, the so-called significant ancestor. Only links

connecting significant ancestors are relevant for the inheritance mechanism. We call this

mono-inheritance. Kowalski's original rule performs multi-inheritance, i.e. asch link

connecting an ancestor is relevant for the inheritance mechanism. Obviously, mono-inher-

itance not only generates fewer links in esse of a marge, hut also leads to a more effi-

cient implementation. All cornpleteness results known for the connection graph proof pro-

cedure hold also when mono-inheritance is used instead of multi-inheritance.

Note that a graph resulting from the application of Po to a total graph is total

again. In cases where e = a or e = b (a, b, and c are displayed in the diagram above) the

effect of the inheritance mechanism is rather sophisticated. For a further discussion

~

t
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see /Ko79/. The complete clause graph resolution rule is defined by:

A4;.ol'/..UJun I' ;
:Jn.ptd: ~: clause graph;

2, : non-autolink in ~;

VC1/l.i...abl.e: (;: clause graph: = ~;
1: (;:= 1'.((;.2,); -- adding part

2: (; := 11((; - 2,); -- deletion part

Owtput.: (;.

The deletion part of P can delete substantial parts of the graph. As an example con-

sider graph (e) in section 2, which is ~-reduced and unsatisfiable. An application of P

to the link pp reduces graph (e) to the empty graph, regardless of the choice of the sig-

nificant ancestors. Note that Kowalski's original rule deletes only the two parent nodes,

because it generates a new link to each of the two occurrences of Q.

An important point of the clause graph resolution rule is that adeleted link is not

inherited by the resolvent. Thus, one deleted link can cause several missing links later

on. This reduction effect is increased by the subsequent ~-reduction. In addition, mono-

inheritance allows the choice of that ancestor as significant that is incident with the

fewest number of links.

3.2 The 1:-Rule.

Al.r;.ol/J..i:hm '1:;

Jnpu~: ~ : clause graph i
a : node in ~ such that C is a tautologYi ~

a
Ou~p~: 'IT(~-a).

3.3 The o-Ru1e. Let C and D be c1auses. An S-substitution from D to C is a substitu-

tion e such that eD C C and I eD I = I D I. D subsumes C, if there exists an S-Substi tution

e from D to C. D subsumes C strict1y, if D subsumes C, and if D is not a variant of C.

Dur definition of subsumption differs from e-subsumption as defined in /L078/. The rea-

sen is:

3.3.1 Lemma. There is no infinite sequence C1C2C3'" of c1auses such that Cn+1 strict-

1y subsumes Cn for all n ~ 1.

'PltOol-. The complexity of a c1ause C= {Ll, Ln} may be defined by [C):= ILll +...

+ ILnl-lvar(C)I. where ILil denotes the length of the literal Li as astring and

Ivar(C) I is the number of different variables occurring in C. It is not hard to show

that [cl > [D) holds for any two clauses C and D such that D subsumes C strictly. Hence

an infinite sequence CIC2C3'" as above is impossible. [)

The links in a elause graph are of signifieant importanee beeause of the inheritanee

meehanism and the w-reduetion. In partieular, anode a eannot be eliminated just beeause

there exists another node b such that.Cb subsurnes Ca' It was first pointed out by Bibel

/Bi8le/ that b hag to "subsurne" a also by its links.

i-



3.3.2 The Subsumption Elimination Property. Let ~ be a clause graph. Anode a in ~
is said to satisfy the subsumption elimination property (SEP) in ~I if there exists a

node b in ~ different from a such that Cb subsumes Ca with an S-substitution 8, and if

for each li teral L ~ Cb and for each link Me 8L a in ~ also MeL b is a link in ~. The dia-

gram below illustrates the SEP: b
I

-I~
?

Anode a in ~ is said to satisfy the SEP strictly,

strictly subsumed by Cb' The subsumption elimination rule for clause graphs is given by:

A 40 l1.i.tJun 0 ;

Jnpu~: ~ : clause graph;

a : node that satisfies the SEP in~;

OIJ.~pu:t: 1T(~ - a).

3.4 The Inference Relations -P--, ~, ~, and ~. The relations -p--, ~,
~, and ~ are binary relations on the set of all clause graphs and are defined as:

J!,

- [; ---P-+ [;, iff [; and J!, are proper input data for p and [;, is a possible output.

J!,- [;--p-[;' iff there exists a link J!, such that [;--p--o-[;'.

a- {i c;-+ {il iff {i and a are proper input da ta for a and {i' is a possible output.

- {i c;-+ {i' iff there exists anode a such that {i ~ {i' .

a
- ff --:r- ff' irf ff and a are proper input data for '{ and ff' is a possible output..

- ff-:r-ff' irr there exists anode a such that ff-f--ff'.

- ff-ff' irr ffp-+ff' or ff-o-ff' or ff--:r"ff'.

4. REDUCED REFUTATION GRAPHS

This paper is concerned with confluence and completeness properties of the inference

system defined by~. In order to show these properties we introduce a second inference

system which consists of two rules applicable to special clause graphs, called reduced

refutation graphs.

4.1 Glause Trees. A trail of a clause graph ~ is an alternating sequence aot1al'"

an-ltn~' n~O of nodes and links in~, such that all links are distinct and each link

is incident with the two nodes immediately preceding and following it. This trail joins

ao and an and mayaIso be denoted a1a2"'~ (the links being evident by context). It is

called a cycle if ao=~ and n~l. A clause graph is connected if every pair of nodes is

joined by a trail. A clause graph is acylic if it haB no cycles. Obviously, an acyclic

clause graph contains no autolinks. A clause tree is a connected acyclic clause graph,

,,
I
I

I
,

.e
" a

;I M 81 '

if a satisfies the SE? in ~ and Ca is
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in which each literal occurrence is incident with exactly one link. Obviously, any clause

tree is w-reduced. As an example, graph (c) in section 2 is a clause tree.

4.2.Refutation Trees. A non-empty clause tree ~ is called a refutation tree, if there

exists a substitution ~ such that for asch link LaKb in ~ ~ is a unifier of Land K. ~

is called a unifier for ~. For asch refutation tree there exists a most general unifier.

Graph (c) in section 2 is a refutation tree with {x/b, y/a, z/a, u/b} as a most general

unifier. Any refutation tree with only one node contains the empty clause.

4.3 --Trails. Let ~ be a refutation tree, A trail ao.tlal" .an-l i-nant n;:O of 7? is

called a --trail of 7? if there exists a unifier f; for ~ and two literals L G Cao and

K ~ Can such that f; is a unifier of Land Kt L ao is not incident wi th .tl, and KSn is not

incident with .tn' A t-trail indicates a potential tautology.

4.4 Reduced Refutation Trees (RR-Trees). An RR-tree is a refutation tree containing

no t-trails. An RR-tree ~ is seid to be an RR-tree for a clause set S, if each clause in

~ is a variant of a clause in S. Obviously, an RR-tree contains no tautologies and no

t-links. Graph (c) in section 2 is an RR-tree.

4.5 Theorem. Let ~ be an RR-tree, and ~+~'.

the resolvent corresponding to t.

The diagram below illustrates the effect of the application of p to an RR-tree ~:

i "

,- i

~ ~ 1 ~'

The significant ancestors are drawn hatched. Resolution upon t results in merging the

two parent clauses incigent to t end in deleting the lower parts of the tree ~.

Note that the restriction of ~ to RR-trees is Noetherian and confluent. The~-

normal form of each RR-tree is (0).

4.6 Theorem. The following statements about a set S of clauses are equivalent:

(a) S haB a unit-refutation.

(b) S plus its factors haB a unit-refutation without factoring end without tautologies.

(c) S haB an input-refutation.

(d) S plus its factors haB an input-refutation without factoring and without tautologies.

(e) S plus its factors haB an RR-tree.

The equivalence of (a) and (c) was shown by Chang /Ch70/. A weaker version of theorem

4.6 using refutation trees only is proved in /HR78/. A detailled proof of theorem 4.6

is included in /Sm82/.

Let ~ be an RR-tree. Then "each deduction ~~ (0) corresponds to aresolution refuta-

tion of S(~) without factoring end without tautologies. Thus ~ represents a whole class

of refutations for S(~). This class always contains a unit- end an input-refutation. A

~

Then ~' is an RR-tree which contains

I~.-. I~~ ~
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unit-refutation is obtained by a deduction ~~(O) in which only unit-links are

resolved upon. Note that each RR-tree different from (0) contains at least one unit-link.

An input-refutation is obtained by a linear deduction ~~(O). i.e. after the first

p-step only links connecting the newly generated resolvent are resolved upon.

4.6 The ~-Rule. Let ~ be an RR-tree, a anode in~, D= {Ll,...,Ln} a clause, and e

an S-substitution from D to Ca (Le. eD C Ca and laD! = IDI). The application of the "R-

rule to <~la,D,e> is defined according to the diagram below:

a,~ ~/a
I I

~ a,D,e GI'~ I y,

The graph ~I results from ~ by replacing Ca by D and by deleting the lower part of~. In

/Sm82/ the following theorem is proved:

4.7 Theorem. Let ~ be an RR-tree, and ~ ~ ~I. Then ~I is an RR-tree.

5. KERNELS AND THEIR TRANSFORMATIONS

5.1 Projections. Let fi = <NODES, C, LINKS> and fi I = <NODES I ,C I I LINKS ,> be two clause

graphs. A projection cf fi into.fi' is an ordered pair <A,W> such that:

(a) A is a function NODES - NODES I such that for each node a in fi C~ is a variant of
a

Ca, We wri te a instead of A (a) .

(b) '11 is a substitution such that 'ITCa =Cä for allAnodes a in f1.

(c) For each link 2. = LaKb in f1 the link g: = '11 La'ITKb is a link in f1'.
\\Ie write <A,'IT>: f1-f1', if<A,'IT> is a projection of f1 into f1'. In a context where A

and'IT are not relevant, <A,'IT> is abbreviated to <>: f1-f1'. If <>: f1-f1', then

image(f1,f1' ,<» denotes the subgraph of f1' which consists of the nodes {al a is node in f1}

and the links {tl 2. is link in f1} . \\Ie write image(f1) instead of image (f1 ,f1 , ,<», if f1'

and <> are evident from the context.

5.2 KerneIs. A kerne 1 of a clause graph f1 is an ordered pair <~,'IT> consisting of an

RR-tree ~ and a projection <>: ~-f1. The complexity of a kerne 1 <~,'IT> is defined

as I~I (i.e. the number of nodes in ~). Obviously, if <~,'IT> is a kerne 1 of f1 with com-

plexity 1, then f1 contains the empty clause, because ~= (0). The diagram on the next page

gives an example of a kernel <~,<A,'IT» of a clause graph f1.

5.3 Theorem (Kernel Properties). Let <~I<» be a kernel of a clause graph~. Then

image(~) is an unsatisfiable and~-reduced subgraph of ~ containing no tautologies end no

t-links. If image(~) ~ (0) then image(~) contains a unit-non-.-link.

5.4 Theorem (Initialisation). For any unit-refutable clause set S that contains its

factors, there exists a kernel of the initial graph ~S'

10
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Theorem 5.4 is a direct consequence of theorem 4.6. 5ince image(~) is w-reduced (the-

orem 5.3).the application of the P-. 0-, and ,-rule to anode or a link not in image(~)

does not affect the kernel at all. If a link 1 in image(~) is resolved upon, the kernel

is transformed by resolving upon each link in ~ which is mapped onto 1 by <>:

5.5 Theorem (p-Transformation). Let 51 and 51' be clause graphs with 51+51'. and let

<~,<» be a kerne 1 of 51. Then there exists a kernel <~, ,<>'> of 51' such that:

51 +- 51'

<> 1 1 <>'

~~~'

then I~I>I~'I. If1isnotinimage(~). then~=~' and<>=<>'.

5ince <> may map more than one link in ~ ente 1, the resolution step at the 51-level

may result in several resolution steps at the ~-level. Each resolution step at the~-

ponding RR-tree. 5ince a kernel contains 'no tautologies (see theorem 5.3).

5.6 Theorem (,-Transformation). Let 51 and 51' be clause graphs wi th 51-:r- 51'. Then,

5.7 Theorem (o-Transformation). Let 51 and 51' be c1ause graphs wi th 51 -+- 51', and let

<~,<» be a kernel of 51. Then there exists a kernel <~, ,<>'> of 51' such that:

51 +- 51'

<> 1 r <> I

~ --4 ~'
°R

If a is in image(~). then ~ 0; I ~', whereby astriet 0 -step projeets to strict 0 R-steps.

Ifaisnotinimage(~), then~=~' and<>=<>'.

A refutation of a clause graph 51 is a ded\.1ction 51- 511 - . . .-51n such that 51n

contains the empty clause. 5inee a refutation of 51 correspondsto aresolution refuta-

tion of 5(51). the following theorem holds:

6.1 Theorem (50undness). Let 5 be a elause set. Then 5 is unsatisfiable if there ex-

Ir t is in image(~),

level decreases the complexity of the kernel,

fee ted by the T-rule:

each kerne! of ~ is also a kerne! of ~'.

6. COMPLETENESS THEOREMS ANDCOUNTEREXAMPLES

~
/"

11= {y/x}

i.e. the number of nodes of the corres-

i t is not af-

11



ists a refutation of ~S'

Obviously, the converse of the soundness theorem does not hold, because the infer-

ence system ~ hag no device to generate factors. We have not provided a factoring rule

because it is not necessary for URFC-sets (unit-refutable clause sets containing their

factors) , as the following theorem shows:

6.2 Theorem (Confluence ). Let S be a URFC-set, end let ~ be a graph with ~S ~~.

Then there exis ts a refutation ~ --p--- ~ -p-'" ... --P-~n' 0 ~ S (fin) of ~, in which only

unit-non-T-links are resolved upon.

~~oof. Let S end ~ be as above. The existence of a kernel <~,<» of ~ fellows from

the theorems 5.4, 5.5, 5.6, end 5.7. If ~ does not contain the empty clause, it fellows

from theorem 5.3 that image (m contains a uni t-non- T-link R.. Since resolution upon R. de-

creases the complexity of the kernel, after at most I~I steps the empty clause will be

generated. []

This shows that the inference system ~ is complete for URFC-sets, i.e. for each

such S there exists a refutation of ~S' In addition, we know that ~ is confluent for

URFC-sets module an appropriate equivalence relation, i.e. for any such Sand for any

graph ~ wi th ~S -.! ~ there exists a refutation of ~. The confluence property implies

that backtracking is not necessary when searching for a refutation of ~S' But since there

exist infinite deductions ~S - ~l- ~2~ .,. even for URFC-sets, we need a condi-

tion to guarantee the termination of the search:

6.3 Theorem (Termination). Let S be a URFC-set, end let ~ be a graph with ~s-.! ~'

Then there exists no infinite deduction ~-~l- ~2 ~ ... satisfying the following

conditions:

(a) None of the graphs ~i contains the empty clause.

(b) Each unit-non-T-link is deleted again.

(c) Backward subsumption is applied only strictly.

In the context of a deduction a o-step is called a backward subsumption step, if it

does not delete aresolvent which was generated in the step preceding immediately.

~~of. By contradiction there exists an infinite deduction as above. As a consequence

of the theorems in section 5, there exist RR-trees end projections such that

f;S-~1-~2- -f;i - .....
<> 0 i <> 1 i <> 2 i <> i i

G"! ~t;) ~'R~~ ~t;) *

I~ R Y\1 R "2 R R I\i--P:-.""

:= ~ p U '-' o . Since I~ I > I~ l l > ... > 2 holds, there existsR 0 - - -
a number m such that 2 ~ I ~ I = I ~m+ll = . .. . Thus, from ~+l on, only strict °R-steps can

be applied at the ~-level. However by lemma 3.3.1, only a finite number of successive

strict °R-steps are possible. Hence there exists a number n such that ~ = ~n+l = . .. and

on =on+l =... . Thus for a11 i ~n, image(~) C ~i holds. That contradicts the fact that

image(~) contains a unit-non-T-link (theorem 5.3). []
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As a eonsequenee of the theorems 6.2 end 6,3, every non-baektraeking strategy termi-

nates with the generation of the empty elause for any URFC-set, provided eaeh unit-non-

T-link hag a finite chance to be deleted, This result also holde if every tautology end

every subsumed resolvent is immediately deleted, Furthermore, striet backward subsumption

is possible.

Graph (a) in seetion 2 is the initial graph of a unit-refutable elause set that does

not eontain its faetors. Each of the four links is aT-link, Consequently, there exists

a deduction starting with Graph (a) and ending with the empty graph, Thus, the Kowalski-

Calculus is not confluent for unit-refutable elause sets whieh do not contain their fae-

tors.

6,4 Non-Confluence of the Kowalski-Calculus for Propositional GlauBe Sets. The theo-

rems 6.2 end 6.3 do not hold even for unsatisfiable propositional clause sets, although

at the propositional level factoring is not necessary. As an example eonsider the fol-

lowing deduction:

P p 1-2 P P P -4 5 P P P -3 5
- R R - Q Q - PPQ Q p I Q Q Q P I Q Q P 1

RR R R R""R R R R""R R R R

P P P P 1-4 P P
- 5 - RR - -Q Q R t I Q Q p I Q Q Q

R""R R R R R""R R R R R R

The propositional e1ause graphs in this deduction are given in a matrix representation

similiar to the one used by Bibel in /Bi81c/. Each eolumn represents anode of the graph.

Instead of the existing links only the missing links are drawn by dotted lines. Note that

the first matrix above represents graph (b) in seetion 2. In order to display the nodes

and links of a graph in matrix representation, the columns of the matrix are numbered

consecutively, such that Lnrm denotes the link that joins the literal L in the nth column

end the literal r in the mth column.

The first graph in the deduction above is the initial graph of the un~ati4~able

clause set {PR, QR, PR, QR}. The last graph is ~ati4tLable end the empty graph can be

deduced by further applications of the p- end the t~rule, Therefore, unrestricted dele-

tion of tautologies as proposed in /K075, K079/ is admissab1e for URFC-sets, hut even for

general propositional clause sets it is ineonsistent end eauses the logs of completeness,

Bibel /Bi8It/ defines a restrietion of the T-rule similiar to the SE? (see 3.3.2). In

/Sm82/ we have shown an equivalent of theorem 6.2 for propositional clause sets and the

restricted T-rule. But contrary to URFC-sets the equivalent of theorem 6.3 does not hold:

In /Sm82/ we give a counterexample for an infinite deduction starting from the initial

graph of an unsatisfiable propositional clause set which only uses the p-rule and the

restricted T-rule and in which each node is deleted after a finite number of steps. Hence

I~



the restrietion of /Bi81c/ is toe weak to ensure termination.
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