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1 Getting Started

We start with basic ideas from type theory and Coq. The main issues we discuss

are inductive types, recursive functions, and equational reasoning using structural

induction. We will see inductive types for booleans, natural numbers, and pairs. On

these types we will define functions using equations. This will involve functions that

are recursive, cascaded (i.e., return functions), higher-order (i.e., take functions as

arguments), and polymorphic (i.e., take types as leading arguments). Recursion will

be limited to structural recursion so that termination can be checked automatically.

Our main interest is in proving equations involving recursive functions (e.g.,

commutativity of addition, x + y = y + x). This will involve proof steps known

as conversion, rewriting, structural case analysis, and structural induction. Equal-

ity will appear in a general form called propositional equality, and in a specialized

form called computational equality. Computational equality is a prominent design

aspect of type theory that is important for mechanized proofs.

We will follow the equational paradigm and define functions with equations,

thus avoiding lambda abstractions and matches. We will mostly define cascaded

functions and use the accompanying notation known from functional programming.

Type theory is a foundational theory starting from computational intuitions. Its

approach to mathematical foundations is very different from set theory. We may say

that type theory explains things computationally while set theory explains things at

a level of abstraction where computation is not an issue. When working with type

theory, set-theoretic explanations (e.g., of functions) are usually not helpful, so free

your mind for a foundational restart.

1.1 Booleans

In Coq, even basic types like the type of booleans are defined as inductive types.

The type definition for the booleans looks as follows:

B : T

T : B

F : B

The definition introduces three constants called constructors: the type B and its

two values T and F. In the definition each constructor appears with its type. Note

1



1 Getting Started

that the type B also has a type, which is the universe T.

We now define the negation function

! : B→ B

for booleans with two equations:

! T := F

! F := T

The defining equations also serve as computation rules. For computation, the

equations are applied as left-to-right rewrite rules. For instance, we have

! ! ! T = ! ! F = ! T = F

by rewriting with the first, the second, and again with the first equation (! ! ! T is to be

read as !(!(! T))). Computation in Coq is logical and is used in proofs. For instance,

the equation

! ! ! T = ! T

follows by computation:

! ! ! T ! T

= ! ! F = F

= ! T

= F

We speak of computational equality and of proof by computation.

Proving the equation

! !x = x

involving a boolean variable x takes more than computation since none of the defin-

ing equations applies. What is needed is structural case analysis on the boolean

variable x, which reduces the claim ! !x = x to two equations ! ! T = T and ! ! F = F,

which both follow by computation.

Next we define functions for boolean conjunction and boolean disjunction:

& : B→ B→ B | : B→ B→ B

T & y := y

F & y := F

T | y := T

F | y := y

2



1.2 Numbers

The defining equations introduce asymmetry since they define the functions by case

analysis on the first argument. Alternatively, one could define the functions by case

analysis on the second argument, resulting in different computation rules. Since the

equations defining a function must be disjoint and exhaustive when applied from

left to right, it is not possible to define boolean conjunction and disjunction with

equations treating both arguments symmetrically.

Given the definitions of the basic boolean connectives, we can prove the usual

boolean indenties with boolean case analysis and computation. For instance, the

distributivity law

x & (y | z) = (x & y) | (x & z)

follows by case analysis on x and computation, reducing the law to the trivial equa-

tions y | z = y | z and F = F. Note that the commutativity law

x & y = y & x

needs case analysis on both x and y to reduce to computationally trivial equations.

1.2 Numbers

The inductive type for the numbers 0, 1, 2, . . .

N : T

0 : N

S : N→ N

has two constructors providing 0 and the successor function S. A number n can

now be represented by the term that applies the constructor S n-times to the con-

structor 0. For instance, the term S(S(S0)) represents the number 3. We will use the

familiar notations 0, 1, 2, . . . for the terms 0, S0, S(S0), . . . representing the num-

bers. The constructor representation of numbers dates back to the Dedekind-Peano

axioms.

We now define an addition function doing case analysis on the first argument:

+ : N→ N→ N

0+y := y

Sx +y := S(x +y)

The second equation is recursive because it uses the function ’+’ being defined at

the right hand side.

3



1 Getting Started

Coq only admits total functions, that is, functions that for every value of the

argument type of the function yield a value of the result type of the function. To

satisfy this basic requirement, all recursive definitions must be terminating. Coq

checks termination automatically as part of type checking. To make an automatic

termination check possible, recursion is restricted to structural recursion on a sin-

gle inductive argument of a function (an inductive argument is an argument with

an inductive type). The definition of ’+’ is an example of a structural recursion on

numbers taking place on the first argument. The recursion appears in the second

equation where the argument is Sx and the recursive application is on x.

We define truncating subtraction for numbers:

− : N→ N→ N

0−y := 0

Sx − 0 := Sx

Sx − Sy := x −y

The primary case analysis is on the first argument, with a nested case analysis on the

second argument in the successor case. The equations are exhaustive and disjoint.

The recursion happens in the third equation. We say that the recursion is structural

on the first argument since the primary case analysis is on the first argument.

Following the scheme we have seen for addition, functions for multiplication and

exponentiation can be defined as follows:

· : N→ N→ N ˆ : N→ N→ N

0 ·y := 0

Sx ·y := y + x ·y
x0 := 1

xSn := x · xn

Exercise 1.2.1 Define functions as follows:

a) A function N→ N→ N yielding the minimum of two numbers.

b) A function N→ N→ B testing whether two numbers are equal.

c) A function N→ N→ B testing whether a number is smaller than another number.

Exercise 1.2.2 Rewrite the definition of truncating subtraction such that the pri-

mary case analysis is on the second argument.

4



1.3 Structural Induction

x + 0 = x induction x
1 0+ 0 = 0 computational equality

2 IH : x + 0 = x Sx + 0 = Sx conversion

S(x + 0) = Sx rewrite IH

Sx = Sx computational equality

Figure 1.1: Proof diagram for Equation 1.1

1.3 Structural Induction

We will discuss proofs of the equations

x + 0 = x (1.1)

x + Sy = S(x +y) (1.2)

x +y = y + x (1.3)

(x +y)−y = x (1.4)

None of the equations can be shown with structural case analysis and computation

alone. In each case structural induction on numbers is needed. Structural induc-

tion strengthens structural case analysis by providing an inductive hypothesis in

the successor case. Figure 1.1 shows a proof diagram for Equation 1.1. The in-

duction rule reduces the initial proof goal to two subgoals appearing in the lines

numbered 1 and 2. The subgoals are obtained by structural case analysis and by

adding the inductive hypothesis (IH) in the successor case. The inductive hypoth-

esis makes it possible to close the proof of the successor case by conversion and

rewriting. A conversion step applies computation rules without closing the proof.

A rewriting step rewrites with an equation that is either assumed or has been es-

tablished as a lemma. In the example above, rewriting takes place with the inductive

hypothesis, an assumption introduced by the induction rule.

We will explain later why structural induction is a valid proof principle. For now

we can say that inductive proofs are recursive proofs.

We remark that rewriting can apply an equation in either direction. The above

proof of Equation 1.1 can in fact be shortened by one line if the inductive hypothesis

is applied from right to left as first step in the second proof goal.

Note that Equations 1.1 and 1.2 are symmetric variants of the defining equations

of the addition function ’+’. Once these equations have been shown, they can be

used for rewriting in proofs.

Figure 1.2 shows a proof diagram giving an inductive proof of Equation 1.4.

Note that the proof rewrites with Equation 1.1 and Equation 1.2, assuming that the

equations have been proved before.

5



1 Getting Started

x +y −y = x induction y
1 x + 0− 0 = x rewrite Equation 1.1

x − 0 = x case analysis x
1.1 0− 0 = 0 comp. equality

1.2 Sx − 0 = Sx comp. equality

2 IH : x +y −y = x x + Sy − Sy = x rewrite Equation 1.2

S(x +y)− Sy = x conversion

x +y −y = x rewrite IH

x = x comp. equality

Figure 1.2: Proof diagram for Equation 1.4

One reason for showing inductive proofs as proof diagrams is that proof dia-

grams explain how one construct proofs in interaction with Coq. With Coq one

states the initial proof goal and then enters commands called tactics performing

the proof actions given in the rightmost column of our proof diagrams. The induc-

tion tactic displays the subgoals and automatically provides the inductive hypoth-

esis. Except for the initial claim, all the equations appearing in the proof diagrams

are displayed automatically by Coq, saving a lot of tedious writing. Replay all proof

diagrams shown in this chapter with Coq to understand what is going on.

A proof goal consists of a claim and a list of assumptions called context. The

proof rules for structural case analysis and structural induction reduce a proof goal

to several subgoals. A proof is complete once all subgoals have been closed.

A proof diagram comes with three columns listing assumptions, claims, and

proof actions.1 Subgoals are marked by hierarchical numbers and horizontal lines.

Our proof diagrams may be called have-want-do digrams since they come with

separate columns for assumptions we have, claims we want to prove, and actions

we do to advance the proof.

Exercise 1.3.1 Give a proof diagram for Equation 1.2. Follow the layout of Fig-

ure 1.2.

Exercise 1.3.2 Shorten the given proofs for Equations 1.1 and 1.4 by applying the

inductive hypothesis from right to left thus avoiding the conversion step.

Exercise 1.3.3 Prove x +y − x = y .

Exercise 1.3.4 Prove that addition is associative: (x +y)+ z = x + (y + z). Give a

proof diagram.

1 For now our proof diagrams just have the inductive hypothesis as assumption but this will change
as soon as we prove claims with implication, see Chapter 3.

6



1.4 Ackermann Function

Exercise 1.3.5 Prove the distributivity law (x +y) · z = x · z+y · z. You will need

associativity of addition.

Exercise 1.3.6 Prove that addition is commutative (Equation 1.3). You will need

Equation 1.1 and 1.2 as lemmas.

Exercise 1.3.7 Prove that multiplication is commutative. You will need lemmas.

Exercise 1.3.8 Define a maximum function M : N→ N→ N and prove

M(x +y)x = x +y and Mx(x +y) = x +y

Try to prove Mxy = Myx (commutativity) by induction on x and notice that the

inductive hypothesis must be strengthened to ∀y.Mxy = Myx for the proof to

go through. This strengthening of the inductive hypothesis is logically admissi-

ble. Proofs with quantified inductive hypotheses will be discussed in detail in Sec-

tion 6.5.

1.4 Ackermann Function

The following equations specify a function A : N → N → N known as Ackermann

function:

A0y = Sy

A(Sx)0 = Ax1

A(Sx)(Sy) = Ax(A(Sx)y)

As is, the equations cannot serve as a definition since the recursion is not structural

in either the first or the second argument. The problem is with the nested recursive

application A(Sx)y in the third equation.

However, we can define a structurally recursive function satisfying the given

equations. The trick is to use a higher-order auxiliary function:2

A′ : (N→ N)→ N→ N A : N→ N→ N

A′h0 := h1

A′h(Sy) := h(A′hy)
A0 := S

A(Sx) := A′(Ax)

Verifying that A satisfies the three specifying equations is straightforward. Here is

a verification of the third equation:

A(Sx)(Sy) Ax(A(Sx)y)

= A′(Ax)(Sy) = Ax(A′(Ax)y)

= Ax(A′(Ax)y)

2A higher-order function is a function taking a function as argument.
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1 Getting Started

Note that the three specifying equations all hold by computation (i.e., both sides of

the equations reduce to the same term). Thus verifying the equations with Coq is

trivial.

The three equations specifying A are exhaustive and disjoint. They are also

terminating, which can be seen with a lexical argument: Either the first argument

is decreased, or the first argument stays unchanged and the second argument is

decreased.

Recall that Coq only admits total functions. If we define a function with equa-

tions, three properties must be satisfied: The equations must be exhaustive and

disjoint, and if there is recursion, the recursion must be structural for one of the

arguments of the function. All three conditions are checked automatically.

Consider the equations

E(0) = T

E(1) = F

E(S(Sn)) = E(n)

specifying a function E : N→ B that checks whether its argument is even. The recur-

sion appearing in the third argument is not structural. We can define a structurally

recursive function satisfying the three equations as follows:

E(0) = T

E(Sn) = !E(n)

The first and the second specifying equation hold by computation. The third speci-

fying equation holds by conversion and rewriting with ! !b = b.

We remark that Coq accepts the three specifying equations as definition for E.

Coq in fact accepts recursive definitions satisfying a guard condition generalis-

ing structural recursion. We will stick to structural recursion throughout this text

since it turns out that all functions that matter can be defined with just structural

recursion as basic recursion. Later we will see a technique that reduces general

terminating recursion to structural recursion.

Exercise 1.4.1 Prove E(n · 2) = T.

1.5 Pairs and Polymorphic Functions

We have seen that booleans and numbers can be accommodated in Coq with induc-

tive types. We will now see that (ordered) pairs (x,y) can also be accommodated

with an inductive type definition.

A pair (x,y) combines two values x and y into a single value such that the

components x and y can be recovered from the pair. Moreover, two pairs are equal
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1.5 Pairs and Polymorphic Functions

if and only if they have the same components. Thus we have (3,2+ 3) = (1+ 2,5)
and (1,2) ≠ (2,1).

Pairs whose components are numbers can be accommodated with the inductive

definition

Pair : T

pair : N→ N→ Pair

A function swapping the components of a pair can now be defined with a single

equation:

swap : Pair→ Pair

swap (pair x y) := pair y x

Using structural case analysis for pairs, we can prove the equation

swap (swapp) = p

for all pairs p (that is, for a variable p of type Pair). Note that structural case analysis

on pairs considers only a single case because there is only a single value constructor

for pairs.

Above we have defined pairs where both components are numbers. Given two

types X and Y we can repeat the definition to obtain pairs whose first component

has type X and whose second component has type Y . We can do much better,

however, by defining pair types for all component types in one go:

× : T→ T→ T

pair : ∀X Y. X → Y → X × Y

This inductive definition gives us a type constructor ’×’ for product types X × Y
and a polymorphic value constructor for pairs. The value constructor comes with

a polymorphic function type saying that pair takes four arguments, where the first

argument X and the second argument Y are types fixing the types of the third and

the fourth argument. We can write partial applications of the value constructor

pair :

pair N : ∀Y . N→ Y → N× Y
pair N B : N→ B→ N× B

pair N B 0 : B→ N× B

pair N B 0 T : N× B

9
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We can also define a polymorphic swap function serving all pair types:

swap : ∀X Y. X × Y → Y ×X
swap X Y (pair _ _ x y) := pair Y X y x

Note that the first two arguments of pair in the left hand side of the defining equa-

tion are given with the wildcard symbol _. The reason for this device is that the

first two arguments of pair are parameter arguments that don’t contribute relevant

information in the left hand side of a defining equation.

1.6 Implicit Arguments

If we look at the type of the polymorphic pair constructor

pair : ∀X Y. X → Y → X × Y

we see that the first and second argument of pair are the types of the third and

fourth argument. This means that the first and second argument can be derived

from the third and fourth argument. This fact can be exploited in Coq by declaring

the first and second argument of pair as implicit arguments. Implicit arguments

are not written explicitly but are derived and inserted automatically. This way we

can write pair 0 T for pair N B 0 T. If in addition we declare the type arguments of

swap : ∀X Y. X × Y → Y ×X

as implicit arguments, we can write

swap (swap (pair x y)) = pair x y

for the otherwise bloated equation

swap Y X (swap X Y (pair X Y x y)) = pair X Y x y

We will routinely use implicit arguments for polymorphic constructors and func-

tions in this text.

With implicit arguments, we go one step further and use the standard notations

for pairs:

(x,y) := pairxy

With this final step we can write the definition of swap as follows:

swap : ∀X Y. X × Y → Y ×X
swap (x,y) := (y,x)

Note that it took us considerable effort to recover the usual mathematical nota-

tion for pairs in the typed setting of Coq. There were three successive steps:
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1. Polymorphic function types and functions taking types as arguments. We remark

that types are first-class values in Coq.

2. Implicit arguments so that type arguments can be derived automatically from

other arguments.

3. The usual notation for pairs.

Finally, we define two functions providing the first and the second projection

for pairs:

π1 : ∀X Y. X × Y → X π2 : ∀X Y. X × Y → Y
π1 (x,y) := x π2 (x,y) := y

We can now prove the η-law for pairs

(π1a,π2a) = a

by structural case analysis on the variable a : X × Y .

Exercise 1.6.1 Write the η-law and the definitions of the projections without using

the notation (x,y) and without implicit arguments.

Exercise 1.6.2 Let a be a variable of type X × Y . Write proof diagrams for the

equations swap (swapa) = a and (π1a,π2a) = a.

1.7 Iteration

If we look at the equations (all following by computation)

3+ x = S(S(Sx))

3 · x = x + (x + (x + 0))

x3 = x · (x · (x · 1))

we see a common scheme we call iteration. In general, iteration takes the form fn x
where a step function f is applied n-times to an initial value x. With the notation

fn x the equations from above generalize as follows:

n+ x = Snx

n · x = (+x)n 0

xn = (·x)n 1

The partial applications (+x) and (·x) supply only the first argument to the func-

tions for addition and multiplication. They yield functions N → N, as suggested by

the cascaded function type N→ N→ N of addition and multiplication.

11
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n · x = iter (+x) n 0 induction n
1 0 · x = iter (+x) 0 0 comp. equality

2 IH : n · x = iter (+x) n 0 Sn · x = iter (+x) (Sn) 0 conversion

x +n · x = x + iter (+x) n 0 rewrite IH

x + iter (+x) n 0 = x + iter (+x) n 0 comp. equality

Figure 1.3: Correctness of multiplication with iter

We formalize the notation fn x with a polymorphic function:

iter : ∀X. (X → X)→ N→ X → X
iter X f 0 x := x

iter X f (Sn) x := f(iter X f n x)

We will treat X as implicit argument of iter. The equations

3+ x = iter S 3 x

3 · x = iter (+x) 3 0

x3 = iter (·x) 3 1

now hold by computation. More generally, we can prove the following equations by

induction on n:

n+ x = iter S n x

n · x = iter (+x) n 0

xn = iter (·x) n 1

Figure 1.3 gives a proof diagram for the equation for multiplication.

Exercise 1.7.1 Verify the equation iter S 2 = λx. S(Sx) by computation.

Exercise 1.7.2 Prove n+ x = iter S n x and xn = iter (·x) n 1 by induction.

Exercise 1.7.3 (Shift) Prove iter f (Sn) x = iter f n (fx) by induction.

Exercise 1.7.4 (Factorials) Factorials n! can be computed by iteration on pairs

(k, k!). Find a function f such that (n,n!) = fn(0,1). Define a factorial func-

tion with the equations 0! = 1 and (Sn)! = Sn · n! and prove (n,n!) = fn(0,1) by

induction on n.

Exercise 1.7.5 (Even) iter ! n T tests whether n is even. Prove iter ! (n · 2) b = b
and iter ! (S(n · 2)) b = !b.
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1.8 Notational Conventions

We are using notational conventions common in type theory and functional pro-

gramming. In particular, we omit parentheses in types and applications relying on

the following rules:

s → t → u � s → (t → u)
stu � (st)u

For the arithmetic operations we assume the usual rules, so · binds before + and −,

and all three of them are left associative. For instance:

x + 2 ·y − 5 · x + z � ((x + (2 ·y))− (5 · x))+ z

1.9 Final Remarks

The pure equational language we have seen in this chapter is a sweet spot in the

type-theoretic landscape. With a minimum of luggage we can define interesting

functions, explore equational computation, and prove equational properties using

structural induction. Higher-order functions, polymorphic functions, and the con-

comitant types are elegantly accommodated in this equational language.

We have seen how booleans, numbers, and pairs can be accommodated as induc-

tive data types using constructors, and how cascaded functions on data types can

be defined using equations. Since every defined function must determine a unique

result for every argument of its argument type, the equations defining a function

are required to be exhaustive and disjoint, and recursion is constrained to be struc-

tural on a single argument. This way logically invalid equations like f x = !(fx) or

f T = T together with f T = F are excluded.

Here is a list of important technical terms introduced in this chapter:

• Booleans, numbers, pairs, inductive data types

• (Parameterised) inductive type definition, constructors

• Defining equations, computation rules, computational equality

• Exhaustiveness, disjointness, termination of defining equations

• Cascaded function types, partial applications

• Polymorphic function types, implicit arguments

• Structural recursion, structural case analysis

• Structural induction, inductive hypothesis

• Conversion steps, rewriting steps

• Proof digrams, proof goals, subgoals, proof actions (tactics)
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2 Computational Primitives

Type theory and Coq are complex constructions providing many layers of abstrac-

tion on a minimal logic kernel. Here we will explain the equational definition of

functions with computational primitives known as lambda abstractions, recursive

abstractions, matches, and plain definitions. We will discuss the accompanying

reduction rules (e.g., β-reduction), which compute unique normal forms for well-

typed terms. We then define computational equality based on normal forms, α-

equivalence, and η-equivalence.

2.1 Computational Definition of Functions

So far, we have defined functions through equations. In Coq, equational definitions

of functions are translated into computational definitions using low level primi-

tives. Figure 2.1 shows computational definitions of functions whose equational

definitions we have discussed in Chapter 1. Figure 2.1 also shows a computational

definition of a function D : N → N doubling its argument. An equational definition

of this function looks as follows:

D 0 := 0

D(Sx) := S(S(Dx))

The primitives used in computational definitions are plain definitions, lambda

abstractions, matches, and recursive abstractions. We discuss these primitives one

by one in the following.

A plain definition

cτ := s

binds a name c to a term s, where the name c is given the type τ and the term s
must have type τ . The binding of c is not visible in s, that is, c cannot be used

recursively in s. We say that a plain definition cτ := s defines a constant c. In

practice, the type τ may be omitted, in which case it will be assumed as the type of

the term s defining c.
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! := λxB. match x [T⇒ F | F⇒ T ]

+ := fix fN→N→N xN. λyN. match x [0⇒ y | Sx′ ⇒ S(fx′y) ]

− := fix fN→N→N xN. λyN. match x [0⇒ 0 | Sx′ ⇒ match y [0⇒ x | Sy ′ ⇒ fx′y ′ ] ]

swap := λXT. λYT. λpX×Y . match p [ (x,y)⇒ (y,x) ]

D := fix fN→N xN. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′)) ]

Figure 2.1: Computational definitions of functions

A lambda abstraction

λxτ .s

describes a function that for an argument x of type τ returns the value described

by the term s. The argument variable x usually appears in the body s. In practice,

the type τ of the argument variable may be omitted if it is clear from the body.

A recursive abstraction

fix fσ→τ xσ . s

describes a recursive function f taking an argument x. The variable f is not visible

outside the recursive abstraction. The argument type σ must be an inductive type

and the recursion must be on x. The types of the variables f and x may be omitted

if they can be derived (as is the case in the examples in Figure 2.1). In Coq slang,

recursive abstractions are often called fixpoints.

A recursive abstraction can take several arguments, where the recursive argu-

ment is always the last argument. Extra arguments preceding the recursive argu-

ment are needed so that dependently typed recursive functions can be defined,

something we will need in later chapters (Exercise 12.1.7).

A match

match s [ cx1 . . . xn ⇒ t | · · · ]

describes a structural case analysis on the value of a term s, which must have

an inductive type. For every value constructor c of the inductive type a rule

cx1 . . . xn ⇒ t must be given, where the variables in the pattern cx1 . . . xn must

be distinct. A match realizes an exhaustive and disjoint case analysis.

Computational definitions of functions not using any syntactic convenience are

called kernel definitions. While Coq provides many conveniences for the definition

of functions, it translates every function definition into a kernel definition using

only the computational primitives we have seen in this section.
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2.2 Reduction Rules

! T � (λx.match x [T⇒ F | F⇒ T])T unfolding of !

� match T [T⇒ F | F⇒ T] β-reduction

� F match reduction

Figure 2.2: Reduction chain for ! T

D(S0) � (fix f x. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′)) ]) (S0) δ

= D̂ (S0)

� (λfx. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′))]) D̂ (S0) fix

� (λx. match x [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))]) (S0) β

� match (S0) [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))] β

� (λx′. S(S(D̂x′)))0 match

� S(S(D̂0)) β

� S(S((λx. match x [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))])0)) fix, β

� S(S(match 0 [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))])) β

� S(S0) match

where D̂ is the term defining D

Figure 2.3: Reduction chain for D(S0)

Exercise 2.1.1 Translate the equational definitions of the functions asked for in

Exercise 1.2.1 into kernel definitions.

2.2 Reduction Rules

Computation is performed through reduction rules for defined constants, lambda

abstractions, matches, and recursive abstractions. Figures 2.2 and 2.3 show exam-

ples for reduction chains obtained with the reduction rules.

The reduction rule for defined constants

c � s provided c := s

is called δ-reduction and replaces a constant with the term defining it. One also

speaks of unfolding of c.
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The reduction rule for lambda abstractions

(λx.s) t � sxt

is called β-reduction and replaces an application (λx.s)t with the term sxt obtained

from the term s by replacing every free occurence of the variable x with the term t.
Terms of the form (λx.s) t are called β-redexes.

The reduction rule for matches

match cs [ · · · cx ⇒ t · · · ] � (λx.t)s

replaces a match on cs with an application applying the body of the rule selected by

the constructor c to s. The scheme is given here for single argument constructors,

the generalization to no argument and several arguments is straightforward.

The reduction rule for recursive abstractions

(fixfx. s) t � (λf .λx. s) (fixfx. s) t

provided t is an application of a constructor

reduces an application of a recursive abstraction to an application passing the re-

cursive abstraction as an argument. The constraint that the argument term t is an

application of a constructor is essential so that application of the reduction rules

terminates.

Coq implements the rule for recursive abstractions such that it includes the β-

reduction needed for passing down the recursive abstraction:

(fixfx. s) t � (λx. s ffixfx.s) t

provided t is an application of a constructor

Coq’s computational primitives also include let expressions

let xτ = s in t

providing for local definitions. The reduction rule for let expressions

let x = s in t � txs

is called ζ-rule.

The reduction rules are computation rules at a low level. While Coq routinely

performs reductions at this level, this is not feasible for humans. However, hu-

mans can simulate low level reductions with high-level reductions rewriting with

the defining equations of functions. For instance,

S(Sx)+y = S(Sx +y) = S(S(x +y))
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is a high-level reduction chain that applies the second defining equation of + twice.

The high-level reduction chain expands into a low level reduction chain with many

intermediate steps where the second and third occurence of + will be unfolded. Al-

together, the low-level reduction takes 12 steps (1 delta reduction, 2 fix reductions,

2 match reductions, 6 beta reductions).

Given that one can simulate and verify low-level reductions with Coq, it will not

be necessary to discuss the reduction rules in more detail.

Exercise 2.2.1 Write the reduction chain for 1+ y in the style of Figure 2.3. Verify

your reduction steps with Coq.

Exercise 2.2.2 Write the reduction chain for swap X Y (pair X Y x y) in the style

of Figure 2.3. Verify your reduction steps with Coq.

2.3 Well-Typed Terms and Normal Forms

Coq and its type theory come with a typing discipline admitting only well-typed

terms. The reduction rules and the typing discipline are designed such that ap-

plication of the reduction rules to a well-typed term always terminates. Thus one

can simplify every term to a normal form to which no reduction rule applies. The

reduction rules are designed such that normal forms are unique. Terms to which

no reduction rule applies are also called normal.

Terms denote values and reduction simplifies terms such that the value of a term

is left unchanged. We may say that reduction preserves values.

Reduction also preserves types. That is, if we reduce a term of type τ , we

always get terms of type τ .

It is important that logical reasoning only involves well-typed terms. Coq guar-

antees through type checking that only well-typed terms are involved.

2.4 Computational Equality

Abstractions, matches, and lets involve bound variables that are local to the terms

introducing them. The names of bound variables do not matter. Two terms are α-

equivalent if they are equal up to renaming of bound variables. For instance, λxN.x
and λyN.y are α-equivalent.

For lambda abstractions there is also the notion of η-equivalence. Suppose the

term s describes a function σ → τ . Then the term λxσ .sx describes the same

function as the term s, provided the variable x does not occur free in s. We say that

the terms λxσ .sx and s are η-equivalent and call the resulting equivalence relation

on terms η-equivalence. The equation (λx.Sx) = S holds by η-equivalence.
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Two terms are computationally equal if and only if their normal forms are equal

up to α-equivalence and η-equivalence. Computational equality is an algorithmi-

cally decidable equivalence relation. Proofs of computational equality are routine

checks needing no further explanation.

Computational equality is compatible with the term structure. That is, if we

replace a subterm of a term s with a term that is computationally equal and has the

same type, we obtain a term that is computationally equal to s.
We also say that two terms are convertible if they are computationally equal.

This makes the connection to the conversion steps appearing in Chapter 1.

The most complex operation the reduction rules build on is substitution sxt . Sub-

stitution is needed for β-reduction and must be performed such that local binders

do not capture free variables. To make this possible, substitution must be al-

lowed to rename local variables. For instance, (λx.λy.fxy)y must not reduce

to λy.fyy but to a term λz.fyz where the new bound variable z avoids capture

of the variable y . We speak of capture-free substitution.

We mention that computational equality is also known as definitional equality.

Exercise 2.4.1 Verify that the following equations hold by computational equality.

a) (+)1 = S

b) (+)2 = λx. S(Sx)
c) (+)(3− 2) = S

d) (λx. 1+ x) = S

e) (λx. 3+ x − 2) = S

f) iter S 2 = λx. S(Sx)
Note that all right hand sides are normal terms. Thus it suffices to compute the

normal forms of the left hand sides and then check whether the two normal forms

are equal up to α- and η-equivalence.

2.5 Canonical Terms and Values

We use terms as syntactic descriptions of semantic objects. Semantic objects in-

clude booleans, numbers, functions, and types. We often talk about semantic ob-

jects ignoring their syntactic representation as terms. In an implementation, how-

ever, semantic objects are always represented through syntactic descriptions.

As syntactic objects, terms may not be well-typed. Ill-typed terms are semanti-

cally meaningless and must not be used for logical reasoning. Ill-typed terms are

always rejected by Coq. Working with Coq is the best way to develop a reliable in-

tuition for what goes through as well-typed. When we say term in these notes, we

always mean well-typed terms.
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A term is closed if it has no free variables (bound variables introduced by ab-

stractions and matches are fine). A term is canonical if it is both normal and closed.

Coq’s type theory is designed such that every canonical term is either a construc-

tor, or a constructor applied to canonical terms, or an abstraction (obtained with λ
or fix), or a function type (obtained with → or ∀), or a universe (we have seen T).

Moreover, every closed term reduces to a canonical term.

Semantic objects that can be described through canonical terms are called val-

ues. The inhabitants of a type are the values that can be described through canon-

ical terms of this type. For data types such as B, N, and products of data types,

the canonical terms are in one-to-one correspondence with the inhabitants, and we

may think of the inhabitants as canonical terms if we wish. For function types the

situation is more complicated since different canonical abstractions may represent

the same function, for instance, if they are equal up to α- and η-equivalence. So

for function types we still know that every inhabitant can be described through a

canonical term, but there are usually many different canonical terms describing the

same function. In any case, computationally equal canonical terms always describe

the same value.

Reduction preserves well-typedness and closedness of a term as well as its type

and value. Since the values of a data type may be seen as the canonical terms of the

data type, we may say that reduction computes the values of closed terms whose

type is a data type. For instance, the term 2+ 3 reduces to 5.

We call a type inhabited if it has at least one inhabitant. The data types we have

seen so far are all inhabited. Later we will use types as logical descriptions and

uninhabited types will become a regular option.

The inhabitants of a type may also be referred to as the values or members or

elements of a type.

Syntactic objects can be formalised and realised with software, as in the proof as-

sistant Coq. In contrast, semantic objects are objects of our mathematical intuition

that are only realised through their syntactic descriptions.

2.6 Notational Conventions

We omit parentheses and λ’s relying on two basic rules:

λx.st � λx.(st)

λxy.s � λx.λy.s

To specify the type of a variable or constant, we use one of the notations x : τ
and xτ , depending on what we feel is more readable. We usually omit the type of a

variable if it is clear from the context.
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Following Coq, we may write boolean matches with the familiar if-then-else no-

tation:

if s then t1 else t2 � match s [T⇒ t1 | F⇒ t2 ]

More generally, we may use the if-then-else notation for all inductive types with

exactly two value constructors, exploiting the order of the constructors.

A similar notational device using the let notation is available for inductive types

with exactly one constructor. For instance:

let (x,y) = s in t � match s [pair _ _xy ⇒ t ]
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Coq represents propositions (i.e., logical statements) as types such that the inhab-

itants of a propositional type serve as proofs of the represented proposition. This

type-theoretic approach to logic works amazingly well in practice. It reduces proof

checking to type checking and provides a form of logical reasoning known as intu-

itionistic reasoning.

In this chapter we study the type-theoretic representations of the propositional

connectives conjunction, disjunction, implication, and negation. Quantifiers and

equality will be considered in later chapters. We use proof diagrams to assist the

construction of proof terms for propositions. This way the construction of a proof

amounts to the construction of a proof diagram. The construction of a proof dia-

gram is an incremental process that can be carried out efficiently in interaction with

the Coq proof assistant.

3.1 Propositions Informally

Proposition are logical statements whose truth or falsity can be established with

proofs. Propositions are built from basic propositions with connectives and quanti-

fiers. Here are prominent forms of propositions you will have encountered before.

Name Notation Reading

equality s = t s equals t
truth > true

falsity ⊥ false

conjunction P ∧Q P and Q
disjunction P ∨Q P or Q
implication P → Q if P then Q
negation ¬P not P
equivalence P ↔ Q P if and only if Q
universal quantification ∀x :X.px for all x in X, px
existential quantification ∃x :X.px for some x in X, px
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3.2 Conjunction, Disjunction, and Implication

Coq represents propositions with propositional types that live in a universe P
(read Prop). Given a propositional type X, the terms of type X serve as proofs of

the proposition represented by X. This straightforward design gives us in one go a

formalization of propositions, proofs, and provability.

To ease our language, we call propositional types propositions in the following.

If we want to talk about informal propositions, we will say so explicitly. A proposi-

tion is provable if it has an inhabitant.

We accommodate conjunctions X ∧ Y and disjunctions X ∨ Y of two proposi-

tions X and Y with two inductive definitions:

∧ : P→ P→ P ∨ : P→ P→ P

C : ∀XPYP. X → Y → X ∧ Y L : ∀XPYP. X → X ∨ Y
R : ∀XPYP. Y → X ∨ Y

With the constructors ’∧’ and ’∨’ we can form conjunctions X ∧ Y and disjunctions

X ∨ Y from given propositions X and Y . With the polymorphic proof constructors

C, L, and R we can construct proofs of conjunctions and disjunctions:

• If x is a proof of X and y is a proof of Y , then the term Cxy is a proof of the

conjunction X ∧ Y .

• If x is a proof of X, then the term Lx is a proof of the disjunction X ∨ Y .

• If y is a proof of Y , then the term Ry is a proof of the disjunction X ∨ Y .

Note that we treat the propositional arguments of the polymorphic proof construc-

tors as implicit arguments, something we have seen before with the value construc-

tor for pairs. Since the explicit arguments of the proof constructors for disjunc-

tions determine only one of the two implicit arguments, the other implicit argument

needs to be derived from the surrounding context. This works well in practice.

Given two propositions X and Y , we can form the function type X → Y , which

again is a proposition. We take propositional function types as representations of

implications. A proof of an implication X → Y is thus a function X → Y that

given a proof of X yields a proof of Y . This gives us a computational semantics for

implications working well for logical reasoning.

3.3 Normal Proofs

A proof of a proposition is called normal if it is a normal term. In this capter we will

mostly construct normal proofs. Figure 3.1 shows a series of provable propositions

accompanied by normal proofs. The propositions formulate familiar logical laws.

Note that we supply as subscripts the implicit arguments of the proof constructors

24



3.3 Normal Proofs

X → X λx.x

X → Y → X λxy.x

X → Y → Y λxy.y

(X → Y → Z)→ (Y → X → Z) λfyx.fxy

X → Y → X ∧ Y CXY

X ∧ Y → X λh.match h [Cxy ⇒ x ]
X ∧ Y → Y λh.match h [Cxy ⇒ y ]
X ∧ Y → Y ∧X λh.match h [Cxy ⇒ Cyx ]

X → X ∨ Y LXY

Y → X ∨ Y RXY

X ∨ Y → Y ∨X λh.match h [ Lx ⇒ RYx | Ry ⇒ LXy ]

The variables X, Y , Z range over propositions.

Figure 3.1: Propositions with normal proofs

C, L, and R when we think it is helpful. We don’t give the types of the argument

variables of the lambda abstractions since they are obvious from the propositions

on the left.

Figure 3.2 shows normal proofs involving matches with nested patterns. Matches

with nested patterns are a notational convenience for nested plain matches. For

instance, the match

match h [C(Cxy)z ⇒ Cx(Cyz) ]

with the nested pattern C(Cxy)z translates into the plain match

match h [Caz ⇒ match a [Cxy ⇒ Cx(Cyz) ] ]

nesting a second plain match.

We have arrived at a logical system that is quite interesting. Stepping back from

the details, one may ask whether the type-theoretic representation of propositions

and proofs is adequate, that is, whether all provable propositions are in fact log-

ically valid (soundness), and whether enough logically valid propositions are prov-

able (completeness). Here logical validity is used as an informal notion not coming

with a rigorous mathematical definition. As it comes to the soundness question,

we can say that type theory is explicitly designed such that the propositions as

types approach is sound. As it comes to the completeness question, there are no

straightforward answers and we prefer to postpone a discussion.
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(X ∧ Y)∧ Z → X ∧ (Y ∧ Z)
λh.match h [C(Cxy)z ⇒ Cx(Cyz) ]

(X ∨ Y)∨ Z → X ∨ (Y ∨ Z)
λh.match h [ L(Lx)⇒ Lx | L(Ry)⇒ R(Ly) | Rz ⇒ R(Rz) ]

X ∧ (Y ∨ Z)→ (X ∧ Y)∨ (X ∧ Z)
λh.match h [Cx(Ly)⇒ L(Cxy) | Cx(Rz)⇒ R(Cxz) ]

Figure 3.2: Normal proofs with nested patterns

We summarize the basic intuitions behind the normal proofs we have seen in

this section:

• A proof of a conjunction X ∧ Y is a pair consisting of a proof of X and a proof

of Y .

• A proof of a disjunction X ∨ Y is either a proof of X or a proof of Y .

• A proof of an implication X → Y is a function that given a proof of X returns a

proof of Y .

Exercise 3.3.1 Elaborate the normal proofs in Figure 3.2 such that they use nested

plain matches. Moreover, annote the implicite arguments of L and R that must be

derived from the surrounding context.

3.4 Propositional Equivalence

We capture propositional equivalence with the notation

X ↔ Y := (X → Y)∧ (Y → X)

Thus a propositional equivalence is a conjunction of two implications, and a proof

of an equivalence is a pair of two proof-transforming functions. Given a proof of an

equivalence X ↔ Y , we can translate every proof of X into a proof of Y , and every

proof of Y into a proof of X. Thus we know that X is provable if and only if Y is

provable.

Exercise 3.4.1 Give proofs for the equivalences shown in Figure 3.3 formulating

well-known properties of conjunction and disjunction.
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X ∧ Y ↔ Y ∧X X ∨ Y ↔ Y ∨X commutativity

X ∧ (Y ∧ Z)↔ (X ∧ Y)∧ Z X ∨ (Y ∨ Z)↔ (X ∨ Y)∨ Z associativity

X ∧ (Y ∨ Z)↔ X ∧ Y ∨X ∧ Z X ∨ (Y ∧ Z)↔ (X ∨ Y)∧ (X ∨ Z) distributivity

X ∧ (X ∨ Y)↔ X X ∨ (X ∧ Y)↔ X absorption

Figure 3.3: Equivalence laws for conjunctions and disjunctions

Exercise 3.4.2 Propositional equivalences yield an equivalence relation on proposi-

tions that is compatible with conjunction, disjunction, and implication. This high-

level speak can be validated by giving proofs for the following propositions:

X ↔ X reflexivity

X ↔ Y → Y ↔ X symmetry

X ↔ Y → Y ↔ Z → X ↔ Z transitivity

X ↔ X′ → Y ↔ Y ′ → X ∧ Y ↔ X′ ∧ Y ′ compatibility with ∧
X ↔ X′ → Y ↔ Y ′ → X ∨ Y ↔ X′ ∨ Y ′ compatibility with ∨
X ↔ X′ → Y ↔ Y ′ → (X → Y)↔ (X′ → Y ′) compatibility with →

3.5 Truth, Falsity, and Negation

We accommodate the propositions truth and falsity with two inductive definitions:

> : P ⊥ : P

I : >

By definition, the proposition > has a single canonical proof I, and the proposition ⊥
has no canonical proof at all (since it has no proof constructor). This means that

the proposition ⊥ is an empty type.

We now capture propositional negation with the notation

¬X := X → ⊥

Thus a proof of a negation ¬X is a function that given a proof of X yields a proof

of ⊥. Since ⊥ has no proof, such a function can only be constructed if X has no

proof.

We say that we can disprove a proposition X if we can prove its negation ¬X.
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X → ¬¬X λxf .fx

X → ¬X → Y λxf .match fx []

(X → Y)→ ¬Y → ¬X λfgx. g(fx)

¬X → ¬¬¬X λfg. gf

¬¬¬X → ¬X λfx. f (λg.gx)

¬¬X → (X → ¬X)→ ⊥ λfg. f (λx.gxx)

(X → ¬X)→ (¬X → X)→ ⊥ λfg. let x = g(λx.fxx) in fxx

Figure 3.4: Proofs for propositions with negations

A logical principle known as explosion principle or ex falso quodlibet says that

from falsity one can derive everything. We can derive the principle with the follow-

ing normal proof:

⊥ → X
λh.match h []

The function takes a proof h of ⊥ as argument and returns a proof of X. To do

so, the function matches on h. Now every rule of the match must yield a proof

of X. Since ⊥ has no constructor, the match has no rule, and hence the typing

requirement for the rules is trivially satisfied. One says that it is vacuously true that

every rule of the match yields a proof of X.

Figure 3.4 shows proofs of propositions involving negation. While checking the

proofs, keep in mind that negations ¬s are just abbreviations for implications

s → ⊥. Note the use of the let expression in the final proof. It introduces a local

name x for the term g(λx.fxx) so that we don’t have to write it twice. Except for

the proof with let all proofs in Figure 3.4 are normal.

Exercise 3.5.1 Give normal proofs for the following propositions:

a) ¬⊥
b) ¬¬⊥ ↔ ⊥
c) ¬¬> ↔ >
d) ¬¬¬X ↔ ¬X
e) (X → ¬¬Y) ↔ (¬Y → ¬X)
f) ¬(X ↔ ¬X)
g) ¬(X ∨ Y) ↔ ¬X ∧¬Y
Equivalence (g) is known as de Morgan law for disjunction. We don’t ask for a
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proof of the de Morgan law for conjunction since there isn’t one using the means

we have seen so far.

3.6 Proof Term Construction with Proof Diagrams

The natural direction for proof term construction is top down, in particular as it

comes to lambda abstractions and matches. When we construct a proof term top

down, we need an information structure keeping track of the types we still have

to construct proof terms for and recording the typed variables introduced by sur-

rounding lambda abstractions and rules of matches. It turns out that the proof

diagrams we have introduced in Chapter 1 provide the perfect information struc-

ture for constructing proof terms.

Here is a proof diagram showing the construction of a proof term for a proposi-

tion known as Russell’s law:

¬(X ↔ ¬X) intros

f : X → ¬X
g : ¬X → X ⊥ assert

1 X apply g
¬X intros

x : X ⊥ exact fxx
2 x : X ⊥ exact fxx

The diagram is written top-down beginning with the initial claim. It records the

construction of the proof term

λhX↔¬X . match h [ Cfg ⇒ let x = g(λx.fxx) in fxx ]

for the proposition ¬(X ↔ ¬X).
Recall that proof diagrams are have-want diagrams that record on the left what

we have and on the right what we want. When we start, the proof diagram is partial

and just consists of the first line. As the proof term construction proceeds, we add

further lines and further proof goals until we arrive at a complete proof diagram.

The rightmost column of a proof diagram records the actions developing the

diagram and the corresponding proof term.

• The action intros introduces λ-abstractions and matches.

• The action assert creates subgoals for an intermediate claim and the current

claim with the intermediate claim assumed. An assert action is realised with a

let expression in the proof term.

• The action apply applies a function and creates subgoals for the arguments.
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X ∧ (Y ∨ Z)↔ (X ∧ Y)∨ (X ∧ Z) apply C

1 X ∧ (Y ∨ Z)→ (X ∧ Y)∨ (X ∧ Z) intros

x : X
1.1 y : Y (X ∧ Y)∨ (X ∧ Z) L(Cxy)
1.2 z : Z (X ∧ Y)∨ (X ∧ Z) R(Cxz)
2 (X ∧ Y)∨ (X ∧ Z)→ X ∧ (Y ∨ Z) intros

2.1 x : X, y : Y X ∧ (Y ∨ Z) Cx(Ly)
2.2 x : X, z : Z X ∧ (Y ∨ Z) Cx(Rz)

The constructed proof term looks as follows:

C (λh. match h [Cx(Ly)⇒ L(Cxy) | Cx(Rz)⇒ R(Cxz)])

(λh. match h [ L(Cxy)⇒ Cx(Ly) | R(Cxz)⇒ Cx(Rz) ])

Figure 3.5: Proof diagram for a distributivity law

• The action exact proves the claim with a complete proof term. We will not write

the word “exact” in future proof diagrams since that an exact action is used will

always be clear from the context.

With Coq we can construct proof terms interactively following the structure of

proof diagrams. We start with the initial claim and then perform the proof actions

using tactics. Coq then maintains the proof goals and displays the assumptions and

claims. Once all proof goals are closed, a proof term for the initial claim has been

constructed.

Technically, a proof goal consists of a list of assumptions (called context) and

a claim. The claim is a type, and the assumptions are typed variables. There may

be more than one proof goal open at a point in time and one may navigate freely

between open goals.

Interactive proof term construction with Coq is fun since writing, bookkeeping,

and verification are done by Coq. Here is a further example of a proof diagram:

¬¬X → (X → ¬X)→ ⊥ intros

f : ¬¬x
g : X → ¬X ⊥ apply f

¬x intros

x : X ⊥ gxx

The proof term constructed is λfg.f (λx.gxx). As announced before, we write the

proof action “exact gxx” without the word “exact”.

Figure 3.5 gives a proof diagram for a distributivity law involving 6 subgoals.

Note the symmetry in the normal proof constructed.

30



3.6 Proof Term Construction with Proof Diagrams

¬¬(X → Y)↔ (¬¬X → ¬¬Y) apply C, intros

1 f : ¬¬(X → Y)
g : ¬¬X
h : ¬Y ⊥ apply f , intros

f ′ : X → Y ⊥ apply g, intros

x : X ⊥ h(f ′x)
2 f : ¬¬X → ¬¬Y

g : ¬(X → Y) ⊥ apply g, intros

x : X Y exfalso

⊥ apply f
2.1 ¬¬X intros

h : ¬X ⊥ hx
2.2 ¬Y intros

y : Y ⊥ g(λx.y)

The constructed proof term looks as follows:

C (λfgh. f (λf ′. g(λx. h(f ′x))))

(λfg. g(λx.match f(λh. hx) (λy. g(λx.y)) []))

Figure 3.6: Proof diagram for a double negation law using the explosion principle

Figure 3.6 gives a proof diagram for a double negation law. Note the use of the

explosion principle in subgoal 2.

Exercise 3.6.1 Give the normal proof obtained with the proof diagram in Figure 3.6.

Exercise 3.6.2 Give proof diagrams for the following propositions:

a) ¬¬(X ∨¬X)
b) ¬¬(¬¬X → X)
c) ¬¬(((X → Y)→ X)→ X)
d) ¬¬((¬Y → ¬X)→ X → Y)

Exercise 3.6.3 Give proof diagrams for the following propositions:

a) ¬¬(X ∨¬X)
b) ¬(X ∨ Y) ↔ ¬X ∧¬Y
c) ¬¬¬X ↔ ¬X
d) ¬¬(X ∧ Y) ↔ ¬¬X ∧¬¬Y
e) ¬¬(X → Y) ↔ (¬¬X → ¬¬Y)
f) ¬¬(X → Y) ↔ ¬(X ∧¬Y)
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3.7 Notational Issues

Following Coq, we use the precedence order

¬ ∧ ∨ ↔ →

for the logical connectives. Thus we may omit parentheses as in the following ex-

ample:

¬¬X ∧ Y ∨ Z ↔ Z → Y � (((¬(¬X)∧ Y)∨ Z)↔ Z)→ Y
The notations ¬, ∧, and ∨ are right associative. That is, parentheses may be omitted

as follows:

¬¬X � ¬(¬X)
X ∧ Y ∧ Z � X ∧ (Y ∧ Z)
X ∨ Y ∨ Z � X ∨ (Y ∨ Z)

3.8 Type Checking Rules

We have seen that constructing a proof eventually means to construct a term that

has the right type. Thus proof checking reduces to type checking, and the exact

rules of the type discipline saying which terms have which types are the lowest

level proof rules. If the typing rules are too permissive, we can prove propositions

that should be unprovable, and if the typing rules are too restrictive, we cannot

proof enough.

Here are the type checking rules as we know them so far:

• A lambda abstraction λx :u.s has type u → v if u is not a universe and s has

type v in a context where x has type u.

• A lambda abstraction λx :u.s has type ∀x :u.v if u is a universe (i.e., T or P)

and s has type v in a context where x has type u.

• An application st has type v if s has type u→ v and t has type u.

• An application st has type vxt if s has type ∀x :P.v and t has type P.

• A term match s [· · · ] has type u if s is has an inductive type v , the match has

a rule for every constructor of v , and every rule of the match yields a result of

type u.

3.9 Final Remarks

In this section we have seen that lambda abstractions and matches are essential

proof constructs. Without lambda abstractions and matches most of the proposi-

tions in Figure 3.1 would be unprovable. We have seen that matches provide for
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3.9 Final Remarks

the description of functions that cannot be described otherwise, and that the func-

tions describable with matches often inhabit function types that otherwise would

be uninhabited (e.g., X ∧ Y → Y ∧X).

Note that the functions we can describe with abstractions and matches are con-

trolled by type checking, and that the details of this type checking are important in

that they prevent a proof of falsity.

Nowhere in this chapter the reductions coming with lambda abstractions and

matches were used. We may say that the proof discipline introduced in this chapter

uses the typing discipline of the computational system introduced in Chapter 2

without making use of its computation rules. This will change in the next chapter,

where we extend the typing discipline with dependent function types integrating

computational equality with type checking.
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4 Dependent Function Types

We now generalize polymorphic function types so that one can quantify over every

type. The thus obtained dependent function types provide universal quantifica-

tion for propositions and also subsume simple function types. Dependent function

types are accompanied by the conversion law, which relaxes type checking so that

computationally equal types become interchangeable.

We also introduce the hierarchy of universes.

With dependent function types and the conversion law we have arrived at an

expressive type theory. We will see in later chapters that propositional equality and

existential quantification can be defined, and that the proof rules for boolean case

analysis and structural induction on numbers can be derived.

The generalisation of function types to dependent function types is the key fea-

ture of modern type theories. One often speaks of dependent type theories to ac-

knowledge the presence of dependent function types.

4.1 Generalization of Polymorphic Function Types

Consider the types of the proof constructors for conjunctions and disjunctions:

C : ∀XP.∀YP. X → Y → X ∧ Y
L : ∀XP.∀YP. X → X ∨ Y
R : ∀XP.∀YP. Y → X ∨ Y

These polymorphic function types are in fact propositions. The type of the proof

constructor R, for instance, may be read as saying “for all propositions X and Y and

every proof of Y there is a proof of X ∨ Y ”. As the notation ’∀’ suggests, proposi-

tional polymorphic function types are understood as universal quantifications. Note

that the constructors serve as canonical proofs of the propositions given as their

types.

Technically, it is straightforward to generalize polymorphic function types to

dependent function types

∀x : s. t

that can quantify over all types s, not just the two universes P and T. As with

polymorphic types, the inhabitants of a general dependent function type ∀x : s. t
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4 Dependent Function Types

are functions taking arguments of type s and returning results of type t, where t
may dependent on the argument x.

If t is a proposition, then every dependent function type∀x : s. t is a proposition.

As the notation suggests, propositional dependent function types ∀x : s. t serve as

universal quantifications ∀x : s. t. Since s can be any type, we can quantify over

every type. The propositions as types semantics for universal quantification is just

fine since it captures the proofs of a proposition ∀x : s. t as functions that given a

value x yield a proof of the proposition t.
Dependent function types not only subsume polymorphic function types, but

also subsume simple function types s → t. In fact, an simple function type

s → t

is just a dependent function type ∀x : s. t where the variable x does not appear in t.
As with simple function types, the canonical terms for dependent function types

are obtained with abstractions, constructors, and partial applications of construc-

tors.

For dependent function types we use the notational conveniences we have seen

before for polymorphic function types:

∀x s. t � ∀x : s. t

∀xy. s � ∀x∀y. s � ∀x.∀y. s

4.2 Impredicative Characterizations

It turns out that quantification over propositions has amazing expressivity. Given

two propositional variables X and Y , we can prove the equivalences

⊥ ↔ ∀ZP. Z
X ∧ Y ↔ ∀ZP. (X → Y → Z)→ Z
X ∨ Y ↔ ∀ZP. (X → Z)→ (Y → Z)→ Z

which specify ⊥, X∧Y , and X∨Y using polymorphic and simple function types. The

equivalences are known as impredicative characterizations of falsity, conjunction,

and disjunction. Figure 4.1 gives normal proofs for the equivalences. The term

impredicative refers to the fact that quantification over all propositions is used.

The equivalences demonstrate that falsity, conjunction, and disjunction can be

defined only using dependent function types.

Exercise 4.2.1 Give proof diagrams for the impredicative characterizations.

Exercise 4.2.2 Find an impredicative characterisation for >.
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4.3 Predicates

⊥ ↔ ∀ZP. Z
C (λh.match h []) (λf . f⊥)

X ∧ Y ↔ ∀ZP. (X → Y → Z)→ Z
C (λhZf .match h [Cxy ⇒ fxy ]) (λf . f (X ∧ Y)CXY )

X ∨ Y ↔ ∀ZP. (X → Z)→ (Y → Z)→ Z
C (λhZfg.match h [ Lx ⇒ fx | Ry ⇒ gy ]) (λf . f (X ∨ Y) LXY RXY )

The subscripts give the implicit arguments of C, L, and R.

Figure 4.1: Normal proofs for impredicative characterizations

4.3 Predicates

A predicate is a function that after taking enough arguments yields a proposition.

Constructors that are predicates are called inductive predicates. The constructors

’∧’ and ’∨’ for conjunctions and disjunctions are examples for inductive predicates.

Note that the proof constructors for conjunctions and disjunctions are not predi-

cates since the yield proofs rather than propositions.

Let X and Y be types and p : X → Y → P be a predicate. We can prove the

equivalence

(∀x∀y.pxy) ↔ (∀y∀x.pxy)

formulating a swap law for universal quantifiers with the normal proof

C (λfyx.fxy) (λfxy.fyx)

Using universal quantification, we can internalize the types X and Y and the predi-

cate p:

∀XT∀YT∀pX→Y→P. (∀x∀y.pxy) ↔ (∀y∀x.pxy)

A normal proof now looks as follows:

λXYp. C (λfyx.fxy) (λfxy.fyx)

In fact, this proof is canonical since it is a closed and normal term.

Figure 4.2 shows a proof diagram for a double negation law for the universal

quantifier. We remark that the converse of the law cannot be shown.

Figure 4.3 shows a proof diagram for a quantifier law where a destructuring

action is used to obtain the right-to-left direction of an equivalence proof. This is

the first time a destructuring action is used in a proof diagram.
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4 Dependent Function Types

∀XT∀pX→P. ¬¬(∀x.px)→ ∀x.¬¬px intros

X :T, p :X → P
f :¬¬(∀x.px)
x :X, g :¬px ⊥ apply f

¬(∀x.px) intros

f ′ :∀x.px ⊥ g(f ′x)

Proof term: λXpfxg.f (λf ′.g(f ′x))

Figure 4.2: Proof diagram for a double negation law

∀XT∀pX→P∀qX→P.
(∀x.px ↔ qx)→ (∀x.qx)→ ∀x.px intros

X :T, p :X → P, q :X → P
f :∀x.px ↔ qx
g :∀x.qx
x :X px destruct fx
h :qx → px h(gx)

Proof term: λXpqfgx.match fx [C_h⇒ h(gx) ]

Figure 4.3: Proof diagram using a destructuring action

Exercise 4.3.1 Give a proof diagram and a canonical proof for the distribution law

∀XT∀pX→P∀qX→P. (∀x. px ∧ qx)↔ (∀x.px)∧ (∀x.qx).

Exercise 4.3.2 Find out which direction of the equivalence ∀XT∀ZP. (∀xX. Z)↔ Z
cannot be proved.

Exercise 4.3.3 Prove ∀XT∀pX→P∀ZP. (∀x.px)→ Z → ∀x. px ∧ Z .

Exercise 4.3.4 Give a proof of the proposition in Figure 4.3 using a projection

rather than a destructuring action.

4.4 Conversion Law

Recall computational equality of terms (Section 2.4). Computationally equal terms

describe the same value. In particular, computationally equal terms that describe

types describe the same type. This design is accommodated in the typing discipline

by a rule saying that a typing s : t is admitted if t is a term describing a type and

there is some computationally equal term t′ such that the typing s : t′ is admitted.

We refer to this basic principle of the typing discipline as the conversion law.
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4.4 Conversion Law

Using formal notation, we may write the conversion law as follows:

` s : t′ t ≈ t′ ` t : P or ` t : T

` s : t

The notation ` s : t says that the typing s : t is admitted, and the notation t ≈ t′
says that the terms t and t′ are computationally equal.

The conversion law is of particular importance for propositional types since it

ensures that provability interacts with computational equality as we would expect it

from the examples in Chapter 1. If we search for a proof of a proposition, the con-

version law makes it possible to switch to any computationally equal proposition.

Several such conversion steps can be found in the proof diagrams of Chapter 1,

where propositions take the form of equations.

The statements ` s : t (typing) and s ≈ t (computational equality) appearing in

the above rules are called judgements. Judgements are used to set up the govern-

ing type theory with its term-based notions of well-typedness and computational

equality. Judgements appear at the outside of the type theory and are different

from propositions appearing as propositional types inside the type theory.

We will see many examples for the use of the conversion law once we have intro-

duced propositional equality. As our first example, however, we consider a proposi-

tion known as Leibniz symmetry not yet involving propositional equality. Leibniz

symmetry for a type X and two inhabitants x :X and y :X is the proposition

(∀p. px → py)→ (∀p. py → px)

quantifying over predicates p : X → P. Informally, Leibniz symmetry says that

whenever a value y satisfies every property a value x satisfies, x also satisfies every

property y satisfies.

Figure 4.4 show a proof diagram for Leibniz symmetry involving two conversion

steps:

py → px ≈ (λz. pz → px)y
(λz. pz → px)x ≈ px → px

The proof term constructed is

λfp. f (λz. pz → px)(λh.h)

The two conversions are implicit in the proof term since they are admitted by the

conversion law of the typing discipline.
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4 Dependent Function Types

X :T, x :X, y :X (∀p. px → py)→ (∀p. py → px) intros

f : ∀p. px → py
p : X → P py → px conversion

(λz. pz → px)y apply f
(λz. pz → px)x conversion

px → px λh.h

Proof term: λfp. f (λz. pz → px)(λh.h)

Figure 4.4: Proof diagram for Leibniz symmetry

4.5 Negation and Equivalence as Defined Constants

In Chapter 3, we have accommodated negation and equivalence as notations:

¬s := s → ⊥
s ↔ t := (s → t)∧ (t → s)

Now that we have the conversion law, we may also accommodate negation and

equivalence as defined constants:

¬ : P→ P := λX. X → ⊥
↔ : P→ P→ P := λXY . (X → Y)∧ (Y → X)

If we accommodate negation and equivalence as defined constants, as it is done

by Coq, it takes conversion steps to switch between ¬s and s → ⊥ or s ↔ t and

(s → t)∧ (t → s). The conversions steps will involve δ- and β-reductions. Since

conversion steps do not show up in proof terms, the proof terms stay unchanged

when we switch between the two representations of negation and equivalence.

4.6 Hierarchy of Universes

We have seen the universes P and T so far. Universes are types whose inhabitants

are types. The universe P of propositions is accommodated as a subuniverse of the

universe of types T, a design written as

P ⊆ T

and being realized with the typing rule

` t : P

` t : T
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4.7 Type Checking Rules Revisited

Types are first class objects in Coq’s type theory and first class objects always

have a type. So what are the types of P and T? Giving T the type T does not work

since this yields a proof of falsity (a nontrivial result). What works, however, is an

infinite cumulative hierarchy of universes:

T1 : T2 : T3 : · · ·
P ⊆ T1 ⊆ T2 ⊆ T3 ⊆ · · ·
P : T2

For dependent function types we have two closure rules

s : Ti t : P

∀x : s.t : P

s : Ti t : T1

∀x : s.t : Ti

The rule for P says that the universe of propositions is closed under all quantifi-

cations including big quantifications quantifying over the types of a universe. In

contrast, a dependent function type ∀x :Ti.t where t is not a proposition will not

be an inhabitant of the universe Ti it quantifies over.

The universe P is called impredicative since it is closed under big quantifica-

tions. The impredicative characterizations we have seen for falsity, conjunction,

disjunctions, and equality exploit this fact.

It is common practice to not give the universe level and just write T for all Ti as

we did so far. This is justified by the fact that the exact universe levels don’t matter

as long as they can be assigned consistently. Coq ensures during type checking that

universe levels can be assigned consistently.

Ordinary inductive types like B, N, N×N, and N→ N are placed in the lowest type

universe T1, which is called Set in Coq (a historical name, not related to mathemat-

ical sets).

4.7 Type Checking Rules Revisited

Since both simple function types and polymorphic function types are special cases

of dependent function types, we can simplify the type checking rules for abstrac-

tions and applications given in Section 3.8.

• A lambda abstraction λx :u.s has type ∀x :u.v if u is a type and s has type v
in a context where x has type u.

` u : T x :u ` s : v

` λx :u.s : ∀x :u.v

41



4 Dependent Function Types

• An application st has type vxt if s has type ∀x :u.v and t has type u.

` s : ∀x :u.v ` t : u

` st : vxt

The type checking rule for matches we have used in this chapter is the one given

in Section 3.8. In the next chapter we will see a radical generalization of the typing

rule for matches making it possible to derive the rules for structural case analysis

and structural induction.
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5 Leibniz Equality

We will now see that propositional equality can be defined following a scheme

known as Leibniz equality. It turns out that three typed constants suffice: One

constant accommodating equations s = t as propositions, one constant providing

canonical proofs for trivial equations s = s, and one constant providing for rewrit-

ing. It suffices to provide the constants as declared constants hiding their defini-

tions.

This chapter and the previous chapter introduce much of the technical essence

of dependent type theory. Students will need time to understand the material. On

the technical side, we see dependent function types, the conversion law, and ab-

straction by means of declared constants. On the applied side, we see the treatment

of propositional equality with declared constants and the concomitant Leibniz def-

inition. There is much elegance and surprise in this chapter.

5.1 Propositional Equality with Three Constants

With dependent function types and the conversion law at our disposal, we can

now show how the propositions as types approach can accommodate propositional

equality. It turns out that all we need are three typed constants:

eq : ∀XT. X → X → P

Q : ∀XT∀x. eqX xx

R : ∀XT∀xy∀pX→P. eqXxy → px → py

The constant eq allows us to write equations as propositional types. We treat X as

an implicit argument and write s = t for eq s t. The constants Q and R provide two

basic proof rules for equations. With Q we can prove every trivial equation s = s.
Given the conversion law, we can also prove with Q every equation s = t where s
and t are convertible. In other words, Q provides for proofs by computational

equality.

The constant R provides for equational rewriting: Given a proof of an equation

s = t, we can rewrite a claim pt to a claim ps. Moreover, we can get from an

assumption ps an additional assumption pt by asserting pt and rewriting to ps.
We refer to R as rewriting law, and to the argument p of R as rewriting pred-

icate. Moreover, we refer to the predicate eq as propositional equality or just
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5 Leibniz Equality

> ≠ ⊥ propositional disjointness

T ≠ F boolean disjointness

∀xN. 0 ≠ Sx disjointness of 0 and S

∀xNyN. Sx = Sy → x = y injectivity of successor

∀XT YT fX→Y xy. x = y → fx = fy applicative closure

∀XT xX yX . x = y → y = x symmetry

∀XT xX yX zX . x = y → y = z → x = z transitivity

Figure 5.1: Basic equational facts

equality. We will treat X, x and y as implicit arguments of R and X as implicit

argument of eq and Q.

Exercise 5.1.1 Give a canonical proof for ! T = F. Make all implicit arguments ex-

plicit and explain which type checking rules are needed to establish that your proof

term has type ! T = F. Explain why the same proof term also proves F = ! ! F.

Exercise 5.1.2 Give a term where R is applied to 7 arguments. In fact, for every

number n there is a term that applies R to exactly n arguments.

Exercise 5.1.3 Suppose we want to rewrite a subterm u in a proposition t using the

rewriting law R. Then we need a rewrite predicate λx.s such that t and (λx.s)u
are convertible and s is obtained from t by replacing the occurrence of u with the

variable x. Let t be the proposition x +y + x = y .

a) Give a predicate for rewriting the first occurrence of x in t.

b) Give a predicate for rewriting the second occurrence of y in t.

c) Give a predicate for rewriting all occurrences of y in t.

d) Give a predicate for rewriting the term x +y in t.

e) Explain why the term y + x cannot be rewritten in t.

5.2 Basic Equational Facts

The constants Q and R give us straightforward proofs for many equational facts.

Figure 5.1 shows a collection of basic equational facts, and Figure 5.2 gives proof

diagrams and the resulting proof terms for some of them.

Note that the proof diagrams in Figure 5.2 all follow the same scheme: First

comes a step introducing assumptions, then a conversion step making the rewriting
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> ≠ ⊥ intros

H : > = ⊥ ⊥ conversion

(λXP.X)⊥ apply R _H
(λXP.X)> conversion

> I

Proof term: λH. R (λXP.X)H I

T ≠ F intros

H : T = F ⊥ conversion

(λxB. match x [T⇒ > | F⇒ ⊥ ]) F apply R _H
(λxB. match x [T⇒ > | F⇒ ⊥ ])T conversion

> I

Proof term: λH. R (λxB. match x [T⇒>|F⇒⊥ ])H I

x : N, y : N Sx = Sy → x = y intros

H : Sx = Sy x = y conversion

(λz. x = match z [0⇒ 0 | Sz′ ⇒ z′]) (Sy) apply R _H
(λz. x = match z [0⇒ 0 | Sz′ ⇒ z′]) (Sx) conversion

x = x Qx

Proof term: λxyH. R (λz. x=match z [0⇒0|Sz′⇒z′])H (Qx)

X :T, x :X, y :X x = y → y = z → x = z intros

H : x = y y = z → x = z conversion

(λa. a = z → x = z)y apply R _H
(λa. a = z → x = z)x conversion

x = z → x = z λh.h

Proof term: λxyH. R (λa. a=z→x=z)H (λh.h)

Figure 5.2: Proofs of basic equational facts
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predicate explicit, then the rewriting step as application of R, then a conversion step

simplifying the claim, and then the final step proving the simplified claim.

We now understand how the basic proof steps “rewriting” and “proof by compu-

tational equality” used in the diagrams in Chapter 1 are realized in the propositions

as types approach.

Exercise 5.2.1 Give proof diagrams and proof terms for the following propositions:

a) ∀xN. 0 ≠ Sx

b) ∀XT YT fX→y xy. x = y → fx = fy
c) ∀XT xX yX . x = y → y = x
d) ∀XT YT fX→Y gX→Y x. f = g → fx = gx

Exercise 5.2.2 Prove that the pair constructor is injective:

pairxy = pairx′y ′ → x = x′ ∧y = y ′.

Exercise 5.2.3 Prove the converse rewriting law

∀XT∀xy∀pX→P. eqXxy → py → px.

Exercise 5.2.4 Verify the impredicative characterization of equality:

x = y ↔ ∀pX→P. px → py

Using Leibniz symmetry from Section 4.4, we may rewrite the equivalence to the

equivalence

x = y ↔ ∀pX→P. px ↔ py

known as Leibniz characterization of equality. Leibniz’s characterization of equal-

ity may be phrased as saying that two objects are equal if and only if they satisfy

the same properties.

The impredicative characterizations matter since they specify conjunction, dis-

junction, falsity, truth, and propositional equality prior to their definition. The im-

predicative characterizations may or may not be taken as definitions. Coq chooses

inductive definitions since in each case the inductive definition provides additional

benefits.

5.3 Declared Constants

To accommodate propositional equality, we assumed three constants eq, Q, and R.

Assuming constants without justification is something one does not do in type the-

ory. For instance, if we assume a constant of type ⊥, we can prove everything (ex

falso quodlibet) and our carefully constructed logical system collapses.
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5.3 Declared Constants

One solid justification we can have for a constant is that it was introduced as

a constructor by an inductive definition. Inductive definitions can only be formed

observing certain conditions ensuring that nothing bad can happen (i.e., a proof of

falsity).

Another solid justification we can have for a group of constants is that we can

define the constants with plain definitions. This way we know that any proof using

the constants can also be done without the constants. Thus no proof of falsity can

be introduced by the constants.

Here are plain definitions justifying the constants for propositional equality:

eq : ∀XT. X → X → P

:= λXxy. ∀pX→P. px → py
Q : ∀XT∀x. eqX xx

:= λXxph.h

R : ∀XT∀xy∀pX→P. eqXxy → px → py
:= λXxypf . fp

The definitions are amazingly simply. Check them by hand and with Coq. The idea

for the definitions comes from the Leibniz characterization of equality we have seen

in Exercise 5.2.4.

The above definition of equality is known as Leibniz equality. Coq uses another

definition of equality based on an inductive definition following a scheme we will

introduce later.

Note that for the equational reasoning done so far we completely ignored the

definitions of the typed constants eq, Q, and R. This demonstrates an abstractness

property of logical reasoning that appears as a general phenomenon.

It will often be useful to declare typed constants and hide their justifications.

We speak of declared constants. In particular all lemmas and theorems1 will be ac-

commodated as declared constants. This makes explicit that when we use a lemma

we don’t need its proof but just its representation as a typed constant.

Conjunctions and disjunctions can also be accommodated with declared con-

stants. Figure shows the constants needed for conjunctions and disjunctions. We

distinguish between constructors and eliminators. The constructors are obtained

directly with the inductive definitions we have seen for conjunction and disjunc-

tions. The eliminators can be defined with matches for the respective inductive

1 Whether we say theorem, lemma, corollary, or fact is a matter of style and doesn’t make a formal
difference. We shall use theorem as generic name (as in interactive theorem proving). As it comes
to style, a lemma is a technical theorem needed for proving other theorems, a corollary is a con-
sequence of a major theorem, and a fact is a straightforward theorem to be used tacitly in further
proofs. If we call a result theorem, we want to emphasize its importance.
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5 Leibniz Equality

∧ : P→ P→ P

C : ∀XPYP. X → Y → X ∧ Y
E∧ : ∀XPYPZP. X ∧ Y → (X → Y → Z)→ Z

∨ : P→ P→ P

L : ∀XPYP. X → X ∨ Y
R : ∀XPYP. Y → X ∨ Y

E∨ : ∀XPYPZP. X ∨ Y → (X → Z)→ (Y → Z)→ Z

Figure 5.3: Constructors and eliminators for conjunctions and disjunctions

predicates. As it comes to proofs, it suffices to have the eliminators as declared

constants. As declared constants, the eliminators provide the constructions com-

ing with matches but hide the accompanying reductions.

Note that the types of the eliminators E∧ and E∨ are closely related to the im-

predicative characterizations of conjunction and disjunction (Section 4.2).

If we look at the constants for equality, we can identify eq and Q as constructors

and R as eliminator.

Exercise 5.3.1 Define the eliminators for conjunction and disjunction based on the

inductive definitions of conjunction and disjunction.

Exercise 5.3.2 Define the constructors and eliminators for conjunction and dis-

junction using their impredicative definitions. Do not use the inductive definitions.

Exercise 5.3.3 Prove commutativity of conjunction and disjunction just using the

constructors and eliminators.

Exercise 5.3.4 Assume two sets ∧, C, E∧ and ∧′, C′, E∧′ of constants for conjunc-

tions. Prove X ∧ Y ↔ X ∧′ Y . Do the same for disjunction and propositional equal-

ity. We may say that the constructors and eliminators for a propositional construct

characterize the propositional construct up to logical equivalence.
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6 Inductive Elimination

Dependent function types and the conversion law make it possible to derive the

proof rules for structural case analysis and structural induction we have used in

Chapter 1. The surprisingly straightforward derivations are the final step in boot-

strapping the abstractions used in Chapter 1 from a type-theoretic kernel language.

For inductive types we can define functions called eliminators that through their

types provide the proof rules for case analysis and induction, and that through

their defining equations provide expressive schemes for defining functions on the

underlying inductive types. The eliminators have dependent function types and

their definitions use matches with return type functions.

We will touch upon the elim restriction that constrains matches for propositional

types by disallowing non-propositional return types.

6.1 Eliminators for Booleans

Recall the inductive definition of booleans:

B : T

T : B

F : B

In order to prove the equation

! !x = x

for boolean negation (see Section 1.1), we need structural case analysis on the

boolean variable x. Following the design of the eliminator R for equality, we may

accommodate boolean case analysis with a boolean eliminator

EB : ∀pB→P. p T→ p F→ ∀x.px

A justification for a declared constant EB can be obtained with a boolean match:

λpabx. match x [T⇒ a | F⇒ b ]

Figure 6.1 shows a proof diagram for ! !x = x using the eliminator EB.
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x : B ! !x = x conversion

(λx. ! !x = x)x apply EB

1 (λx. ! !x = x)T Q T

2 (λx. ! !x = x)F Q F

Figure 6.1: Boolean case analysis with EB.

We define a full boolean eliminator

ÊB : ∀pB→T. p T→ p F→ ∀x.px
:= λpabx. match x [T⇒ a | F⇒ b ]

representing boolean matches in full generality. Using ÊB, we can define boolean

negation as follows:

! := ÊB (λx.B) F T

In fact, ÊB (λx.B) F T and λx. match x [T⇒ F | F⇒ T ] are computationally equal.

We can also define the propositional eliminator with the full eliminator:

EB := λpB→P. ÊB p

This works since Coq’s type theory sees the function type B → P as a subtype of

B → T. The subtyping is justified since P is a subuniverse of T. Using notation

familiar from sets, we may write P ⊆ T and (B → P) ⊆ (B → T) for the relevant

subtypings.

We will use the eliminator EB only as a declared constant. Following this policy,

we will refer to EB as the elimination lemma for B.

Exercise 6.1.1 For each of the following propositions give two normal proofs, one

with a match and one with the eliminator EB.

a) ∀x. x = T∨ x = F.

b) ∀pB→P. (∀xy. y = x → px)→ ∀x.px.

c) ∀pB→P∀xB. (x = T→ pT)→ (x = F→ pF)→ px.

Exercise 6.1.2 Define boolean conjunction with the full eliminator ÊB such that the

defining term is computationally equal to λxy.match x [T⇒ y | F⇒ F ].

Exercise 6.1.3 Prove x & y = T↔ x = T∧y = T and x | y = F↔ x = F∧y = F.
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6.2 Matches with Return Type Functions

In the previous section we have tacitly used a typing rule for boolean matches that

generalizes the typing rule for matches given in Section 3.8. With the old rule, a

boolean match has type t if both rules yield type t. With the new rule, a boolean

match on x has type px if the rule for T yields pT and the rule for F yields pF:

x : B p : B→ T s : pT t : pF

match x [T⇒ s | F⇒ t ] : px

We refer to p as return type function for the match. We say that matches with re-

turn type functions are dependently typed to acknowledge the fact that the return

type px depends on the value x being analyzed by the match.

Things become clearer once we look at the equational definition of the full

boolean eliminator, giving a dependently typed functional account of the boolean

match:

ÊB : ∀pB→T. p T→ p F→ ∀x.px
ÊB pab T := a

ÊB pab F := b

The equational definition explains the type checking for boolean matches using

dependent function types. Given the variables p : B→ T, a :p T, and b :p F, we have

the typings

ÊB pab T : p T

ÊB pab F : p F

determining the right hand sides for the defining equations.

We will write dependently typed matches without stating the return type func-

tion explicitly, assuming that the return type function can be determined from the

context. In Coq, the return type function of a match can be stated explicitly.

Simple matches without return type function can be understood as matches

whose return type function is constant (i.e., λ_.t).

6.3 Eliminators for Numbers

Recall the inductive definition of numbers:

N : T

0 : N

S : N→ N
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In order to prove the equation (see Section 1.3)

x + 0 = x

we may use natural induction on the variable x. Following the design of the elimi-

nator for booleans, we realize natural induction with a typed constant

EN : ∀pN→P. p0→ (∀x. px → p(Sx))→ ∀x.px

providing an inductive eliminator for numbers. Note how the eliminator obtains

the subgoals for the base case and the successor case we have seen in the diagrams

in Chapter 1, and how in the successor case the inductive hypothesis is obtained

using an implication (make sure you can identify the inductive hypothesis). We refer

to EN as induction lemma for N.

It is important to understand how induction in proof digrams is justified by

applications of the induction lemma

EN : ∀pN→P. p0→ (∀x. px → p(Sx))→ ∀x.px

and by introductions. Note that the variable x is quantified separately in the target

and in the successor case of the eliminator. When we apply the induction lemma in

proof diagrams or with Coq, it is usually convenient to reuse the name of x from

the target in the successor case, but logically any other name can be used.

Figure 6.2 shows a detailed proof diagram for the equation x + 0 = x using the

induction lemma EN. The figure also shows the constructed proof term, which uses

the variable h to identify the inductive hypothesis (called IH in the diagram), and

the converse rewriting law

R′ : ∀XT∀xy∀pX→P. eqXxy → py → px

to obtain left-to-right rewriting with the inductive hypothesis.

Although the proof term is small, there is a lot of detail and complexity in the

proof shown in Figure 6.2. To understand what is going on, it is best to explore the

details of the example in interaction with Coq.

Clearly, humans cannot routinely come up on paper with proof terms like the

one shown in Figure 6.2. To get the details right, tedious type verification is needed,

something where humans are not good at. However, the situation changes if one

works with Coq, where the proof term is generated automatically from the proof

script one constructs interactively with Coq following a trial and error strategy.

The reason for giving complex proof terms on paper in this chapter is that we

are explaining the principles behind the reduction to the logical kernel language.

Exercise 6.3.1 Prove the following propositions with proof diagrams using the in-

duction lemma EN. You will also need lemmas for the disjointness of 0 and S and

the injectivity of S.
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x + 0 = x conversion

(λx. x + 0 = x)x apply EN

1 (λx. x + 0 = x)0 conversion

0 = 0 comp. equality

2 ∀x. (λx. x + 0 = x)x → (λx. x + 0 = x)(Sx) conversion

∀x. x + 0 = x → Sx + 0 = Sx intros

IH :x + 0 = x Sx + 0 = Sx conversion

S(x + 0) = Sx rewrite IH

Sx = Sx comp. equality

proof term: EN (λx.x + 0 = x) (Q 0) (λxh. R′ (λz.Sz = Sx)h(Q(Sx)))x

Figure 6.2: Detailed proof diagram for x + 0 = x

a) Sn ≠ n.

b) n+ Sk ≠ n.

Do the proofs also with Coq’s induction tactic to see how details can be omitted.

Write high-level proof diagrams in the style of Chapter 1.

Exercise 6.3.2 Prove that addition is injective in its second argument:

x +y = x + z → y = z.

Justification of the eliminator

To justify the eliminator EN, we recursively define a full eliminator ÊN for numbers

(following the definition of the full eliminator for booleans):

ÊN : ∀pN→T. p 0→ (∀x. px → p(Sx))→ ∀x.px
ÊN paϕ 0 := a

ÊN paϕ (Sx) := ϕx(ÊN paϕx)

The eliminator obtains inductive proofs as recursive proofs. Given the functional

interpretation of implications and universal quantifications, the recursive definition

of the eliminator follows computational intuitions and is strongly guided by the

typing discipline. Given the variables

p : N→ T

a : p 0

ϕ : ∀x. px → p(Sx)
x : N
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we have the typings

ÊN paϕ 0 : p 0

ÊN paϕ (Sx) : p(Sx)

determining the right hand sides of the defining equations.

Exercise 6.3.3 Define ÊN with fix and match.

6.4 Full Eliminator as Recursor

With the full eliminator ÊN we can describe recursive functions on numbers. For

instance, the terms

ÊN (λ_.N)0 (λ_a.S(Sa))

and

fix fx. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′)) ]

are computationally equal and describe a function N → N doubling its argument.

Moreover, the terms

λx. ÊN (λ_.N)x (λ_.S)

and

λx. fix fy. match y [0⇒ x | Sy ′ ⇒ S(fy ′) ]

are computationally equal and describe a function N→ N→ N adding two numbers.

Note that the recursion is on the second argument of the function.

Since the full eliminator ÊN represents a scheme for defining recursive functions,

it is also called recursor.

Exercise 6.4.1 Describe a function N → N → N for truncating subtraction using ÊN

but not using match or fix. Tricky, use Coq to get it right.

6.5 A Quantified Inductive Hypothesis

Figure 6.3 shows a proof diagram for an inductive proof of the proposition

∀xNyN. x = y ∨ x ≠ y

where it is essential that the inductive hypothesis quantifies over y . Without the

quantification of y the destructuring of y at the beginning of subgoal 2 would

affect the inductive hypothesis, making it impossible to close subgoals 2.2.1 and

2.2.2. Explore the details with Coq.
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∀xNyN. x = y ∨ x ≠ y apply EN, intros

1 0 = y ∨ 0 ≠ y destruct y
1.1 0 = 0∨ 0 ≠ 0 trivial

1.2 0 = Sy ∨ 0 ≠ Sy trivial

2 IH: ∀yN. x = y ∨ x ≠ y Sx = y ∨ Sx = y destruct y
2.1 Sx = 0∨ Sx ≠ 0 trivial

2.2 Sx = Sy ∨ Sx ≠ Sy destruct (IHy)
2.2.1 H: x = y Sx = Sy rewrite H, trivial

2.2.2 H: x ≠ y Sx ≠ Sy intros, apply H

H1: Sx = Sy x = y injectivity

Figure 6.3: Proof diagram with a quantified inductive hypothesis

6.6 Abstract Target Types

The type of the eliminator ÊN

∀pN→T. p 0→ (∀x. px → p(Sx))→ ∀x.px

is a function type that doesn’t fully specify the number of arguments the function

takes. For instance,

ÊN (λ_.N) : N→ (N→ N→ N)→ N→ N

takes 3 arguments while

ÊN (λ_.N→ N) : (N→ N)→ (N→ (N→ N)→ N→ N)→ N→ N→ N

takes 4 arguments. We may say that ÊN is polymorphic in the number of arguments

it takes. This form of polymorphism becomes possible through the abstract target

type px obtained with the target type function p : N→ T taken as first argument.

The first eliminator with a dependent target type we saw was the rewrite law R

for equality, where the target function was a predicate called rewriting predicate.

The next use of an abstract target type was with the eliminators for booleans. A

weaker form abstract target types appeared with the eliminators for conjunction

and disjunction in Figure 5.3, where the entire target type Z is taken as an argument.
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6.7 Eliminator for Pairs

Following the scheme we have seen for booleans and numbers, we can declare an

eliminator for pairs (Section 1.5):

E× : ∀XTYT∀pX×Y→T. (∀xy. p(x,y))→ ∀a.pa
λXYpfa.match a [ (x,y)⇒ fxy ]

Exercise 6.7.1 Prove the following facts for pairs a :X × Y using the eliminator E×:

a) (π1a,π2a) = a .

b) swap(swap a).

Exercise 6.7.2 Define a full eliminator for pairs and use it to write terms that are

computationally equal to π1, π2, and swap (see Section 1.5).

6.8 Eliminator for Falsity

A simple but important inductive proposition is falsity:

⊥ : P

Since ⊥ is defined without a proof constructor, ⊥ has no proof. We may also say

that ⊥ is an empty type that is registered as a proposition. If ⊥ is used in a context

where its status as proposition does not matter, it is often called void. The full

eliminator for ⊥ is

Ê⊥ : ∀ZT. ⊥ → Z
:= λZh. match h [ ]

The eliminator Ê⊥ is a function that for every type Z and every proof of ⊥ yields

an inhabitant of Z . Logically, the constant Ê⊥ provides the ex falso quodlibet rule,

which says that from a proof of falsity we can get a proof of everything.

Look again at the definition of the full eliminator for falsity:

Ê⊥ : ∀ZT. ⊥ → Z
:= λZTh⊥. match h⊥ []Z

This time we have annotated the match with the match type (⊥) and the return

type (Z) for clarity. The match type must be an inductive type and requires that

the match comes with one rule for every value constructor of the match type. The

return type requires that every rule of the match yields a value of the return type.

Since in our case the match does not have rules, the return type requirement is

satisfied vacuously.
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6.9 Eliminator for Truth

Truth is an inductive proposition with exactly one proof:

> : P

I : >

We may also say that > is a type with exactly one element that is registered as

a proposition. If > is used in a context where its status as proposition does not

matter, it is often called unit.

The full eliminator for > is

Ê> : ∀p>→T. p I→ ∀h>. ph
:= λpHh. match h> [ I⇒ H ]ph

Note that the return type of the match is ph, where p is the return type function

and h is the variable being matched on. In the rule of the match h can be assumed

to be I and thus it suffices that the rule yields a result of type p I.

Things become clearer if we define Ê> equationally:

Ê> : ∀p>→T. p I→ ∀h>. ph
Ê> pH I := H

Note that the equational definition is exhaustive, disjoint, and non-recursive. The

dependency of the return type on h is now handled by the typing rule for dependent

function types. We may say that the equational specification of the eliminator Ê>
suggests the dependent return type rule for matches for >.

Logically, the type of the eliminator for > says that a predicate holds for every

proof of > if it holds for the canonical proof I. With the eliminator for > we can in

fact show that all proofs of > are equal to I:

∀h :>. h = I

Ê> (λh. h = I) (Q I)

Exercise 6.9.1 Prove ∀p>→P∀h. ph↔ p I using Ê>.

6.10 Elim Restriction

There is an important typing restriction on matches for inductive propositions and

inductive predicates: If a match analyses a proof it must return a proof. We call the

restriction elim restriction. There are two exceptions to the elim restriction:
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1. Inductive propositions and inductive predicates with no proof constructors are

exempted from the elim restriction.

2. Inductive propositions and inductive predicates with a single proof constructor

are exempted from the elim restriction if every non-parametric argument of the

proof constructor is a proof.

Note that ⊥, > and ∧ are exempted from the elim restriction:

• ⊥ has no proof constructor.

• > has a single proof constructor not taking arguments.

• The predicate for conjunctions has a single proof constructor

C : ∀XPYP. X → Y → X ∧ Y

where X and Y are parametric arguments and the third and fourth argument are

proofs.

If the target type of an elimination is not propositional, we speak of a compu-

tational elimination. The elim restriction is a device that disallows computational

eliminations for most inductive propositions. We say that an inductive type is com-

putational if it is not affected by the elim restriction.

The elim restriction is the price we have to pay for the impredicativity of the

universe P of propositions. Without the elim restriction one could in fact construct

a proof of falsity (a nontrivial result). On the positive side, the elim restriction

makes it possible to assume the law of excluded middle ∀XP. X ∨ ¬X without

enabling a proof of falsity.

If the elim restriction does not apply to a match on a proof, one speaks of a

singleton elimination. Informally, we may say that singleton eliminations are pos-

sible since they don’t leak equality of proofs to equality of non-proofs. It will turn

out that singleton elimination plays an important role in Coq’s type theory.

6.11 Final Remarks

This chapter is the first time matches with dependent return types (for >, B, and N)

are needed. We think that the typing rules for matches with return type functions

are best explained through the equational definition of the concomitant eliminators.

Coq generates the inductive eliminators we have seen in this chapter automati-

cally. That is, once Coq accepts an inductive definition, it will automatically define a

collection of eliminators following a fixed scheme. The automatically defined elimi-

nators are all accommodated as defined constants.
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An existential quantification ∃x :X.px says that there is a value of type X satisfying

the predicate p. As normal proofs of ∃x :X.px we take all pairs consisting of a term

s of type X and a proof of the proposition ps. This design can be captured with an

inductive predicate

ex : ∀XT. (X → P)→ P

and the notation

∃x : t. s := ex t (λxt. s)

The normal proofs of existential quantifications are obtained with a single proof

constructor

E : ∀XT∀pX→P∀xX . px → exX p

In this chapter we will prove two basic logical facts involving existential quan-

tification known as Barber theorem (a non-existence theorem) and Lawvere’s fixed

point theorem (an existence theorem). From Lawvere’s theorem we will obtain a

type-theoretic variant of Cantor’s theorem (no surjection from a set to its power

set).

Given the type theoretic foundation built up so far, the representation of ex-

istential quantifications with an inductive predicate is straightforward. Essential

ingredients are dependent function types, the conversion law, and lambda abstrac-

tions.

7.1 Inductive Definition and Basic Facts

Following the design laid out above, we introduce the constructors ex and E with

the inductive definition

ex : ∀XT. (X → P)→ P

E : ∀XT∀pX→P∀xX . px → exX p

We treat X as implicit argument of ex and X and p as implicit arguments of E, and

use the familiar notation

∃x.s := ex (λx.s)
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7 Existential Quantification

X :T, p :X → P ¬(∃x.px)↔ ∀x.¬px apply C

1 ¬(∃x.px)→ ∀x.¬px intros

f :¬(∃x.px), x :X, a :px ⊥ apply f
∃x.px η-conversion

exp Exa
2 (∀x.¬px)→ ¬(∃x.px) intros

f :∀x.¬px, x :X, a :px ⊥ fxa

Proof term: C (λfxa.f (Epxa)) (λfh.match h [ Exa⇒ fxa])

Figure 7.1: Proof of existential de Morgan law

where the abstraction λx.s ensures that x is a local variable visible only in the

term s. Given a proof E su, we call s the witness of the proof.

Figure 7.1 shows a proof diagram and the constructed proof term for a de

Morgan law for existential quantification. Note the use of an η-conversion step

(λx.px) ≈ p in the direction from left to right. Also note that the proof construc-

tor E is used for construction in the left-to-right direction and for elimination in the

right-to-left direction (in the pattern of a match).

Exercise 7.1.1 Prove the following propositions with proof diagrams and give the

resulting proof terms. Make all conversion steps explicit in the proof diagram.

a) (∃x∃y. pxy)→ ∃y∃x. pxy .

b) (∃x. px ∨ qx) ↔ (∃x.px)∨ (∃x.qx).
c) (∃x.px)→ ¬∀x.¬px.

d) ((∃x.px)→ Z) ↔ ∀x. px → Z .

e) ¬¬(∃x.px) ↔ ¬∀x.¬px.

f) (∃x.¬¬px) → ¬¬∃x.px.

Exercise 7.1.2 Prove ∀XP. X ↔ ∃x :X.>.

Exercise 7.1.3 Verify the following existential characterization of disequality:

x ≠ y ↔ ∃p. px ∧¬py

Exercise 7.1.4 Verify the impredicative characterization of existential quantifica-

tion:

(∃x.px)↔ ∀ZP. (∀x. px → Z)→ Z

Exercise 7.1.5 Declare an eliminator E∃ for existential quantification that can re-

place the use of existential matches in proofs. Note that the type of the eliminator

is essentially the left-to-right direction of the impredicative characterization.
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Exercise 7.1.6 Universal and existential quantification are compatible with propo-

sitional equivalence. Prove the following compatibility laws:

(∀x. px ↔ qx)→ (∀x.px)↔ (∀x.qx)
(∀x. px ↔ qx)→ (∃x.px)↔ (∃x.qx)

Exercise 7.1.7 Prove ∀XT∀pX→P∀ZP. (∃x.px)∧ Z ↔ ∃x. px ∧ Z .

7.2 Barber Theorem

Proofs of nonexistence are sometimes mystified and then attract a lot of attention.

Here are two famous examples:

1. Russell: There is no set containing exactly those sets that do not contain them-

selves: ¬∃x∀y. y ∈ x ↔ y ∉ y .

2. Turing: There is no Turing machine that halts exactly on the codes of those

Turing machines that don’t halt on their own code: ¬∃x∀y. Hxy ↔ ¬Hyy .

Here H is a predicate that applies to codes of Turing machines such that Hxy
says that Turing machine x halts on Turing machine y .

It turns out that both results are trivial consequences of a straightforward logical

fact known as barber theorem.

Fact 7.2.1 (Barber Theorem) Let X be a type and p be a binary predicate on X.

Then ¬∃x∀y. pxy ↔ ¬pyy .

Proof Suppose there is an x such that ∀y. pxy ↔ ¬pyy . Then pxx ↔ ¬pxx.

Contradiction by Russell’s law ¬(X ↔ ¬X) shown in Section 3.6. �

The barber theorem is related to a logical puzzle known as barber paradox.

Search the web to find out more.

Exercise 7.2.2 Give a proof diagram and a proof term for the barber theorem. Con-

struct a detailed proof with Coq.

7.3 Lawvere’s Fixed Point Theorem

Another famous non-existence theorem is Cantor’s theorem. Cantor’s theorem says

that there is no surjection from a set into its power set. If we analyse the situation

in type theory, we find a proof that for no type X there is a surjective function

X → (X → B). If for X we take the type of numbers, the result says that the function

type N → B is uncountable. It turns out that in type theory facts like these are best
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7 Existential Quantification

obtained as consequences of a general logical fact known as Lawvere’s fixed point

theorem.

A fixed point of a function f : X → X is an x such that fx = x.

Fact 7.3.1 Boolean negation has no fixed point.

Proof Consider !x = x and derive a contradiction with boolean case analysis on x.�

Fact 7.3.2 Propositional negation λP.¬P has no fixed point.

Proof Suppose ¬P = P . Then ¬P ↔ P . Contradiction with Russell’s law. �

A function f : X → Y is surjective if ∀y∃x. fx = y .

Theorem 7.3.3 (Lawvere) Suppose there exists a surjective function X → (X → Y).
Then every function Y → Y has a fixed point.

Proof Let f : X → (X → Y) be surjective and g : Y → Y . Then fa = λx.g(fxx) for

some a. We have faa = g(faa) by rewriting and conversion. �

Corollary 7.3.4 There is no surjective function X → (X → B).

Proof Boolean negation doesn’t have a fixed point. �

Corollary 7.3.5 There is no surjective function X → (X → P).

Proof Propositional negation doesn’t have a fixed point. �

We remark that Corollaries 7.3.4 and 7.3.5 may be seen as variants of Cantor’s

theorem.

Exercise 7.3.6 Construct with Coq detailed proofs of the results in this section.

Exercise 7.3.7 For each of the following types

Y = ⊥, B, B× B, N, P, T

give a function Y → Y that has no fixed point.

Exercise 7.3.8 Show that every function > → > has a fixed point.

Exercise 7.3.9 With Lawvere’s theorem we can give another proof of Fact 7.3.2

(propositional negation has no fixed point). In contrast to the proof given with

Fact 7.3.2, the proof with Lawvere’s theorem uses mostly equational reasoning.

The argument goes as follows. Suppose (¬X) = X. Since the identity is a surjec-

tion X → X, the assumption gives us a surjection X → (X → ⊥). Lawvere’s theorem

now gives us a fixed point of the identity on ⊥ → ⊥. Contradiction since the fixed

point is a proof of falsity.

Do the proof with Coq.
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We have now arrived at a stage where we can prove interesting mathematical facts

and where on paper we want to switch from proof terms and proof diagrams to

mathematical proof outlines written for humans. This does not mean that we

give up on machine-checked proofs, but rather that we delegate the generation of

machine-checkable proofs to Coq. This way we can combine mathematical proof

outlines designed for humans with the rigor of machine-checked proofs.

We consider four problems every reader should know:

• Proving that two types are not equal using cardinality arguments. Our lead ex-

ample is N ≠ B.

• Proving that equational specifications are unique up to functional extensionality.

Our lead example is the specification of the Ackermann function.

• Doing case analysis with witnessing equations. Our lead example is Kaminski’s

equation f(f(fx)) = fx for boolean functions f B→B.

• Equality deciders for data types.

The problems provide for the demonstration of basic proof techniques we have not

discussed so far:

• Nested induction.

• Case analysis with witnessing equations.

• Quantified inductive hypotheses.

• Functional extensionality.

8.1 Disequality of Types

Informally, the types N and B of booleans and numbers are different since they have

different cardinality: While there are infinitely many numbers, there are only two

booleans. But can we show in the logical system we have arrived at that the types N

and B are not equal?

Since B and N both have type T1, we can write the propositions N = B and N ≠ B.

So the question is whether we can prove N ≠ B. From Exercise 7.1.3 we know (using

symmetry of equality) that it suffices to give a predicate p such that we can prove
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p B and ¬pN. We choose the predicate

λXT.∀xXyXzX . x = y ∨ x = z ∨y = z

saying that a type has at most two elements. With boolean case analysis on the

variables x, y , z we can show that the property holds for B. Moreover, with x = 0,

y = 1, and z = 2 we get the proposition

0 = 1∨ 0 = 2∨ 1 = 2

which can be disproved using the basic techniques for equality we have seen in

Section 5.2.

Fact 8.1.1 N ≠ B.

On paper, it doesn’t make sense to work out the proof in more detail since this

involves a lot of writing and routine verification. With Coq, however, doing the com-

plete proof is quite rewarding since the writing and the tedious details are taken

care of by the system. When we do the proof with Coq we can see that the tech-

niques introduced so far smoothly scale to more involved proofs.

Exercise 8.1.2 Proof B ≠ > and B ≠ B× B.

Exercise 8.1.3 Note that one cannot prove B ≠ B×> since one cannot give a predi-

cate that distinguishes the two types. Neither can one prove B = B×>.

8.2 Unique Specification of Functions

We may ask whether there is a function f : N→ N→ N satisfying the equations

f0y = y
f(Sx)y = S(fxy)

for all numbers x and y . Since the equations qualify for an equational definition of

a function (exhaustive, disjoint, structurally recursive in first argument), we know

that there is a function satisfying the equations. In fact, the function realizes the

addition operation for numbers and we used the equations in Section 1.2 to define

the addition operation for numbers.

We may also ask whether the equations are satisfied by functions that are differ-

ent from addition. The answer is no and, in fact, we can prove this. To do so, we

define a predicate on functions

Add : (N→ N→ N)→ P

:= λf .(∀y. f0y = y)∧ (∀xy. f(Sx)y = S(fxy))
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formalizing the equational specification and prove that two functions satisfying the

specification agree on all arguments:

∀fg. Addf → Addg → ∀xy. fxy = gxy (8.1)

Proving this claim by induction on x is straightforward.

We may ask whether we can also prove the proposition

∀fg. Addf → Addg → f = g (8.2)

which strengthens (8.1) by asserting that the two functions are equal, which is

stronger than asserting that they yield the same result for all arguments. It turns

out that (8.2) can only be shown under a logical assumption known as functional

extensionality. Functional extensionality says that two functions of the same type

are equal if for every argument both functions yield the same result:

∀XTYT∀fX→YgX→Y . (∀x. fx = gx)→ f = g

We summarize our findings about the specification of the addition function with

a fact.

Fact 8.2.1 The equations

f0y = y
f(Sx)y = S(fxy)

specify the addition function for numbers up to functional extensionality.

Recall the specification of the Ackermann function discussed in Section 1.4.

Fact 8.2.2 The equations

f0y = Sy

f(Sx)0 = fx1

f(Sx)(Sy) = fx(f(Sx)y)

have a solution f : N→ N→ N that is unique up to functional extensionality.

Proof That there is a function satisfying the equations was shown in Section 1.4.

That the specification is unique up to functional extensionality

∀fg. Ackf → Ackg → ∀xy. fxy = gxy

can be shown by induction on x and a nested induction on y in the successor

case Sx. We ask the reader to study the details of the nested induction using the

Coq script. Here we only look at the case where both the inductive hypothesis for x
and the inductive hypothesis y are available:
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IHx : ∀y. fxy = gxy
IHy : f(Sx)y = g(Sx)y f(Sx)(Sy) = g(Sx)(Sy) rewrite Ack f , Ack g

fx(f(Sx)y) = gx(g(Sx)y) rewrite IHy

fx(g(Sx)y) = gx(g(Sx)y) IHx (g(Sx)y)

Note that the inductive hypothesis IHx quantifies y and that this quantification is

needed for the proof to go through. To obtain the quantified inductive hypothesis,

the claim must quantify y when the induction is started. �

The proof uses two ideas we have not seen before: Nested induction and a

quantified inductive hypothesis. Note that this is the first time we do not give the

full details of a proof using new ideas here on paper. The reason is that stepping

through the proof with Coq using the Coq script we provide is more instructive than

reading a description of the detailled proof on paper.

Exercise 8.2.3 Prove that the equations

f0y = y
f(Sx)y = fx(Sy)

specify the addition function for numbers up to functional extensionality.

Exercise 8.2.4 (Hardt’s Identity) Prove that the equations

f0 = 0

f(Sx) = S(f (fx))

specify the identity function for numbers up to functional extensionality.

The pattern of the specification can be varied and then uniqueness may not

be obvious. For instance, what happens if the second equation is changed to

f(Sx) = f(S(fx))?

Exercise 8.2.5 Define a maximum function M : N → N → N and prove Mxy = Myx
and M(x +y)x = x +y .

Exercise 8.2.6 Consider the specification

p : (⊥ → N)→ P

pf := ∀x. fx = 5

Show that there is a function satisfying the specification, and that two functions

satisfying the specification are equal up to functional equality.
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8.3 Kaminski’s Equation

We will show that the equation1

f(f(fx)) = fx

holds for every boolean function f : B → B and every boolean x : B. The equation

says that applying a boolean function three times yields the same result as applying

the function once. Here is a straightforward proof: We do boolean case analysis on

x, f T, and f F. This gives us 8 = 23 cases. In each case rewriting with the equations

witnessing the boolean case analyses proves the equations. For instance, given the

equations

x = T, f T = F, f F = T

we have

f(f(fx)) = f(f(f T)) = f(f F) = f T = fx

When we do the proof with the boolean eliminator EB from Section 6.1, we run

into the difficulty that we don’t get the witnessing equations for f T (f T = T or

f T = F) and f F (f F = T or f F = F). This can be cured by using the lemma

∀pB→P∀xB. (x = T→ p T)→ (x = F→ p F)→ px

providing the witnessing equations in the subgoals. The lemma has a straightfor-

ward proof using boolean case analysis. We remark that Coq’s case analysis tactic

destruct can provide the witnessing equations (modifier eqn).

8.4 Equality Decider for Numbers

An equality decider for a type X is a boolean function f : X → X → B such that

∀xXyX . x = y ↔ fxy = T

Types that have an equality decider are called discrete.

It is straightforward to define an equality decider for the type of numbers:

eqb : N→ N→ B

eqb 0 0 := T

eqb 0 (S_) := F

eqb (S_)0 := F

eqb (Sx)(Sy) := eqbxy

1 The equation was brought up as a proof challenge by Mark Kaminski in 2005 when he wrote his
Bachelor’s thesis on a calculus for classical higher-order logic.
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Note that the decider recurses on the first argument and in both cases does a case

analysis on the second argument. We have seen this structure before in Section 6.5

with the proof of∀xNyN. x = y∨x ≠ y . The correctness proof for eqb also follows

this structure.

Fact 8.4.1 ∀xNyN. x = y ↔ eqbxy = T.

Proof By induction on x and case analysis on y . It is essential that y is universally

quantified in the inductive hypothesis. �

Fact 8.4.2 Let X be a discrete type. Then ∀xXyX . x = y ∨ x ≠ y .

Proof Follows with boolean case analysis and an equality decider for X. �

Ordinary mathematics considers the above fact trivial since ordinary mathemat-

ics assumes P ∨ ¬P for every proposition P . In our proof system, however, this

logical assumption is not built in. We will discuss this issue in Chapter 9.

Datatypes like B, N, and N×B all have boolean equality deciders. In fact, discrete

types are closed under products. On the other hand, we cannot construct boolean

equality deciders for functional types like N→ B or N→ N.

Exercise 8.4.3 Show that B is discrete.

Exercise 8.4.4 Show that a product type X × Y is discrete if X and Y are discrete.

Exercise 8.4.5 Show that the propositional types ⊥ and > are discrete.

Exercise 8.4.6 Define a comparison function leb : N → N → B that tests x ≤ y .

Prove

∀xNyN. lebxy = T ↔ ∃k. x + k = y

Note that we have not defined comparisons x ≤ y yet. A fine definition could be

x ≤ y := ∃k. x+k = y . The final definition will be an inductive definition appearing

in Chapter 14.

Exercise 8.4.7 Assume functional extensionality. Prove the following:

a) > → > has exactly 1 element.

b) > → > is discrete.

c) B→ B has exactly 4 elements.

d) B→ B is discrete.
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A proposition X is independent in a given proof system if neither X nor ¬X is

provable. There are many interesting propositions that are independent in Coq’s

type theory. Two examples are functional extensionality and excluded middle.

Often it is interesting to explore the consequences of mathematical assumptions

and obtain results that depend on certain assumptions. For this purpose, a proof

system that has only basic logical assumptions built in is preferable over a proof

system that has many mathematical assumptions built in since the basic proof sys-

tem provides finer distinctions and grants more axiomatic freedom. There is in fact

a recent foundational system (homotopy type theory) that conflicts with excluded

middle but respects most of Coq’s logical commitments.1

9.1 Metatheorems

Given a proposition, we may prove or disprove the proposition with Coq’s proof

system. Recall that a disproof of a proposition is a proof of its negation. We call a

proposition independent if we can neither prove nor disprove it. That a proposition

is independent cannot be shown with Coq’s proof system since unprovability of a

proposition cannot be stated as a proposition.

Given a proof system, results that cannot be shown within the system are called

metatheorems, and properties that cannot be stated within the system are called

metaproperties. Independence of a proposition is a metaproperty and a result say-

ing that a certain proposition is independent in Coq’s proof system is a metathe-

orem. Note that we can use Coq to show for many propositions that they are not

independent by proving or disproving the proposition with Coq.

An important metaproperty for any proof system is consistency saying that

there is no proof of falsity. There is a general result (Gödel’s incompleteness the-

orem) that says that no sufficiently strong proof system can prove its own consis-

tency.

1 There is a conflict with Coq’s impredicative universe of propositions.
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9.2 Abstract Provability Predicates

There is a way to prove certain properties of provability within Coq. The trick is to

assume an abstract provability predicate

provable : P→ P

satisfying certain properties. For our purposes the following properties suffice:

PA : ∀XY. provable (X → Y)→ provable X → provable Y

PI : ∀X. provable (X → X)
PK : ∀XY. provable Y → provable (X → Y)
PN : ∀XY. provable (X → Y)→ provable (¬Y → ¬X)

Since Coq’s provability predicate satisfies these properties, we can expect that prop-

erties we can show for abstract provability predicates also hold for Coq’s provability

predicate.

We identify three prominent properties based on provability:

• A proposition X is contradictory if ¬X is provable.2

contradictory X := provable (¬X)

• A proposition is consistent if it is not contradictory.

consistent X := ¬contradictoryX

• A proposition is independent if it is unprovable and consistent.

independent X := ¬provableX ∧ consistentX

The assumption PA known as modus ponens says that provability transports

through implication. Unprovability thus transports in the reverse direction. With

PN we then obtain that consistency transports through implications the same way

provability does.

Fact 9.2.1 (Transport)

1. provable(X → Y) → ¬provableY → ¬provableX.

2. provable(X → Y) → consistentX → consistentY .

Proof Claim 1 follows with PA. Claim 2 follows with PN and (1). �

2 Note that a proposition is contradictory iff we can disprove it.
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Corollary 9.2.2 Provability, unprovability, consistence, and independence all

transport through propositional equivalence. Formally, if X → Y and Y → X are

provable, then:

1. If X is provable, then Y is provable.

2. If X is unprovable, then Y is unprovable.

3. If X is consistent, then Y is consistent.

4. If X is independent, then Y is independent.

From the transport properties it follows that a proposition is independent if it

can be sandwiched between a consistent and an unprovable proposition.

Theorem 9.2.3 (Sandwich) A proposition Y is independent if there exist proposi-

tions X and Z such that:

1. X → Y and Y → Z are provable.

2. X is consistent and Z is unprovable.

Proof Follows with Fact 9.2.1. �

A key property of provability is consistency saying that there is no proof of

falsity. It turns out that consistency has interesting equivalent characterizations

that can be established for abstract proof predicates.

Fact 9.2.4 (Consistency) The following propositions are equivalent:

1. ¬provable⊥.

2. consistent (¬⊥).
3. There is a consistent proposition.

4. Every provable proposition is consistent.

Proof 1 → 2. We assume provable(¬¬⊥) and show provable⊥. By PA it suffices to

show provable(¬⊥), which holds by PI.

2→ 3. Trivial.

3→ 1. Suppose X is consistent. We assume provable⊥ and show provable (¬X).
Follows by PK.

1 → 4. We assume that ⊥ is unprovable, X is provable, and ¬X is provable. By

PA we have provable⊥. Contradiction.

4 → 1. We assume that ⊥ is provable and derive a contradiction. By the primary

assumption it follows that ¬⊥ is unprovable. Contradiction since ¬⊥ is provable

by PI. �

From Fact 9.2.4 we learn that a provability predicate is consistent if there are

consistent propositions.
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Exercise 9.2.5 Show that the functions λXP.X and λXP.> are abstract provability

predicates satisfying PA, PI, PK, and PN.

Exercise 9.2.6 Let X → Y be provable. Show that X and Y are both independent

if X is consistent and Y is unprovable.

Exercise 9.2.7 Assume a provability predicate satisfying PA, PI, PK, PN, and also

PE : ∀XP. provable ⊥ → provable X

Prove ¬provable ⊥ ↔ ¬∀XP. provable X.

Exercise 9.2.8 We may consider more abstract provability predicates

provable : prop→ P

where prop is an assumed type of propositions with two assumed constants

falsity : prop

impl : prop→ prop→ prop

Show all results of this section for such abstract proof systems.

9.3 Prominent Independent Propositions

Figure 9.1 lists prominent propositions that are independent in Coq. Here are infor-

mal readings of the propositions.

• Truth value semantics (TVS) says that every proposition equals either > or ⊥.

• Excluded middle (XM) says that every proposition is either provable or disprov-

able.

• Limited propositional omniscience (LPO) says that tests on numbers are either

satisfiable or unsatisfiable.

• Markov’s principle (Markov) says that a test on numbers that is not constantly

false is true for some number. Markov’s principle may be seen as a specialized

de Morgan law.

• Propositional extensionality (PE) says that equivalent propositions are equal.

• Proof irrelevance (PI) says that propositions have at most one proof.

• Functional extensionality (FE) says that functions are equal if they agree on all

arguments.
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TVS := ∀XP. X = >∨X = ⊥
XM := ∀XP. X ∨¬X

LPO := ∀fN→B. (∃n. fn = T)∨¬(∃n. fn = T)

Markov := ∀fN→B. ¬(∀n. fn = F)→ (∃n. fn = T)

PE := ∀XPYP. X ↔ Y → X = Y
PI := ∀XP∀aXbX . a = b
FE := ∀XTYT∀fX→YgX→Y . (∀x. fx = gx)→ f = g

Figure 9.1: Independent propositions

TVS→ XM TVS→ PE PE→ PI

XM→ LPO XM→ PE→ TVS

LPO→ Markov

Figure 9.2: Provable implications

Note that LPO and Markov talk about tests on numbers and quantify only over types

in T1. The other propositions in Figure 9.1 do not involve data types but quantify

over universes.

Using the sandwich theorem, we will be able to show that all propositions in

Figure 9.1 are independent provided we are given two nontrivial metatheorems.

Theorem 9.3.1 (Meta) TVS∧ FE is consistent.

Theorem 9.3.2 (Meta) Neither Markov nor PI nor FE is provable.

From Theorem 9.3.1 we obtain consistency as a corollary.

Corollary 9.3.3 (Meta) ⊥ is unprovable.

Proof Follows with Fact 9.2.4 from Theorem 9.3.1. �

We will now prove the implications shown in Figure 9.2. The implications suffice

so that with the sandwich theorem 9.2.3 and the metatheorems 9.3.1 and 9.3.2 we

know that all propositions of Figure 9.1 are independent.

Fact 9.3.4 XM↔ ∀XP. (X ↔ >)∨ (X ↔ ⊥).

Proof Straightforward. �
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Fact 9.3.5 TVS ↔ XM∧ PE.

Proof Straightforward using Fact 9.3.4. �

Fact 9.3.6 XM→ LPO and LPO→ Markov.

Proof The first claim is obvious. For the second claim assume LPO and f such that

H : ¬∀n. fn = F. By LPO we assume H1 : ¬∃n. fn = T and prove falsity. By H we

prove fn = F for some n. By boolean case analysis we assume fn = T and prove

falsity. The proof closes with H1. �

We call a proposition pure if it has at most one proof:

pure : P→ P

pure X := ∀aXbX . a = b

Note that PI says that all propositions are pure.

Fact 9.3.7 ⊥ and > are pure.

Proof Follows with the eliminators for ⊥ and >. �

Fact 9.3.8 PE→ PI.

Proof Assume PE and let a and b be two proofs of a proposition X. We show a = b.

Since X ↔ >, we have X = > by PE. Hence X is pure since > is pure. The claim

follows. �

Theorem 9.3.9 (Meta) All propositions in Figure 9.1 are independent.

Proof By the sandwich theorem 9.2.3 and Facts 9.3.5, 9.3.8, and 9.3.6 it suffices to

show that TVS and FE are consistent and that PI, Markov, and FE are unprovable.

This is exactly what Theorems 9.3.1 and 9.3.2 say. �

Exercise 9.3.10 Prove TVS ↔ ∀XYZ :P. X = Y ∨ X = Z ∨ Y = Z . Note that the

equivalence characterizes TVS without using > and ⊥.

Exercise 9.3.11 Prove TVS ↔ ∀pP→P. p> → p⊥ → ∀X.pX. Note that the equiva-

lence characterizes TVS without using propositional equality.

Exercise 9.3.12 Prove that ∀XT. X = >∨X = ⊥ is contradictory.

Exercise 9.3.13 We define implicational excluded middle as

IXM := ∀XPYP. (X → Y)∨ (Y → X)
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a) Prove XM→ IXM.

b) Prove that IXM is consistent.

We remark that neither IXM nor IXM→ XM is provable in Coq’s type theory.

Exercise 9.3.14 We define weak excluded middle as

WXM := ∀XP. ¬X ∨¬¬X

a) Prove WXM↔ ∀XP. ¬¬X ∨¬¬¬X.

b) Prove WXM↔ ∀XPYP. ¬(X ∧ Y)→ ¬X ∨¬Y .

c) Prove that WXM is consistent.

Note that (b) says that WXM is equivalent to the de Morgan law for conjunction. We

remark that neither WXM nor WXM→ XM is provable in Coq’s type theory.

Exercise 9.3.15 Prove FE→ pure (> → >).

Exercise 9.3.16 Prove FE→ B ≠ (> → >).

Exercise 9.3.17 Suppose there is a function f : (∃xB.>) → B such that f(Ex I) = x
for all x. Prove ¬ PI. Convince yourself that without the elim restriction you could

define a function f as assumed.

Exercise 9.3.18 Suppose there is a function f : (>∨>)→ B such that f(L I) = T and

f(R I) = F. Prove ¬ PI. Convince yourself that without the elim restriction you could

define a function f as assumed.

Exercise 9.3.19 Functional extensionality can be formulated more generally for de-

pendently typed functions:

∀XT∀pX→T∀f∀x.px∀g∀x.px. (∀x. fx = gx)→ f = g

Convince yourself that the dependently typed version implies the simply typed ver-

sion FE. We remark that the dependently typed version is consistent in conjunction

with TVS.

9.4 Sets

Given FE and PE, predicates over a type X correspond exactly to sets whose elements

are taken from X. We may define membership as x ∈ p := px. In particular, we
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obtain that two sets (represented as predicates) are equal if they have the same

elements (set extensionality). Moreover, we can define the usual set operations:

� := λxX .⊥ empty set

p ∩ q := λxX .px ∧ qx intersection

p ∪ q := λxX .px ∨ qx union

p − q := λxX .px ∧¬qx difference

Exercise 9.4.1 Prove x ∈ (p − q) ↔ x ∈ p ∧ x ∉ q. Check that the equation

(x ∈ (p − q)) = (x ∈ p ∧ x ∉ q) holds by computational equality.

Exercise 9.4.2 Assume FE and PE and prove the following:

1. (∀x. x ∈ p ↔ x ∈ q)→ p = q.

2. p − (q ∪ r) = (p − q)∩ (p − r).

9.5 No Computational Omniscience

Coq’s type theory is carefully designed such that every definable function is com-

putable. In fact, computability of definable functions is preserved if we assume TVS

and FE.3 On the other hand, using existential quantification, we can ask for the ex-

istence of functions having properties no computable function can have. Here is a

proposition we call computational omniscience:

CO := ∃F (N→B)→B∀fN→B. Ff = T↔ ∃n. fn = T

CO states the existence of a boolean function F deciding whether tests on numbers

are satisfiable. Computationally, we can apply a test f only finitely often, but after

finitely many negative outcomes it is still possible that f tests positively the next

number we try. In short, a computable satisfiability decider for tests on numbers

cannot exist because there are infinitely many numbers.

Fact 9.5.1 CO→ LPO.

Proof Straightforward. �

As pointed out in the discussion above, we expect that ¬CO is consistent in the

presence of TVS and FE.

Conjecture 9.5.2 (Meta) TVS∧ FE∧¬CO is consistent.

It turns out that assuming CO is also consistent.

3 The results in the literature and experience support this claim, but there is no full proof yet.
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Theorem 9.5.3 (Meta) TVS∧ FE∧ CO is consistent.

From the conjecture and the theorem it follows that CO is independent, even in

the presence of TVS and FE. So technically, we could go either way. In this text, we

want a type theory where all definable functions are computable, and hence will not

admit assumptions conflicting with ¬CO.

9.6 Discussion

Basic Intuitionistic Reasoning

In mathematical practice TVS and FE are tacitly assumed. What is surprising at first

is that basic intuitionistic reasoning (the reasoning directly obtained with the propo-

sitions as types principle) can prove so many interesting theorems. Basic intuition-

istic reasoning is valuable in that it provides a basis for studying tacit assumptions

used in mathematical reasoning.

Markov versus LPO

Markov’s principle is weaker than LPO but still not provable with basic intuitionistic

reasoning. If we look at Markov’s principle

∀fN→B. ¬(∀n. fn = F)→ ∃n. fn = T

we see that a proof of the principle is a function that given a proof that a boolean

test for numbers is not constantly negative returns a number where the test is

positive. Such a function can be realized (not in Coq so) with an algorithm that

starting from n = 0 checks the test until it finds a number testing positively. In

contrast, such an algorithmic realization does not exist for a function proving LPO.

There is a philosophical direction called intuitionism that will only accept intu-

itionistic reasoning, which is basic intuitionistic reasoning plus assumptions whose

proof functions can be realized algorithmically. While the use of Markov’s principle

is fine for intuitionists, the use of LPO is not. The results in the literature suggest

that LPO does not imply XM.

Consistency of Proof Irrelevance

Given the setup of Coq’s proof system, where the structure of canonical proofs

is crucial for reasoning with proofs of inductive propositions, the consistency of

proof irrelevance is surprising, in particular, as it comes to disjunctions. There is

the important result that proof irrelevance is already implied by excluded middle

(we will see a proof in a later chapter).
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10 Excluded Middle and Double Negation

We consider propositionally equivalent characterizations of excluded middle, in-

cluding Peirce’s law, the double negation law, and the counterexample law. We

show for several examples that the double negation of a quantification-free propo-

sition can be shown even if the proposition itself can only be shown with excluded

middle. We also consider definiteness and stability of propositions, two interesting

properties that trivially hold under excluded middle.

10.1 Characterizations of Excluded Middle

Recall that excluded middle

XM := ∀XP. X ∨¬X

is independent in Coq’s type theory. There are several propositionally equivalent

characterizations of excluded middle. Most amazing is Peirce’s law that formulates

excluded middle with just implication.

Fact 10.1.1 The following propositions are equivalent. That is, if we can prove one

of them, we can prove all of them.

1. ∀XP. X ∨¬X excluded middle

2. ∀XP. ¬¬X → X double negation

3. ∀XPYP. (¬X → ¬Y)→ Y → X contraposition

4. ∀XPYP. ((X → Y)→ X)→ X Peirce’s law

5. ∀XP. (X ↔ >)∨ (X ↔ ⊥)

Proof Since (5) is a minor reformulation of (1), proving the implications 1 → 5 and

5→ 1 is easy. It remains to prove the implications 1→ 2→ 3→ 4→ 1.

1 → 2. Assume ¬¬X and show X. By (1) we have either X or ¬X. Both cases are

easy.

2 → 3. Assume ¬X → ¬Y and Y and show X. By (2) it suffices to show ¬¬X. We

assume ¬X and show X. Follows by ex falso quodlibet since we have Y and ¬Y .

3→ 4. By (3) it suffices to show ¬X → ¬((X → Y)→ X)). Straightforward.

4→ 1. By (4) with X , (X∨¬X) and Y , ⊥ we can assume ¬(X∨¬X) and prove

X ∨¬X. We assume X and prove ⊥. Straightforward since we have ¬(X ∨¬X). �
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¬(X ∧ Y) ↔ ¬X ∨¬Y de Morgan

¬(∀a.pa) ↔ ∃a.¬pa de Morgan

(¬X → ¬Y) ↔ (Y → X) contraposition

(X → Y) ↔ ¬X ∨ Y classical implication

Figure 10.1: Prominent equivalences only provable with XM

There is another characterization of excluded middle asserting existence of

counterexamples, often used as tacit assumption in mathematical arguments.

Fact 10.1.2 (Counterexample) XM ↔ ∀AT∀pA→P. (∀a.pa)∨ ∃a.¬pa.

Proof Assume XM and pA→P. By XM we assume ¬∃a.¬pa and prove ∀a.pa. By the

de Morgan law for existential quantification we have ∀a.¬¬pa. The claim follows

since XM implies the double negation law.

Now assume the right hand side and let X be a proposition. We prove X ∨ ¬X.

We choose p := λa>.X. By the right hand side and conversion we have either∀a>.X
or ∃a>.¬X. In each case the claim follows. Note that choosing an inhabited type

for A is essential. �

Another common tacit use of XM in Mathematics is proof by contradiction: To

prove s, we assume ¬s and derive a contradiction. The lemma justifying proof by

contradiction is double negation:

XM→ (¬X → ⊥)→ X

Figure 10.1 shows prominent equivalences whose left-to-right directions are only

provable with XM. Note the de Morgan laws for conjunction and universal quantifi-

cation. Recall that the de Morgan laws for disjunction and existential quantification

¬(X ∨ Y) ↔ ¬X ∧¬Y de Morgan

¬(∃a.pa) ↔ ∀a.¬pa de Morgan

have constructive proofs.

Exercise 10.1.3

a) Prove the right-to-left directions of the equivalences in Figure 10.1.

b) Prove the left-to-right directions of the equivalences in Figure 10.1 using XM.
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Exercise 10.1.4 Prove the following equivalences possibly using XM. In each case

find out which direction needs XM.

¬(∃a.¬pa) ↔ ∀a.pa
¬(∃a.¬pa) ↔ ¬¬∀a.pa
¬¬(∃a.pa) ↔ ¬∀a.¬pa

Exercise 10.1.5 Prove that the left-to-right direction of the de Morgan law for uni-

versal quantification implies XM:

(∀XT∀pX→P. ¬(∀x.px)→ (∃x.¬px))→ XM

Hint: Instantiate the de Morgan law with X ∨¬X and λ_.⊥.

Exercise 10.1.6 Make sure you can prove the de Morgan laws for disjunction and

existential quantification (not using XM).

Exercise 10.1.7 Explain why Peirce’s law and the double negation law are indepen-

dent in Coq’s type theory.

Exercise 10.1.8 (Drinker Paradox) Consider a bar populated by at least one person.

Using excluded middle, one can argue that one can pick some person in the bar such

that everyone in the bar drinks Whiskey if this person drinks Whiskey.

We assume an inhabited type X representing the persons in the bar and a predi-

cate pX→P identifying the persons who drink Whiskey. The job is now to prove the

proposition ∃x. px → ∀x.px. Do the proof in detail and point out where XM and

inhabitation of X are needed. A nice proof can be done with the counterexample

law Fact 10.1.2.

10.2 Double Negation

Given a proposition X, we call ¬¬X the double negation of X. It turns out that the

double negation of a quantifier-free proposition is provable even if the proposition

by itself is only provable with XM. For instance,

∀XP. ¬¬(X ∨¬X)

is provable. This metaproperty cannot be proved in Coq. However, for every in-

stance a proof can be given in Coq.

There is a useful proof technique for working with double negation: If we have a

double negated assumption and need to derive a proof of falsity, we can drop the

double negation. The lemma behind this is simply identity:

¬¬X → (X → ⊥)→ ⊥
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With excluded middle, double negation distributes over all connectives and

quantifiers. Without excluded middle, we can still prove that double negation dis-

tributes over implication and conjunction.

Fact 10.2.1 The following distribution laws for double negation are provable:

¬¬(X → Y) ↔ (¬¬X → ¬¬Y)
¬¬(X ∧ Y) ↔ ¬¬X ∧¬¬Y

¬¬> ↔ >
¬¬⊥ ↔ ⊥

Exercise 10.2.2 Prove the equivalences of Fact 10.2.1.

Exercise 10.2.3 Prove the following propositions:

¬(X ∧ Y) ↔ ¬¬(¬X ∨¬Y)
(¬X → ¬Y) ↔ ¬¬(Y → X)
(¬X → ¬Y) ↔ (Y → ¬¬X)
(X → Y) → ¬¬(¬X ∨ Y)

Exercise 10.2.4 Prove ¬(∀a.¬pa) ↔ ¬¬∃a.pa.

Exercise 10.2.5 Prove the following implications:

¬¬X ∨¬¬Y → ¬¬(X ∨ Y)
(∃a.¬¬pa) → ¬¬∃a.pa
¬¬(∀a.pa) → ∀a.¬¬pa

Convince yourself that the converse directions are not provable without excluded

middle.

Exercise 10.2.6 Make sure you can prove the double negations of the following

propositions:

X ∨¬X
¬¬X → X

¬(X ∧ Y)→ ¬X ∨¬Y
(¬X → ¬Y)→ Y → X
((X → Y)→ X)→ X
(X → Y)→ ¬X ∨ Y
(X → Y)∨ (Y → X)
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10.3 Definiteness and Stability

We define definiteness and stability of propositions as follows:

definite XP := X ∨¬X
stable XP := ¬¬X → X

Fact 10.3.1

1. Every definite proposition is stable.

2. Every negated proposition is stable.

3. > and ⊥ are definite and stable.

4. Definiteness and stability are transported by propositional equivalence.

5. Under XM, all propositions are definite and stable.

Fact 10.3.2 Implication, conjunction, disjunction, and negation preserve definite-

ness:

1. definite X → definite Y → definite (X → Y).
2. definite X → definite Y → definite (X ∧ Y).
3. definite X → definite Y → definite (X ∨ Y).
4. definite X → definite (¬X).

Fact 10.3.3 (Definite de Morgan) definite X ∨ definite Y → ¬(X∧Y) ↔ ¬X∨¬Y .

Fact 10.3.4 Implication, conjunction, and universal quantification preserve stabil-

ity:

1. stable Y → stable (X → Y).
2. stable X → stable Y → stable (X ∧ Y).
3. (∀a. stable (pa)) → stable (∀a.pa).

Exercise 10.3.5 Prove the above facts.

Exercise 10.3.6 Prove Markov ↔ ∀fN→B. stable(∃n. fn = T). The equivalence says

that Markov is equivalent to stability of satisfiability of tests on numbers.

Exercise 10.3.7 Prove (∀a. stable (pa)) → ¬(∀a.pa) ↔ ¬¬∃a.¬pa.

Exercise 10.3.8 We define classical variants of conjunction, disjunction, and exis-

tential quantification:

X ∧c Y := (X → Y → ⊥)→ ⊥ ¬(X → ¬Y)
X ∨c Y := (X → ⊥)→ (Y → ⊥)→ ⊥ ¬X → ¬¬Y
∃ca.pa := (∀a.pa→ ⊥)→ ⊥ ¬(∀a.¬pa)
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The definitions are obtained from the impredicative characterisations by replacing

the quantified target proposition Z with ⊥. At the right we give computationally

equal variants using negation. The classical variants are implied by the originals

and are equivalent to the double negations of the originals. Under excluded middle,

the classical variants thus agree with the originals. Prove the following propositions.

a) X ∧ Y → X ∧c Y and X ∧c Y ↔ ¬¬(X ∧ Y).
b) X ∨ Y → X ∨c Y and X ∨c Y ↔ ¬¬(X ∨ Y).
c) (∃a.pa)→ ∃ca.pa and (∃ca.pa)↔ ¬¬(∃a.pa).
d) X ∨c ¬X.

e) ¬(X ∧c Y)↔ ¬X ∨c ¬Y .

f) (∀a. stable (pa)) → ¬(∀a.pa)↔ ∃ca.¬pa.

g) X ∧c Y , X ∨c Y , and ∃ca.pa are stable.
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So far, we have used the propositions-as-types principle to transport intuitions from

types to propositions. In this chapter, we will go the other way and transport in-

tuitions from propositions to types, relying on the fact that the logical connectives

and quantifiers all have meaningful computational versions. The situation can be

depicted as follows:

T ∀ → × a + Σ computational types

P ∀ → ∧ ↔ ∨ ∃ propositional types

The function types ∀ and → exist natively at both levels, where → is just a special

form of ∀. The inductive definitions of ∧, ∨, and ∃ are lifted from P to T by declar-

ing the constructors with T in place of P. The computational version of conjunc-

tions are the familiar product types. The computational version a of propositional

equivalence ↔ is defined with product × in place of conjunction ∧. The compu-

tational versions of disjunctions and existential quantifications are known as sum

types and sigma types. We will refer to the computational variants of propositional

types as informative types.

A main motivation for using the computational versions + and Σ of ∨ and ∃ is

the fact that they are not affected by the elim restriction and thus can be used freely

for defining functions.1

The correspondence between propositional types and their computational vari-

ants is so close that speaking of proofs of the respective computational types is

meaningful and technically helpful.

The other main topic of this chapter are (computationally) decidable predicates.

Given that all functions definable in Coq are computable, we can identify decidable

predicates as predicates that are decidable with boolean functions. The study of

decidable predicates profits much from the presence of sigma types and sum types.

Sum types lead to decision types, which in turn lead to certifying deciders.

11.1 Boolean Deciders

A boolean decider for a predicate pX→P is a function fX→B such that

∀x. px ↔ fx = T

1 Recall that ∧ is excempted from the elim restriction (Section 6.10).
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A predicate pX→P is decidable if it has a boolean decider. Formally, we define a

predicate as follows:

bdec : ∀X. (X → P)→ (X → B)→ P

bdecXpf := ∀x. px ↔ fx = T

We treat the first argument of bdec as implicit argument. Given a predicate pX→P,

the proposition ex(bdecp) formally says that p is decidable.

Recall the discussion of computational omniscience in Section 9.5. There we

agreed that the predicate

tsat : (N→ B)→ P

tsatf := ∃n. fn = T

is computationally undecidable. In fact, we have CO ≈ ex(bdec tsat).

Fact 11.1.1 Decidable predicates X → P are closed under implication, negation,

conjunction, and disjunction. That is, if p and q are decidable predicates X → P,

then so are λx.(px → qx), λx.¬px, λx.(px ∧ qx), and λx.(px ∨ qx).

Proof Straightforward. �

Fact 11.1.2 Decidability of predicates transports through propositional equiva-

lence. That is, ∀XTpX→PqX→PfX→B. (∀x. px ↔ qx)→ bdecpf → bdecqf .

Proof Straightforward. �

Exercise 11.1.3 Prove ex(bdecp)→ ∀x. px ∨¬px.

Exercise 11.1.4 Prove bdecpf → bdecqf → ∀x. px ↔ qx.

Exercise 11.1.5 Prove the following equivalences:

CO ↔ ∃f . bdec tsatf

LPO ↔ ∀f . tsatf ∨¬tsatf

Markov ↔ ∀f . ¬¬tsatf → tsatf

Note that CO says that tsatf is decidable, that LPO says that tsatf is definite, and

that Markov says that tsatf is stable (in each case for all tests f ). Thus we may

write the above equivalences as follows:

CO ↔ ex (bdec tsat)

LPO ↔ ∀f . definite (tsatf)

Markov ↔ ∀f . stable (tsatf)
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11.2 Certifying Deciders and Sum Types

Certifying deciders refine boolean deciders in that they yield certified decisions,

carrying proofs of their correctness. Certifying deciders are based on sum types

X + Y , which generalize disjunctions X ∨ Y from propositions to all types thus

avoiding the elim restriction.

Sum types X + Y are inductively defined as follows:

+ : T→ T→ T

L : ∀XY. X → X + Y
R : ∀XY. Y → X + Y

Using sum types, we define decision types D(X) as follows:

D : P→ T

D(X) := X +¬X

A value of a decision typeD(X) is a decision carrying either a proof of X or a proof

of ¬X. We say that a proposition is decided if its decision type is inhabited. Note

that decided propositions are definite.

Fact 11.2.1 (Propagation) There are propagation functions

∀XPYP. D(X)→D(Y)→D(X → Y)
∀XPYP. D(X)→D(Y)→D(X ∧ Y)
∀XPYP. D(X)→D(Y)→D(X ∨ Y)

∀XP. D(X)→D(¬X)

Moreover, there are decisions for the propositions ⊥ and >.

Proof Straightforward. �

Fact 11.2.2 (Transport) Decisions transport through propositional equivalence.

That is, there is a function ∀XPYP. (X ↔ Y)→D(X)→D(Y).

Proof Straightforward. �

A certifying decider for a predicate pX→P is a function ∀xX . D(px). From a cer-

tifying decider p we can obtain a boolean decider for p by forgetting the proofs.

Vice versa, we can construct from a boolean decider and its correctness proof a

certifying decider.

Fact 11.2.3 There is a function ∀XTfX→BxX . D(fx = T).
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Proof Boolean case analysis on fx reduces the claim to D(T = T) and D(F = T). �

Fact 11.2.4 There is a function ∀XTpX→PfX→B. bdecpf → ∀x.D(px) translating

boolean deciders into certifying deciders.

Proof Fact 11.2.2 and Fact 11.2.3. �

Fact 11.2.5 There is a function ∀XTpX→P. (∀x.D(px)) → ex(bdecp) translating

certifying deciders into boolean deciders.

Proof For h∀x.D(px) define fx := match hx [ L _⇒ T | R _⇒ F ]. �

The translation function provided by Fact 11.2.5 has the problem that the

boolean decider in the proof of ex(bdecp) cannot be accessd computationally (be-

cause of the elim restriction). We will fix the problem with a computational version

of existential quantification in a later section.

We can recover some of the lost symmetry between the translation functions

with an inhabitation predicate for types:

I : T→ P

I(X) := ∃xX .>

Corollary 11.2.6 ∀XTpX→P. ex(bdecp) ↔ I(∀x.D(px)).

Proof Facts 11.2.5 and 11.2.4. �

Exercise 11.2.7 Prove X + Y → X ∨ Y and I(X + Y)↔ X ∨ Y .

Exercise 11.2.8 Prove (∀x. D(px))→ ∀x. px ∨¬px.

Exercise 11.2.9 Define a function ∀bB. (b = T)+ (b = F).

Exercise 11.2.10 Prove

∀BTaB bB . (∀pB→T. pa→ pb → ∀x.px)a (∀x. (x = a)+ (x = b)).

Exercise 11.2.11 Show that a type X is discrete if and only if it has a certifying

equality decider ∀xXyX . D(x = y). Discrete types are defined in Section 8.4.

Exercise 11.2.12 Show that a sum type X+Y is discrete if both X and Y are discrete.

Exercise 11.2.13 Define a function ∀XT. X → I(X).

Exercise 11.2.14 Define an inductive inhabitation predicate not using existential

quantification and show that it is equivalent to the predicate I defined with existen-

tial quantification.

Exercise 11.2.15 Prove x & y = F a (x = F)+ (y = F) and

x | y = T a (x = T)+ (y = T).
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11.3 Sigma Types

Recall that a proof of an existential quantification ∃x.px can be thought of as a pair

(x,h) consisting of a witness x and a proof h of px. Because of the elim restriction,

the witness cannot be accessed computationally. We now define a computational

version Σx.px of existential quantification residing in T that is not affected by the

elim restriction.

We define Σ-types inductively as follows:

sig : ∀XT. (X → T)→ T

E : ∀XTqX→TxX . qx → sigXq

We treat the first argument of sigand the first two arguments of E as implicit argu-

ments and write Σx.s for sig(λx.s). The elements Exa of Σ-types are called depen-

dent pairs. This speak forgets about the parameters X and q and emphasizes the

fact the type of the second component a :qx depends on the first component x.

Σ-types are also called dependent pair types.

With Σ-types we can specify the translation functions between boolean and cer-

tifying deciders concisely and symmetrically.

Fact 11.3.1 (Translation) There are functions as follows:

∀XTpX→P. (Σf . bdecpf)→ (∀x.D(px))
∀XTpX→P. (∀x.D(px))→ (Σf . bdecpf)

Proof Follows with Facts 11.2.4, 11.2.3, and 11.2.2. �

We go one step further and define propositional equivalence Xa Y for types:

a : T→ T→ T

Xa Y := (X → Y)× (Y → X)

Note that a proof of an equivalence X a Y is a pair (f , g) of functions f : X → Y
and g : Y → X.

Corollary 11.3.2 ∀XTpX→P. (Σf . bdecpf)a (∀x.D(px)).

Exercise 11.3.3 Prove (Σx.px)→ (∃x.px) and I(Σx.px)↔ (∃x.px).

Exercise 11.3.4 Prove ∀XP. D(X)a Σb. X ↔ b = T.

Exercise 11.3.5 Define a function ∀nN. (n = 0)+ (Σk. n = Sk).
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Exercise 11.3.6 Prove a computational version of Lawvere’s theorem:

∀XTYTfX→X→Y . (∀g Σx. fx = g)→ (∀g ΣyY . gy = y).

Exercise 11.3.7 The elimination lemma for booleans suffices for computational

boolean case analysis. To study this issue we consider an abstract type of booleans.

a) Prove ∀BT∀aBbB . (∀x. (x = a)+ (x = b))a (∀pB→T. pa→ pb → ∀x.px).
b) Prove ∀BT∀aBbB∀d∀x. (x=a)+(x=b). a ≠ b → Σf B→B∀x. fx ≠ x.

Both claims have straightforward proofs, in particular when written in Coq. Note

that the second claim says that one can define a function B → B not having a fixed

point if one assumes that the two members of B are distinct.

Exercise 11.3.8 Define projections

π1 : ∀XTpX→T. sigp → X
π2 : ∀XTpX→Thsigp. p(π1h)

and do the following for XT and pX→T:

a) Prove the η-law h = Eq(π1h)(π2h).

b) Prove injectivity of π1: ∀hsigp h′sigp. h = h′ → π1h = π1h′.

c) Explain why ∀hsigp h′sigp. h = h′ → π2h = π2h′ doesn’t type check.

d) Convince yourself that you cannot prove ∀xXapxa′px. Exa = Exa′ → a = a′.
It turns out that the injectivity claim (d) can be shown assuming PI (proof irrele-

vance). In fact, a weaker version of PI known as Axiom K suffices. You’ll find a proof

in the Coq library EqdepFacts.

11.4 Constructing Functions in Proof Mode

Since certifying deciders have informative types,2 they can be constructed like

proofs using proof diagrams and tactics. For instance, a certifying equality de-

cider

∀xNyN. (x = y)+ (x ≠ y)

can be constructed with essentially the same diagram that is used in Section 6.5 for

a proof of

∀xNyN. x = y ∨ x ≠ y

The reasons for this coincidence are that the elimination lemma for numbers can be

used computationally, and that sums are a computational version of disjunctions.

As it comes to the Coq script, exactly the same script can be used for both proofs.

2By an informative type we mean a type specifying its inhabitants up to inessential details.
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We define comparisons for numbers as follows:

x ≤ y := ∃k. x + k = y
x < y := Sx ≤ y
x ≥ y := y ≤ x
x > y := y < x

We can go one step further and construct a function

F : ∀xNyN. (Σk. x + Sk = y)+ (x = y)+ (Σk. x = y + Sk)

Given two numbers x and y , the function decides whether x < y or x = y or y < x.

In addition, using dependent pairs, the function yields the differences y − Sx and

x − Sy for the cases x < y and y < x.

Given the informative type specifying the function F , the function can be con-

structed in proof mode, using induction on x followed by case analysis on y . As in

the examples mentioned before, it is essential that y is quantified in the inductive

hypothesis.

When we construct a term with a script in Coq, we can bind the constructed

term to a constant, where we can choose between a transparent binding and an

opaque binding. Choosing an opaque binding gives us a declared constant hiding

its definition, and choosing a transparent binding gives us a defined constant where

the term constructed with the script is taken as the term defining the constant.

Using transparent bindings, we may construct reducible functions using scripts.

Defining the above constant F as a transparent constant is attractive, since from

a transparent F we can easily get a reducible symmetric subtraction function

ssub : N→ N→ B× N

that yields (T, x −y) if x ≥ y and (F, y − x) if y > x.

Exercise 11.4.1 Construct a reducible symmetric subtraction function using proof

diagrams and proof scripts.

Exercise 11.4.2 Construct certifying deciders as specified below using proof dia-

grams and scripts.

a) ∀xByB. D(x = y).
b) ∀xNyN. D(x = y).
c) ∀xNyN. (x < y)+ (y ≤ x).

Exercise 11.4.3 Construct a dependent pair

ΣfN→N→B. ∀xy. fxy = T↔ x = y

using the certifying equality decider from Exercise 11.4.2. Make sure that the func-

tion f of the pair in fact computes (i.e., f 2 3 should reduce to F).
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11.5 Discussion

So far, we have used the propositions-as-types principle to transport intuitions from

types to propositions. In this chapter we have seen that transporting intuitions from

propositions to types is also beneficial. At the type level, implication and universal

quantification are native, and computational versions of conjunction, disjunction,

propositional equivalence, and existential quantification are easily defined. It now

makes sense to see the construction of inhabitants of informative types as proofs

and to use the language coming with proofs for these constructions. In fact, proof

diagrams and Coq’s tactic language apply readily to the construction of inhabitants

of types.

Technical Summary

D(X) := X +¬X
tsatf := ∃nN. fn = T

bdecpg := ∀xX . px ↔ gx = T

CO := ex (bdec tsat)

(∀x. D(px))a sig (bdecp)

(∀f . D(tsatf))→ CO

Decisions travel through ↔ and propagate through →, ¬, ∧, ∨.
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In this chapter we define a witness operator

∀fN→B. (∃n. fn = T)→ (Σn. fn = T)

That one can define a witness operator comes as a surprise. It seems that the

operator bypasses the elim restriction for existential quantification. Technically,

this is not the case. What happens is that the witness in the dependent pair is

computed by checking fn for n = 0,1,2, . . . until fn = T holds. We speak of

linear search and ascending recursion. The witness in the satisfiability proof is

used to enable the linear search through an inductive transfer predicate that is

not affected by the elim restriction. The transfer predicate is defined with a single

proof constructor using a higher-order form of recursion we call guarded recursion.

The proof constructor is designed such that recursion on derivations supports the

ascending recursion needed for linear search.

12.1 Transfer Predicate with Guarded Recursion

We fix a test f : N→ B for the rest of the section.

We call a number n guarded if f(n+ k) = T for some k:

guardedn := ∃k. f (n+ k) = T

Here are some straightforward facts about guardedness:

1. If fn = T, then n is guarded.

2. If Sn is guarded, then n is guarded.

3. If f is satisfiable, then 0 is guarded.

4. If n is guarded and fn = F, then Sn is guarded.

The trick is now to define an inductive predicate G with a single recursive proof

constructor realizing facts (1) and (2) such that G holds exactly for the guarded

numbers. The definition of the transfer predicate G is as follows:

G : N→ P

GI : ∀n. (fn = F→ G (Sn))→ Gn
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Note that the second argument of the proof constructor GI is an implication

fn = F→ G (Sn)

The implication makes it possible to define the transfer predicate with a single

proof constructor not invoking the elim restriction. Computationally, we say that

the implication sets up a guarded recursion (where fn = F is the guard).

We may depict the proof constructor GI as the proof rule

fn = F → G (Sn)

Gn

which says that a derivation of Gn is obtained from a function that given a proof

of fn = F yields a derivation of G (Sn).

Fact 12.1.1

1. fn = T→ Gn.

2. G (Sn)→ Gn.

3. Gn→ G 0.

4. (∃n. fn = T)→ G 0.

Proof (1) follows with GI since fn = T and fn = F are contradictory. (2) is a trivial

consequence of GI. (3) follows by induction on n from (2). (4) follows from (1)

and (3). �

It remains to construct a recursive function

F : ∀n. Gn→ Σk. fk = T

We first observe that G is not subject to the elim restriction since all non-proof

arguments of its single proof constructor appear in the target type of the proof

constructor. Thus F can recurse on the derivation of Gn.

Fact 12.1.2 ∀n. Gn→ Σk. fk = T.

Proof We assume Gn and prove Σk. fk = T by induction on the derivation of Gn.

Since GI is the only proof constructor, we have fn = F→ G (Sn) and

fn = F→ Σk. fk = T

as inductive hypothesis. By boolean case analysis we have either fn = T or fn = F.

If fn = T, the claim follows with k = n. If fn = F, the claim follows with the

inductive hypothesis. �
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We refer to the function provided by Fact 12.1.2 as linear search function.

The informal proof of Fact 12.1.2 deserves formal justification. To do so, we

define an eliminator for G whose type justifies the induction we have used in the

informal proof:1

EG : ∀pN→T. (∀n. (fn = F→ p(Sn))→ pn)→ ∀n. Gn→ pn
EG pgn(GI _h) := gn(λe. EG pg(Sn)(he))

Checking that the defining equation of EG is well-typed is not difficult. The recursion

on the derivation of Gn we see in the defining equation of EG counts as structurally

recursive in Coq’s type theory. Informally, we may say that every derivation he is

smaller than the given derivation GInh.

We now formalize the informal proof of Fact 12.1.2 with a proof diagram:

∀n. Gn→ Σk. fk = T apply EG, intros

n : N

IH : fn = F→ Σk. fk = T Σk. fk = T destruct fn
1 H : fn = F exact IH H
2 H : fn = T exists n, exact H

Theorem 12.1.3 ∀fN→B. (∃n. fn = T)→ (Σn. fn = T).

Proof Follows with Fact 12.1.2 and Fact 12.1.1 (4). Passing through G 0 is essential

to not get in conflict with the elim restriction for the proof of ∃n. fn = T. �

Exercise 12.1.4 Prove Gfn↔ ∃k. f (n+ k) = T.

Hint: For the direction ← prove ∀n. f(n+ k) = T→ Gfn by induction on k.

Exercise 12.1.5 Define a function ∀fn. Gfn→ Σk. f (n+ k) = T.

Exercise 12.1.6 Show tsatf ↔ Gf 0.

Exercise 12.1.7 Define the eliminator EG with fix and match. Note that fix must

be used with a leading argument so that the recursive function can receive the type

∀n. Gfn→ pn needed for the recursive application.

Exercise 12.1.8 Prove ∀fN→B. (∃n. fn = T)a (Σn. fn = T).

Exercise 12.1.9 Construct a witness operator ∀f B→B. (∃x. fx = T)→ (Σx. fx = T)
for tests on booleans.

1 In fact, EG gives us more than we need for Fact 12.1.2 since the claim Σk. fk = T does not depend
on n. Starting with Exercise 12.1.4, we will use EG for claims that depend on n.
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Exercise 12.1.10 Construct a witness operator ∀pN→P. (∀n. D(pn)) → exp →
sigp for decidable predicates on numbers.

Exercise 12.1.11 Prove tsat (λn. fn | gn)a tsatf + tsatg.

Exercise 12.1.12 Prove the following impredicative characterizations for G.

a) Gfn↔ ∀pN→P. (∀n. (fn = F→ p(Sn))→ pn)→ pn.

b) Gfn↔ ∀pN→P. (∀n. fn = T→ pn)→ (∀n. p(Sn)→ pn)→ pn.

Note that (a) follows the inductive definition of G.

12.2 Discussion

With the transfer predicate G we have seen an inductive predicate that goes far

beyond the inductive definitions we have seen so far.

1. G is defined with a recursive proof constructor.

2. The proof constructor of G employs guarded recursion, which greatly extends

the power of structural recursion. Guarded recursion means that the recursive

argument of a proof constructor is a function that for every argument yields

a structurally smaller value. That this is the case and that guarded structural

recursions always terminate is a basic fact (or assumption if you wish) that is

build-in in Coq’s type theory.

3. The parameter n of G is nonuniform. While G can be defined with the parame-

ter f abstracted out (e.g., as a section variable in Coq), the parameter n cannot

be abstracted out since the proof constructor employs Gf (Sn) in its argument

type.

4. Due to the nonuniform parameter and the guarded recursion, the recursive elim-

inator we defined for G has a very particular form we have not seen before.

5. The eliminator we have defined for G is not the strongest one. One can define

a stronger eliminator where the target type depends on both n and the deriva-

tion h : Gn. This eliminator makes it possible to prove properties of a linear

search function ∀n. Gn→ N with a noninformative target type.

6. The construction of the witness operator crucially relies on two exemptions from

the elim restriction: That one can freely match on proofs of ⊥ and on proofs

of Gn.

12.3 Unsuccessful Variations

We look at two variants of the inductive transfer predicate that support ascending

recursion but fail to deliver computational elimination because of the elim restric-
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tion.

Exercise 12.3.1 One feature of the transfer predicate G is that it supports an as-

cending recursion n = 0,1,2, . . . until fn = T holds. Here is a more conventional

inductive predicate supporting the ascending recursion:

G′ : N→ P

G′B : ∀n. fn = T→ G′n

G′S : ∀n. G′(Sn)→ G′n

Note that G′ is subject to the elim restriction since it has two proof constructors.

Thus the ascending recursion licensed by a derivation of G′n cannot be used com-

putationally.

a) Prove Gn→ G′n.

b) Define an eliminator for G′.

c) Prove G′n→ Gn using the eliminator from (b).

Exercise 12.3.2 Here is another candidate for a transfer predicate:

G′′ : N→ P

G′′I : ∀n. (fn = T∨ G′′ (Sn))→ G′′n

Note that G′′ is not affected by the elim restriction. However, it seems impossible

to define a computational eliminator since the proof of the disjunction appearing

as argument of G′′I must be destructured.

a) Prove Gn→ G′′n.

b) Define an eliminator

∀pN→P. (∀n. fn = F→ pn)→ (∀n. p(Sn)→ pn)→ ∀n. G′′n→ pn.

c) Prove G′′n→ Gn using the eliminator from (b).

Technical Summary

(∃nN. fn = T)a (Σn. fn = T)

(∀nN. D(pn))→ (expa sigp)

tsat(λn. fn | gn)a tsatf + tsatg
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The theory of computation distinguishes between decidable and semi-decidable

predicates, where Post’s theorem says that a predicate is decidable if and only if

both the predicate and its complement are semi-decidable. There are important

semi-decidable problems that are undecidable. It turns out that semi-decidability

has an elegant definition in type theory using semi-decision types, and that Post’s

theorem is equivalent to Markov’s principle, where the direction from Markov to

Post needs a witness operator.

13.1 Semi-Deciders

A semi-decider for a predicate pX→P is a function FX→N→B such that

∀x. px ↔ tsat(Fx)

A predicate pX→P is semi-decidable if it has a semi-decider.

We offer two intuitions for semi-deciders. Let F be a semi-decider for p. This

means we have px ↔ ∃n. Fxn = T for every x. The fuel intuition says that F
confirms px if and only if px holds and F is given enough fuel n. The proof intuition

says that the proof system F has a proof n of px if and only if px holds.

Fact 13.1.1 Decidable predicates are semi-decidable.

Fact 13.1.2 tsat is semi-decidable.

We define semi-decision types S(X) as follows:

S : P→ T

S(X) := ΣfN→B. X ↔ tsatf

Fact 13.1.3 ∀XP. D(X)→ S(X).

Fact 13.1.4 (Transport) ∀XPYP. (X ↔ Y)→ S(X)→ S(Y).

Fact 13.1.5 ∀XPYP. S(X)→ S(Y)→ S(X ∨ Y).
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Proof Let f be the test for X and g be the test for Y . Then λn.fn | gn is a test for

X ∨ Y . �

Fact 13.1.6 ∀XPYP. S(X)→ S(Y)→ S(X ∧ Y).

Proof Let f be the test for X and g be the test for Y . We assume a pairing function

for numbers. Let F : N → N → N, π1 : N → N and π2 : N → N such that π1(Fn1n2) =
n1 and π2(Fn1n2) = n2. Then λn.f(π1n)&g(π2n) is a test for X ∧ Y . �

A certifying semi-decider for a predicate pX→P is a function ∀xX . S(px). From

a certifying semi-decider for p we can obtain a semi-decider for p by forgetting the

proofs. Vice versa, we can construct from a semi-decider and its correctness proof

a certifying semi-decider.

Fact 13.1.7 ∀XTpX→P. (∀x.S(px))a (ΣFX→N→B∀x. px ↔ tsat (Fx)).

Proof Direction ⇒. We assume H : ∀x.S(px) and x : X and show px ↔ tsat(Fx)
for Fx := π1(Hx). Straightforward.

Direction ⇐. We assume H : ∀x. px ↔ tsat (Fx) and x : X and show S(px).
Trivial with Fx as test. �

Corollary 13.1.8 A predicate is semi-decidable iff it has a certifying semi-decider.

Recall the discussion of computational omniscience in Section 9.5. It turns out

that from a decider for tsat we can get a function translating semi-decisions into

decisions, and vice versa.

Fact 13.1.9 (∀XP. S(X)→D(X)) a (∀fN→B. D(tsatf)).

Proof Direction⇒ follows since f is a test for S(tsatf). For direction⇐ we assume

X ↔ tsatf and show D(X). By the primary assumption we have either tsatf or

¬tsatf . Thus D(X). �

13.2 Markov-Post Equivalence

Recall the definition of Markov’s principle:

Markov := ∀fN→B. ¬(∀n. fn = F)→ (∃n. fn = T)

We also need the function type

Post := ∀XP. S(X)→ S(¬X)→D(X)

We will refer to functions of type Post as Post operators.1

1 Post operators are named after Emil Post, who first showed that predicates are decidable if they are
semi-decidable and co-semi-decidable.
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Fact 13.2.1 Post→ ∀XP. D(X)a S(X)× S(¬X).

Proof Straightforward. �

Fact 13.2.2 Markov→ Post.

Proof Assume Markov. Let f be a test for X and g be a test for ¬X. We showD(X).
Let hn := fn | gn. It suffices to show Σn. hn = T. Since we have a witness operator

and Markow, it suffices to show ¬∀n. hn = F. We assume H : ∀n. hn = F and show

¬X and ¬¬X. Follows since H implies that f and g are constantly false. �

Fact 13.2.3 Post→ Markov.

Proof We assume Post and H : ¬¬tsatf and prove tsatf (using Exercise 11.1.5). It

suffices to show D(tsatf). Using Post it suffices to show S(tsatf) and S(¬tsatf).
S(tsatf) holds with f as test. S(¬tsatf) holds with λ_.F as test. �

Theorem 13.2.4 Markov a Post.

Proof Facts 13.2.2 and 13.2.3. �

We say that a predicate p is co-semi-decidable if its complement p := λx.¬px
is semi-decidable.

Corollary 13.2.5 Given Markov, a predicate is decidable iff it is semi-decidable and

co-semi-decidable.

Corollary 13.2.6 Given Markov and ¬CO, tsat is not co-semi-decidable.

Proof Suppose that tsat is co-semi-decidable. Since tsat is semi-decidable

(Fact 13.1.2), tsat is decidable by Fact 13.2.2. Contradiction with ¬CO. �

Exercise 13.2.7 Prove ∀XP. (X ∨¬X)→ S(X)→ S(¬X)→D(X).

Exercise 13.2.8 Prove Markov→ ∀X. D(X)a S(X)× S(¬X).

Exercise 13.2.9 Prove Markov→ (∀X. S(X)→ S(¬X))→ CO. Note that this implies

that semi-decisions don’t propagate through implications and negations if Markov

and ¬CO are assumed.
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13.3 Reductions

The theory of computation employs so-called many-one reductions to transport

undecidability results between problems. In our setting problems are predicates

and many-one reductions can be easily defined since all functions are computable.

Given two predicates pX→P and qY→P, a reduction from p to q is a function fX→Y

such that ∀x. px ↔ q(fx). Formally, we define a predicate as follows:

red : ∀XTYT. (X → P)→ (Y → P)→ (X → Y)→ P

red XYpqf := ∀x. p(x)↔ q(fx)

We treat the polymorphic arguments of red as implicit arguments.

Fact 13.3.1 Decidability and undecidability propagate along reductions as follows.

redpqf → (∀y.D(qy))→ (∀x.D(px))
redpqf → (∀y.S(qy))→ (∀x.S(px))
ex (redpq)→ ex (bdecq)→ ex (bdecp)

ex (redpq)→ ¬ex (bdecp)→ ¬ex (bdecq)

Proof Straightforward. �

Fact 13.3.2 A predicate is semi-decidable if and only if it reduces to tsat. Formally:

∀XTpX→P. (∀x. S(px))a sig (redp tsat).

Proof Direction ⇒ follows with the reduction mapping x to the test for S(px).
Direction ⇐ uses the test the reduction yields for x. �

Exercise 13.3.3 The reducibility relation between predicates is reflexive and transi-

tive. Prove redpp(λx.x) and redpqf → redqrg → redpr(λx.g(fx)) to establish

this claim.

Exercise 13.3.4 Prove redpq f → red q p f .
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Technical Summary

D(X) := X +¬X
S(X) := Σf . X ↔ tsatf

tsatf := ∃nN. fn = T

bdecpg := ∀xX . px ↔ gx = T

CO := ex (bdec tsat)

Markov := ∀f . ¬(∀n. fn = F)→ tsatf

Post := ∀X. S(X)→ S(¬X)→D(X)
redpqf := ∀x. px ↔ q(fx)

tsatf a Σn. fn = T

tsat(λn. fn | gn)a tsatf + tsatg

(∀nN. D(pn))→ exp → sigp

sig (bdecp)a ∀x. D(px)
(∀f . D(tsatf))→ CO

D(X)→ S(X)× S(¬X)
S(tsatf)

(∀f . D(tsatf))a ∀X. S(X)→D(X)
Markov a Post

Markov→ (D(X)a S(X)× S(¬X))
Markov→ (∀f . S(¬tsatf))→ CO

(∀x. S(px))a sig (redp tsat)

• Decisions propagate through →, ¬, ∧, ∨.

• Semi-decisions propagate through ∧, ∨. (conjunction needs pairing function)

• Decisions and semi-decisions travel through ↔.

• Deciders and semi-deciders travel from target to source of reductions.
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14 More on Numbers

Numbers are the most basic infinite data structure there is. We derive a few hand-

picked results about numbers to show important ideas. There is much beauty in

deriving results about numbers from first principles. The few results we cover

include complete induction, the division theorem, and a bounded µ-operator. Com-

plete induction gives us a computational principle providing for the definition of

many functions that do not have natural definitions with structural recursion.

14.1 Addition

We have seen the inductive definition of the numbers with the constructors NT, 0N,

and SN→N in Chapter 1. The inductive definition provides for recursive definitions

of the basic operations for addition, subtraction, and multiplication, and, more gen-

erally, for the recursive definition of an eliminator providing for inductive proofs

(Chapter 6). Figure 14.1 collects the basic definitions for numbers.

The two basic facts about addition are associativity and commutativity.

Fact 14.1.1 (x +y)+ z = x + (y + z) and x +y = y + x.

Proof Associativity follows by induction on x. Commutativity also follows by in-

duction on x, where the lemmas x + 0 = x and x + Sy = Sx + y are needed. Both

lemmas follow by induction on x. �

We will use associativity and commutativity of addition tacitly in proofs. If we

omit parentheses for convenience, they are inserted from the left: x +y + z �
(x +y)+ z.

Another important fact about numbers is injectivity, which comes in two flavors.

Fact 14.1.2 (Injectivity) x +y = x + z → y = z and x + k = x → k = 0.

Proof Both claims follow by induction on x. �

Exercise 14.1.3 Prove x +y ≤ x + z → y ≤ z.

Exercise 14.1.4 Prove that multiplication is commutative.

Exercise 14.1.5 Prove x ≠ x + Sk.
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14 More on Numbers

Inductive Definition

NT, 0N, SN→N

Addition, Subtraction, Multiplication

+ : N→ N→ N · : N→ N→ N

0+y := y
Sx +y := S(x +y)

0 ·y := 0

Sx ·y := y + x ·y

− : N→ N→ N

0−y := 0

Sx − 0 := Sx
Sx − Sy := x −y

Eliminator

EN : ∀pN→T. p 0→ (∀x. px → p(Sx))→ ∀x.px
EN paf 0 := a

EN paf (Sx) := fx(EN pafx)

Linear Order

x ≤ y := ∃k. x + k = y

Figure 14.1: Basic definitions for numbers

14.2 Order

We define the order relation on numbers as follows:

x ≤ y := ∃k. x + k = y

We also define the following notational variants:

x < y := Sx ≤ y
x ≥ y := y ≤ x
x > y := y < x

We list the basic facts about order we will use in the following (mostly tacitly).
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14.3 Linearity

Fact 14.2.1

1. x ≤ x (reflexivity)

2. x ≤ y → y ≤ z → x ≤ z (transitivity)

3. x ≤ y → y ≤ x → x = y (antisymmetry)

4. Sx ≤ Sy ↔ x ≤ y (shift)

5. 0 ≤ x (origin)

6. x ≤ 0 → x = 0 (origin)

7. ¬(x < 0) (origin)

8. ¬(x < x) (strictness)

9. ¬(x + k < x) (strictness)

10. x ≤ x +y
11. x ≤ y → x ≤ Sy

12. x ≤ y → x ≤ y + k

Proof All claims have straightforward proofs not using induction. In a few cases,

commutativity and associativity of addition are needed. Antisymmetry and strict-

ness need injectivity of addition. �

14.3 Linearity

Linearity is an essential fact about numbers saying that for two numbers x and y
we have always either x ≤ y or y < x. We prove the computational version of

linearity from which we derive that bounded quantification preserves decidability.

Although linearity and its consequences do have the flavor of excluded middle, they

do have straightforward constructive proofs.

Fact 14.3.1 (Linearity) (x ≤ y)+ (y < x).

Proof By induction on x with y quantified in the inductive hypothesis, followed by

case analysis on y in the successor case. In the successor-successor case, the claim

follows with the shift law from the inductive hypothesis. �

Corollary 14.3.2 (Contraposition) ¬(x < y)→ y ≤ x.

Corollary 14.3.3 (Equality by Contradiction) ¬(x < y)→ ¬(y < x)→ x = y .

Proof Follows by contraposition and antisymmetry. �

Fact 14.3.4 x ≤ y a (x < y)+ (x = y).
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Proof Direction⇐ is straightforward. For⇒ we assume x ≤ y . By linearity we have

either y ≤ x or x < y . If y ≤ x, antisymmetry gives us x = y . �

Fact 14.3.5 Bounded quantification preserves decidability:

1. (∀x.D(px))→D(∀x. x < k→ px).
2. (∀x.D(px))→D(∃x. x < k→ px).

Proof By induction on k and Fact 14.3.4. �

Exercise 14.3.6 We define divisibility and primality as follows:

k | x := k > 0∧ ∃n. x = n · k
primex := x ≥ 2∧∀k. k | x → k = 1∨ k = x

Prove that both predicates are decidable. Hint: First prove

x > 0→ x = n · k→ n ≤ x
x > 0→ k | x → k ≤ x

and then exploit that bounded quantification preserves decidability.

14.4 Truncating Subtraction

There is a strong connection between order and truncating subtraction.

Fact 14.4.1 x − (x +y) = 0.

Proof By induction on x. �

Fact 14.4.2 x ≤ y ↔ x −y = 0.

Proof Direction → follows with Fact 14.4.1. Direction ← follows by induction on x
with y quantified. �

Corollary 14.4.3 x ≤ y is decidable.

Fact 14.4.4

1. (x +y)− x = y
2. x < y → y − Sx < y

3. x ≤ y → x + (y − x) = y

Proof The first claim follows by induction on x. The second and third claim follow

with the first claim. �
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Exercise 14.4.5 Prove D (x ≤ y). Give two proofs, one using Fact 14.4.2 and one

not using subtraction.

Exercise 14.4.6 Define a boolean decider for x ≤ y and prove its correctness.

Exercise 14.4.7 Prove that equality of numbers is decidable using antisymmetry

and decidability of x ≤ y .

Exercise 14.4.8 Define a witness operator x ≤ y → Σk. x + k = y .

14.5 Complete Induction and Size Induction

Complete induction says that when we prove px for a number x we may assume

py for every number y < x. This strengthens structural induction which give us p
only for the predecessor of x. It turns out that complete induction can be obtained

from structural induction with a straightforward proof.

Fact 14.5.1 (Complete Induction)

∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x.px.

Proof Assume H : ∀x. (∀y. y < x → py) → px. By H it suffices to prove

∀y. y < x → py , which we do by induction on x. The base case is trivial. For

the successor case we have IH : ∀y. y < x → py and H1 : y < Sx and need to

show py . With H we get H2 : z < y and need to show pz. By IH it suffices to show

z < x. Follows from H1 and H2 with transitivity and shift. �

We will see soon that the computational variant of complete induction we have

shown provides for the definition of functions that cannot be naturally defined by

structural recursion. We speak of a computational variant of complete induction

since the target type function is not restricted to propositions.

There is a useful generalisation of complete induction that applies to any type

with a size function.

Fact 14.5.2 (Size Induction)

∀XT fX→N pX→T. (∀x. (∀y. fy < fx → py)→ px)→ ∀x.px.

Proof Similar to the proof of Fact 14.5.1. �

Exercise 14.5.3 Obtain complete induction as an instance of size induction.
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14.6 Division Theorem

Given two numbers x and y , there exist unique numbers a and b ≤ y such that

x = a · Sy + b. One speaks of the integer quotient and the remainder of x and y .

We will define functions (often called div and mod in programming languages) that

for x and y yield a and b. The idea is to subtract Sy from x as often as is possible

without truncation. Then the number of subtractions is a and the remaining num-

ber is b. Note that we consider x = a · Sy +b rather than x = a ·y +b to avoid the

side condition y > 0.

Fact 14.6.1 (Uniqueness)

If a · Sy + b = a′ · Sy + b′ and b,b′ ≤ y , then a = a′ and b = b′.

Proof By induction on a with a′ quantified in the inductive hypothesis, followed in

both cases by case analysis on a′. The case a = a′ = 0 is trivial. The cases where

a and a′ are not both 0 or successors are contradictory since ¬(Sy + k ≤ y). The

case where a and a′ are both successors follows from the inductive hypothesis. �

Fact 14.6.2 (Existence) ∀xy Σab. x = a · Sy + b ∧ b ≤ y .

Proof We fix y and prove the claim by complete induction on x and case analysis

on (x ≤ y)+ (y < x). If x ≤ y , then a = 0 and b = x satisfy the claim. Otherwise,

we have y < x. Thus x − Sy < x by Fact 14.4.4 The inductive hypothesis gives

us a and b ≤ y such that x − Sy = a · Sy + b. Using Fact 14.4.4, we have x =
Sy + (x − Sy) = Sy + a · Sy + b = Sa · Sy + b. The claim follows.

Note that the proof works for Σ since complete induction and case analysis with

(x ≤ y)+ (y < x) are computational. �

Corollary 14.6.3 There are functions D,M : N→ N→ N such that

x = Dxy · Sy +Mxy and Mxy ≤ y

for all numbers x and y .

Proof Let F be the function provided by Fact 14.6.2. Then Dxy := π1(Fxy) and

Mxy := π1(π2(Fxy)) are functions as required. �

Exercise 14.6.4 Prove S(2 ·x) ≠ 2 ·y . Make sure you know the proof idea for each

of the facts in the following row:

Sx ≠ 0 Sx ≠ x S(2 · x) ≠ 2 ·y S(x · S(Sk)) ≠ y · S(Sk)

Exercise 14.6.5 Recall divisibility k | x as defined in Exercise 14.3.6.
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14.6 Division Theorem

1. Use the division theorem to show that k | x is decidable.

2. Show Sk | x ↔ Mxk = 0 for a modulo function M .

Exercise 14.6.6 Let evenn := ∃k. n = k · 2. Prove the following:

a) D (evenn).

b) evenn → ¬even (Sn).

c) ¬evenn → even (Sn).

Exercise 14.6.7 Let D and M be functions N→ N→ N such that

x = Dxy · Sy +Mxy and Mxy ≤ y

for all numbers x and y . Prove the following facts providing for the recursive

computation of D and M .

a) D and M are unique up to functional extensionality.

b) x ≤ y → Dxy = 0∧Mxy = x.

c) y < x → Dxy = S(D(x − Sy)y)∧Mxy = M(x − Sy)y .

Hint: In each case use Fact 14.6.1.

Exercise 14.6.8 It is possible to define D and M with structural recursion on num-

bers where the recursion is on an extra argument z such that x < z. Here are

equational definitions of the functions:

D : N→ N→ N→ N

Dxy0 := 0

Dxy(Sz) := 0 if x ≤ y
Dxy(Sz) := S(D(x − Sy)yz) if x > y

M : N→ N→ N→ N

Mxy0 := 0

Mxy(Sz) := x if x ≤ y
Mxy(Sz) := M(x − Sy)yz if x > y

a) Give computational definitions for D and M .

b) Prove x < z → x = Dxyz · Sy +Mxyz.

c) Prove x = Dxy(Sx) · Sy +Mxy(Sx).
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14.7 Bounded Mu Operator

A bounded µ-operator is a function (N → B) → N → N that for a test fN→B and an

upper bound nN yields the first number k ≤ n satisfying f . If no such number

exists, the operator returns the upper bound n.

Defining a bounded µ-operator with structural recursion is interesting. Since

structural recursion provides descending recursion, performing a linear search k =
0,1,2, . . . until either fk = T or k = n as in the informal specification is not directly

possible. However, with structural recursion on the upper bound n, we can do the

following: If n = 0, we return 0; if n = Sn′, we check f(µfn′). If we have T, we

return µfn′, otherwise we return Sn′. Following this outline, we define a bounded

µ-operator as follows:

µ : (N→ B)→ N→ N

µ f 0 := 0

µ f (Sn) := let k = µ fn in if fk then k else Sn

We now have an operational specification for a bounded µ-operator. If we want to

prove properties about µ, it is useful to have a more explicit declarative specification

for µ.

Fact 14.7.1 if f(µfn) then µfn ≤ n∧∀k < µfn. fk = F

else µfn = n ∧ ∀k ≤ n. fk = F

Proof By induction on n. For the base case we, do a case analysis on f0. For the

successor case, we do a case analysis on f(µfn), followed by a case analysis on

f(Sn) in the negative case. In the negative negative case, the proof closes with a

case analysis k = Sn∨ k ≤ n. �

Fact 14.7.1 and its proof deserve discussion. Already the formulation of the

fact with a boolean conditional is uncommon from a traditional mathematical per-

spective. The formulation with the conditional is convenient in our computational

setting since once we do case analysis on f(µfn) only the relevant branch remains.

Also note that the given proof outline just gives the strategy, the actual verification

is left to the reader. The actual verification can be done with Coq or on paper, where

doing the verification on paper requires some writing. Verifying and understanding

the proof with Coq takes less time.

Figure 14.2 shows 3 possible specifications of a bounded µ-operator.

Fact 14.7.2 The three specifications of bounded µ-operators in Figure 14.2 are

equivalent and unique up to functional extensionality.
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14.7 Bounded Mu Operator

Recursive Specification

µf0 = 0

f(µfn) = T→ µf(Sn) = µfn
f(µfn) = F→ µf(Sn) = Sn

Explicit Specification

f(µfn) = T→ µfn ≤ n∧∀k. k < µfn→ fk = F

f(µfn) = F→ µfn = n∧∀k. k ≤ n→ fk = F

Liberal Specification

µfn ≤ n
k < µfn→ fk = F

µfn < n→ f(µfn) = T

Figure 14.2: Three equivalent specifications of bounded µ-operators

Proof The uniqueness of the recursive specification follows easily by induction

on n. Note that all three specifications are unique if they are equivalent.

That the recursive specification entails the explicit specification follows with the

proof of Fact 14.7.1. Proving that the explicit specification entails the three condi-

tions of the liberal specification is straightforward.

It remains to show that the liberal specification entails the recursive specifica-

tion. Proving the first condition of the recursive specification is straightforward.

The second condition follows by contradiction. We assume f(µfn) = T and show

that both µf(Sn) < µfn and µfn < µf(Sn) are contradictory, as is justified by

Corollary 14.3.3.

To prove the third condition of the recursive specification, we first note that the

liberal specification gives us

H : ∀n. ¬µfn < n→ µfn = n

by antisymmetry, the first liberal condition, and contraposition. We now assume

H1 : f(µfn) = F. By H we asume H2 : µf(Sn) < Sn and derive a contradiction.

By the third liberal condition we have H3 : f(µf(Sn)) = T. By H, the third liberal

condition, and H1 we have H4 : µfn = n. Now we close the proof by case analysis

on µf(Sn) = n ∨ µf(Sn) < n. In the first case the contradiction follows with H1,
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H3, and H4. In the second case the contradiction follows with H4, the second liberal

precondition, and H3. �

The final part of the proof is unpleasantly tricky. Doing it with a proof assistant

saves time and increases confidence. The trickiness seems to come from reasoning

by contradiction (justified by Corollaries 14.3.2 and 14.3.3).

Exercise 14.7.3 (Least Solutions) We define least solutions of tests as follows:

leastf n := fn = T∧∀k. k < n→ fk = F

a) Prove that a test has at most one least solution.

b) Prove that every satisfiable test has a least solution.

c) Define a function ∀f . tsatf → sig (leastf) that yields the least solution of a

satisfiable test.

Exercise 14.7.4 Show that the specifications in Figure 14.2 are equivalent and

unique up to functional extensionality.

Exercise 14.7.5 (Optimized Bounded Mu Operator) Our recursive definition of the

boundedµ-operator is such that µfn always tests f exactly n-times. It is possible

to write a bounded µ-operator µ′fnk with an extra argument k such that µ′fn0 =
µfn and µ′fn0 tests f only as often as necessary. The trick is to increment k with

each recursion step. Define and verify such an optimized bounded µ-operator.

14.8 Recursive Specifications of Functions

The definition of the bounded µ-operator was the first time we defined a function

with a boolean conditional. We may write the structurally recursive specification of

the bounded µ-operator as follows:

µf0 = 0

µf(Sn) = µfn if f(µfn) = T

= Sn if f(µfn) = F

From this specification a computational definition of µ can be derived automatically.

The existence proof for the division theorem implicitly constructs functions D
and M using the complete induction operator. One can show that the functions

satisfy the following recursive specifications:

Mxy =

x if x ≤ y
M(x − Sy)y if x > y

Dxy =

0 if x ≤ y
S(D(x − Sy)y) if x > y
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The specifications are recursive but not structurally recursive. Coq’s equations

package can automatically derive a definition of the functions D and M from the

above specifications.

Exercise 14.8.1 We consider two specifications of two functions D,M : N → N → N.

The liberal specification is

Mxy ≤ y
x = Dxy · Sy +Mxy

The recursive specification is

Mxy =

x if x ≤ y
M(x − Sy)y if x > y

Dxy =

0 if x ≤ y
S(D(x − Sy)y) if x > y

Show that the two specifications are equivalent and unique up to functional exten-

sionality. Use results we have shown before.
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15 Indexed Inductive Predicates

Inductive predicates are defined through systems of proof constructors. We have

seen basic examples in Chapter 3 on propositions as types and an advanced example

with guarded recursion in Chapter 12 on witness operators. We now explore a

degree of freedom in choosing the proof constructors for an inductive predicate

we have not seen before. This degree of freedom makes it possible to instantiate

arguments of the inductive predicate in the target type of proof constructors. If this

feature is used, we speak of index arguments and of indexed inductive predicates.

Indexed inductive predicates furnish Coq’s type theory with expressivity essential

for some important applications.

We study a series of example predicates developing the accompanying elimi-

nation techniques. This way we get familiar with the parameter-index distinction

and a new type-checking device for defining equations instantiating index variables.

A prominent example is the inductive definition of propositional equality that is

adopted by Coq.

We assume familiarity with the elimination techniques for inductive data types

introduced in Chapter 6. Familiarity with the recursive transfer predicate from

Chapter 12 will also be helpful but is not assumed.

Working with indexed inductive predicates requires a couple of new type-

theoretic techniques, so working yourself through enough exercises is essential.

Sections 15.9 and 15.10 address advanced topics and may be skipped on first

reading.

15.1 Zero

Our first indexed inductive predicate is

zero : N→ P

Z : zero 0

The single proof constructor Z provides a canonical proof for zero 0. Note that the

constructor Z instantiates the argument of the target predicate zero with 0. We

speak of an instantiating proof constructor.

Arguments of an inductive predicate that are instantiated by a proof constructor

are called indices to distinguish them from arguments that are not instantiated.
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Arguments of an inductive predicate that are not instantiated by a proof constructor

are called parameters. So far we have only seen inductive predicates where all

arguments are parameters. Inductive predicates with index arguments are called

indexed inductive predicates. Note that every argument of an inductive predicate

is either a parameter or and index, but not both.

Since zero has only a single proof constructor for 0, we should expect that we

can prove

zero x → x = 0

This proof can indeed be obtained with the eliminator1

Ezero : ∀pN→T. p0→ ∀x. zero x → px
Ezero pa _ Z := a : p0

If we look at the defining equation of the eliminator, we see that a new type checking

device is being used (we speak of indexed typing). In the left-hand side of the

defining equation the argument x for the index of the inductive predicate appears as

an underline. This indicates that the argument is determined by the index argument

of the target type of the proof constructor Z following as next argument. We thus

have the typings

Ezero pa _ Z : p 0 and Ezero pa0 Z : p 0

validating the right hand side of the defining equation.

We call the variable x in the type of Ezero an index variable since it is determined

as an index of an inductive predicate.

Following our convention for eliminators, we refer to Ezero as elimination lemma

when we use it as a declared constant. Nowhere in this chapter will we exploit that

Ezero is a defined function.

Exercise 15.1.1 Prove the following facts.

a) zero x ↔ x = 0

b) ¬zero(Sx)

c) ¬zero 1

d) D(zerox)

Exercise 15.1.2 Prove the following impredicative characterization for zero:

zero x ↔ ∀pN→P. p0→ px

Exercise 15.1.3 Convince yourself that Ezero(λx. if x then > else ⊥) I 5 is a proof

of ¬zero 5.
1 Note that zero is not affected by the elim restriction.
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15.2 Inductive Propositional Equality

Recall the discussion of propositional equality in Chapter 5. There we justified

the constants eq, Q, and R with the Leibniz scheme. We will now see an inductive

definition of the constants, which in fact is the definition used for propositional

equality in Coq.

Coq defines propositional equality as an indexed inductive predicate:

eq : ∀XT. X → X → P

Q : ∀XT xX . eqXxx

The inductive definition introduces the constants eq and Q as constructors. Both X
and x are accommodated as parameters. Following the convention that parameters

precede indices, we accommodate the third argument of eq as an index. Exploiting

the index argument of eq, we define an eliminator for eq: 2

Eeq : ∀XT xX pX→T. px → ∀y. eqXxy → py
Eeq Xxpa _ (Q _ _) := a : px

The flow of information during type checking the left-hand side of the defining

equation of Eeq is as follows: First the arguments of Q are determined as the pa-

rameters X and x, then the index variable y is determined as the index of the

proposition eqXxx of QXx, which is x.

Using the eliminator Eeq, we can now define the rewriting law:

R : ∀XT xX yX pX→P. eqXxy → px → py
:= λXxypha. EeqXxpayh

Exercise 15.2.1 Prove ∀XT xX yX . eqXxy ↔ ∀pX→P. px → py .

15.3 Even

The even numbers can be obtained by starting at 0 and by adding 2 as often as one

likes:

0, 2, 4, 6, . . .

The idea can be captured with an inductive predicate

even : N→ P

evenB : even 0

evenS : ∀n. even n→ even(S(Sn))

2 Note that eq is not affected by the elim restriction.
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with two proof constructors giving us proof terms for exactly the even numbers:

even 0 evenB

even 2 evenS 2 evenB

even 4 evenS 4 (evenS 2 evenB)

· · · · · ·

More generally, we can prove that every multiple of 2 is an even number:

even(k · 2) (15.1)

The proof is by induction on k. The base case is even 0. In the successor case

we have even(k · 2) as inductive hypothesis and need to show even(Sk · 2). Since

Sk · 2 ≈ S(S(k · 2)), the claim follows with the proof constructor evenS.

The proof constructors for even may be depicted as the proof rules

even 0

even n

even (S(Sn))

where the premises appear above the rule and the conclusion appears below the

rule.

To prove more results about even, we need an eliminator. Here is an eliminator

that suffices for our purposes:

Eeven : ∀pN→P. p0→ (∀n. even n→ pn→ p(S(Sn)))→ ∀n. even n→ pn
Eeven paf _ evenB := a : p0

Eeven paf _ (evenSn′h) := fn′h(Eeven pafn′h) : p(S(Sn′))

The eliminator is defined by recursive case analysis on the inductive argument,

which has type even n. Note that n acts as an index variable in the target type

of Eeven. The right hand sides of the defining equations receive the types given in

the right column. The types are obtained by instantiating the index variable n as

required by the proof constructors.

Note that the type of Eeven has a clause for each of the two constructors of even.

There is also a defining equation for each of the two constructors. The defining

equation for the recursive proof constructor evenS is recursive so that it can provide

the inductive hypothesis pn in the clause for evenS.

When we translate the equational definition of Eeven into a computational defini-

tion

Eeven : ∀pN→P. p0→ (∀n. even n→ pn→ p(S(Sn)))→ ∀n. even n→ pn
:= λpaf . fix Fnh. match h [evenB ⇒ a | evenSn′h′ ⇒ fn′h′(Fn′h′) ]
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15.3 Even

we see that the recursive abstraction must take two arguments so that F receives

the dependent function type ∀n. even n → pn necessary to type the recursive

application Fn′h′. Note that the recursion is on the derivation h : even n and not

on the number n.

When we use the eliminator Eeven as a declared constant, we refer to it as induc-

tion lemma.

Exercise 15.3.1 (Impredicative Characterization) Prove the equivalence

even x ↔ ∀pN→P. p0→ (∀x. px → p(S(Sx)))→ px

establishing an impredicative characterization of even. Note that there is a clause

for each of the two constructors mimicking the type of the constructor.

Exercise 15.3.2 Define a recursive eliminator

Ẽeven : ∀pN→P. p0→ (∀n. pn→ p(S(Sn)))→ ∀n. even n→ pn

omitting the assumption evenn in the clause for the constructor evenS. The elim-

inator Ẽeven suffices for all proofs for even we do in this chapter. Show that the

induction lemma Eeven can be obtained from a declared eliminator Ẽeven. We remark

that Coq automatically generates the eliminator Eeven shown before.

Exercise 15.3.3 Define a nonrecursive eliminator

Meven : ∀pN→P. p0→ (∀n. even n→ p(S(Sn)))→ ∀n. even n→ pn

omitting the inductive hypothesis. Show that an elimination lemma Meven can be

obtained from a declared eliminator Eeven.

Exercise 15.3.4 Consider the inductive predicate

T : N→ P

TB0 : T 0

TB1 : T 1

TS : ∀n. Tn→ T(Sn)→ T(S(Sn))

a) Show that T holds for all numbers. Hint: Generalize the claim so you get a strong

enough inductive hypothesis.

b) Derive the induction lemma for T. Notice that the clause for TS has two inductive

hypotheses.
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∀n. even n→ ∃ k. n = k · 2 apply Eeven, intros

1 ∃ k. 0 = k · 2 k, 0

0 = 0 · 2 comp. equality

2 IH: n = k · 2 ∃ k. S(Sn) = k · 2 k, Sk
S(Sn) = Sk · 2 rewrite IH

S(S(k · 2)) = Sk · 2 comp. equality

Figure 15.1: Proof diagram for an inductive proof with Eeven

15.4 Induction on Derivations

The recursive eliminator Eeven provides for inductive proofs known as inductions

on derivations in the literature. Derivations can be understood as canonical proof

terms for inductive propositions (e.g. even 36).

We explain the idea with a proof of the proposition

∀n. even n→ ∃ k. n = k · 2 (15.2)

The formal proof appears as a proof diagram in Figure 15.1. Informally, we say that

we prove (15.2) by induction on the derivation of even n. If even n is obtained with

evenB, we have n , 0 and must show ∃ k. 0 = k · 2, which follows with k , 0 and

computational equality. If even n is obtained with evenS, we have n , S(Sn) and

must show ∃ k. S(Sn) = k ·2. We also have the inductive hypothesis ∃ k. n = k ·2.

The inductive hypothesis gives us some k such that H : n = k · 2. To close the

proof, it suffices to show S(Sn) = Sk · 2, which follows by rewriting with H and

computational equality.

From our perspective, the formal proof laid out as a proof diagram in Figure 15.1

seems clearer than the informal proof talking about derivations. Historically, how-

ever, logicians did prove interesting facts about interesting inductive predicates

(called proof systems) using the induction on derivations model before the advent

of modern type theory.

We remark that Coq automatically derives the eliminator Eeven when the inductive

predicate even is defined. Once an induction on derivations for even is initiated with

the induction tactic, the eliminator is applied at the proof term level.

Soundness and Completeness

Fact 15.4.1 even n↔ ∃ k. n = k · 2.

Proof Follows with (15.2) and (15.1). �
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We may see the equivalence as a specification for the inductive predicate even.

We call the two directions of the equivalence soundness (→) and completeness (←).

Soundness says that everything we can prove to be even with the proof constructors

of even is in fact an even number, and completeness says that every even number

can in fact be derived with the proof constructors of even.

Informally, soundness results from the fact that the proof constructors for even

are sound, while completeness results from the fact that for every even number a

derivation can be constructed using the proof constructors for even.

Exercise 15.4.2 Define an inductive predicate odd and show that is satisfies the

specification odd x ↔ ∃k. x = S(k · 2).

Exercise 15.4.3 Give specifications for the inductive predicates zero and eq and

prove their corrrectness.

Exercise 15.4.4 Define an inductive proposition F :P with a single recursive proof

constructor L : F→ F and show F↔ ⊥.

Exercise 15.4.5 Prove D(evenx) using the division theorem.

15.5 Inversion Lemmas and Unfolding

Proving negative facts about even such as

¬even 1 (15.3)

¬even 3 (15.4)

¬even n→ ¬even (S(Sn)) (15.5)

¬even (S(n · 2)) (15.6)

takes insight and a technique called unfolding. Clearly, (15.3) and (15.4) both follow

from (15.6). Moreover, (15.6) follows by induction on n using (15.3) for the base

case and (15.5) for the successor case. Finally, (15.5) follows from the positive fact

even (S(Sn))→ even n (15.7)

We are thus left with (15.3) and (15.7), which we will refer to as inversion lemmas.

Note that (15.7) is in fact the converse of the proof constructor evenS.

For (15.3) it is best to prove the generalized fact

even k→ k = 1→ ⊥ (15.8)

which follows with the elimination lemma using 0 ≠ 1 and S(Sk) ≠ 1.
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For (15.7) it is again best to prove the generalized fact

even k→ k = S(Sn)→ even n (15.9)

which follows with the elimination lemma using 0 ≠ S(Sn) and

even k→ S(Sk) = S(Sn)→ even n

where the latter follows by injectivity of S.

Note that the generalisations (15.8) and (15.9) used for proving the inversion

lemmas (15.3) and (15.7) are obtained with an unfolding scheme from the inversion

lemmas: The non-variable term in the index position of the inductive predicate even

is unfolded using a fresh variablen k. The unfolding scheme is generally useful

when working with indexed inductive predicates. For instance, to prove ¬zero 1,

one may unfold 1 from the index position and prove zerox → x = 1 → ⊥ using the

eliminator for zero.

We remark that Coq’s tactic depelim proves both inversion lemmas in one step.3

15.6 Proceed with Care

We now prove some further properties of evenness based on the inductive defini-

tion. Mathematically, working with the multiplicative definition λn.∃k. n = 2 · k
may be more appropriate. Our motivation for working with the inductive definition

of evenness is curiosity and the demonstration of proof techniques for indexed

inductive predicates.

Fact 15.6.1 The successors of even numbers are not even.

That is, evenn→ even(Sn)→ ⊥.

Proof By induction of the derivation of evenn using the inversion lemmas (15.3)

and (15.7). �

Next we aim at a native proof of D (evenn). We proceed by induction on n. In

the successor case we need ¬evenn → even(Sn), which we have not shown so far.

Showing this fact needs a new idea. The claim follows with induction on n provided

we show ¬even(Sn)→ evenn in parallel.

Fact 15.6.2 (¬evenn→ even(Sn))∧ (¬even(Sn)→ evenn).

Proof By induction on n using (15.3) and (15.7). �

3 The tactic depelim comes with the Equations package supporting definition of functions with equa-
tions and well-founded recursion.
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Fact 15.6.3 D (evenn).

Proof By induction on n using Facts 15.6.1, 15.6.2, and (15.7). �

Exercise 15.6.4 Prove the following facts about even.

a) evenx → eveny → even(x +y)
b) evenx → even(x +y)→ eveny

15.7 Linear Order on Numbers

Coq defines the linear order on numbers inductively:

le : N→ N→ P

leB : ∀x. lexx
leS : ∀xy. lexy → lex(Sy)

Note that the first argument of le is a parameter and the second argument of le is

an index. The proof constructors for le may be depicted with the proof rules

lexx

lexy

lex(Sy)

Note that the proof rules express basics facts about the linear order on numbers.

Thus every proposition lexy that can be derived with the rules entails x ≤ y
(soundness). We can also prove that a proposition ley y can be derived with the

rules whenever x ≤ y (completeness).

Fact 15.7.1 lexy ↔ ∃k. k+ x = y .

Proof The direction → is by induction on the derivation of lexy . In the base case

we have y , x. In the successor case we have the inductive hypothesis ∃k. k+x = y
and need to show ∃k. k+ x = Sy , which is straightforward.

For the direction ← we show lex(k+ x) by induction on k. Straightforward. �

We have shown lexy ↔ ∃k. k+x = y rather than lexy ↔ ∃k. x+k = y so that

we don’t need the commutativity of +.

Exercise 15.7.2 Define an eliminator for le that suffices for the induction used for

the direction → of Fact 15.7.1.

Exercise 15.7.3 Prove the following inversion lemma:

∀xy. lexy → x = y ∨ ∃y ′. y = Sy ′ ∧ lexy ′.
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Exercise 15.7.4 Here is another inductive definition of the linear order on numbers:

le′ : N→ N→ P

le′B : ∀x. le′ 0x
le′S : ∀xy. le′ xy → le′ (Sx)(Sy)

Note that both arguments of le′ are indices.

a) Define an eliminator for le′.

b) Prove le′ xy ↔ ∃k. x + k = y .

c) Prove le′ xy ↔ lexy .

Exercise 15.7.5 It is possible to show the basic facts about linear order starting

from the inductive definition of le and not using the translation to addition provided

by Fact 15.7.1. Some of the direct proofs are tricky (i.e., strictness x < x) but

nevertheless provide interesting exercises for working with indexed inductive types.

Try the following:

1. 0 ≤ x
2. x ≤ 0→ x = 0

3. ¬(x < 0)

4. x ≤ y → Sx ≤ Sy (shift)

5. x ≤ y → y ≤ z → x ≤ z (transitivity)

6. x < y → y ≤ z → x < z (strict transitivity)

7. x ≤ y → y < z → x < z (strict transitivity)

8. x < y → x ≤ y
9. Sx ≤ Sy → x ≤ y
10. x < y → x ≠ y
11. ¬(x < x) (strictness)

12. x ≤ y → y ≤ x → x = y (antisymmetry)

13. x < y ∨ x = y ∨y < x
14. D(x ≤ y) (decidability)

Hints: Claim 1 follows by induction on x. Claim 2 follows by inversion on x ≤ 0.

Claim 3 follows from (2). Claim 4 follows by induction on x ≤ y . Claim 5 follows

by induction on y ≤ z. Claim 6 follows from (5). Claim 7 follows from (5) and (4).

Claim 8 follows from (5). Claim 9 follows by inversion of Sx ≤ Sy and (8). Claim 10

is tricky; follows by induction on y with x quantified using (3) and (9). Claim 11 fol-

lows from (10). Claim 12 follows by inversion of x ≤ y using (11) and (7). Claims 13

and 14 follow by induction on x with y quantified, case analysis of y , and (1), (3),

and (4).
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15.8 More Inductive Predicates

Given an informal or formal specification of a predicate, one often can come up

with an elegant system of proof constructors that is sound and complete for the

predicate and thus yields an inductive definition of the predicate. Coming up with

nice systems of proof constructors is a creative process nourished by experience.

Exercise 15.8.1 Give inductive definitions for the predicates specified below. Do

not use auxiliary functions like addition or multiplication and do not use auxiliary

predicates. Except for one case indexed inductive predicates are needed. Prove that

your inductive predicates satisfy their specifying equivalence. In each case try to

define the accompanying eliminator.

a) Dxy ↔ x = 2 ·y
b) Mxyz ↔ x = 3 ·y + z ∧ z ≤ 2

c) Upn ↔ ∃k. k ≥ n∧ pk (p : N→ P)

d) Lpn ↔ ∃k. k ≤ n∧ pk (p : N→ P)

15.9 Pureness of zero

We will now prove the proposition

∀hzero 0. h = Z (15.10)

Intuitively, this is an obvious fact. In Coq, there is indeed an automation tactic

(depelim) that derives h = Z from h : zero 0 in one step. Constructing a formal proof

of the fact does require new ideas, however. We need a stronger elimination lemma

modeling the dependency on the proof h, and we need to apply the elimination

lemma with a clever target predicate to avoid an unexpected typing conflict.

The full eliminator for zero is

Êzero : ∀p∀x. zerox→T. p0Z→ ∀xh.pxh
Êzero pa _ Z := a : p0Z

Note that the defining equation for Êzero is the same as for Ezero, so the difference

is just in the more general type of Êzero. This time the target predicate p takes both

the index xN and the proof hzerox as arguments.

We now prove (15.10) with the term

Êzero p (Q Z)0 : ∀hzero 0. h = Z

where p : ∀xN. zerox → P is a predicate satisfying

p0h ≈ (h = Z)
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A first try defining p as p := λxhzerox. h = Z fails since the equation h = Z doesn’t

type check. We fix the problem with a match on x:

p : ∀xN. zerox → P

p0h := (h = Z)

p(S_)h := >

The proof we have given uses three essential features of Coq’s type theory: De-

pendent function types (Êzero and p), the conversion rule, and indexed typing in the

defining equation of Êzero.

Exercise 15.9.1 Explain why ∀xN hzerox. h = Z does not type check.

Exercise 15.9.2 Define Ezero with Êzero.

Exercise 15.9.3 Write Êzero and p with matches. Check your translation with Coq

and notice that Coq elaborates the matches with return type functions.

Exercise 15.9.4 Prove pure(zerox).

15.10 Axiom K

Axiom K is the proposition

K := ∀XT xX peqXxx→P. p(QXx)→ ∀h.ph.

stating that QXx is the only the proof of eqXxx. It turns out that K is indepen-

dent in Coq’s type theory, which is surprising given a naive understanding of the

inductive definition of eq. Note that Axiom K is only meaningful for an inductive

definition of propositional equality.

It seems that a proof of K should be possible following the ideas of the proof of

∀hzero 0. h = Z

in Section 15.9. Following the proof for zero, we may try to prove

∀XT xX heqXxx. h = QXx

which is equivalent to K. Defining a full eliminator for eq is not difficult:

Êeq : ∀XT xX p∀y. eqXxy→T. px(QXx)→ ∀yh. pyh
ÊeqXxpa _(Q _ _) := a : px(QXx)
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The crux now is that we cannot find a predicate p and a proof a such that

Êeq Xxpax : ∀heqXxx. h = QXx

type checks. The difference with zero is that 0 is a constructor that can be matched

on while x is abstract and cannot be matched on.

Exercise 15.10.1 Prove that K is equivalent to ∀XT xX heqXxx. h = QXx.

Exercise 15.10.2 Prove that PI implies K. See Section 9.3 for the definition of PI.

Exercise 15.10.3 Define Eeq with Êeq.

Exercise 15.10.4 Define Eeq and Êeq with matches. Check your translations with

Coq. Note that Coq elaborates the matches with appropriate return type functions.

15.11 Summary

We have defined inductive predicates satisfying the following specifications:

zerox ↔ x = 0

eqXxy ↔ ∀pX→P. px → py
evenn ↔ ∃k. x = 2 · k
lexy ↔ ∃k. x + k = y

In each case we used proof constructors whose target type instantiates arguments

of the inductive predicate. If such an instantiation takes place, we speak of index ar-

guments and of indexed inductive predicates. In each case we proved the specifying

equivalence. Proving the direction from right to left (known as completeness) was

routine in each case. For the directions from left to right (known as soundness) the

eliminators for the inductive predicates were needed. The types of the eliminators

have a special form reflecting the parameter-index distinction.

When working with inductive predicates we want to rely on intuitions, given that

the formal details are often involved. Working with inductive predicates in Coq

profits much from automation, in particular, the automatic derivation of elimina-

tors, the induction tactic, and the dependent elimination tactic depelim.

There are important applications of indexed inductive predicates, including

proof systems, operational semantics, type systems, and logic programming. As-

suming a reader not familiar with these applications, we have discussed the new

technical issues with example predicates that easily could be defined otherwise.

The exception is inductive equality, where the inductive definition adds important

qualities we will explore in a later chapter.
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16 Lists

We study the inductive type for lists providing a recursive representation for finite

sequences over a base type. Besides numbers and pairs, lists are the most important

data type in constructive type theory. Lists have much in common with numbers

since for both data structures recursion and induction are linear. Lists also have

much in common with finite sets since they have a notion of membership. In fact,

our focus will be on the membership relation for lists.

We will see elegant indexed inductive predicates for membership and disjoint-

ness of lists, and also for repeating and non-repeating lists.

We will all see how option types can be used to obtain a total subscript function

that yields for a list and a number the element at the corresponding position.

16.1 Inductive Definition

A list represents a finite sequence [x1 ; . . . ; xn] of values. Formally, lists are ob-

tained with two constructors nil and cons:

[] , nil

[x] , cons x nil

[x ;y] , cons x (cons y nil)
[x ;y ;z] , cons x (cons y (cons z nil))

The constructor nil provides the empty list. The constructor cons yields for a

value x and a list [x1 ; . . . ; xn] the list [x ;x1 ; . . . ; xn]. Given a list cons x A, we

call x the head and A the tail of the list. Given a list [x1 ; . . . ; xn], we call n the

length of the list and x1, . . . , xn the elements of the list. An element may appear

more than once in a list. For instance, [2 ; 2 ; 3] is a list of length 3 that has 2 ele-

ments.

Formally, lists are accommodated with an inductive type definition introducing

three constructors:

L : T→ T

nil : ∀XT. L(X)
cons : ∀XT. X → L(X)→ L(X)
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Lists of type L(X) are called lists over X. The typing discipline enforces that all

elements of a list have the same type. For nil and cons, we don’t write the first

argument X and use the following notations:

[] := nil

x :: A := consxA

For cons, we admit parentheses as follows:

x :: y :: A � x :: (y :: A)

The inductive definition of lists provides for case analysis, recursion, and induc-

tion on lists, in a way that is quite similar to what we have seen for numbers. As

examples for recursive definitions we give a function

len : ∀XT. L(X)→ N

len [] := 0

len (x :: A) := S (len A)

that yields the length of a list (informally, len [x1; . . . ;xn] = n), and a function

++ : ∀X. L(X)→ L(X)→ L(X)
[]++B := B

(x :: A)++B := x :: (A++B)

that concatenates two lists, which informally may be written as

[x1; . . . ;xm]++[y1; . . . ;yn] = [x1; . . . ;xm;y1; . . . ;yn]

We also define an eliminator for lists

EL : ∀XT pL(X)→T. p []→ (∀xA. pA→ p(x :: A))→ ∀A.pA
ELXpaf [] := a

ELXpaf (x :: A) := fxA(ELXpafA)

providing for inductive proofs and the construction of recursive functions.

Fact 16.1.1

1. Disjointness: [] ≠ x :: A

2. Injectivity: x :: A = y :: B → x = y
3. Injectivity: x :: A = y :: B → A = B
4. Progress: x :: A ≠ A
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Proof The proofs are similar to the corresponding proofs for numbers. Claim (4)

corresponds to Sn ≠ n and follows by induction on A with x quantified. �

Fact 16.1.2 If X is a discrete type, then L(X) is a discrete type.

Proof Let X be discrete and A, B be lists over X. We show D(A = B) by induction

over A with B quantified followed by destructuring of B using disjointness and

injectivity from Fact 16.1.1. In case both lists are nonempty with heads x and y , an

additional case analysis on x = y is needed. �

Fact 16.1.3 (Associativity) A++(B++C) = (A++B)++C .

Proof By induction on A. �

Fact 16.1.4 (Length) len (A++B) = lenA+ lenB and lenA = 0↔ A = []

Proof By induction and case analysis on A. �

Exercise 16.1.5 Prove the above facts in detail (i.e., with Coq).

Exercise 16.1.6 Prove ∀XTAL(X). D(A = []).

Exercise 16.1.7 Prove ∀XTAL(X). (A = [])+ ΣxB. A = x :: B.

16.2 Membership

Informally, we may characterize membership for lists with the equivalence

x ∈ [x1 ; . . . ; xn] ↔ x = x1 ∨ · · · ∨ x = xn ∨⊥

Formally, we can define a membership predicate either inductively with the rules

x ∈ x :: A

x ∈ A
x ∈ y :: A

or recursively with the equations

(x ∈ []) = ⊥
(x ∈ y :: A) = (x = y ∨ x ∈ A)
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Coq chooses the recursive definition and thus we do the same.1 In full formal glory,

the two definitions look as follows:

mem : ∀XT. X → L(X)→ P

memB : ∀XxA. memXx(x :: A)

memC : ∀XxyA. memXxA→memXx(y :: A)

member : ∀XT. X → L(X)→ P

memberXx [] := ⊥
memberXx(y :: A) := (x = y ∨memberXxA)

Note that member is an indexed inductive predicate where the first two arguments

are parameters and the third argument is an index. We treat the type argument X
of both predicates as an implicit argument and write x ∈ A for memxA. We say

that x is an element of a list A if x ∈ A.

Fact 16.2.1 memxA ↔ memberxA.

Proof Direction → follows by induction on the derivation of memxA. Direction ←
follows by induction on A. �

Fact 16.2.2 Let A be a list over a discrete type X. Then D(x ∈ A).

Proof By induction on A. �

Recall that bounded quantification over numbers preserves decidability

(Fact 14.3.5). Similarly, quantification over the elements of a list preserves de-

cidability.

Fact 16.2.3 (Bounded Quantification) Let p : X → P and A : L(X). Then:

1. (∀x. D(px))→D(∀x. x ∈ A→ px).
2. (∀x. D(px))→D(∃x. x ∈ A∧ px).

Proof By induction on A. �

Fact 16.2.4 (Concatenation) x ∈ A++B ↔ x ∈ A∨ x ∈ B.

Proof By induction on A. �

Membership can also be characterized with existential quantification and con-

catenation. We speak of the explicit characterization of list membership.

1 That Coq defines membership recursively seems outdated given the current preference for induc-
tively defined predicates.
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Fact 16.2.5 (Explicit Characterization) x ∈ A ↔ ∃A1A2. A = A1++x :: A2.

Proof Direction → follows by induction on A. Direction ← follows by induction

on A1. �

Fact 16.2.6 (Factorization) For every discrete type X there is a function

∀xX AL(X). x ∈ A→ ΣA1A2. A = A1++x :: A2.

Proof By induction on A. The nil case is contradictory. In the cons case a case

analysis on D(x = y) closes the proof. �

Exercise 16.2.7 Define an eliminator for the inductive predicate member that suf-

fices for the inductive proof of direction → of Fact 16.2.1.

Exercise 16.2.8 (Pigeonhole) Prove that a list of numbers whose sum is greater

than the length of the list must contain a number that is at least 2:

sumA > lenA → ∃x. x ∈ A∧ x ≥ 2

First define the function sum.

16.3 Positions and Options

The positions of a list [x1 ; . . . ; xn] are the numbers 0, . . . , n − 1. More formally, a

number n is a position of a list A if n < lenA. We now want to define a subscript

function sub that given a list A and a number n yields the element at position n.

For instance, for [1; 2; 3] and 1 the function sub should yield 2. So far so good, but

what type can we give sub? Our first attempt is

∀X. L(X)→ N→ X

but this cannot work since it would imply that every type is inhabited (take the

empty list and the number 0). Our second attempt is

∀XTAL(X)nN. (n < lenA)→ X

and this does in fact work. However, we would like to define sub such that takes

only A and n as argument. The only way to reach this goal is to give sub a return

type O(X) that extends X with an extra element � that is returned in case n is not

a position of A:

∀X. L(X)→ N→ O(X)

One says that O(X) is the option type for X.
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Formally, we define option types inductively:

O : T→ T

� : ∀XT. O(X)
◦ : ∀XT. X → O(X)

We now define a subscript function by recursion on the given list and case analysis

on the given number:

sub : ∀X. L(X)→ N→ O(X)
subX [] _ := �

subX (x :: A)0 := ◦x

subX (x :: A)(Sn) := subAn

Fact 16.3.1 x ∈ A→ ∃n. subAn = ◦x.

Proof By induction onA. The base case is contradictory. Case analysis on x ∈ y :: A
in the cons case. If x = y , then n = 0. Otherwise subAn = ◦x by the inductive

hypothesis. The claim follows with n, Sn. �

Fact 16.3.2 subAn = ◦x → x ∈ A.

Proof By induction on A. The base case is contradictory. Case analysis on n in the

cons case. �

Fact 16.3.3 n < lenA → Σx. subAn = ◦x.

Proof By induction on A with n quantified. The base case is contradictory. Case

analysis on n in the cons case. �

Exercise 16.3.4 Prove a ≠ � a Σx. a = ◦x.

Exercise 16.3.5 Let A be a list over a discrete type. Prove x ∈ A→ Σn. subAn = ◦x.

Exercise 16.3.6 Prove (∀XT. L(X)→ N→ X)→ ⊥.

Exercise 16.3.7 Let X be a discrete type. Define a function pos : L(X) → X → O(N)
such that posAx ≠ � ↔ x ∈ A and posAx = ◦n → subAn = ◦x. Verify that your

function satisfies the specification. Is the specification unique (up to functional

extensionality)?
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16.4 List Inclusion and List Equivalence

We may see lists as representations of finite sets. List membership then corre-

sponds to set membership. The list representation of sets is not unique since the

same set may have different list representations. For instance, [1 ; 2], [2 ; 1], and

[1 ; 1 ; 2] are different lists all representing the set {1,2}. In contrast to sets, lists

are ordered structures providing for multiple occurrences of elements.

From the type-theoretic perspective, sets are informal objects that may or may

not have representations in type theory. This is in sharp contrast to set-based

mathematics where sets are taken as basic formal objects. The reason sets don’t

appear natively in Coq’s type theory is that Coq’s type theory is a computational

theory while sets in general are noncomputational.

We will take lists over X as type-theoretic representations of finite sets over X.

With this interpretation of lists in mind, we define list inclusion and list equiva-

lence as follows:

A ⊆ B := ∀x. x ∈ A→ x ∈ B
A ≡ B := A ⊆ B ∧ B ⊆ A

Note that two lists are equivalent if and only if they represent the same set.

Fact 16.4.1 List inclusion A ⊆ B is reflexive and transitive. List equivalence A ≡ B
is reflexive, symmetric, and transitive.

Fact 16.4.2 We have the following properties for membership, inclusion, and equiv-

alence of lists.

x ∉ [] x ∈ [y]↔ x = y
[] ⊆ A A ⊆ []→ A = []
x ∈ y :: A→ x ≠ y → x ∈ A x ∉ y :: A→ x ≠ y ∧ x ∉ A
A ⊆ B → x ∈ A→ x ∈ B A ≡ B → x ∈ A↔ x ∈ B
A ⊆ B → x :: A ⊆ x :: B A ≡ B → x :: A ≡ x :: B

A ⊆ B → A ⊆ x :: B x :: A ⊆ B ↔ x ∈ B ∧A ⊆ B
x :: A ⊆ x :: B → x ∉ A→ A ⊆ B x :: A ⊆ [y]↔ x = y ∧A ⊆ [y]
x :: A ≡ x :: x :: A x :: y :: A ≡ y :: x :: A

x ∈ A→ A ≡ x :: A

x ∈ A++B ↔ x ∈ A∨ x ∈ B
A ⊆ A′ → B ⊆ B′ → A++B ⊆ A′++B′ A++B ⊆ C ↔ A ⊆ C ∧ B ⊆ C

Proof Except for the membership fact for concatenation, which appeared as

Fact 16.2.4, all claims have straightforward proofs not using induction. �
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Fact 16.4.3 Let A and B be lists over a discrete type. ThenD(A ⊆ B) andD(A ≡ B).

Proof Holds since membership is decidable (Fact 16.2.2) and bounded quantifica-

tion preserves decidability (Fact 16.2.3). �

16.5 Setoid Rewriting

It is possible to rewrite a claim or an assumption in a proof goal with a propositional

equivalence P ↔ P ′ or a list equivalence A ≡ A′, provided the subterm P or A to

be rewritten occurs in a compatible position. This form of rewriting is known as

setoid rewriting. The following facts identify compatible positions by means of

compatibility laws.

Fact 16.5.1 (Compatibility laws for propositional equivalence)

Let P ↔ P ′ and Q ↔ Q′. Then:

P ∧Q ↔ P ′ ∧Q′ P ∨Q ↔ P ′ ∨Q′ (P → Q)↔ (P ′ → Q′)
¬P ↔ ¬P ′ (P ↔ Q)↔ (P ′ ↔ Q′)

Fact 16.5.2 (Compatibility laws for list equivalence)

Let A ≡ A′ and B ≡ B′. Then:

x ∈ A↔ x ∈ A′ A ⊆ B ↔ A′ ⊆ B′ A ≡ B ↔ A′ ≡ B′

A++B ≡ A′++B′ f@A ≡ f@A′ A |f ≡ A′ |f
x :: A ≡ x :: A′

Coq’s setoid rewriting facility makes it possible to use the rewriting tactic for

rewriting with equivalences, provided the necessary compatibility laws and equiv-

alence relations have been registered with the facility. The compatibility laws for

propositional equivalence are preregistered.

Exercise 16.5.3 Which of the compatibility laws are needed to justify rewriting the

claim ¬(x ∈ y :: (f@A)++B) with the equivalence A ≡ A′ ?

16.6 Repeating Lists

A list is repeating if it contains some element more than once. For instance, [1; 2; 1]
is repeating and [1; 2; 3] is non-repeating. Formally, we define repeating lists over

a base type X with the inductive predicate

rep : L(X)→ P

repB : ∀xA. x ∈ A→ rep(x :: A)

repS : ∀xA. repA→ rep(x :: A)
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Fact 16.6.1 (Explicit Characterization)

repA ↔ ∃xA1A2A3. A = A1++x :: A2++x :: A3.

Proof Direction → follows by induction on repA. Direction ← follows by induction

on A1 using Fact 16.2.5. �

We also define an inductive predicate for non-repeating lists over a base type X:

nrep : L(X)→ P

nrepB : nrep []

nrepS : ∀xA. x ∉ A→ nrepA→ nrep(x :: A)

We find the two-dimensional display of the proof constructors of rep and nrep

as proof rules helpful.

x ∈ A
rep(x :: A)

repA

rep(x :: A) nrep []

x ∉ A nrepA

nrep(x :: A)

Theorem 16.6.2 (Partition) Let A be a list over a discrete type. Then:

1. repA→ nrepA→ ⊥.

2. repA+ nrepA.

Proof The first claim follows by induction on repA. The second claim follows by

induction on A, where in the cons case with nrepA a case analysis on D(x ∈ A) is

needed (justified by Fact 16.2.2). Discreteness is only needed for the second claim.�

Corollary 16.6.3 Let A be a list over a discrete type. Then:

1. D(repA) and D(nrepA).

2. repA↔ ¬nrepA and nrepA↔ ¬repA.

Exercise 16.6.4 (Inversion Lemmas) For the proof of the first claim of Theo-

rem 16.6.2 one needs the inversion lemma nrep(x :: A) → x ∉ A ∧ nrepA. Prove

the inversion lemma by hand. In Coq, the inversion lemma can be applied on the

fly with the automation tactic depelim. Also prove the inversion lemmas rep [] → ⊥
and rep(x :: A)→ x ∈ A∨ repA.

Exercise 16.6.5 (Factorization) Let A be a list over a discrete type.

Prove repA ↔ ΣxA1A2A3. A = A1++x :: A2++x :: A3.

Exercise 16.6.6 (Partition) The proof of Corollary 16.6.3 is straightforward and fol-

lows a general scheme. Let P and Q be propositions such that P → Q → ⊥ and

P +Q. Prove decP and P ↔ ¬Q. Note that decQ and Q ↔ ¬P follow by symmetry.

Exercise 16.6.7 (Even and Odd) Define inductive predicates even and odd for num-

bers and show that the predicates partition the numbers: evenn→ oddn→ ⊥ and

evenn+ oddn.
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16.7 Cardinality

The cardinality of a list is the number of different elements in the list. For instance,

[1; 1; 1] has cardinality 1 and [1; 2; 3; 2] has cardinality 3. Intuitively, it is clear that

the cardinality of a list is bounded by its length, and that a list is non-repeating if

and only if its cardinality equals its length.

In this section we assume that lists are taken over a discrete type X. Discreteness

is needed so that we can define a function that yields the cardinality of a list.

We define the cardinality function for lists over a discrete type X as follows:

card : L(X)→ N

card [] := 0

card(x :: A) := if [x ∈ A\ then cardA else S(cardA)

Note that we write [x ∈ A\ for the application of the membership decider that is

provided by Fact 16.2.2.

Fact 16.7.1 cardA ≤ lenA.

Proof By induction on A and case analysis on D(x ∈ A) in the cons case. �

Fact 16.7.2 repA ↔ cardA < lenA.

Proof Direction → follows by induction on repA and case analysis on D(x ∈ A) in

both cases using Fact 16.7.1 for the base case. Direction ← follows by induction on

A and case analysis on D(x ∈ A) in the cons case. �

Note that direction ← of Fact 16.7.2 formulates a pigeonhole principle: If the

length of a list is greater than its cardinality, then some element must occur at

least twice in the list. One may see the positions of the list as the pigeons and the

elements of the list as the holes.

Fact 16.7.3 nrepA ↔ cardA = lenA.

Proof By Corollary 16.6.3 and Fact 16.7.2 it suffices to show the equivalence

¬(cardA < lenA) ↔ cardA = lenA

which follows by contraposition (Fact 14.3.2), Fact 16.7.1, and antisymmetry. �
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16.8 Extensionality of Cardinality and Element Removal

We will now prove that equivalent lists have the same cardinality. We refer to this

fact as extensionality of cardinality. While this fact is intuitively obvious, the proof

requires a new idea and takes some effort. First note that

A ≡ B → cardA = cardB

follows from the more general fact

A ⊆ B → cardA ≤ cardB

We will prove this fact by induction on A. The base case is trivial. For the cons case

we have to prove

x :: A ⊆ B → card(x :: A) ≤ cardB

given the inductive hypothesis. If x ∈ A, we have card(x :: A) = cardA and thus

the claim follows by the inductive hypothesis. Otherwise, x ∉ A (the base type is

discrete). The idea is now to use the inductive hypothesis for A ⊆ B \x, where B \x
is B with x removed. This yields

cardA ≤ card(B \ x) < cardB

which yields the claim. Note that the above uses the lemma

x ∈ B → card(B \ x) < cardB

which will be shown by induction on B.

We start by defining the function A \ x for element removal:

\ : L(X)→ X → L(X)
[] \ _ := []

(x :: A) \y := if x = y then A \y else x :: (A \y)

Fact 16.8.1 x ∈ A \y ↔ x ∈ A∧ x ≠ y .

Proof By induction on A. In the cons case a case analysis onD(z = y) is needed to

simplify (z :: A) \y . �

Fact 16.8.2 x ∉ A→ A \ x = A.

Proof By induction on A. �
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Lemma 16.8.3 x ∈ A → cardA = S(card(A \ x)).

Proof By induction on A. The base case is trivial. For the cons case we show

x ∈ (y :: A) → card(y :: A) = S(card((y :: A) \ x))

using the inductive hypothesis for A. We distinguish four cases.

1. x = y and y ∈ A. Claim follows with inductive hypothesis.

2. x = y and y ∉ A. Claim follows with Fact 16.8.2.

3. x ≠ y , x ∈ A, and y ∈ A. Claim follows with inductive hypothesis.

4. x ≠ y , x ∈ A, and y ∉ A. Claim follows with inductive hypothesis. �

Theorem 16.8.4 A ⊆ B → cardA ≤ cardB.

Proof By induction on A with B quantified using Lemma 16.8.3 in the cons case. �

Corollary 16.8.5 A ≡ B → cardA = cardB.

Exercise 16.8.6 Prove x ∈ A → A ≡ x :: (A \ x).

Exercise 16.8.7 Prove A ⊆ B → lenB < lenA → repA. Note that this is yet another

instance of the pigeonhole principle.

16.9 Map and Filter

We define the list operations map (f@A) and filter (A |f ) by recursion on lists:

@ : ∀XY. (X → Y)→ L(X)→ L(Y)
f@ , [] := []

f@(x :: A) := fx :: (f@A)

| : ∀X. L(X)→ (X → B)→ L(X)
[] |f := []

(x :: A) |f := if fx then x :: (A |f) else A |f

Fact 16.9.1 (Membership)

x ∈ f@A ↔ ∃a. a ∈ A∧ x = fa
x ∈ A |f ↔ x ∈ A∧ fx = T

Proof By induction on A. �
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Corollary 16.9.2 (Inclusion)

A ⊆ A′ → f@A ⊆ f@A′

A ⊆ A′ → A |f ⊆ A′ |f
(∀x. x ∈ A→ fx = T→ gx = T)→ A |f ⊆ A |g
A |f ⊆ A

Fact 16.9.3 (Length) len (f@A) = lenA and len (A |f) ≤ lenA.

Proof By induction on A. �

Fact 16.9.4 (Filter Equations)

(A++B) |f = (A |f)++(B |f) (∀x. x ∈ A→ fx = T)→ A |f = A
(A |f) |g = (A |g) |f (∀x. x ∈ A→ fx = gx)→ A |f = A |g
(A |f) |g = A |(λx.fx & gx)

Proof By induction on A. �

Exercise 16.9.5 (Pigeonhole) Let A be list over a discrete type. Prove

card(f@A) < cardA → ∃xy. x ∈ A∧y ∈ A∧ x ≠ y ∧ fx = fy .

16.10 Disjointness

Two lists are disjoint if they don’t have a common element. We write A ‖ B to say

that A and B are disjoint lists over the same base type. Formally, there are three

obvious characterizations of disjointness, where each of them provides for a formal

definition of disjointness. The explicit characterization

A ‖ B ↔ ¬∃x. x ∈ A∧ x ∈ B

rephrases the informal characterization. The inductive characterization

[] ‖ B
x ∉ B A ‖ B
x :: A ‖ B

implicitly realizes a recursion on A. Finally, the recursive characterization makes

the recursion on A explicit:

([] ‖ B) = >
(x :: A ‖ B) = (x ∉ b ∧A ‖ B)
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Fact 16.10.1 The three characterizations of disjointness are equivalent (explicit, in-

ductive, recursive).

Proof The direction from the inductive predicate to the explicit predicate follows by

induction on the inductive derivation. The converse direction follows by induction

on A. The equivalence between the inductive and the recursive predicate follows

with analogous inductions. �

Fact 16.10.2 Disjointness of lists over a discrete type is decidable.

Proof Follows with the explicit characterization, bounded quantification

(Fact 16.2.3), and decidability of membership (Fact 16.2.2). �

Fact 16.10.3 List disjointness has the following properties:

1. A ‖ B → B ‖ A
2. A ⊆ A′ → A′ ‖ B → A ‖ B
3. A ≡ A′ → A ‖ B ↔ A′ ‖ B

Proof Claim 1 and claim 2 are obvious from the explicit characterization. Claim 3

is a straightforward consequence of claim 2. �

Exercise 16.10.4 Do all of the above definitions in Coq. The inductive characteriza-

tion is best suited for the primary definition of disjointness. The equivalence with

the explicit characterization is important for most proofs.

There is a detail at the Coq level we have not mentioned so far. Mathematically,

the inductive disjointness predicate has two parameters X and B, and one index A.

In Coq, however, the parameters must precede the indices, which makes both A
and B into indices. The automatically derived eliminator thus models more depen-

dencies then necessary. It turns out that this doesn’t complicate proofs much. The

minimal eliminator can be defined with the automatically derived eliminator. How-

ever, using the minimal eliminator in practice doesn’t pay since it cannot be handled

by Coq’s induction tactic.

It one wants to work with a minimal eliminator in Coq, it is best to define the

inductive disjointness predicate using recursion on the second list argument B.
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We formalize and study basic proof systems for propositional logic in Coq’s type

theory. Our main system is an intuitinistic ND system for which we show that

it cannot prove double negation using a Heyting interpretation. We contrast the

intuitinistic system with a classical variant that is sound for boolean semantics. We

prove Glivenko’s theorem (classical provability reduces to intuitinistic provability)

and a sandwich theorem for abstract entailment predicates. There is a follow-up

chapter proving completeness and decidability of classical ND using the tableau

method.

17.1 Intuitionistic ND

We consider formulas as follows:

s, t,u := x | ⊥ | s → t | s ∧ t | s ∨ t (x : N)

Formally, we accommodate formulas with an inductive type For representing each

syntactic form with a value constructor. We use the notation ¬s := s → ⊥.

We define an inductive predicate ` : L(For) → For → P called intuitionistic ND

as follows:

s ∈ A
A ` s

A ` ⊥
A ` s

A, s ` t
A ` s → t

A ` s → t A ` s
A ` t

A ` s A ` t
A ` s ∧ t

A ` s ∧ t A, s, t ` u
A ` u

A ` s
A ` s ∨ t

A ` t
A ` s ∨ t

A ` s ∨ t A, s ` u A, t ` u
A ` u

Note the notation A, s := s :: A for lists of formulas. We will write ` s for [] ` s. The

symbol ` is pronounced “turnstile”.

A proposition A ` s is like a goal in Coq. Given a proposition A ` s, we call A the

context and s the claim. It turns out that intuitionistic ND can prove A ` s if and

only if Coq can prove the goal (A, s) where variables in formulas are accommodated

as propositional variables in Coq.
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The rules with a logical constant (i.e., ⊥, →, ∧, ∨) in the conclusion are called

introduction rules, and the rules with a logical constant in the leftmost premise

are called elimination rules. The first rule in the above listing is called assumption

rule. Note that every rule but the assumption rule is either an introduction or an

elimination rule for a particular logical constant. Note that there is no introduction

rule for ⊥, and that there are two introduction rules for ∨. The elimination rule

for ⊥ is also called explosion rule.

Fact 17.1.1 s ` ¬¬s and ¬¬⊥ ` ⊥.

Fact 17.1.2 (Cut) A ` s → A, s ` t → A ` t.

Proof Follows with the two implication rules. �

Fact 17.1.3 (Weakening) A ` s → A ⊆ B → B ` s.

Proof By induction on A ` s with B quantified. �

Fact 17.1.4 (Implication) A, s ` t ↔ A ` (s → t).

Proof Follows with weakening. �

We define a function A · s such that [] · s = s and (u :: A) · s = A · (u→ s).

Fact 17.1.5 (Shift) A ` s ↔ ` A · s.

Proof By induction on A using implication. �

A formula is ground if it contains no variable.

Fact 17.1.6 (Ground Completeness) Let s be ground. Then either ` s or ` ¬s.

Proof By induction on s. �

Fact 17.1.7 (Double Application) A ` (s1 → s2 → t) → A ` s1 → A ` s2 → A ` t.

Fact 17.1.8 (Double Negation)

1. ¬¬s ∈ A → A, s ` ⊥ → A ` ⊥.

2. A, s,¬t ` ⊥ → A ` ¬¬(s → t).

Proof Follows with implication, cut, and double application. �

Exercise 17.1.9 Prove the following propositions.

a) (¬s → ¬¬⊥) ` ¬¬s.
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b) (s → ¬¬t) ` ¬¬(s → t).
c) ¬¬(s → t), ¬¬s ` ¬¬t.
d) ` (¬¬¬s → ¬s)∧ (¬s → ¬¬¬s)

Exercise 17.1.10 (Ground Completeness)

a) Define a boolean test ground for groundness of formulas.

b) Declare a function ∀s. if ground s then (` s)+ (` ¬s) else >.

c) Prove ` s ∨¬s for all ground formulas s.

d) Prove A, s ` t → A,¬s ` t → A ` t for all ground formulas s.

17.2 Heyting Entailment

We show ¬¬x 6` x. The trick is to come up with a predicate A î s such that

(1) A ` s → A î s and (2) ¬¬x 6î x. We will obtain such a predicate by evaluating

formulas into a three-valued ordered type. We call the predicate A î s Heyting

entailment in honor of the inventor Arend Heyting (around 1930).

Let V be an inductive type consisting of three values 0, 1, 2 we call truth values.

We represent the linear order 0 < 1 < 2 on V as a boolean function a ≤ b. An

assignment is a function α : N→ V. We define evaluation of formulas as follows:

Eαx = αx

Eα⊥ = 0

Eα(s → t) = if Eαs ≤ Eαt then 2 else Eαt
Eα(s ∧ t) = if Eαs ≤ Eαt then Eαs else Eαt
Eα(s ∨ t) = if Eαs ≤ Eαt then Eαt else Eαs

Note that conjunction evaluates as minimum and disjunction evaluates as maxi-

mum. We extend evaluation to contexts such that A evaluates to the minimum of

the truth values the formulas in A evaluate to:

Eα([]) = 2

Eα(s :: A) = if Eαs ≤ EαA then Eαs else EαA

We now define Heyting entailment as A î s := ∀α. EαA ≤ Eαs = T.

Fact 17.2.1 Let αn := 1. Then Eα(¬¬x) = 2 and Eαx = 1.

Fact 17.2.2 (Soundness) A ` s → A î s.

Proof By induction on A ` s. �
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Theorem 17.2.3 (Double Negation) ¬¬x 6` x.

Proof Follows with Facts 17.2.1 and 17.2.2. �

Corollary 17.2.4 (Intuitionistic Consistency) 6` ⊥.

Proof Follows with the explosion rule. �

Exercise 17.2.5 Show 6` x and 6` x ∨¬x and 6` ((x → y)→ x)→ x.

17.3 Classical ND

Classical ND is obtained from intuitionistic ND by replacing the ex falso rule

A ` ⊥
A ` s

with the contradiction rule:

A,¬s ` ⊥
A ` s

Formally, we have a separate inductive predicate ˙̀ : L(For) → For → P for clas-

sic ND. Classical ND can prove double negation.

Fact 17.3.1 (Double Negation) ¬¬s ˙̀ s.

Fact 17.3.2 (Weakening) A ˙̀ s → A ⊆ B → B ˙̀ s.

Proof By induction on A ˙̀ s with B quantified. Same proof as for intuitionistic ND,

except that now the proof obligation for the contradiction rule must be checked:

(∀B. A,¬s ⊆ B → B ˙̀ ⊥) → A ⊆ B → B ˙̀ s. �

Fact 17.3.3 (Explosion) A ˙̀ ⊥ → A ˙̀ s.

Proof By contradiction and weakening. �

Fact 17.3.4 (Extension) A ` s → A ˙̀ s.

Proof By induction on A ` s using explosion. �

Fact 17.3.5 (Implication) A, s ˙̀ t ↔ A ˙̀(s → t).

Proof Follows with weakening. �
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Fact 17.3.6 (Cut) A ˙̀ s → A, s ˙̀ t → A ˙̀ t.

Proof Follows with implication. �

Fact 17.3.7 (Refutation Completeness) A ˙̀ s ↔ A,¬s ˙̀ ⊥.

Proof Direction → follows with weakening. Direction ← follows with contradic-

tion. �

While refutation completeness tells us that classical ND can represent all infor-

mation in the context, implication tells us that both intuitionistic and classical ND

can represent all information in the claim.

Exercise 17.3.8 Show ˙̀ s ∨¬s and ˙̀((s → t)→ s)→ s.

Exercise 17.3.9 Show that classical ND is not sound for Heyting entailment, that is,

¬(∀As. A ˙̀ s → A î s).

17.4 Glivenko’s Theorem

Lemma 17.4.1 A ˙̀ s → A ` ¬¬s.

Proof By induction on A ˙̀ s. This yields the following proof obligations.

1. s ∈ A → A ` ¬¬s.
2. A,¬s ` ¬¬⊥ → A ` ¬¬s.
3. A, s ` ¬¬t → A ` ¬¬(s → t).
4. A ` ¬¬(s → t) → A ` ¬¬s → A ` ¬¬t.
The obligations for conjunctions and disjunctions are omitted. The proofs are rou-

tine with Fact 17.1.8 and the other facts from Section 17.1. �

Theorem 17.4.2 A ˙̀ s ↔ A ` ¬¬s.

Proof Follows with Lemma 17.4.1 and Facts 17.3.4 and 17.3.1. �

Corollary 17.4.3 (Refutation Agreement) A ` ⊥ ↔ A ˙̀ ⊥.

Corollary 17.4.4 (Classical Consistency) ¬( ˙̀⊥).

Proof Follows from intuitionistic consistency (Corollary 17.2.4). �

Corollary 17.4.5 Classical ND is decidable if intuitionistic ND is decidable.

Exercise 17.4.6 Show ¬( ˙̀ x) and ¬( ˙̀ ¬x).

Exercise 17.4.7 Show that A ˙̀(s ∨ t) ↔ A ˙̀ s ∨A ˙̀ t does not hold.
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17 Natural Deduction

17.5 Boolean Entailment

Recall that classical ND is not sound for Heyting entailment (Exercise 17.3.9). We

now define boolean entailment A î̇ s using boolean assignments α : N → B. Clas-

sical ND will be sound for boolean entailment. We define boolean evaluation and

boolean entailment as follows:

Eαx = αx

Eα⊥ = F

Eα(s → t) = if Eαs then Eαt else T

Eα(s ∧ t) = if Eαs then Eαt else F

Eα(s ∨ t) = if Eαs then T else Eαt

Eα([]) = T

Eα(s :: A) = if Eαs then EαA else F

A î̇ s := ∀α. if EαA then Eαs = T else >

Fact 17.5.1 A î̇ s ↔ ∀α. (∀u ∈ A. Eαu = T)→ Eαs = T.

Fact 17.5.2 (Soundness) A ˙̀ s → A î̇ s.

Proof By induction on A ˙̀ s. �

Fact 17.5.3 (Refutation Completeness) A î̇ s ↔ A,¬s î̇⊥.

Exercise 17.5.4 Show ¬( ˙̀ ⊥), ¬( ˙̀ x), and ¬( ˙̀ ¬x) using boolean entailment

(rather than Heyting entailment and Glivenko).

Exercise 17.5.5 Show that ˙̀ s ∨ t ↔ ˙̀ s ∨ ˙̀ t does not hold for all t.

Exercise 17.5.6 Give a function f from formulas to formulas such that Eα(fst) =
Eα(s ∧ t) and all formulas fxy are obtained just with variables, falsity, and impli-

cation. Do the same for disjunction.

17.6 Substitution

A substitution is a function θ : N → For mapping every variable to a formula. We

define application of substitutions to formulas and lists of formulas such that every
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variable is replaced by the term provided by the substitution:

θ·x = θx

θ·⊥ = ⊥
θ·(s → t) = θ·s → θ·t
θ·(s ∧ t) = θ·s ∧ θ·t
θ·(s ∨ t) = θ·s ∨ θ·t

θ·[] = []

θ·(s :: A) = θ·s :: θ·A

We will write θs and θA for θ·s and θ·A.

Fact 17.6.1 s ∈ A→ θs ∈ θA.

Proof By induction on A. �

Fact 17.6.2 A ` s → θA ` θs and A ˙̀ s → θA ˙̀ θs.

Proof By induction on A ` s and A ˙̀ s using Fact 17.6.1. �

Lemma 17.6.3 Eα(θs) = E(λn.Eα(θn)) s holds both for Heyting and for boolean

evaluation.

Fact 17.6.4 A î s → θA î θs and A î̇ s → θA î̇θs.

Proof By induction on A using Lemma 17.6.3. �

17.7 Entailment Predicates

An entailment predicate is a predicate ð : L(For) → For → P satisfying the

properties listed in Figure 17.1. Note that the first four requirements don’t make

any assumptions on formulas; they are called structural requirements. Each of the

remaining requirements concerns a particular form of formulas: Variables, falsity,

implication, conjunction, and disjunction.

Fact 17.7.1 Intuitionistic ND (A ` s), classical ND (A ˙̀ s), Heyting entailment (A î
s), and boolean entailment (A î̇ s) are entailment predicates.

Proof Follows with the consistency and substitution results shown in the preceding

sections. �
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17 Natural Deduction

1. Assumption: s ∈ A→ A ð s.
2. Cut: A ð s → A, s ð t → A ð t.
3. Weakening: A ð s → A ⊆ B → B ð s.
4. Consistency: ∃s. 6ð s.
5. Substitutivity: A ð s → θA ð θs.
6. Explosion: A ð ⊥ → A ð s.
7. Implication: A ð (s → t) ↔ A, s ð t.
8. Conjunction: A ð (s ∧ t) ↔ A ð s ∧ A ð t.
9. Disjunction: A ð (s ∨ t) ↔ ∀u. A, s ð u → A, t ð u → A ð u.

Figure 17.1: Requirements for entailment predicates

We will show that every entailment predicate ð satisfies A ` s → A ð s and

A ð s → A î̇ s; that is, every entailment predicate is sandwiched between intuition-

istic ND at the bottom and boolean entailment at the top. Let ð be an entailment

predicate in the following.

Fact 17.7.2 (Modus Ponens) A ð (s → t) → A ð s → A ð t.

Proof By implication and cut. �

Fact 17.7.3 A ` s → A ð s. That is, intuitionistic ND is a least entailment predi-

cate.

Proof By induction on A ` s using modus ponens. �

Fact 17.7.4 ð s → ð ¬s → ⊥.

Proof Let ð s and ð ¬s. By Fact 17.7.2 we have ð ⊥. By consistency and explosion

we obtain a contradiction. �

Fact 17.7.5 (Shift) A ð s ↔ ð A · s.

Proof By induction on A using implication. �

We now come to the key lemma for showing that abstract entailment implies

boolean entailment. The lemma was conceived by Tobias Tebbi in 2015. We define a

conversion function that given a boolean assignment α : N→ B yields a substitution

as follows: α̂n := if αn then ¬⊥ else ⊥.

Lemma 17.7.6 (Tebbi) if Eαs then ð α̂s else ð ¬α̂s.
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Proof Induction on s using Fact 17.7.2 and assumption, weakening, explosion, and

implication. �

Note that we have formulated the lemma with a conditional. While this style of

formulation is uncommon in Mathematics it is compact and convenient in a type

theory with computational equality.

Lemma 17.7.7 ð s → î̇ s.

Proof Let ð s and α. We assume Eαs = F and derive a contradiction. By Tebbi’s

Lemma we have ð ¬α̂s. By substitutivity we obtain ð α̂s from the primary assump-

tion. Contradiction by Fact 17.7.4. �

Theorem 17.7.8 (Sandwich)

Let ð be an entailment predicate. Then A ` s → A ð s and A ð s → A î̇ s.

Proof Claim 1 is Fact 17.7.3. Claim 2 follows with Lemma 17.7.7 and Facts 17.7.5

and 17.7.1. �

Exercise 17.7.9 Let ð be an entailment predicate. Prove the following:

a) ∀s. ground s → (ð s)+ (ð ¬s).
b) ∀s. ground s → dec(ð s).

Exercise 17.7.10 Tebbi’s lemma provides for a particularly elegant proof of

Lemma 17.7.7. Verify that Lemma 17.7.7 can also be obtained from the facts

(1) ` α̂s ∨ ` ¬α̂s and (2) î̇ α̂s → Eαs = T using Facts 17.7.3 and 17.7.4.

17.8 Outlook

Completeness of classical ND One can show that classical ND agrees with

boolean entailment. The direction A î̇ s → A ˙̀ s we don’t have is called complete-

ness of classical ND.

Decidability of classical ND One can show that classical ND is decidable.

Decidability of intuitionistic ND One can show that intuitionistic ND is decidable.

This can be done with a method devised by Gentzen in the 1930s. First one shows

that intuitionistic ND is equivalent to a proof system called sequent calculus that

has the subformula property. Then one shows that sequent calculus is decidable,

which is feasible since it has the subformula property.
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Kripke structures and Heyting structures One can construct evaluation-based

entailment predicates that coincide with intuitionistic ND using either finite Heyting

structures or finite Kripke structures. In contrast to classical ND, where a single two-

valued boolean structure invalidates all classically unprovable formulas, one needs

either infinitely many finite Heyting structures or infinitely many finite Kripke struc-

tures to invalidate all intuitionistically unprovable formulas. Heyting structures are

usually presented as Heyting algebras and were invented by Arend Heyting around

1930. Kripke structures were invented by Saul Kripke in the late 1950’s.

Certifying Solver for intuitionistic ND One can construct a certifying solver for

intuitionistic ND using the tableau method. Given A and s, the solver yields either

a proof of A ` s or a finite Kripke structure satisfying A and dissatisfying s. From

the certifying solver one can obtain a decision function for intuitionistic ND. The

tableau method was developed starting in 1955 by Evert Beth, Raymond Smullyan,

and Melvin Fitting.

Intuitionistic Independence of logical constants Using boolean entailment, one

can show that falsity and implication can express conjunction and disjunction. On

the other hand, one can prove using Heyting structures that in intuitionistic ND the

logical constants are independent.

Exercise 17.8.1 Assume a function ∀A. (∃α. EαA = T) + (A ` ⊥) and show that

classical ND is complete and decidable.
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18 Boolean Satisfiability

We study satisfiability of boolean formulas using a DNF-based solver and a tableau

system. The solver translates boolean formulas to equivalent clausal DNFs and

thereby decides satisfiability. The tableau system provides a proof system for un-

satisfiability and bridges the gap between natural deduction and satisfiability. Based

on the tableau system one can prove completeness and decidability of propositional

natural deduction.

The development presented here works for any choice of boolean connectives,

except for the final step making the connection with natural deduction. The inde-

pendence from particular connectives is obtained by representing conjunctions and

disjunctions with lists and negations with signs.

The (formal) proofs of the development are instructive in that they showcast

the interplay between evaluation of expressions, nontrivial recursive functions (the

DNF solver), and inductive predicates (the tableau system). Of particular interest

is the completeness proof for the tableau system, which is obtained by functional

induction on the recursion structure of the DNF solver.

18.1 Boolean Operations

We will work with the boolean operations conjunction, disjunction, and negation,

which we define as follows:

T & b = b T | b = T ! T = F

F & b = F F | b = b ! F = T

With these definitions all boolean identities have straightforward proofs by boolean

case analysis and computation. Recall that boolean conjunction and disjunction are

commutative and associative.

The idea behind disjunctive normal form (DNF) is that conjunctions are below

disjunctions, and that negations are below conjunctions. Negations can be pushed

downwards with the negation laws

!(a & b) = !a | !b !(a | b) = !a & !b ! !a = a

and conjunctions can be pushed below disjunctions with the distribution law

a & (b | c) = (a & b) | (a & b)
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18 Boolean Satisfiability

We will also make use of the negation law

b ∧ !b = F

to eliminate conjunctions.

There are also the reflection laws

a & b = T ↔ a = T∧ b = T

a | b = T ↔ a = T∨ b = T

!a = T ↔ ¬(a = T)

which offer the possibility to replace boolean operations with logical connectives.

As it comes to proofs, this is usually a bad idea since one looses the computation

coming with the boolean operations. An exception is the reflection rule for conjunc-

tion, which offers the possibility to replace the argument terms of a conjunction

with T.

18.2 Boolean Formulas

We will consider the boolean formulas

s, t,u := x | ⊥ | s → t | s ∧ t | s ∨ t (x : N)

realized with an inductive data type For representing each syntactic form with a

value constructor. Variables x are represented as numbers.

Our development will work with any choice of boolean connectives for formulas.

We have made the unusual design decision to have boolean implication as an ex-

plicit connective. On the other hand, we have omitted truth > and negation ¬. We

accommodate truth and negation with the notations

> := ⊥ → ⊥ ¬s := s → ⊥

An assignment is a function α : N → B mapping every variable to a boolean.

We define the evaluation function for boolean formulas as shown in Figure 18.1.

Note that every function Eα translates boolean formulas (object level) to boolean

terms (meta level). Also note that implications are expressed with negation and

disjunction. We define the notation

α î s := Eαs = T

and say that α satisfies s, or that α solves s, or that α is a solution of s. We say

that a formula s is satisfiable and write sat s if s has a solution. Finally, we say that

two formulas are equivalent if they have the same solutions.
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Eαx := αx

Eα⊥ := F

Eα(s → t) := !Eαs | Eαt
Eα(s ∧ t) := Eαs & Eαt
Eα(s ∨ t) := Eαs | Eαt

Figure 18.1: Definition of the evaluation function E : (N→ B)→ For→ B

As it comes to proofs, it will be important to keep in mind that the notation α î s
abbreviates the boolean equation Eαs = T. Reasoning with boolean equations will

be the main workhorse in our proofs.

Exercise 18.2.1 Convince yourself that the predicate α î s is decidable.

Exercise 18.2.2 Verify a function translating formulas into equivalent formulas not

containing conjunctions and disjunctions.

Exercise 18.2.3 Verify the reflection laws

α î (s ∧ t) ↔ α î s ∧α î t
α î (s ∨ t) ↔ α î s ∨α î t

α î ¬s ↔ ¬(α î s)

18.3 Clausal DNFs

Informally, a DNF (disjunctive normal form) is a disjunction s1 ∨ · · · ∨ sn of solved

formulas si, where a solved formula is a conjunction of variables and negated vari-

ables where no variable appears both negated and unnegated. One can show that

every formula is equivalent to a DNF. There may be many different DNFs for a for-

mula. For instance, the DNFs x ∨ ¬x and y ∨ ¬y are equivalent since they are

satisfied by every assignment. On the other hand, we will arrange the exact DNF

format such that all unsatisfiable formulas have the same DNF, which may be seen

as the empty disjunction.

Formulas by themselves are not a good data structure for computing DNFs of

formulas. We will work with lists of signed formulas we call clauses:

S, T : SFor ::= s+ | s− signed formula

C,D : Cla := L(SFor) clause
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Clauses represent conjunctions. We define evaluation of signed formulas and

clauses as follows:

Eα(s+) := Eαs Eα[] := T

Eα(s−) := !Eαs Eα(S :: C) := EαS & EαC

Note that the empty clause represents truth. We also consider lists of clauses

∆ : L(Cla)

and interpret them disjunctively:

Eα[] := F

Eα(C :: ∆) := EαC | Eα∆

Satisfaction of signed formulas, clauses, and lists of clauses is defined analogously

to formulas, and so are the notations α î S, α î C , α î ∆, and sat C . Since

formulas, signed formulas, clauses, and lists of clauses all come with the notion

of satisfying assignments, we can speak about equivalence between these objects

although they belong to different types. For instance, s, s+, [s+], and [[s+]], are all

equivalent since they are satisfied by the same assignments.

A solved clause is a clause consisting of signed variables (i.e., x+ and x−) such

that no variable appears positively and negatively. Note that a solved clause C is

satisfied by every assignment that maps the positive variables in C to T and the

negative variables in C to F.

Fact 18.3.1 Solved clauses are satisfiable. More specifically, a solved clause C is

satisfied by the assignment λx. [x+ ∈ C\.

A clausal DNF is a list of solved clauses.

Corollary 18.3.2 Every nonempty clausal DNF is satisfiable.

Exercise 18.3.3 Prove Eα(C ++D) = EαC & EαD and Eα(∆++∆′) = Eα∆ | Eα∆′.

Exercise 18.3.4 Write a function that maps lists of clauses to equivalent formulas.

Exercise 18.3.5 Our formal proof of Fact 18.3.1 is unexpectedly tedious in that it

requires two inductive lemmas:

1. α î C ↔ ∀S ∈ C. α î S.

2. solved C → S ∈ C → ∃x. (S = x+ ∧ x− ∉ C)∨ (S = x− ∧ x+ ∉ C).
The formal development captures solved clauses with an inductive predicate. This

is convenient for most purposes but doesn’t provide for a convenient proof of

Fact 18.3.1. Can you do better?
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dnf C [] := [C]

dnf C (x+ :: D) := if [x− ∈ C\ then [] else dnf (x+ :: C) D

dnf C (x− :: D) := if [x+ ∈ C\ then [] else dnf (x− :: C) D

dnf C (⊥+ :: D) := []

dnf C (⊥− :: D) := dnf C D

dnf C ((s → t)+ :: D) := dnf C (s− :: D)++dnf C (t+ :: D)

dnf C ((s → t)− :: D) := dnf C (s+ :: t− :: D)

dnf C ((s ∧ t)+ :: D) := dnf C (s+ :: t+ :: D)

dnf C ((s ∧ t)− :: D) := dnf C (s− :: D)++dnf C (t− :: D)

dnf C ((s ∨ t)+ :: D) := dnf C (s+ :: D)++dnf C (t+ :: D)

dnf C ((s ∨ t)− :: D) := dnf C (s− :: t− :: D)

Figure 18.2: Definition of the DNF function dnf : Cla→ Cla→ L(Cla)

18.4 DNF Function

We now define a function dnf that for every clause yields an equivalent clausal DNF.

The function has the type

dnf : Cla→ Cla→ L(Cla)

and satisfies two correctness properties:

Eα(dnf C D) = EαC & EαD (18.1)

solved C → E ∈ dnf C D → solved E (18.2)

Thus dnf [] [s+] computes a clausal DNF for the formula s. The second argument

of dnf (the agenda) holds the signed formulas still to be processed, and the first

argument of dnf (the accumulator) collects the signed variables taken from the

agenda. The function dnf is recursive and processes the formulas on the agenda one

by one decreasing the size of the agenda with every recursion step. The equations

defining dnf are shown in Figure 18.2. Note that the defining equations are clear

from the two correctness properties, the boolean identities given in Section 18.1,

and the idea that the first formula on the agenda controls the recursion.

Theorem 18.4.1 dnf [] C is a clausal DNF equivalent to C .
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Proof The statement of the theorem follows from the two correctness properties

given above. Both correctness properties follow by induction on the recursion struc-

ture of dnf. There are 13 cases for each of the inductions where every case is

straightforward. �

Corollary 18.4.2 C is satisfiable if and only if dnf [] C is nonempty.

Corollary 18.4.3 Satisfiability of clauses and formulas is decidable.

Corollary 18.4.4 There is a solver ∀C. (Σα. α î C)+¬sat C .

Corollary 18.4.5 There is a solver ∀s. (Σα. α î s)+¬sat s.

Exercise 18.4.6 Convince yourself that the predicate S ∈ C is decidable.

Exercise 18.4.7 Write a size function for clauses such that every recursion step of

the DNF function decreases the size of the agenda.

Exercise 18.4.8 Rewrite the DNF function so that you obtain a boolean decider

D : Cla→ Cla→ B for satisfiability of clauses. Find suitable correctness properties

and verify the correctness of D.

18.5 Validity

A formula is valid if it is satisfied by all assignments. Validity reduces to unsatis-

fiability, and satisfiability reduces to non-validity. The latter fact follows with the

decidability of satisfiability.

Fact 18.5.1

1. A formula s is valid if and only if its negation is unsatisfiable.

2. A formula s is satisfiable if and only if its negation is not valid.

Proof Both directions of (1) and the left-to-right direction of (2) are routine. The

right-to-left direction of (2) follows by proof by contradiction, which is justified

since satisfiability of formulas is decidable (Corollary 18.4.3). �

Exercise 18.5.2 Declare a function ∀s. valid s+ (Σα. Eαs = F) that checks whether

a formula is valid and returns a counterexample in the negative case.
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tab (S :: C ++D)
tab (C ++S :: D) tab (x+ :: x− :: C) tab (⊥+ :: C)

tab (s− :: C) tab (t+ :: C)

tab ((s → t)+ :: C)

tab (s+ :: t− :: C)

tab ((s → t)− :: C)

tab (s+ :: t+ :: C)

tab ((s ∧ t)+ :: C)

tab (s− :: C) tab (t− :: C)

tab ((s ∧ t)− :: C)

tab (s+ :: C) tab (t+ :: C)

tab ((s ∨ t)+ :: C)

tab (s− :: t− :: C)

tab ((s ∨ t)− :: C)

Figure 18.3: Definition of tab : Cla→ P

18.6 Tableau Predicate

The DNF function can be reformulated into an inductive predicate that derives ex-

actly the unsatisfiable clauses. Because termination is no longer an issue, the accu-

mulator argument is not needed anymore. Instead we add a rule that moves signed

formulas in the agenda. Figure 18.3 shows the resulting inductive predicate tab. We

speak of a tableau predicate since tab formalizes a proof system that belongs to

the family of tableau systems. We call the rules defining tab tableau rules.

We refer to the first rule of the tableau predicate as move rule and to the second

rule as clash rule. Note the use of list concatenation in the move rule.

The tableau rules are best understood in backwards fashion (from the conclusion

to the premises). All but the first rule are decomposition rules simplifying the

clause to be derived. The second and third rule derive clauses that are obviously

unsatisfiable. The move rule is needed so that non-variable formulas can be moved

to the front of a clause as it is required by most of the other rules.

Fact 18.6.1 (Soundness) Clauses derivable with tab are unsatisfiable.

Proof tab C → α î C → ⊥ follows by induction on tab. �

Fact 18.6.2 (Weakening) The following rules hold for tab:

tab (C)

tab (S :: C)

Proof By induction on tab. �
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The move rule is strong enough to reorder clauses freely.

Fact 18.6.3 (Move Rules) The following rules hold for tab:

tab (revD++C ++E)
tab (C ++D++E)

tab (D++C ++E)
tab (C ++D++E)

tab (C ++S :: D)

tab (S :: C ++D)

We refer to the last rule as inverse move rule.

Proof The first rule follows by induction on tab. The second rule follows from the

first rule with C = [] and rev (revD) = D. The third rule follows from the second

rule with C = [S]. �

Lemma 18.6.4 dnf C D = []→ tab (D++C).

Proof By functional induction on dnf C D using the weakening and inverse move

rule. The weakening rule is needed for the deletion of ⊥− and the inverse move rule

is needed to account for the move of variables from the agenda to the accumulator.�

The proof of Lemma 18.6.4 demonstrates the power of functional induction.

With functional induction we can do induction on the recursion structure of dnf,

which is exactly what we need for constructing tableau derivations for unsatisfiable

clauses.

Theorem 18.6.5 The clauses derivable with tab are exactly the unsatisfiable

clauses.

Proof Follows with Fact 18.6.1, Corollary 18.4.2, and Lemma 18.6.4. �

Corollary 18.6.6 The tableau predicate is decidable.

We remark that the DNF function and the tableau predicate adapt to any choice

of boolean connectives. We just add or delete equations as needed. An extreme

case would be to not have variables. That one can choose the boolean connectives

freely is due to the use of clauses with signed formulas.

The tableau rules have the subformula property, that is, a derivation of a

clause C does only employ subformulas of formulas in C . That the tableau rules

satisfies the subformula property can be verified rule by rule.

Exercise 18.6.7 Prove tab (C ++S :: D++T :: E) ↔ tab (C ++T :: D++S :: E).

Exercise 18.6.8 Give an inductive predicate that derives exactly the satisfiable

clauses. Start with an inductive predicate deriving exactly the solved clauses.
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18.7 Refutation Predicates

An unsigned clause is a list of formulas. We will now consider a tableau predicate

for unsigned clauses that comes close to the refutation predicate associated with

natural deduction. For the tableau predicate we will show decidability and agree-

ment with unsatisfiability. Based on the results for the tableau predicate one can

prove decidability and completeness of classical natural deduction.

The switch to unsigned clauses requires negation and falsity, but as it comes to

the other connectives we are still free to choose what we want. Negation could be

accommodated as an additional connective, but formally we continue to represent

negation with implication and falsity.

We can turn a signed clause C into an unsigned clause by replacing positive

formulas s+ with s and negative formulas s− with negations ¬s. We can also turn

an unsigned clause into a signed clause by labeling every formula with the positive

sign. The two conversions do not change the boolean value of a clause for a given

assignment. Moreover, going from an unsigned clause to a signed clause and back

yields the initial clause. From the above it is clear that satisfiability of unsigned

clauses reduces to satisfiability of signed clauses and thus is decidable.

Formalizing the above ideas is straightforward. The letters A and B will range

over unsigned clauses. We define α î A and satisfiability of unsigned clauses analo-

gous to signed clauses. We use Ĉ to denote the unsigned version of a signed clause

and A+ to denote the signed version of an unsigned clause.

Fact 18.7.1 EαĈ = EαC , EαA+ = EαA, and Â+ = A.

Fact 18.7.2 (Decidability) Satisfiability of unsigned clauses is decidable.

Proof Follows with Corollary 18.4.3 and EαA+ = EαA. �

We call a predicate ρ on unsigned clauses a refutation predicate if it satisfies

the rules in Figure 18.4. Note that the rules are obtained from the tableau rules for

signed clauses by replacing positive formulas s+ with s and negative formulas s−

with negations ¬s.

Lemma 18.7.3 Let ρ be a refutation predicate. Then tab C → ρĈ .

Proof Straightforward by induction on tab C . �

Fact 18.7.4 (Completeness)

Every refutation predicate holds for all unsatisfiable unsigned clauses.

Proof Follows with Theorem 18.6.5 and Lemma 18.7.3. �
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ρ (s :: A++B)
ρ (A++ s :: B) ρ (x :: ¬x :: A) ρ (⊥ :: A)

ρ (¬s :: A) ρ (t :: A)

ρ ((s → t) :: A)

ρ (s :: ¬t :: A)

ρ (¬(s → t) :: A)

ρ (s :: t :: A)

ρ ((s ∧ t) :: A)

ρ (¬s :: A) ρ (¬t :: A)

ρ (¬(s ∧ t) :: A)

ρ (s :: A) ρ (t :: A)

ρ ((s ∨ t) :: A)

ρ (¬s :: ¬t :: A)

ρ (¬(s ∨ t) :: A)

Figure 18.4: Rules for refutation predicates ρ : L(For)→ P

We call a refutation predicate sound if it holds only for unsatisfiable unsigned

clauses (that is, ∀A. ρA→ ¬satA).

Fact 18.7.5 Every sound refutation predicate is decidable and holds exactly for un-

satisfiable unsigned clauses.

Proof Facts 18.7.4 and 18.7.2. �

Theorem 18.7.6 The minimal refutation predicate inductively defined with the

rules for refutation predicates derives exactly the unsatisfiable unsigned clauses.

Proof Follows with Fact 18.7.4 and a soundness lemma similar to Fact 18.6.1. �

Exercise 18.7.7 (Certifying Solver) Declare a function ∀A. (Σα. α î A)+¬satA.

Exercise 18.7.8 Show that boolean entailment

A î̇ s := ∀α. α î A → α î s

is decidable.

Exercise 18.7.9 Let A ˙̀ s be the inductive predicate for classical natural deduction.

Prove that A ˙̀ s is decidable and agrees with boolean entailment. Hint: Exploit

refutation completeness and show that A ˙̀ ⊥ is a refutation predicate.
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19 Well-founded Recursion

Type theory admits only total functions. That is, a function must yield a result

for every argument that is admitted by the type of the function. Consequently,

recursively defined functions must be restricted such that the recursion terminates

for every argument. Coq’s type theory imposes a particularly strong termination

requirement that requires recursive functions to be structurally recursive on a fixed

inductive argument.

It turns out that structural recursion is surprisingly expressive in a higher-order

type theory. In fact, it is fair to say that a recursively specified function can be

defined in Coq provided the recursion can be shown terminating in Coq. There is

a systematic method that yields a definition of a recursively specified function by

first defining an auxiliary function that recurses on an extra argument providing a

structural termination certificate. Termination certificates are obtained as deriva-

tions for special inductive predicates representing well-founded relations that are

known as accessibility predicates.

19.1 Accessibility Predicate for Numbers

We start with the accessibility predicate for numbers, which captures the well-

foundedness of the canonical order x < y for numbers. Well-foundedness means

that there are no infinite decreasing chains x0 > x1 > x2 > · · · . Thus a process

that periodically decreases a number must terminate. Using suggestive notation, we

can write the definition of the accessibility predicate for numbers as follows:

Acc (x : N) : P := [AccI 〈∀y. y < x → Accy〉]

According to this definition, a derivation AccI h of a proposition Accx comprises a

continuation function

h : ∀y. y < x → Accy

that for every number y and every proof H :y < x yields a derivation hyH of Accy
that is structurally smaller than the derivation AccI h. This means that structural

recursion on Accx can recurse on every y for which there is a proof of y < x.
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19 Well-founded Recursion

The types of the two constructors for the accessibility predicate are as follows:

Acc : N→ P

AccI : ∀x. (∀y. y < x → Accy)→ Accx

Note that the first argument x of AccI is a (nonuniform) parameter and the second

argument of AccI is a proof. Thus derivations of Acc are exempted from the elim

restriction.

We can now define functions ∀x. Accx → px that recurse on derivations of

Accx. Given the continuation function provided by a derivation of Accx, we can

have recursive calls for all y < x. Moreover, given a function α : ∀x. Accx and a

function g : ∀x. Accx → px, we can define a function λx. gx(αx) : ∀x. px that

informally speaking may recurse on every y < x. The trick is that we structurally

recurse on a derivation of Accx rather than the argument x itself.

Before we consider concrete examples, we first show some facts for Acc.

We call a number x accessible if there is a derivation of Accx. It turns out that

every number is accessible.

Fact 19.1.1 (Seed Function) There is a function α : ∀x : Accx.

Proof By induction on x.

For the base case, we need a function ∀y. y < 0→ Accy . Straightforward since

we can get a proof of y < 0 yields a proof of falsity.

For the successor case, we need a function ∀y. y < Sx → Accy . We assume

y < Sx and show Accy by constructing a continuation function ∀z. z < y → Accz.

We assume z < y and show Accz. Since z < x, the inductive hypothesis gives us a

derivation of Accz. �

We derive an eliminator for Acc.

Fact 19.1.2 (Eliminator) There is a function

EAcc : ∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x. Accx → px.

Proof λpf . fix Fxa. match a [AccI h⇒ fx(λyH. Fy(hyH) ]. �

With the eliminator and the seed function we can derive an operator for complete

induction.

Fact 19.1.3 (Complete Induction) There is a function

∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x.px.

Proof λpfx. EAcc pfx(αx). �
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19.2 Example: Division

The two facts and their proofs suggest that complete induction may be seen as

an abstract formulation of Acc recursion. As it comes to the definition of recursive

functions, direct using Acc recursion turns out to be more appropriate.

As it comes to the so far informal notion that the order x < y on numbers is

well-founded, we now have two ways to express it formally: either by saying that

every number is accessible or by stating the complete induction principle.

Exercise 19.1.4 Prove Accx ↔ ∀y. y < x → Accy .

19.2 Example: Division

Given two numbers x and y , we may divide x by Sy . The division yields the maxi-

mal number Sy can be subtracted from x without truncation. We may specify such

a division function D : N→ N→ N with the conditional equation

Dxy =

x if x ≤ y
D(x − Sy)y if x > y

(19.1)

The conditional equation may be realized with a decider

δ : ∀xy. (x ≤ y)+ (x > y)

which we assume given in the following. The specification suggests a definition

Dxy := D′xy(αx)

with an auxiliary function D′ : ∀x. N → Accx → N that recurses on the derivation

of Accx.
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19 Well-founded Recursion

19.3 Lead Example: Division

Consider the following specification of a division function:

D : N→ N→ N (19.2)

Dx 0 = 0

Dx (Sy) = 0 if x ≤ y
= S (D (x − Sy) (Sy)) if x > y

(19.3)

Here are the essential features of the specification:

1. There is a nonstandard equation Dx 0 = 0 so that we fully specify a total func-

tion N→ N→ N.1

2. There is a structural case analysis on the second argument.

3. There is a nested case analysis using the function ∀xy. (x ≤ y)+ (x > y).
4. There is a (nonstructural) recursion decreasing the first argument upon recursion

(happens in the third equation).

The main concern of this chapter is the presentation of a method that for specifi-

cations like the one above defines a function satisfying the specification. The speci-

fication must be presented such that the exhaustiveness of the equations is obvious.

Moreover, a termination function must be given as part of the specification, which

for D is the function mapping the two arguments to the first argument. For each

recursive application a proof obligation saying that the arguments are smaller must

be shown. For D the exact proof obligation for termination is

∀xy. x > y → x − Sy < x

Following the scheme used for D, we can also specify a modulo function:

M : N→ N→ N

M x 0 = 0

M x (Sy) = x if x ≤ y
= M (x − Sy) (Sy) if x > y

Given functions satisfying the above specifications, we can for instance prove

that the functions satisfy the equation of the division theorem.

Fact 19.3.1 x = Dx(Sy) · Sy +Mx(Sy) and Mx(Sy) ≤ y .

Proof Both claims follow by complete induction on x and can be shown indepen-

dently. We show the first claim.

1 Recall that Coq’s type theory omits only total functions.

168



19.4 Acc Recursion for Numbers

Following the specification of D and M , we do a case analysis (x ≤ y)+ (x > y).
If x ≤ y , the claim is x = 0 · Sy + x, an equation that holds by computational

equality.

If x > y , the claim is

x = S (D (x − Sy) (Sy)) · Sy +M (x − Sy) (Sy)

Since x − Sy < x, the inductive hypothesis gives us

x − Sy = D (x − Sy) (Sy) · Sy +M (x − Sy) (Sy)

The claim follows since x = Sy + (x − Sy). �

19.4 Acc Recursion for Numbers

We now show how D and M can be realized with auxiliary functions that are struc-

turally recursive on an extra argument. The type of the recursive argument is

Acc : N→ P

AccI : ∀x. (∀y. y < x → Accy)→ Accx

Note that the argument of Acc is a (nonuniform) parameter and that Acc is excepted

from the elim restriction since the nonparametric argument of AccI is a proof. Also

note that a value AccI xh of Accx carries a function h that for every y < x yields

a value of Accy that is structurally smaller than AccI xh. This way a function that

recurses on an argument Accx can structurally recurse on every y < x.

Fact 19.4.1 ∀xN. Accx.

Proof By complete induction on x. �

Fact 19.4.2 Accx ↔ ∀y. y < x → Accy .

Proof Straightforward. Direction→ follows with destructuring. Direction← follows

with AccI. �

We now define an auxiliary function D′ that recurses structurally on an extra

argument of type Accx

D′ : ∀xN. N→ Accx → N

D′ x 0 (AccI _h) := 0

D′ x (Sy) (AccI _h) := match δxy

[ L _⇒ 0

| RH ⇒ S (D (x − Sy) (Sy) (h (x − Sy) (τxyH))) ]
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19 Well-founded Recursion

and uses two auxiliary functions

δ : ∀xy. (x ≤ y)+ (x > y)
τ : ∀xy. x > y → x − Sy < x

whose exact definition does not matter. We now define

Dxy := D′xy(αx)

where α is some function ∀xN. Accx as established by Fact 19.4.1. Things can be

arranged such that D in fact reduces (it suffices that α is defined transparently).

To show properties about D, we need complete induction and the three specify-

ing equations:

Dx0 = 0 (19.4)

x ≤ y → Dx(Sy) = x (19.5)

x > y → Dx(Sy) = S (D (x − Sy) (Sy)) (19.6)

Equations (19.4) and (19.5) can be shown by unfolding and case analysis. Equa-

tion (19.6) follows by unfolding and case analysis and the lemma

∀aa′. D′xya = D′xya′ (19.7)

which follows by complete induction. Note that Lemma (19.7) says that D′ does not

distinguish between different derivations of Accx. We say that D′ is extensional

for its Acc argument.

Acc is known as an accessibility predicate. Acc recursion (i.e., recursion on an

argument of type Accx) provides for well-founded recursion on numbers. For this

purpose it is essential that Acc is not subject to the elim restriction.
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Summary of Inductive Definitions

We list the most important inductive definitions we have seen in this text. In each

case we give the equational definition of an eliminator and point out which argu-

ments are non-uniform parameters or indices.

Booleans

B : T

T : B

F : B

EB : ∀pB→T. p T→ p F→ ∀x.px
EB pab T := a

EB pab F := b

EB = λpabx. match x [T⇒ a | F⇒ b ]

Numbers

N : T

0 : N

S : N→ N

EN : ∀pN→T. p 0→ (∀n. pn→ p(Sn))→ ∀n.pn
EN paf 0 := a

EN paf (Sn) := fn(EN pafn)

EN = λpaf . fix Fn. match n [0⇒ a | Sn′ ⇒ fn′(Fn′)]
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Summary of Inductive Definitions

Pairs and Product Types

× : T→ T→ T

pair : ∀XTYT. X → Y → X × Y

E× : ∀XT YT pX×Y→T. (∀xy. p(pairXYxy))→ ∀a.pa
E×XYpf (pair _ _xy) := fxy

E× = λXYpfh. match h [pair _ _xy ⇒ fxy ]

Decisions and Sum Types

+ : T→ T→ T

L : ∀XT YT. X → X + Y
R : ∀XT YT. Y → X + Y

E+ : ∀XT YT pX+Y→T. (∀x. p(LXYx))→ (∀y. p(RXYy))→ ∀a.pa
E+XYpfg (L _ _x) := fx

E+XYpfg (R _ _y) := gy

E+ = λXYpfga. match s [ L _ _x ⇒ fx | R _ _y ⇒ gy ]

Existential Quantification

ex : ∀XT. (X → P)→ P

exI : ∀XT pX→P xX . px → exX p

Eex : ∀XT pX→P ZP. (∀x. px → Z)→ exXp → Z
EexXpZf (exI _ _xa) := fxa

Eex = λXpZfh. match h [exI _ _xa⇒ fxa]
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Dependent Pairs and Sigma Types

sig : ∀XT. (X → T)→ T

sigI : ∀XT pX→T xX . px → sigX p

Esig : ∀XT pX→T q sigX p→T. (∀xb. q(sigIXpxb))→ ∀asigXp. qa

EsigXpqf (sigI _ _x b) := fxb

Esig = λXpqfh. match h [ sigI _ _xb ⇒ fxb ]

Transfer Predicate for Witness Operator

G : (N→ B)→ N→ P

GI : ∀fN→BnN. (fn = F→ Gf (Sn))→ Gfn

EG : ∀fN→B pN→T. (∀n. (fn = F→ p(Sn))→ pn)→ ∀n. Gfn→ pn
EG fpgn(GI _ _h) := gn(λe. EG fpg (Sn) (he))

EG = λfpg. fix Fnh. match h [GI _ _ h′ ⇒ gn(λe. F(Sn)(h′e)) ]

The second argument of G is a non-uniform parameter.

GI has a functional argument that is recursive (guarded recursion).

Zero

zero : N→ P

Z : zero 0

Ezero : ∀pN→T. p0→ ∀x. zero x → px
Ezero pa _ Z := a : p0

Ezero = λpaxh. match h [Z⇒ a]

The single argument of zero is an index.
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Summary of Inductive Definitions

Inductive Equality

eq : ∀XT. X → X → P

Q : ∀XT xX . eqXxx

Eeq : ∀XT xX pX→T. px → ∀y. eqXxy → py
Eeq Xxpa _ (Q _ _) := a : px

Eeq = λXxpaxh. match h [Q _ _⇒ a]

The second argument of eq is an index.

Even Numbers

even : N→ P

evenB : even 0

evenS : ∀n. even n→ even(S(Sn))

Eeven : ∀pN→P. p0→ (∀n. evenn→ pn→ p(S(Sn)))→ ∀n. even n→ pn
Eeven paf _ evenB := a : p0

Eeven paf _ (evenSn′h) := fn′h(Eeven pafn′h) : p(S(Sn′))

Eeven = λpaf . fix Fnh. match h [evenB ⇒ a | evenSn′h′ ⇒ fn′h′(Fn′h′) ]

The single argument of even is an index.

Strict Positivity Condition

Coq’s type theory disallows recursive proof constructors where the recursion passes

through the left hand side of a (dependent) function type (so-called strict positivity

condition). For instance, the following inductive definition is not admissible:

even : N→ P

evenB : even 0

evenS : ∀n. ¬even n→ even(Sn)

Note that recursion through the right hand side of (dependent) function types is

fine and is used for the constructor GI of the transfer predicate G.
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