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1 Getting Started

We start with basic ideas from type theory and Coq. The main issues we discuss

are inductive types, recursive functions, and equational reasoning using structural

induction. We will see inductive types for booleans, natural numbers, and pairs. On

these types we will define functions using equations. This will involve functions that

are recursive, cascaded (i.e., return functions), higher-order (i.e., take functions as

arguments), and polymorphic (i.e., take types as leading arguments). Recursion will

be limited to structural recursion so that termination can be checked automatically.

Our main interest is in proving equations involving recursive functions (e.g.,

commutativity of addition, x + y = y + x). This will involve proof steps known

as conversion, rewriting, structural case analysis, and structural induction. Equal-

ity will appear in a general form called propositional equality, and in a specialized

form called computational equality. Computational equality is a prominent design

aspect of type theory that is important for mechanized proofs.

We will follow the equational paradigm and define functions with equations,

thus avoiding lambda abstractions and matches. We will mostly define cascaded

functions and use the accompanying notation known from functional programming.

Type theory is a foundational theory starting from computational intuitions. Its

approach to mathematical foundations is very different from set theory. We may say

that type theory explains things computationally while set theory explains things at

a level of abstraction where computation is not an issue. When working with type

theory, set-theoretic explanations (e.g., of functions) are usually not helpful, so free

your mind for a foundational restart.

1.1 Booleans

In Coq, even basic types like the type of booleans are defined as inductive types.

The type definition for the booleans

B ::= t | f

1



1 Getting Started

introduces three typed constants called constructors:

B : T

t : B

f : B

The constructors represent the type B and its two values t and f. Note that the

constructor B also has a type, which is the universe T (a type of types).

Inductive types provide for the inductive definition of functions, where a defin-

ing equation is given for each value constructor. We demonstrate this feature with

an inductive definition of a boolean negation function:

! : B→ B

! t := f

! f := t

There is a defining equation for each of the two value constructors of B. The defining

equations serve as computation rules. For computation, the equations are applied

as left-to-right rewrite rules. For instance, we have

! ! ! t = ! ! f = ! t = f

by rewriting with the first, the second, and again with the first equation (! ! ! t is to be

read as !(!(! t))). Computation in Coq is logical and is used in proofs. For instance,

the equation

! ! ! t = ! t

follows by computation:

! ! ! t ! t

= ! ! f = f

= ! t

= f

We speak of computational equality and of proof by computation.

Proving the equation

! !x = x

involving a boolean variable x takes more than computation since none of the defin-

ing equations applies. What is needed is structural case analysis on the boolean

2



1.2 Numbers

variable x, which reduces the claim ! !x = x to two equations ! ! t = t and ! ! f = f,

which both follow by computation.

Next we define functions for boolean conjunction and boolean disjunction:

& : B→ B→ B | : B→ B→ B

t & y := y

f & y := f

t | y := t

f | y := y

The defining equations introduce asymmetry since they define the functions by case

analysis on the first argument. Alternatively, one could define the functions by case

analysis on the second argument, resulting in different computation rules. Since the

equations defining a function must be disjoint and exhaustive when applied from

left to right, it is not possible to define boolean conjunction and disjunction with

equations treating both arguments symmetrically.

Given the definitions of the basic boolean connectives, we can prove the usual

boolean indenties with boolean case analysis and computation. For instance, the

distributivity law

x & (y | z) = (x & y) | (x & z)

follows by case analysis on x and computation, reducing the law to the trivial equa-

tions y | z = y | z and f = f. Note that the commutativity law

x & y = y & x

needs case analysis on both x and y to reduce to computationally trivial equations.

1.2 Numbers

The inductive type for the numbers 0, 1, 2, . . .

N ::= 0 | S(N)

introduces three constructors

N : T

0 : N

S : N→ N

The value constructors provide 0 and the successor function S. A number n can be

represented by the term that applies the constructor S n-times to the constructor 0.

For instance, the term S(S(S0)) represents the number 3. We will use the familiar

3



1 Getting Started

notations 0, 1, 2, . . . for the terms 0, S0, S(S0), . . . representing the numbers. The

constructor representation of numbers dates back to the Dedekind-Peano axioms.

We now define an addition function doing case analysis on the first argument:

+ : N→ N→ N

0+y := y

Sx +y := S(x +y)

The second equation is recursive because it uses the function ’+’ being defined at

the right hand side.

Coq only admits total functions, that is, functions that for every value of the

argument type of the function yield a value of the result type of the function. To

satisfy this basic requirement, all recursive definitions must be terminating. Coq

checks termination automatically as part of type checking. To make an automatic

termination check possible, recursion is restricted to structural recursion on a sin-

gle inductive argument of a function (an inductive argument is an argument with

an inductive type). The definition of ’+’ is an example of a structural recursion on

numbers taking place on the first argument. The recursion appears in the second

equation where the argument is Sx and the recursive application is on x.

We define truncating subtraction for numbers:

− : N→ N→ N

0−y := 0

Sx − 0 := Sx

Sx − Sy := x −y

The primary case analysis is on the first argument, with a nested case analysis on the

second argument in the successor case. The equations are exhaustive and disjoint.

The recursion happens in the third equation. We say that the recursion is structural

on the first argument since the primary case analysis is on the first argument.

Following the scheme we have seen for addition, functions for multiplication and

exponentiation can be defined as follows:

· : N→ N→ N ˆ : N→ N→ N

0 ·y := 0

Sx ·y := y + x ·y
x0 := 1

xSn := x · xn

Exercise 1.2.1 Define functions as follows:

a) A function N→ N→ N yielding the minimum of two numbers.

b) A function N→ N→ B testing whether two numbers are equal.

c) A function N→ N→ B testing whether a number is smaller than another number.

4



1.3 Structural Induction

x + 0 = x induction x
1 0+ 0 = 0 computational equality

2 IH : x + 0 = x Sx + 0 = Sx conversion

S(x + 0) = Sx rewrite IH

Sx = Sx computational equality

Figure 1.1: Proof diagram for Equation 1.1

Exercise 1.2.2 Rewrite the definition of truncating subtraction such that the pri-

mary case analysis is on the second argument.

1.3 Structural Induction

We will discuss proofs of the equations

x + 0 = x (1.1)

x + Sy = S(x +y) (1.2)

x +y = y + x (1.3)

(x +y)−y = x (1.4)

None of the equations can be shown with structural case analysis and computation

alone. In each case structural induction on numbers is needed. Structural induc-

tion strengthens structural case analysis by providing an inductive hypothesis in

the successor case. Figure 1.1 shows a proof diagram for Equation 1.1. The in-

duction rule reduces the initial proof goal to two subgoals appearing in the lines

numbered 1 and 2. The subgoals are obtained by structural case analysis and by

adding the inductive hypothesis (IH) in the successor case. The inductive hypoth-

esis makes it possible to close the proof of the successor case by conversion and

rewriting. A conversion step applies computation rules without closing the proof.

A rewriting step rewrites with an equation that is either assumed or has been es-

tablished as a lemma. In the example above, rewriting takes place with the inductive

hypothesis, an assumption introduced by the induction rule.

We will explain later why structural induction is a valid proof principle. For now

we can say that inductive proofs are recursive proofs.

We remark that rewriting can apply an equation in either direction. The above

proof of Equation 1.1 can in fact be shortened by one line if the inductive hypothesis

is applied from right to left as first step in the second proof goal.

Note that Equations 1.1 and 1.2 are symmetric variants of the defining equations

of the addition function ’+’. Once these equations have been shown, they can be

used for rewriting in proofs.
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1 Getting Started

x +y −y = x induction y
1 x + 0− 0 = x rewrite Equation 1.1

x − 0 = x case analysis x
1.1 0− 0 = 0 comp. equality

1.2 Sx − 0 = Sx comp. equality

2 IH : x +y −y = x x + Sy − Sy = x rewrite Equation 1.2

S(x +y)− Sy = x conversion

x +y −y = x rewrite IH

x = x comp. equality

Figure 1.2: Proof diagram for Equation 1.4

Figure 1.2 shows a proof diagram giving an inductive proof of Equation 1.4.

Note that the proof rewrites with Equation 1.1 and Equation 1.2, assuming that the

equations have been proved before.

One reason for showing inductive proofs as proof diagrams is that proof dia-

grams explain how one construct proofs in interaction with Coq. With Coq one

states the initial proof goal and then enters commands called tactics performing

the proof actions given in the rightmost column of our proof diagrams. The induc-

tion tactic displays the subgoals and automatically provides the inductive hypoth-

esis. Except for the initial claim, all the equations appearing in the proof diagrams

are displayed automatically by Coq, saving a lot of tedious writing. Replay all proof

diagrams shown in this chapter with Coq to understand what is going on.

A proof goal consists of a claim and a list of assumptions called context. The

proof rules for structural case analysis and structural induction reduce a proof goal

to several subgoals. A proof is complete once all subgoals have been closed.

A proof diagram comes with three columns listing assumptions, claims, and

proof actions.1 Subgoals are marked by hierarchical numbers and horizontal lines.

Our proof diagrams may be called have-want-do digrams since they come with

separate columns for assumptions we have, claims we want to prove, and actions

we do to advance the proof.

Exercise 1.3.1 Give a proof diagram for Equation 1.2. Follow the layout of Fig-

ure 1.2.

Exercise 1.3.2 Shorten the given proofs for Equations 1.1 and 1.4 by applying the

inductive hypothesis from right to left thus avoiding the conversion step.

Exercise 1.3.3 Prove that addition is associative: (x +y)+ z = x + (y + z). Give a

proof diagram.
1For now our proof diagrams just have the inductive hypothesis as assumption but this will change

as soon as we prove claims with implication, see Chapter 3.
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1.4 Ackermann Function

Exercise 1.3.4 Prove that addition is commutative (1.3). You will need equa-

tions (1.1) and (1.2) as lemmas.

Exercise 1.3.5 Prove the distributivity law (x +y) · z = x · z+y · z. You will need

associativity of addition.

Exercise 1.3.6 Prove that multiplication is commutative. You will need lemmas.

Exercise 1.3.7 (Truncating subtraction) Truncating subtraction is different from

the familiar subtraction in that it yields 0 where standard subtraction yields a neg-

ative number. Truncating subtraction has the nice property that x ≤ y if and only

if x −y = 0. Prove the following equations:

a) x − 0 = x
b) (x +y)− x = y
c) x − x = 0

d) x − (x +y) = 0

Note that (x−y)+(y−x) is the distance between x and y . Write a functionD : N→
N → N that computes the distance between two numbers with a single recursion.

Try to prove Dxy = (x − y) + (y − x) by induction on x. The proof requires

an inductive hypothesis that quantifies over y , a standard technique discussed in

detail in Section 6.2.

Exercise 1.3.8 (Maximum) Define a recursive maximum function M : N → N → N

and prove M(x +y)x = x +y and Mx(x +y) = x +y . Try to prove Mxy = Myx
(commutativity) by induction on x and notice that the inductive hypothesis must

be strengthened to ∀y.Mxy = Myx for the proof to go through.

1.4 Ackermann Function

The following equations specify a function A : N → N → N known as Ackermann

function:

A0y = Sy

A(Sx)0 = Ax1

A(Sx)(Sy) = Ax(A(Sx)y)

As is, the equations cannot serve as a definition since the recursion is not structural

in either the first or the second argument. The problem is with the nested recursive

application A(Sx)y in the third equation.
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1 Getting Started

However, we can define a structurally recursive function satisfying the given

equations. The trick is to use a higher-order auxiliary function:2

A′ : (N→ N)→ N→ N A : N→ N→ N

A′h0 := h1

A′h(Sy) := h(A′hy)
A0 := S

A(Sx) := A′(Ax)

Verifying that A satisfies the three specifying equations is straightforward. Here is

a verification of the third equation:

A(Sx)(Sy) Ax(A(Sx)y)

= A′(Ax)(Sy) = Ax(A′(Ax)y)

= Ax(A′(Ax)y)

Note that the three specifying equations all hold by computation (i.e., both sides of

the equations reduce to the same term). Thus verifying the equations with Coq is

trivial.

The three equations specifying A are exhaustive and disjoint. They are also

terminating, which can be seen with a lexical argument: Either the first argument

is decreased, or the first argument stays unchanged and the second argument is

decreased.

Recall that Coq only admits total functions. If we define a function with equa-

tions, three properties must be satisfied: The equations must be exhaustive and

disjoint, and if there is recursion, the recursion must be structural for one of the

arguments of the function. All three conditions are checked automatically.

1.5 Strict Structural Recursion

The equations

E(0) = t

E(1) = f

E(S(Sn)) = E(n)

specify a function E : N → B that checks whether a number is even. The recursion

appearing in the third equation is structural but not strictly structural. We can

define a function satisfying the three equations with strict structural recursion if

we make use of boolean negation:

E(0) := t

E(Sn) := !E(n)

2A higher-order function is a function taking a function as argument.
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1.6 Pairs and Polymorphic Functions

The first and the second equation specifying E hold by computation. The third

equation specifying E holds by conversion and rewriting with ! !b = b.

The equations

F0 = 0

F1 = 1

F(S(Sn)) = Fn+ F(Sn)

specify the Fibonacci function F : N → N. The third equation does not qualify for

structural recursion (because of the recursive application F(Sn)). It is possible to

define F with strict structural recursion using an auxiliary function with two extra

arguments (Section 9.2).

Coq does not insist on strict structural recursion and accepts structural recur-

sion with some extras. We will not make use of this feature and stick to strict

structural recursion throughout this text. Later we will introduce a technique that

reduces general terminating recursion to strict structural higher-order recursion.

Exercise 1.5.1 Prove E(n · 2) = t.

Exercise 1.5.2 Define a function H : N→ N satisfying the equations

H 0 = 0

H 1 = 0

H(S(Sn)) = S(Hn)

using strict structural recursion. Hint: Use an auxiliary function with an extra

boolean argument.

1.6 Pairs and Polymorphic Functions

We have seen that booleans and numbers can be accommodated in Coq with induc-

tive types. We will now see that (ordered) pairs (x,y) can also be accommodated

with an inductive type definition.

A pair (x,y) combines two values x and y into a single value such that the

components x and y can be recovered from the pair. Moreover, two pairs are equal

if and only if they have the same components. Thus we have (3,2+ 3) = (1+ 2,5)
and (1,2) ≠ (2,1).

Pairs whose components are numbers can be accommodated with the inductive

definition

Pair ::= pair(N,N)
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1 Getting Started

which introduces two constructors

Pair : T

pair : N→ N→ Pair

A function swapping the components of a pair can now be defined with a single

equation:

swap : Pair→ Pair

swap (pair x y) := pair y x

Using structural case analysis for pairs, we can prove the equation

swap (swapp) = p

for all pairs p (that is, for a variable p of type Pair). Note that structural case analysis

on pairs considers only a single case because there is only a single value constructor

for pairs.

Above we have defined pairs where both components are numbers. Given two

types X and Y we can repeat the definition to obtain pairs whose first component

has type X and whose second component has type Y . We can do much better,

however, by defining pair types for all component types in one go:

Pair(X : T, Y : T) ::= pair(X, Y)

This inductive type definition gives us two constructors:

Pair : T→ T→ T

pair : ∀X Y. X → Y → Pair X Y

The polymorphic value constructor pair comes with a polymorphic function type

saying that pair takes four arguments, where the first argument X and the second

argument Y are types fixing the types of the third and the fourth argument. Put

differently, the types X and Y taken as first and second argument provide the types

for the components of the pair constructed.

We shall use the familiar notation X × Y for product types Pair X Y .

We can write partial applications of the value constructor pair :

pair N : ∀Y . N→ Y → N× Y
pair N B : N→ B→ N× B

pair N B 0 : B→ N× B

pair N B 0 t : N× B
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1.7 Implicit Arguments

We can also define a polymorphic swap function serving all pair types:

swap : ∀X Y. X × Y → Y ×X
swap X Y (pair _ _ x y) := pair Y X y x

Note that the first two arguments of pair in the left hand side of the defining equa-

tion are given with the wildcard symbol _. The reason for this device is that the

first two arguments of pair are parameter arguments that don’t contribute relevant

information in the left hand side of a defining equation.

1.7 Implicit Arguments

If we look at the type of the polymorphic pair constructor

pair : ∀X Y. X → Y → X × Y

we see that the first and second argument of pair are the types of the third and

fourth argument. This means that the first and second argument can be derived

from the third and fourth argument. This fact can be exploited in Coq by declaring

the first and second argument of pair as implicit arguments. Implicit arguments

are not written explicitly but are derived and inserted automatically. This way we

can write pair 0 t for pair N B 0 t. If in addition we declare the type arguments of

swap : ∀X Y. X × Y → Y ×X

as implicit arguments, we can write

swap (swap (pair x y)) = pair x y

for the otherwise bloated equation

swap Y X (swap X Y (pair X Y x y)) = pair X Y x y

We will routinely use implicit arguments for polymorphic constructors and func-

tions in this text.

With implicit arguments, we go one step further and use the standard notations

for pairs:

(x,y) := pairxy

With this final step we can write the definition of swap as follows:

swap : ∀X Y. X × Y → Y ×X
swap (x,y) := (y,x)

Note that it took us considerable effort to recover the usual mathematical nota-

tion for pairs in the typed setting of Coq. There were three successive steps:
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1 Getting Started

1. Polymorphic function types and functions taking types as arguments. We remark

that types are first-class values in Coq.

2. Implicit arguments so that type arguments can be derived automatically from

other arguments.

3. The usual notation for pairs.

Finally, we define two functions providing the first and the second projection

for pairs:

π1 : ∀X Y. X × Y → X π2 : ∀X Y. X × Y → Y
π1 (x,y) := x π2 (x,y) := y

We can now prove the η-law for pairs

(π1a,π2a) = a

by structural case analysis on the variable a : X × Y .

Exercise 1.7.1 Write the η-law and the definitions of the projections without using

the notation (x,y) and without implicit arguments.

Exercise 1.7.2 Let a be a variable of type X × Y . Write proof diagrams for the

equations swap (swapa) = a and (π1a,π2a) = a.

1.8 Iteration

If we look at the equations (all following by computation)

3+ x = S(S(Sx))

3 · x = x + (x + (x + 0))

x3 = x · (x · (x · 1))

we see a common scheme we call iteration. In general, iteration takes the form fn x
where a step function f is applied n-times to an initial value x. With the notation

fn x the equations from above generalize as follows:

n+ x = Snx

n · x = (+x)n 0

xn = (·x)n 1

The partial applications (+x) and (·x) supply only the first argument to the func-

tions for addition and multiplication. They yield functions N → N, as suggested by

the cascaded function type N→ N→ N of addition and multiplication.
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1.8 Iteration

n · x = iter (+x) n 0 induction n
1 0 · x = iter (+x) 0 0 comp. equality

2 IH : n · x = iter (+x) n 0 Sn · x = iter (+x) (Sn) 0 conversion

x +n · x = x + iter (+x) n 0 rewrite IH

x + iter (+x) n 0 = x + iter (+x) n 0 comp. equality

Figure 1.3: Correctness of multiplication with iter

We formalize the notation fn x with a polymorphic function:

iter : ∀X. (X → X)→ N→ X → X
iter X f 0 x := x

iter X f (Sn) x := f(iter X f n x)

We will treat X as implicit argument of iter. The equations

3+ x = iter S 3 x

3 · x = iter (+x) 3 0

x3 = iter (·x) 3 1

now hold by computation. More generally, we can prove the following equations by

induction on n:

n+ x = iter S n x

n · x = iter (+x) n 0

xn = iter (·x) n 1

Figure 1.3 gives a proof diagram for the equation for multiplication.

Exercise 1.8.1 Verify the equation iter S 2 = λx. S(Sx) by computation.

Exercise 1.8.2 Prove n+ x = iter S n x and xn = iter (·x) n 1 by induction.

Exercise 1.8.3 (Shift) Prove iter f (Sn) x = iter f n (fx) by induction.

Exercise 1.8.4 (Factorials) Factorials n! can be computed by iteration on pairs

(k, k!). Find a function f such that (n,n!) = fn(0,1). Define a factorial func-

tion with the equations 0! = 1 and (Sn)! = Sn · n! and prove (n,n!) = fn(0,1) by

induction on n.

Exercise 1.8.5 (Even) iter ! n t tests whether n is even. Prove iter ! (n · 2) b = b
and iter ! (S(n · 2)) b = !b.
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1 Getting Started

1.9 Notational Conventions

We are using notational conventions common in type theory and functional pro-

gramming. In particular, we omit parentheses in types and applications relying on

the following rules:

s → t → u � s → (t → u)
stu � (st)u

For the arithmetic operations we assume the usual rules, so · binds before + and −,

and all three of them are left associative. For instance:

x + 2 ·y − 5 · x + z � ((x + (2 ·y))− (5 · x))+ z

1.10 Final Remarks

The pure equational language we have seen in this chapter is a sweet spot in the

type-theoretic landscape. With a minimum of luggage we can define interesting

functions, explore equational computation, and prove equational properties using

structural induction. Higher-order functions, polymorphic functions, and the con-

comitant types are elegantly accommodated in this equational language.

We have seen how booleans, numbers, and pairs can be accommodated as induc-

tive data types using constructors, and how cascaded functions on data types can

be defined using equations. Since every defined function must determine a unique

result for every argument of its argument type, the equations defining a function

are required to be exhaustive and disjoint, and recursion is constrained to be struc-

tural on a single argument. This way logically invalid equations like f x = !(fx) or

f t = t together with f t = f are excluded.

Here is a list of important technical terms introduced in this chapter:

• Booleans, numbers, pairs, inductive data types

• (Parameterised) inductive type definition, constructors

• Defining equations, computation rules, computational equality

• Exhaustiveness, disjointness, termination of defining equations

• Cascaded function types, partial applications

• Polymorphic function types, implicit arguments

• Structural recursion, structural case analysis

• Structural induction, inductive hypothesis

• Conversion steps, rewriting steps

• Proof digrams, proof goals, subgoals, proof actions (tactics)
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2 Computational Primitives

Type theory and Coq are complex constructions providing many layers of abstrac-

tion on a minimal logic kernel. Here we will explain the equational definition of

functions with computational primitives known as lambda abstractions, recursive

abstractions, matches, and plain definitions. We will discuss the accompanying

reduction rules (e.g., β-reduction), which compute unique normal forms for well-

typed terms. We then define computational equality based on normal forms, α-

equivalence, and η-equivalence.

2.1 Computational Definition of Functions

So far, we have defined functions through equations. In Coq, equational definitions

of functions are translated into computational definitions using low level primi-

tives. Figure 2.1 shows computational definitions of functions whose equational

definitions we have discussed in Chapter 1. Figure 2.1 also shows a computational

definition of a function D : N → N doubling its argument. An equational definition

of this function looks as follows:

D 0 := 0

D(Sx) := S(S(Dx))

The primitives used in computational definitions are plain definitions, lambda

abstractions, matches, and recursive abstractions. We discuss these primitives one

by one in the following.

A plain definition

cτ := s

binds a name c to a term s, where the name c is given the type τ and the term s
must have type τ . The binding of c is not visible in s, that is, c cannot be used

recursively in s. We say that a plain definition cτ := s defines a constant c. In

practice, the type τ may be omitted, in which case it will be assumed as the type of

the term s defining c.
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2 Computational Primitives

! := λxB. match x [t⇒ f | f⇒ t ]

+ := fix fN→N→N xN. λyN. match x [0⇒ y | Sx′ ⇒ S(fx′y) ]

− := fix fN→N→N xN. λyN. match x [0⇒ 0 | Sx′ ⇒ match y [0⇒ x | Sy ′ ⇒ fx′y ′ ] ]

swap := λXT. λYT. λpX×Y . match p [ (x,y)⇒ (y,x) ]

D := fix fN→N xN. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′)) ]

Figure 2.1: Computational definitions of functions

A lambda abstraction

λxτ .s

describes a function that for an argument x of type τ returns the value described

by the term s. The argument variable x usually appears in the body s. In practice,

the type τ of the argument variable may be omitted if it is clear from the body.

A recursive abstraction

fix fσ→τ xσ . s

describes a recursive function f taking an argument x. The variable f is not visible

outside the recursive abstraction. The argument type σ must be an inductive type

and the recursion must be on x. The types of the variables f and x may be omitted

if they can be derived (as is the case in the examples in Figure 2.1). In Coq slang,

recursive abstractions are often called fixpoints.

A recursive abstraction can take several arguments, where the recursive argu-

ment is always the last argument. Extra arguments preceding the recursive argu-

ment are needed so that dependently typed recursive functions can be defined,

something we will need in later chapters (Exercise 13.2.3).

A match

match s [ cx1 . . . xn ⇒ t | · · · ]

describes a structural case analysis on the value of a term s, which must have

an inductive type. For every value constructor c of the inductive type a rule

cx1 . . . xn ⇒ t must be given, where the variables in the pattern cx1 . . . xn must

be distinct. A match realizes an exhaustive and disjoint case analysis.

Computational definitions of functions not using any syntactic convenience are

called kernel definitions. While Coq provides many conveniences for the definition

of functions, it translates every function definition into a kernel definition using

only the computational primitives we have seen in this section.
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2.2 Reduction Rules

! t � (λx.match x [t⇒ f | f⇒ t])t unfolding of !

� match t [t⇒ f | f⇒ t] β-reduction

� f match reduction

Figure 2.2: Reduction chain for ! t

D(S0) � (fix f x. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′)) ]) (S0) δ

= D̂ (S0)

� (λfx. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′))]) D̂ (S0) fix

� (λx. match x [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))]) (S0) β

� match (S0) [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))] β

� (λx′. S(S(D̂x′)))0 match

� S(S(D̂0)) β

� S(S((λx. match x [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))])0)) fix, β

� S(S(match 0 [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))])) β

� S(S0) match

where D̂ is the term defining D

Figure 2.3: Reduction chain for D(S0)

Exercise 2.1.1 Translate the equational definitions of the functions asked for in

Exercise 1.2.1 into kernel definitions.

2.2 Reduction Rules

Computation is performed through reduction rules for defined constants, lambda

abstractions, matches, and recursive abstractions. Figures 2.2 and 2.3 show exam-

ples for reduction chains obtained with the reduction rules.

The reduction rule for defined constants

c � s provided c := s

is called δ-reduction and replaces a constant with the term defining it. One also

speaks of unfolding of c.
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2 Computational Primitives

The reduction rule for lambda abstractions

(λx.s) t � sxt

is called β-reduction and replaces an application (λx.s)t with the term sxt obtained

from the term s by replacing every free occurence of the variable x with the term t.
Terms of the form (λx.s) t are called β-redexes.

The reduction rule for matches

match cs [ · · · cx ⇒ t · · · ] � (λx.t)s

replaces a match on cs with an application applying the body of the rule selected by

the constructor c to s. The scheme is given here for single argument constructors,

the generalization to no argument and several arguments is straightforward.

The reduction rule for recursive abstractions

(fixfx. s) t � (λf .λx. s) (fixfx. s) t

provided t is an application of a constructor

reduces an application of a recursive abstraction to an application passing the re-

cursive abstraction as an argument. The constraint that the argument term t is an

application of a constructor is essential so that application of the reduction rules

terminates.

Coq implements the rule for recursive abstractions such that it includes the β-

reduction needed for passing down the recursive abstraction:

(fixfx. s) t � (λx. s ffixfx.s) t

provided t is an application of a constructor

Coq’s computational primitives also include let expressions

let xτ = s in t

providing for local definitions. The reduction rule for let expressions

let x = s in t � txs

is called ζ-rule.

The reduction rules are computation rules at a low level. While Coq routinely

performs reductions at this level, this is not feasible for humans. However, hu-

mans can simulate low level reductions with high-level reductions rewriting with

the defining equations of functions. For instance,

S(Sx)+y = S(Sx +y) = S(S(x +y))
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2.3 Well-Typed Terms and Normal Forms

is a high-level reduction chain that applies the second defining equation of + twice.

The high-level reduction chain expands into a low level reduction chain with many

intermediate steps where the second and third occurence of + will be unfolded. Al-

together, the low-level reduction takes 12 steps (1 delta reduction, 2 fix reductions,

2 match reductions, 6 beta reductions).

Given that one can simulate and verify low-level reductions with Coq, it will not

be necessary to discuss the reduction rules in more detail.

Exercise 2.2.1 Write the reduction chain for 1+ y in the style of Figure 2.3. Verify

your reduction steps with Coq.

Exercise 2.2.2 Write the reduction chain for swap X Y (pair X Y x y) in the style

of Figure 2.3. Verify your reduction steps with Coq.

2.3 Well-Typed Terms and Normal Forms

Coq and its type theory come with a typing discipline admitting only well-typed

terms. The reduction rules and the typing discipline are designed such that ap-

plication of the reduction rules to a well-typed term always terminates. Thus one

can simplify every term to a normal form to which no reduction rule applies. The

reduction rules are designed such that normal forms are unique. Terms to which

no reduction rule applies are also called normal.

Terms denote values and reduction simplifies terms such that the value of a term

is left unchanged. We may say that reduction preserves values.

Reduction also preserves types. That is, if we reduce a term of type τ , we

always get terms of type τ .

It is important that logical reasoning only involves well-typed terms. Coq guar-

antees through type checking that only well-typed terms are involved.

2.4 Computational Equality

Abstractions, matches, and lets involve bound variables that are local to the terms

introducing them. The names of bound variables do not matter. Two terms are α-

equivalent if they are equal up to renaming of bound variables. For instance, λxN.x
and λyN.y are α-equivalent.

For lambda abstractions there is also the notion of η-equivalence. Suppose the

term s describes a function σ → τ . Then the term λxσ .sx describes the same

function as the term s, provided the variable x does not occur free in s. We say that

the terms λxσ .sx and s are η-equivalent and call the resulting equivalence relation

on terms η-equivalence. The equation (λx.Sx) = S holds by η-equivalence.
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Two terms are computationally equal if and only if their normal forms are equal

up to α-equivalence and η-equivalence. Computational equality is an algorithmi-

cally decidable equivalence relation. Proofs of computational equality are routine

checks needing no further explanation.

Computational equality is compatible with the term structure. That is, if we

replace a subterm of a term s with a term that is computationally equal and has the

same type, we obtain a term that is computationally equal to s.
We also say that two terms are convertible if they are computationally equal.

This makes the connection to the conversion steps appearing in Chapter 1.

The most complex operation the reduction rules build on is substitution sxt . Sub-

stitution is needed for β-reduction and must be performed such that local binders

do not capture free variables. To make this possible, substitution must be al-

lowed to rename local variables. For instance, (λx.λy.fxy)y must not reduce

to λy.fyy but to a term λz.fyz where the new bound variable z avoids capture

of the variable y . We speak of capture-free substitution.

We mention that computational equality is also known as definitional equality.

Exercise 2.4.1 Verify that the following equations hold by computational equality.

a) (+)1 = S

b) (+)2 = λx. S(Sx)
c) (+)(3− 2) = S

d) (λx. 1+ x) = S

e) (λx. 3+ x − 2) = S

f) iter S 2 = λx. S(Sx)
Note that all right hand sides are normal terms. Thus it suffices to compute the

normal forms of the left hand sides and then check whether the two normal forms

are equal up to α- and η-equivalence.

2.5 Canonical Terms and Values

We use terms as syntactic descriptions of semantic objects. Semantic objects in-

clude booleans, numbers, functions, and types. We often talk about semantic ob-

jects ignoring their syntactic representation as terms. In an implementation, how-

ever, semantic objects are always represented through syntactic descriptions.

As syntactic objects, terms may not be well-typed. Ill-typed terms are semanti-

cally meaningless and must not be used for logical reasoning. Ill-typed terms are

always rejected by Coq. Working with Coq is the best way to develop a reliable intu-

ition for what goes through as well-typed. When we say term in this text, we always

mean well-typed terms.
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2.6 Notational Conventions

A term is closed if it has no free variables (bound variables introduced by ab-

stractions and matches are fine). A term is canonical if it is both normal and closed.

Coq’s type theory is designed such that every canonical term is either a construc-

tor, or a constructor applied to canonical terms, or an abstraction (obtained with λ
or fix), or a function type (obtained with → or ∀), or a universe (we have seen T).

Moreover, every closed term reduces to a canonical term.

Semantic objects that can be described through canonical terms are called val-

ues. The inhabitants of a type are the values that can be described through canon-

ical terms of this type. For data types such as B, N, and products of data types,

the canonical terms are in one-to-one correspondence with the inhabitants, and we

may think of the inhabitants as canonical terms if we wish. For function types the

situation is more complicated since different canonical abstractions may represent

the same function, for instance, if they are equal up to α- and η-equivalence. So

for function types we still know that every inhabitant can be described through a

canonical term, but there are usually many different canonical terms describing the

same function. In any case, computationally equal canonical terms always describe

the same value.

Reduction preserves well-typedness and closedness of a term as well as its type

and value. Since the values of a data type may be seen as the canonical terms of the

data type, we may say that reduction computes the values of closed terms whose

type is a data type. For instance, the term 2+ 3 reduces to 5.

We call a type inhabited if it has at least one inhabitant. The data types we have

seen so far are all inhabited. Later we will use types as logical descriptions and

uninhabited types will become a regular option.

The inhabitants of a type may also be referred to as the values or members or

elements of a type.

Syntactic objects can be formalised and realised with software, as in the proof as-

sistant Coq. In contrast, semantic objects are objects of our mathematical intuition

that are only realised through their syntactic descriptions.

2.6 Notational Conventions

We omit parentheses and λ’s relying on two basic rules:

λx.st � λx.(st)

λxy.s � λx.λy.s

To specify the type of a variable or constant, we use one of the notations x : τ
and xτ , depending on what we feel is more readable. We usually omit the type of a

variable if it is clear from the context.
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Following Coq, we may write boolean matches with the familiar if-then-else no-

tation:

if s then t1 else t2 � match s [t⇒ t1 | f⇒ t2 ]

More generally, we may use the if-then-else notation for all inductive types with

exactly two value constructors, exploiting the order of the constructors.

A similar notational device using the let notation is available for inductive types

with exactly one constructor. For instance:

let (x,y) = s in t � match s [pair _ _xy ⇒ t ]

22



3 Propositions as Types

Coq represents propositions (i.e., logical statements) as types such that the inhab-

itants of a propositional type serve as proofs of the represented proposition. This

type-theoretic approach to logic works amazingly well in practice. It reduces proof

checking to type checking and provides a form of logical reasoning known as intu-

itionistic reasoning.

In this chapter we study the type-theoretic representations of the propositional

connectives conjunction, disjunction, implication, and negation. Quantifiers and

equality will be considered in later chapters. We use proof diagrams to assist the

construction of proof terms for propositions. This way the construction of a proof

amounts to the construction of a proof diagram. The construction of a proof dia-

gram is an incremental process that can be carried out efficiently in interaction with

the Coq proof assistant.

3.1 Propositions Informally

Proposition are logical statements whose truth or falsity can be established with

proofs. Propositions are built from basic propositions with connectives and quanti-

fiers. Here are prominent forms of propositions you will have encountered before.

Name Notation Reading

equality s = t s equals t
truth > true

falsity ⊥ false

conjunction P ∧Q P and Q
disjunction P ∨Q P or Q
implication P → Q if P then Q
negation ¬P not P
equivalence P ←→ Q P if and only if Q
universal quantification ∀x :X.px for all x in X, px
existential quantification ∃x :X.px for some x in X, px
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3.2 Conjunction, Disjunction, and Implication

Coq represents propositions with propositional types that live in a universe P
(read Prop). Given a propositional type X, the terms of type X serve as proofs of

the proposition represented by X. This straightforward design gives us in one go a

formalization of propositions, proofs, and provability.

To ease our language, we call propositional types propositions in the following.

If we want to talk about informal propositions, we will say so explicitly. A proposi-

tion is provable if it has an inhabitant.

We accommodate conjunctions X ∧ Y and disjunctions X ∨ Y of two proposi-

tions X and Y with two inductive definitions

∧ (X : P, Y : P) : P ::= C(X, Y) ∨ (X : P, Y : P) : P ::= L(X) | R(Y)

giving us the constructors

∧ : P→ P→ P ∨ : P→ P→ P

C : ∀XPYP. X → Y → X ∧ Y L : ∀XPYP. X → X ∨ Y
R : ∀XPYP. Y → X ∨ Y

With the constructors ’∧’ and ’∨’ we can form conjunctions X ∧ Y and disjunctions

X ∨ Y from given propositions X and Y . With the polymorphic proof constructors

C, L, and R we can construct proofs of conjunctions and disjunctions:

• If x is a proof of X and y is a proof of Y , then the term Cxy is a proof of the

conjunction X ∧ Y .

• If x is a proof of X, then the term Lx is a proof of the disjunction X ∨ Y .

• If y is a proof of Y , then the term Ry is a proof of the disjunction X ∨ Y .

Note that we treat the propositional arguments of the polymorphic proof construc-

tors as implicit arguments, something we have seen before with the value construc-

tor for pairs. Since the explicit arguments of the proof constructors for disjunc-

tions determine only one of the two implicit arguments, the other implicit argument

needs to be derived from the surrounding context. This works well in practice.

Given two propositions X and Y , we can form the function type X → Y , which

again is a proposition. We take propositional function types as representations of

implications. A proof of an implication X → Y is thus a function X → Y that

given a proof of X yields a proof of Y . This gives us a computational semantics for

implications working well for logical reasoning.

3.3 Normal Proofs

A proof of a proposition is called normal if it is a normal term. In this capter we will

mostly construct normal proofs. Figure 3.1 shows a series of provable propositions
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X → X λx.x

X → Y → X λxy.x

X → Y → Y λxy.y

(X → Y → Z)→ (Y → X → Z) λfyx.fxy

X → Y → X ∧ Y CXY

X ∧ Y → X λh.match h [Cxy ⇒ x ]
X ∧ Y → Y λh.match h [Cxy ⇒ y ]
X ∧ Y → Y ∧X λh.match h [Cxy ⇒ Cyx ]

X → X ∨ Y LXY

Y → X ∨ Y RXY

X ∨ Y → Y ∨X λh.match h [ Lx ⇒ RYx | Ry ⇒ LXy ]

The variables X, Y , Z range over propositions.

Figure 3.1: Propositions with normal proofs

accompanied by normal proofs. The propositions formulate familiar logical laws.

Note that we supply as subscripts the implicit arguments of the proof constructors

C, L, and R when we think it is helpful. We don’t give the types of the argument

variables of the lambda abstractions since they are obvious from the propositions

on the left.

Figure 3.2 shows normal proofs involving matches with nested patterns. Matches

with nested patterns are a notational convenience for nested plain matches. For

instance, the match

match h [C(Cxy)z ⇒ Cx(Cyz) ]

with the nested pattern C(Cxy)z translates into the plain match

match h [Caz ⇒ match a [Cxy ⇒ Cx(Cyz) ] ]

nesting a second plain match.

We have arrived at a logical system that is quite interesting. Stepping back from

the details, one may ask whether the type-theoretic representation of propositions

and proofs is adequate, that is, whether all provable propositions are in fact log-

ically valid (soundness), and whether enough logically valid propositions are prov-

able (completeness). Here logical validity is used as an informal notion not coming

with a rigorous mathematical definition. As it comes to the soundness question,
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(X ∧ Y)∧ Z → X ∧ (Y ∧ Z)
λh.match h [C(Cxy)z ⇒ Cx(Cyz) ]

(X ∨ Y)∨ Z → X ∨ (Y ∨ Z)
λh.match h [ L(Lx)⇒ Lx | L(Ry)⇒ R(Ly) | Rz ⇒ R(Rz) ]

X ∧ (Y ∨ Z)→ (X ∧ Y)∨ (X ∧ Z)
λh.match h [Cx(Ly)⇒ L(Cxy) | Cx(Rz)⇒ R(Cxz) ]

Figure 3.2: Normal proofs with nested patterns

we can say that type theory is explicitly designed such that the propositions as

types approach is sound. As it comes to the completeness question, there are no

straightforward answers and we prefer to postpone a discussion.

We summarize the basic intuitions behind the normal proofs we have seen in

this section:

• A proof of a conjunction X ∧ Y is a pair consisting of a proof of X and a proof

of Y .

• A proof of a disjunction X ∨ Y is either a proof of X or a proof of Y .

• A proof of an implication X → Y is a function that given a proof of X returns a

proof of Y .

Exercise 3.3.1 Elaborate the normal proofs in Figure 3.2 such that they use nested

plain matches. Moreover, annote the implicite arguments of L and R that must be

derived from the surrounding context.

3.4 Propositional Equivalence

We capture propositional equivalence with the notation

X ←→ Y := (X → Y)∧ (Y → X)

Thus a propositional equivalence is a conjunction of two implications, and a proof

of an equivalence is a pair of two proof-transforming functions. Given a proof of an

equivalence X ←→ Y , we can translate every proof of X into a proof of Y , and every

proof of Y into a proof of X. Thus we know that X is provable if and only if Y is

provable.

Exercise 3.4.1 Give proofs for the equivalences shown in Figure 3.3 formulating

well-known properties of conjunction and disjunction.
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3.5 Truth, Falsity, and Negation

X ∧ Y ←→ Y ∧X X ∨ Y ←→ Y ∨X commutativity

X ∧ (Y ∧ Z)←→ (X ∧ Y)∧ Z X ∨ (Y ∨ Z)←→ (X ∨ Y)∨ Z associativity

X ∧ (Y ∨ Z)←→ X ∧ Y ∨X ∧ Z X ∨ (Y ∧ Z)←→ (X ∨ Y)∧ (X ∨ Z) distributivity

X ∧ (X ∨ Y)←→ X X ∨ (X ∧ Y)←→ X absorption

Figure 3.3: Equivalence laws for conjunctions and disjunctions

Exercise 3.4.2 Propositional equivalences yield an equivalence relation on proposi-

tions that is compatible with conjunction, disjunction, and implication. This high-

level speak can be validated by giving proofs for the following propositions:

X ←→ X reflexivity

X ←→ Y → Y ←→ X symmetry

X ←→ Y → Y ←→ Z → X ←→ Z transitivity

X ←→ X′ → Y ←→ Y ′ → X ∧ Y ←→ X′ ∧ Y ′ compatibility with ∧
X ←→ X′ → Y ←→ Y ′ → X ∨ Y ←→ X′ ∨ Y ′ compatibility with ∨
X ←→ X′ → Y ←→ Y ′ → (X → Y)←→ (X′ → Y ′) compatibility with →

3.5 Truth, Falsity, and Negation

We accommodate the propositions truth and falsity with two inductive definitions

> : P ::= I ⊥ : P ::= []

giving us the constructors

> : P ⊥ : P

I : >

By definition, the proposition > has a single canonical proof I, and the proposition ⊥
has no canonical proof at all (since it has no proof constructor). This means that

the proposition ⊥ is an empty type.

We now capture propositional negation with the notation

¬X := X → ⊥

Thus a proof of a negation ¬X is a function that given a proof of X yields a proof

of ⊥. Since ⊥ has no proof, such a function can only be constructed if X has no

proof.
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X → ¬¬X λxf .fx

X → ¬X → Y λxf .match fx []

(X → Y)→ ¬Y → ¬X λfgx. g(fx)

¬X → ¬¬¬X λfg. gf

¬¬¬X → ¬X λfx. f (λg.gx)

¬¬X → (X → ¬X)→ ⊥ λfg. f (λx.gxx)

(X → ¬X)→ (¬X → X)→ ⊥ λfg. let x = g(λx.fxx) in fxx

Figure 3.4: Proofs for propositions with negations

We say that we can disprove a proposition X if we can prove its negation ¬X.

A logical principle known as explosion principle or ex falso quodlibet says that

from falsity one can derive everything. We can derive the principle with the follow-

ing normal proof:

⊥ → X
λh.match h []

The function takes a proof h of ⊥ as argument and returns a proof of X. To do

so, the function matches on h. Now every rule of the match must yield a proof

of X. Since ⊥ has no constructor, the match has no rule, and hence the typing

requirement for the rules is trivially satisfied. One says that it is vacuously true that

every rule of the match yields a proof of X.

Figure 3.4 shows proofs of propositions involving negation. While checking the

proofs, keep in mind that negations ¬s are just abbreviations for implications

s → ⊥. Note the use of the let expression in the final proof. It introduces a local

name x for the term g(λx.fxx) so that we don’t have to write it twice. Except for

the proof with let all proofs in Figure 3.4 are normal.

Exercise 3.5.1 Give normal proofs for the following propositions:

a) ¬⊥
b) ¬¬⊥ ←→ ⊥
c) ¬¬> ←→ >
d) ¬¬¬X ←→ ¬X
e) (X → ¬¬Y) ←→ (¬Y → ¬X)
f) ¬(X ←→ ¬X)
g) ¬(X ∨ Y) ←→ ¬X ∧¬Y
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3.6 Proof Term Construction with Proof Diagrams

Equivalence (g) is known as de Morgan law for disjunction. We don’t ask for a

proof of the de Morgan law for conjunction since there isn’t one using the means

we have seen so far.

3.6 Proof Term Construction with Proof Diagrams

The natural direction for proof term construction is top down, in particular as it

comes to lambda abstractions and matches. When we construct a proof term top

down, we need an information structure keeping track of the types we still have

to construct proof terms for and recording the typed variables introduced by sur-

rounding lambda abstractions and rules of matches. It turns out that the proof

diagrams we have introduced in Chapter 1 provide the perfect information struc-

ture for constructing proof terms.

Here is a proof diagram showing the construction of a proof term for a proposi-

tion known as Russell’s law:

¬(X ←→ ¬X) intros

f : X → ¬X
g : ¬X → X ⊥ assert

1 X apply g
¬X intros

x : X ⊥ exact fxx
2 x : X ⊥ exact fxx

The diagram is written top-down beginning with the initial claim. It records the

construction of the proof term

λhX←→¬X . match h [ Cfg ⇒ let x = g(λx.fxx) in fxx ]

for the proposition ¬(X ←→ ¬X).
Recall that proof diagrams are have-want diagrams that record on the left what

we have and on the right what we want. When we start, the proof diagram is partial

and just consists of the first line. As the proof term construction proceeds, we add

further lines and further proof goals until we arrive at a complete proof diagram.

The rightmost column of a proof diagram records the actions developing the

diagram and the corresponding proof term.

• The action intros introduces λ-abstractions and matches.

• The action assert creates subgoals for an intermediate claim and the current

claim with the intermediate claim assumed. An assert action is realised with a

let expression in the proof term.

• The action apply applies a function and creates subgoals for the arguments.
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X ∧ (Y ∨ Z)←→ (X ∧ Y)∨ (X ∧ Z) apply C

1 X ∧ (Y ∨ Z)→ (X ∧ Y)∨ (X ∧ Z) intros

x : X
1.1 y : Y (X ∧ Y)∨ (X ∧ Z) L(Cxy)
1.2 z : Z (X ∧ Y)∨ (X ∧ Z) R(Cxz)
2 (X ∧ Y)∨ (X ∧ Z)→ X ∧ (Y ∨ Z) intros

2.1 x : X, y : Y X ∧ (Y ∨ Z) Cx(Ly)
2.2 x : X, z : Z X ∧ (Y ∨ Z) Cx(Rz)

The constructed proof term looks as follows:

C (λh. match h [Cx(Ly)⇒ L(Cxy) | Cx(Rz)⇒ R(Cxz)])

(λh. match h [ L(Cxy)⇒ Cx(Ly) | R(Cxz)⇒ Cx(Rz) ])

Figure 3.5: Proof diagram for a distributivity law

• The action exact proves the claim with a complete proof term. We will not write

the word “exact” in future proof diagrams since that an exact action is used will

always be clear from the context.

With Coq we can construct proof terms interactively following the structure of

proof diagrams. We start with the initial claim and then perform the proof actions

using tactics. Coq then maintains the proof goals and displays the assumptions and

claims. Once all proof goals are closed, a proof term for the initial claim has been

constructed.

Technically, a proof goal consists of a list of assumptions (called context) and

a claim. The claim is a type, and the assumptions are typed variables. There may

be more than one proof goal open at a point in time and one may navigate freely

between open goals.

Interactive proof term construction with Coq is fun since writing, bookkeeping,

and verification are done by Coq. Here is a further example of a proof diagram:

¬¬X → (X → ¬X)→ ⊥ intros

f : ¬¬x
g : X → ¬X ⊥ apply f

¬x intros

x : X ⊥ gxx

The proof term constructed is λfg.f (λx.gxx). As announced before, we write the

proof action “exact gxx” without the word “exact”.

Figure 3.5 gives a proof diagram for a distributivity law involving 6 subgoals.

Note the symmetry in the normal proof constructed.
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¬¬(X → Y)←→ (¬¬X → ¬¬Y) apply C, intros

1 f : ¬¬(X → Y)
g : ¬¬X
h : ¬Y ⊥ apply f , intros

f ′ : X → Y ⊥ apply g, intros

x : X ⊥ h(f ′x)
2 f : ¬¬X → ¬¬Y

g : ¬(X → Y) ⊥ apply g, intros

x : X Y exfalso

⊥ apply f
2.1 ¬¬X intros

h : ¬X ⊥ hx
2.2 ¬Y intros

y : Y ⊥ g(λx.y)

The constructed proof term looks as follows:

C (λfgh. f (λf ′. g(λx. h(f ′x))))

(λfg. g(λx.match f(λh. hx) (λy. g(λx.y)) []))

Figure 3.6: Proof diagram for a double negation law using the explosion principle

Figure 3.6 gives a proof diagram for a double negation law. Note the use of the

explosion principle in subgoal 2.

Exercise 3.6.1 Give the normal proof obtained with the proof diagram in Figure 3.6.

Exercise 3.6.2 Give proof diagrams for the following propositions:

a) ¬¬(X ∨¬X)
b) ¬¬(¬¬X → X)
c) ¬¬(((X → Y)→ X)→ X)
d) ¬¬((¬Y → ¬X)→ X → Y)

Exercise 3.6.3 Give proof diagrams for the following propositions:

a) ¬¬(X ∨¬X)
b) ¬(X ∨ Y) ←→ ¬X ∧¬Y
c) ¬¬¬X ←→ ¬X
d) ¬¬(X ∧ Y) ←→ ¬¬X ∧¬¬Y
e) ¬¬(X → Y) ←→ (¬¬X → ¬¬Y)
f) ¬¬(X → Y) ←→ ¬(X ∧¬Y)
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3.7 Notational Issues

Following Coq, we use the precedence order

¬ ∧ ∨ ←→ →

for the logical connectives. Thus we may omit parentheses as in the following ex-

ample:

¬¬X ∧ Y ∨ Z ←→ Z → Y � (((¬(¬X)∧ Y)∨ Z)←→ Z)→ Y

The notations ¬, ∧, and ∨ are right associative. That is, parentheses may be omitted

as follows:

¬¬X � ¬(¬X)
X ∧ Y ∧ Z � X ∧ (Y ∧ Z)
X ∨ Y ∨ Z � X ∨ (Y ∨ Z)

3.8 Type Checking Rules

We have seen that constructing a proof eventually means to construct a term that

has the right type. Thus proof checking reduces to type checking, and the exact

rules of the type discipline saying which terms have which types are the lowest

level proof rules. If the typing rules are too permissive, we can prove propositions

that should be unprovable, and if the typing rules are too restrictive, we cannot

proof enough.

Here are the type checking rules as we know them so far:

• A lambda abstraction λx :u.s has type u → v if u is not a universe and s has

type v in a context where x has type u.

• A lambda abstraction λx :u.s has type ∀x :u.v if u is a universe (i.e., T or P)

and s has type v in a context where x has type u.

• An application st has type v if s has type u→ v and t has type u.

• An application st has type vxt if s has type ∀x :P.v and t has type P.

• A term match s [· · · ] has type u if s is has an inductive type v , the match has

a rule for every constructor of v , and every rule of the match yields a result of

type u.

3.9 Final Remarks

In this section we have seen that lambda abstractions and matches are essential

proof constructs. Without lambda abstractions and matches most of the proposi-

tions in Figure 3.1 would be unprovable. We have seen that matches provide for
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the description of functions that cannot be described otherwise, and that the func-

tions describable with matches often inhabit function types that otherwise would

be uninhabited (e.g., X ∧ Y → Y ∧X).

Note that the functions we can describe with abstractions and matches are con-

trolled by type checking, and that the details of this type checking are important in

that they prevent a proof of falsity.

Nowhere in this chapter the reductions coming with lambda abstractions and

matches were used. We may say that the proof discipline introduced in this chapter

uses the typing discipline of the computational system introduced in Chapter 2

without making use of its computation rules. This will change in the next chapter,

where we extend the typing discipline with dependent function types integrating

computational equality with type checking.
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We now generalize polymorphic function types so that one can quantify over every

type. The thus obtained dependent function types provide universal quantifica-

tion for propositions and also subsume simple function types. Dependent function

types are accompanied by the conversion law, which relaxes type checking so that

computationally equal types become interchangeable.

We also introduce the hierarchy of universes.

With dependent function types and the conversion law we have arrived at an

expressive type theory. We will see in later chapters that propositional equality and

existential quantification can be defined, and that the proof rules for boolean case

analysis and structural induction on numbers can be derived.

The generalisation of function types to dependent function types is the key fea-

ture of modern type theories. One often speaks of dependent type theories to ac-

knowledge the presence of dependent function types.

4.1 Generalization of Polymorphic Function Types

Consider the types of the proof constructors for conjunctions and disjunctions:

C : ∀XP.∀YP. X → Y → X ∧ Y
L : ∀XP.∀YP. X → X ∨ Y
R : ∀XP.∀YP. Y → X ∨ Y

These polymorphic function types are in fact propositions. The type of the proof

constructor R, for instance, may be read as saying “for all propositions X and Y and

every proof of Y there is a proof of X ∨ Y ”. As the notation ’∀’ suggests, proposi-

tional polymorphic function types are understood as universal quantifications. Note

that the constructors serve as canonical proofs of the propositions given as their

types.

Technically, it is straightforward to generalize polymorphic function types to

dependent function types

∀x : s. t

that can quantify over all types s, not just the two universes P and T. As with

polymorphic types, the inhabitants of a general dependent function type ∀x : s. t
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4 Dependent Function Types

are functions taking arguments of type s and returning results of type t, where t
may dependent on the argument x.

If t is a proposition, then every dependent function type∀x : s. t is a proposition.

As the notation suggests, propositional dependent function types ∀x : s. t serve as

universal quantifications ∀x : s. t. Since s can be any type, we can quantify over

every type. The propositions as types semantics for universal quantification is just

fine since it captures the proofs of a proposition ∀x : s. t as functions that given a

value x yield a proof of the proposition t.
Dependent function types not only subsume polymorphic function types, but

also subsume simple function types s → t. In fact, an simple function type

s → t

is just a dependent function type ∀x : s. t where the variable x does not appear in t.
As with simple function types, the canonical terms for dependent function types

are obtained with abstractions, constructors, and partial applications of construc-

tors.

For dependent function types we use the notational conveniences we have seen

before for polymorphic function types:

∀x s. t � ∀x : s. t

∀xy. s � ∀x∀y. s � ∀x.∀y. s

4.2 Impredicative Characterizations

It turns out that quantification over propositions has amazing expressivity. Given

two propositional variables X and Y , we can prove the equivalences

⊥ ←→ ∀ZP. Z
X ∧ Y ←→ ∀ZP. (X → Y → Z)→ Z
X ∨ Y ←→ ∀ZP. (X → Z)→ (Y → Z)→ Z

which specify ⊥, X∧Y , and X∨Y using polymorphic and simple function types. The

equivalences are known as impredicative characterizations of falsity, conjunction,

and disjunction. Figure 4.1 gives normal proofs for the equivalences. The term

impredicative refers to the fact that quantification over all propositions is used.

The equivalences demonstrate that falsity, conjunction, and disjunction can be

defined only using dependent function types.

Exercise 4.2.1 Give proof diagrams for the impredicative characterizations.

Exercise 4.2.2 Find an impredicative characterisation for >.
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4.3 Predicates

⊥ ←→ ∀ZP. Z
C (λh.match h []) (λf . f⊥)

X ∧ Y ←→ ∀ZP. (X → Y → Z)→ Z
C (λhZf .match h [Cxy ⇒ fxy ]) (λf . f (X ∧ Y)CXY )

X ∨ Y ←→ ∀ZP. (X → Z)→ (Y → Z)→ Z
C (λhZfg.match h [ Lx ⇒ fx | Ry ⇒ gy ]) (λf . f (X ∨ Y) LXY RXY )

The subscripts give the implicit arguments of C, L, and R.

Figure 4.1: Normal proofs for impredicative characterizations

4.3 Predicates

A predicate is a function that after taking enough arguments yields a proposition.

Constructors that are predicates are called inductive predicates. The constructors

’∧’ and ’∨’ for conjunctions and disjunctions are examples for inductive predicates.

Note that the proof constructors for conjunctions and disjunctions are not predi-

cates since the yield proofs rather than propositions.

Let X and Y be types and p : X → Y → P be a predicate. We can prove the

equivalence

(∀x∀y.pxy) ←→ (∀y∀x.pxy)

formulating a swap law for universal quantifiers with the normal proof

C (λfyx.fxy) (λfxy.fyx)

Using universal quantification, we can internalize the types X and Y and the predi-

cate p:

∀XT∀YT∀pX→Y→P. (∀x∀y.pxy) ←→ (∀y∀x.pxy)

A normal proof now looks as follows:

λXYp. C (λfyx.fxy) (λfxy.fyx)

In fact, this proof is canonical since it is a closed and normal term.

Figure 4.2 shows a proof diagram for a double negation law for the universal

quantifier. We remark that the converse of the law cannot be shown.

Figure 4.3 shows a proof diagram for a quantifier law where a destructuring

action is used to obtain the right-to-left direction of an equivalence proof. This is

the first time a destructuring action is used in a proof diagram.
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4 Dependent Function Types

∀XT∀pX→P. ¬¬(∀x.px)→ ∀x.¬¬px intros

X :T, p :X → P
f :¬¬(∀x.px)
x :X, g :¬px ⊥ apply f

¬(∀x.px) intros

f ′ :∀x.px ⊥ g(f ′x)

Proof term: λXpfxg.f (λf ′.g(f ′x))

Figure 4.2: Proof diagram for a double negation law

∀XT∀pX→P∀qX→P.
(∀x.px ←→ qx)→ (∀x.qx)→ ∀x.px intros

X :T, p :X → P, q :X → P
f :∀x.px ←→ qx
g :∀x.qx
x :X px destruct fx
h :qx → px h(gx)

Proof term: λXpqfgx.match fx [C_h⇒ h(gx) ]

Figure 4.3: Proof diagram using a destructuring action

Exercise 4.3.1 Give a proof diagram and a canonical proof for the distribution law

∀XT∀pX→P∀qX→P. (∀x. px ∧ qx)←→ (∀x.px)∧ (∀x.qx).

Exercise 4.3.2 Find out which direction of the equivalence ∀XT∀ZP. (∀xX. Z) ←→
Z cannot be proved.

Exercise 4.3.3 Prove ∀XT∀pX→P∀ZP. (∀x.px)→ Z → ∀x. px ∧ Z .

Exercise 4.3.4 Give a proof of the proposition in Figure 4.3 using a projection

rather than a destructuring action.

4.4 Conversion Law

Recall computational equality of terms (Section 2.4). Computationally equal terms

describe the same value. In particular, computationally equal terms that describe

types describe the same type. This design is accommodated in the typing discipline

by a rule saying that a typing s : t is admitted if t is a term describing a type and

there is some computationally equal term t′ such that the typing s : t′ is admitted.

We refer to this basic principle of the typing discipline as the conversion law.
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4.4 Conversion Law

Using formal notation, we may write the conversion law as follows:

` s : t′ t ≈ t′ ` t : P or ` t : T

` s : t

The notation ` s : t says that the typing s : t is admitted, and the notation t ≈ t′
says that the terms t and t′ are computationally equal.

The conversion law is of particular importance for propositional types since it

ensures that provability interacts with computational equality as we would expect it

from the examples in Chapter 1. If we search for a proof of a proposition, the con-

version law makes it possible to switch to any computationally equal proposition.

Several such conversion steps can be found in the proof diagrams of Chapter 1,

where propositions take the form of equations.

The statements ` s : t (typing) and s ≈ t (computational equality) appearing in

the above rules are called judgements. Judgements are used to set up the govern-

ing type theory with its term-based notions of well-typedness and computational

equality. Judgements appear at the outside of the type theory and are different

from propositions appearing as propositional types inside the type theory.

We will see many examples for the use of the conversion law once we have intro-

duced propositional equality. As our first example, however, we consider a proposi-

tion known as Leibniz symmetry not yet involving propositional equality. Leibniz

symmetry for a type X and two inhabitants x :X and y :X is the proposition

(∀p. px → py)→ (∀p. py → px)

quantifying over predicates p : X → P. Informally, Leibniz symmetry says that

whenever a value y satisfies every property a value x satisfies, x also satisfies every

property y satisfies.

Figure 4.4 show a proof diagram for Leibniz symmetry involving two conversion

steps:

py → px ≈ (λz. pz → px)y
(λz. pz → px)x ≈ px → px

The proof term constructed is

λfp. f (λz. pz → px)(λh.h)

The two conversions are implicit in the proof term since they are admitted by the

conversion law of the typing discipline.
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X :T, x :X, y :X (∀p. px → py)→ (∀p. py → px) intros

f : ∀p. px → py
p : X → P py → px conversion

(λz. pz → px)y apply f
(λz. pz → px)x conversion

px → px λh.h

Proof term: λfp. f (λz. pz → px)(λh.h)

Figure 4.4: Proof diagram for Leibniz symmetry

4.5 Negation and Equivalence as Defined Constants

In Chapter 3, we have accommodated negation and equivalence as notations:

¬s := s → ⊥
s ←→ t := (s → t)∧ (t → s)

Now that we have the conversion law, we may also accommodate negation and

equivalence as defined constants:

¬ : P→ P := λX. X → ⊥
←→ : P→ P→ P := λXY . (X → Y)∧ (Y → X)

If we accommodate negation and equivalence as defined constants, as it is done

by Coq, it takes conversion steps to switch between ¬s and s → ⊥ or s ←→ t and

(s → t)∧ (t → s). The conversions steps will involve δ- and β-reductions. Since

conversion steps do not show up in proof terms, the proof terms stay unchanged

when we switch between the two representations of negation and equivalence.

4.6 Hierarchy of Universes

We have seen the universes P and T so far. Universes are types whose inhabitants

are types. The universe P of propositions is accommodated as a subuniverse of the

universe of types T, a design written as

P ⊆ T

and being realized with the typing rule

` t : P

` t : T
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4.7 Type Checking Rules Revisited

Types are first class objects in Coq’s type theory and first class objects always

have a type. So what are the types of P and T? Giving T the type T does not work

since this yields a proof of falsity (a nontrivial result). What works, however, is an

infinite cumulative hierarchy of universes:

T1 : T2 : T3 : · · ·
P ⊆ T1 ⊆ T2 ⊆ T3 ⊆ · · ·
P : T2

For dependent function types we have two closure rules

s : Ti t : P

∀x : s.t : P

s : Ti t : T1

∀x : s.t : Ti

The rule for P says that the universe of propositions is closed under all quantifi-

cations including big quantifications quantifying over the types of a universe. In

contrast, a dependent function type ∀x :Ti.t where t is not a proposition will not

be an inhabitant of the universe Ti it quantifies over.

The universe P is called impredicative since it is closed under big quantifica-

tions. The impredicative characterizations we have seen for falsity, conjunction,

disjunctions, and equality exploit this fact.

It is common practice to not give the universe level and just write T for all Ti as

we did so far. This is justified by the fact that the exact universe levels don’t matter

as long as they can be assigned consistently. Coq ensures during type checking that

universe levels can be assigned consistently.

Ordinary inductive types like B, N, N×N, and N→ N are placed in the lowest type

universe T1, which is called Set in Coq (a historical name, not related to mathemat-

ical sets).

4.7 Type Checking Rules Revisited

Since both simple function types and polymorphic function types are special cases

of dependent function types, we can simplify the type checking rules for abstrac-

tions and applications given in Section 3.8.

• A lambda abstraction λx :u.s has type ∀x :u.v if u is a type and s has type v
in a context where x has type u.

` u : T x :u ` s : v

` λx :u.s : ∀x :u.v
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4 Dependent Function Types

• An application st has type vxt if s has type ∀x :u.v and t has type u.

` s : ∀x :u.v ` t : u

` st : vxt

The type checking rule for matches we have used in this chapter is the one given

in Section 3.8. In the next chapter we will see a radical generalization of the typing

rule for matches making it possible to derive the rules for structural case analysis

and structural induction.
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5 Propositional Equality as Leibniz
Equality

We will now see that propositional equality can be defined following a scheme

known as Leibniz equality. It turns out that three typed constants suffice: One

constant accommodating equations s = t as propositions, one constant providing

canonical proofs for trivial equations s = s, and one constant providing for rewrit-

ing. It suffices to provide the constants as declared constants hiding their defini-

tions.

This chapter and the previous chapter introduce much of the technical essence

of dependent type theory. Students will need time to understand the material. On

the technical side, we see dependent function types, the conversion law, and ab-

straction by means of declared constants. On the applied side, we see the treatment

of propositional equality with declared constants and the concomitant Leibniz def-

inition. There is much elegance and surprise in this chapter.

5.1 Propositional Equality with Three Constants

With dependent function types and the conversion law at our disposal, we can

now show how the propositions as types approach can accommodate propositional

equality. It turns out that all we need are three typed constants:

eq : ∀XT. X → X → P

Q : ∀XT∀x. eqX xx

R : ∀XT∀xy∀pX→P. eqXxy → px → py

The constant eq allows us to write equations as propositional types. We treat X as

an implicit argument and write s = t for eq s t. The constants Q and R provide two

basic proof rules for equations. With Q we can prove every trivial equation s = s.
Given the conversion law, we can also prove with Q every equation s = t where s
and t are convertible. In other words, Q provides for proofs by computational

equality.

The constant R provides for equational rewriting: Given a proof of an equation

s = t, we can rewrite a claim pt to a claim ps. Moreover, we can get from an

assumption ps an additional assumption pt by asserting pt and rewriting to ps.
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5 Propositional Equality as Leibniz Equality

We refer to R as rewriting law, and to the argument p of R as rewriting pred-

icate. Moreover, we refer to the predicate eq as propositional equality or just

equality. We will treat X, x and y as implicit arguments of R and X as implicit

argument of eq and Q.

Exercise 5.1.1 Give a canonical proof for ! t = f. Make all implicit arguments ex-

plicit and explain which type checking rules are needed to establish that your proof

term has type ! t = f. Explain why the same proof term also proves f = ! ! f.

Exercise 5.1.2 Give a term where R is applied to 7 arguments. In fact, for every

number n there is a term that applies R to exactly n arguments.

Exercise 5.1.3 Suppose we want to rewrite a subterm u in a proposition t using the

rewriting law R. Then we need a rewrite predicate λx.s such that t and (λx.s)u
are convertible and s is obtained from t by replacing the occurrence of u with the

variable x. Let t be the proposition x +y + x = y .

a) Give a predicate for rewriting the first occurrence of x in t.

b) Give a predicate for rewriting the second occurrence of y in t.

c) Give a predicate for rewriting all occurrences of y in t.

d) Give a predicate for rewriting the term x +y in t.

e) Explain why the term y + x cannot be rewritten in t.

5.2 Basic Equational Facts

The constants Q and R give us straightforward proofs for many equational facts.

Figure 5.1 shows a collection of basic equational facts, and Figure 5.2 gives proof

diagrams and the resulting proof terms for some of them.

Note that the proof diagrams in Figure 5.2 all follow the same scheme: First

comes a step introducing assumptions, then a conversion step making the rewriting

predicate explicit, then the rewriting step as application of R, then a conversion step

simplifying the claim, and then the final step proving the simplified claim.

We now understand how the basic proof steps “rewriting” and “proof by compu-

tational equality” used in the diagrams in Chapter 1 are realized in the propositions

as types approach.

Exercise 5.2.1 Give proof diagrams and proof terms for the following propositions:

a) ∀xN. 0 ≠ Sx

b) ∀XT YT fX→y xy. x = y → fx = fy
c) ∀XT xX yX . x = y → y = x
d) ∀XT YT fX→Y gX→Y x. f = g → fx = gx
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> ≠ ⊥ propositional disjointness

t ≠ f boolean disjointness

∀xN. 0 ≠ Sx disjointness of 0 and S

∀xNyN. Sx = Sy → x = y injectivity of successor

∀XT YT fX→Y xy. x = y → fx = fy applicative closure

∀XT xX yX . x = y → y = x symmetry

∀XT xX yX zX . x = y → y = z → x = z transitivity

Figure 5.1: Basic equational facts

Exercise 5.2.2 Prove that the pair constructor is injective:

pairxy = pairx′y ′ → x = x′ ∧y = y ′.

Exercise 5.2.3 Prove the converse rewriting law

∀XT∀xy∀pX→P. eqXxy → py → px.

Exercise 5.2.4 Verify the impredicative characterization of equality:

x = y ←→ ∀pX→P. px → py

Using Leibniz symmetry from Section 4.4, we may rewrite the equivalence to the

equivalence

x = y ←→ ∀pX→P. px ←→ py

known as Leibniz characterization of equality. Leibniz’s characterization of equal-

ity may be phrased as saying that two objects are equal if and only if they satisfy

the same properties.

The impredicative characterizations matter since they specify conjunction, dis-

junction, falsity, truth, and propositional equality prior to their definition. The im-

predicative characterizations may or may not be taken as definitions. Coq chooses

inductive definitions since in each case the inductive definition provides additional

benefits.

5.3 Declared Constants

To accommodate propositional equality, we assumed three constants eq, Q, and R.

Assuming constants without justification is something one does not do in type the-

ory. For instance, if we assume a constant of type ⊥, we can prove everything (ex

falso quodlibet) and our carefully constructed logical system collapses.
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> ≠ ⊥ intros

H : > = ⊥ ⊥ conversion

(λXP.X)⊥ apply R _H
(λXP.X)> conversion

> I

Proof term: λH. R (λXP.X)H I

t ≠ f intros

H : t = f ⊥ conversion

(λxB. match x [t⇒ > | f⇒ ⊥ ])f apply R _H
(λxB. match x [t⇒ > | f⇒ ⊥ ])t conversion

> I

Proof term: λH. R (λxB. match x [t⇒>|f⇒⊥ ])H I

x : N, y : N Sx = Sy → x = y intros

H : Sx = Sy x = y conversion

(λz. x = match z [0⇒ 0 | Sz′ ⇒ z′]) (Sy) apply R _H
(λz. x = match z [0⇒ 0 | Sz′ ⇒ z′]) (Sx) conversion

x = x Qx

Proof term: λxyH. R (λz. x=match z [0⇒0|Sz′⇒z′])H (Qx)

X :T, x :X, y :X x = y → y = z → x = z intros

H : x = y y = z → x = z conversion

(λa. a = z → x = z)y apply R _H
(λa. a = z → x = z)x conversion

x = z → x = z λh.h

Proof term: λxyH. R (λa. a=z→x=z)H (λh.h)

Figure 5.2: Proofs of basic equational facts
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One solid justification we can have for a constant is that it was introduced as

a constructor by an inductive definition. Inductive definitions can only be formed

observing certain conditions ensuring that nothing bad can happen (i.e., a proof of

falsity).

Another solid justification we can have for a group of constants is that we can

define the constants with plain definitions. This way we know that any proof using

the constants can also be done without the constants. Thus no proof of falsity can

be introduced by the constants.

Here are plain definitions justifying the constants for propositional equality:

eq : ∀XT. X → X → P

:= λXxy. ∀pX→P. px → py
Q : ∀XT∀x. eqX xx

:= λXxph.h

R : ∀XT∀xy∀pX→P. eqXxy → px → py
:= λXxypf . fp

The definitions are amazingly simply. Check them by hand and with Coq. The idea

for the definitions comes from the Leibniz characterization of equality we have seen

in Exercise 5.2.4.

The above definition of equality is known as Leibniz equality. Coq uses another

definition of equality based on an inductive definition following a scheme we will

introduce later.

Note that for the equational reasoning done so far we completely ignored the

definitions of the typed constants eq, Q, and R. This demonstrates an abstractness

property of logical reasoning that appears as a general phenomenon.

It will often be useful to declare typed constants and hide their justifications.

We speak of declared constants. In particular all lemmas and theorems1 will be ac-

commodated as declared constants. This makes explicit that when we use a lemma

we don’t need its proof but just its representation as a typed constant.

Conjunctions and disjunctions can also be accommodated with declared con-

stants. Figure shows the constants needed for conjunctions and disjunctions. We

distinguish between constructors and eliminators. The constructors are obtained

directly with the inductive definitions we have seen for conjunction and disjunc-

tions. The eliminators can be defined with matches for the respective inductive

1Whether we say theorem, lemma, corollary, or fact is a matter of style and doesn’t make a formal
difference. We shall use theorem as generic name (as in interactive theorem proving). As it comes
to style, a lemma is a technical theorem needed for proving other theorems, a corollary is a con-
sequence of a major theorem, and a fact is a straightforward theorem to be used tacitly in further
proofs. If we call a result theorem, we want to emphasize its importance.

47



5 Propositional Equality as Leibniz Equality

∧ : P→ P→ P

C : ∀XPYP. X → Y → X ∧ Y
E∧ : ∀XPYPZP. X ∧ Y → (X → Y → Z)→ Z

∨ : P→ P→ P

L : ∀XPYP. X → X ∨ Y
R : ∀XPYP. Y → X ∨ Y

E∨ : ∀XPYPZP. X ∨ Y → (X → Z)→ (Y → Z)→ Z

Figure 5.3: Constructors and eliminators for conjunctions and disjunctions

predicates. As it comes to proofs, it suffices to have the eliminators as declared

constants. As declared constants, the eliminators provide the constructions com-

ing with matches but hide the accompanying reductions.

Note that the types of the eliminators E∧ and E∨ are closely related to the im-

predicative characterizations of conjunction and disjunction (Section 4.2).

If we look at the constants for equality, we can identify eq and Q as constructors

and R as eliminator.

Exercise 5.3.1 Define the eliminators for conjunction and disjunction based on the

inductive definitions of conjunction and disjunction.

Exercise 5.3.2 Define the constructors and eliminators for conjunction and dis-

junction using their impredicative definitions. Do not use the inductive definitions.

Exercise 5.3.3 Prove commutativity of conjunction and disjunction just using the

constructors and eliminators.

Exercise 5.3.4 Assume two sets ∧, C, E∧ and ∧′, C′, E∧′ of constants for conjunc-

tions. Prove X ∧ Y ←→ X ∧′ Y . Do the same for disjunction and propositional

equality. We may say that the constructors and eliminators for a propositional con-

struct characterize the propositional construct up to logical equivalence.
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6 Inductive Elimination

Dependent function types and the conversion law make it possible to derive the

proof rules for structural case analysis and structural induction we have used in

Chapter 1. The surprisingly straightforward derivations are the final step in boot-

strapping the proof techniques used in Chapter 1 from a type-theoretic kernel lan-

guage.

For inductive types we can define functions called eliminators that through their

types provide the proof rules for case analysis and induction, and that through

their defining equations provide expressive schemes for defining functions on the

underlying inductive types.

The structural case analysis in the definition of eliminators is often depen-

dently typed using return type functions. Return type functions also appear as

constituents of the corresponding matches.

We will also look at eliminators for inductive predicates. Here we will encounter

the elim restriction, which constrains structural cases analysis on proofs such that

proofs must be returned. We will touch upon special inductive predicates called

transfer predicates, which are exempted from the elim restriction.

We will see proofs for three prominent problems: Kaminski’s equation, decid-

ability of equality of numbers, and disequality of the types N and B.

6.1 Boolean Elimination

Recall the inductive type of booleans from § 1.1 :

B ::= t | f

We can define a single function that can express all boolean case analysis we need

for definitions and proofs. We call this function boolean eliminator and define it as

follows:

EB : ∀pB→T. p t→ p f→ ∀x.px
EB pab t := a : p t

EB pab f := b : p f

First look at the type of EB. It says that we can prove ∀x.px by proving p t and p f.

This amounts to a general boolean case analysis since we can choose the return
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∀x. x = t∨ x = f conversion

∀x. (λx. x = t∨ x = f)x apply EB

1 (λx. x = t∨ x = f)t conversion

t = t∨ t = f trivial

2 (λx. x = t∨ x = f)f conversion

f = t∨ f = f trivial

Figure 6.1: Proof diagram for a boolean elimination

type function p freely. We have seen the use of a general return type function

before with the replacement constant for propositional equality.

Note that the type of p is B → T. Since P is a subuniverse of T (write P ⊆ T),

B → P is a subuniverse of B → T (write (B → P) ⊆ (B → T)). Thus we can use the

boolean eliminator for proofs where p is a predicate B→ P.

Now look at the defining equations of EB. They are well-typed since the patterns

EB pab t and EB pab f on the left do have the types p t and p f, which they also give

to the variables a and b, respectively.

First example

Suppose we want to prove

∀x. x = t∨ x = f

Then we can use the boolean eliminator and obtain the partial proof term

EB (λx. x = t∨ x = f) [t = t∨ t = f\ [f = t∨ f = f\

which poses the subgoals [t = t∨t = f\ and [f = t∨f = f\. Note that the subgoals

are obtained with conversion. We now use the proof terms L(Q t) and R(Q f) for

the subgoals and obtain the complete proof term

EB (λx. x = t∨ x = f) (L(Q t)) (R(Q f))

Figure 6.1 shows a proof diagram for the above proof term. The diagram makes

explicit the various conversions involving the return type function. That we can

model all boolean case analysis with a single eliminator crucially depends on the

fact that type checking builds in (through the conversion rule) the conversions han-

dling return type functions.
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Second example

Here is a more challenging fact known as Kaminski’s equation1 that can be shown

with boolean elimination:

∀f B→B∀x. f(f(fx)) = fx

Obviously, a boolean case analysis on just x does not suffice for a proof. What we

need in addition is boolean case analysis on the terms f t and f f. To make this

possible, we prove the equivalent claim

∀xyz. f t = y → f f = z → f(f(fx)) = fx

by boolean case analysis on x, y , and z. This gives us 8 subgoals, all of which have

straightforward equational proofs. Here is the subgoal for x = f, y = f, and z = t :

f t = f → f f = t = → f(f(f f)) = f f

Matches with return type functions

In Coq, the equational definition of EB must be carried out with a dependently typed

match carrying a return type function:

EB := λpabx. match x ↑ p [t⇒ a | f⇒ b ]

The return type function p is necessary since the two clauses of the match yield

different types (p t and p f), which are again different from the return type (px) of

the match. A simply typed match is a match whose clauses all yield the return type

of the match. A simply typed match may be seen as a match with a constant return

type function.

We have

EB pabx ≈ match x ↑ p [t⇒ a | f⇒ b ]

Thus a boolean match can be seen as an application of the boolean eliminator.

We recommend taking the view that the eliminator EB is equationally defined and

that boolean matches are a notational convenience for applications of the boolean

eliminator. We don’t like Coq’s design decision to provide primitive matches rather

than native inductive function definitions with defining equations.

Exercise 6.1.1 Define boolean negation and boolean conjunction with the boolean

eliminator.

1The equation was brought up as a proof challenge by Mark Kaminski in 2005 when he wrote his
Bachelor’s thesis on a calculus for classical higher-order logic.
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6 Inductive Elimination

Exercise 6.1.2 For each of the following propositions give a proof term applying

the boolean eliminator.

a) ∀pB→P∀x. (x = t→ pt)→ (x = f→ pf)→ px.

b) ∀pB→P. (∀xy. y = x → px)→ ∀x.px.

c) x & y = t ←→ x = t∧y = t.

d) x | y = f ←→ x = f∧y = f.

6.2 Elimination for Numbers

Recall the inductive type of numbers from § 1.2 :

N ::= 0 | S(N)

Match eliminator for numbers

Suppose we have a constant

MN : ∀pN→T. p0→ (∀n.p(Sn))→ ∀n.pn

Then we can use MN to do case analysis on numbers in proofs: To prove ∀n.pn, we

prove a base case p0 and a successor case ∀n.p(Sn). Once we add the reduction

rules

MN paf 0 � a

MN paf(Sn) � fn

we obtain the full power of matches:

MN pafn ≈ match n ↑ p [0⇒ a | Sn⇒ fn]

Note that the match is given with a return type function p. The return type function

is needed so that the match can be type checked. Matches for numbers are type

checked following the scheme given by the type of MN.

Here is the equational definition of MN :

MN : ∀pN→T. p0→ (∀n.p(Sn))→ ∀n.pn
MN paf 0 := a : p0

MN paf(Sn) := fn : p(Sn)

The types of the defining equations as they are determined by type checking their

patterns are annotated on the right.
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6.2 Elimination for Numbers

Recursive eliminator for numbers

Look at the type of the match eliminator for numbers:

MN : ∀pN→T. p0→ (∀n.p(Sn))→ ∀n.pn

The type gives us the structure we need for structural induction on numbers except

that the inductive hypothesis is missing. Our informal understanding of inductive

proofs suggests that we add the inductive hypothesis as implicational premise to

the successor clause:

EN : ∀pN→T. p0→ (∀n. pn→ p(Sn))→ ∀n.pn

There are two questions now: Can we define a recursive eliminator EN with the

given type, and does the type of EN really suffice to do proofs by structural induc-

tion?

The definition of EN is pleasantly straightforward: We take the defining equa-

tions for MN and obtain the additional argument for the inductive hypothesis of the

continuation function f in the successor case with structural recursion:

EN : ∀pN→T. p0→ (∀n. pn→ p(Sn))→ ∀n.pn
EN paf 0 := a : p0

EN paf(Sn) := f n(EN pafn) : p(Sn)

The type of EN clarifies many aspects of informal inductive proofs. For instance,

the type of EN makes clear that the variable n in the initial claim ∀n.pn is different

from the variable n in the successor case ∀n. pn → p(Sn). However, it makes

sense to use the same name for both variables since this makes the inductive hy-

pothesis pn agree with the initial claim.

First example

We can now do inductive proofs completely formally. As first example we consider

the fact

∀x. x + 0 = x

We do the proof by induction on n, which amounts to an application of the elimi-

nator EN :

EN (λx. x + 0 = x) [0+ 0 = 0\ [∀x. x + 0 = x → Sx + 0 = Sx\

The partial proof term leaves two subgoals known as base case and successor case.

Both subgoals have straightforward proofs. Note how the inductive hypothesis ap-

pears as am implicational premise in the successor case. Figure 6.2 shows a proof

diagram for a proof term completing the partial proof term obtained with EN.
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x + 0 = x conversion

(λx. x + 0 = x)x apply EN

1 (λx. x + 0 = x)0 conversion

0 = 0 comp. equality

2 ∀x. (λx. x + 0 = x)x → (λx. x + 0 = x)(Sx) conversion

∀x. x + 0 = x → Sx + 0 = Sx intros

IH :x + 0 = x Sx + 0 = Sx conversion

S(x + 0) = Sx rewrite IH

Sx = Sx comp. equality

Proof term: EN (λx.x + 0 = x) (Q 0) (λxh. R′ (λz.Sz = Sx)h(Q(Sx)))x

Figure 6.2: Proof diagram for x + 0 = x

Second example

Our second example

∀xNyN. x = y ∨ x ≠ y

says that equality of numbers is logically decidable. To prove this claim we need

induction on x and case analysis on y . Moreover, it is essential that y is quantified

in the inductive hypothesis. We start with the partial proof term

EN (λx. ∀y. x = y ∨ x ≠ y)
[∀y. 0 = y ∨ 0 ≠ y\

[∀x. (∀y. x = y ∨ x ≠ y)→ ∀y. Sx = y ∨ Sx ≠ y\

The base case follows with case analysis on y :

MN (λy. 0 = y ∨ 0 ≠ y)

[0 = 0∨ 0 ≠ 0\

[∀y. 0 = Sy ∨ 0 ≠ Sy\

The first subgoal is trivial, and the second subgoal follows with constructor dis-

jointness. The successor case also needs case analysis on y :

λxh∀y. x=y∨x≠y . MN (λy. x = y ∨ x ≠ y)
[Sx = 0∨ Sx ≠ 0\

[∀y. Sx = Sy ∨ Sx ≠ Sy\

The first subgoal follows with constructor disjointness. The second subgoal follows

with the instantiated inductive hypothesis hy and injectivity of S.

Figure 6.3 shows a proof diagram for the partial proof term developed above.
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6.2 Elimination for Numbers

∀xNyN. x = y ∨ x ≠ y apply EN, intros

1 0 = y ∨ 0 ≠ y destruct y
1.1 0 = 0∨ 0 ≠ 0 trivial

1.2 0 = Sy ∨ 0 ≠ Sy trivial

2 IH: ∀yN. x = y ∨ x ≠ y Sx = y ∨ Sx = y destruct y
2.1 Sx = 0∨ Sx ≠ 0 trivial

2.2 Sx = Sy ∨ Sx ≠ Sy destruct (IHy)
2.2.1 H: x = y Sx = Sy rewrite H, trivial

2.2.2 H: x ≠ y Sx ≠ Sy intros, apply H

H1: Sx = Sy x = y injectivity

Figure 6.3: Proof diagram with a quantified inductive hypothesis

We have described to above proof with much formal detail. This was done so

that the reader understands that inductive proofs can be formalized with only a

few basic type-theoretic principles. If we do the proof with a proof assistant, a fully

formal proof is constructed but most of the details are taken care of by automation.

If we want to document the proof informally for a human reader, we may just write

something like the following:

The claim follows by induction on x and case analysis on y , where y is quanti-

fied in the inductive hypothesis and disjointness and injectivity of the construc-

tors 0 and S are used.

Exercise 6.2.1 Define MN with EN.

Exercise 6.2.2 Define a function A : N → N → N for addition using EN and prove

Axy = x +y using EN.

Exercise 6.2.3 Define a function M : N→ N→ N for truncating subtraction using EN

and MN. Prove Mxy = x −y using EN and MN.

Exercise 6.2.4 Prove the following propositions in Coq using EN and MN.

a) Sn ≠ n.

b) n+ Sk ≠ n.

c) x +y = x + z → y = z (addition is injective in its 2nd argument)

Also write high-level proof diagrams in the style of Chapter 1.

Exercise 6.2.5 (Boolean equality decider for numbers)

Write a function eqN : N→ N→ B such that ∀xy. x = y ←→ eqN xy = t.

Prove the equivalence.
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6.3 Eliminator for Pairs

Following the scheme we have seen for booleans and numbers, we can define an

eliminator for pairs (Section 1.6):

E× : ∀XTYT∀pX×Y→T. (∀xy. p(x,y))→ ∀a.pa
E×XYpf (x,y) := fxy

Exercise 6.3.1 Prove the following facts for pairs a :X × Y using the eliminator E×:

a) (π1a,π2a) = a .

b) swap(swap a).

Exercise 6.3.2 Use E× to write terms that are computationally equal to π1, π2, and

swap (see Section 1.6).

Exercise 6.3.3 By now you know enough to do all proofs of Chapter 1 with proof

terms. Do some of the proofs in Coq without using the tactics for destructuring and

induction. Use the eliminators you have seen in this chapter instead.

6.4 Elim Restriction and Transfer Predicates

A structural case analysis on the proofs of a proposition obtained with an inductive

predicate is restricted to yield a proof, except the inductive predicate is a so-called

transfer predicate. We refer to this important feature of Coq’s type theory as elim

restriction. There are important reasons for imposing the elim restriction that we

will explain later.

A transfer predicate is an inductive predicate that has either no proof construc-

tor, or has a single proof constructor having the additional property that all its

non-parametric arguments are proofs. We will see in later chapters that transfer

predicates provide essential features in Coq’s type theory.

We may define eliminators for the transfer predicates ⊥ and > as follows:

E⊥ : ∀ZT. ⊥ → Z

E> : ∀p>→T. p I→ ∀x.px
E> pa I := a : p I

Note that there is no defining equation for E⊥ since ⊥ has no proof constructor.

Also note that T would have to be replaced by P in the types of E⊥ and E> if the elim

restriction would apply to ⊥ and >.
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For the inductive predicates conjunction and disjunction we define the following

eliminators:

E∧ : ∀ZT. (X → Y → Z)→ X ∧ Y → Z
E∧ Zf (Cxy) := fxy

E∨ : ∀ZP. (X → Z)→ (Y → Z)→ X ∨ Y → Z
E∨ Zfg (Lx) := fx

E∨ Zfg (Ry) := gy

Note that Z can be any type in the type of E∧, but is restricted to propositions in

the type of E∨. This is because ∧ is a transfer predicate but ∨ is not.

It is common language to refer to a structural case analysis as an elimination.

We speak of a computational elimination if the result of the elimination is not a

proof, and of a propositional elimination if the result of the elimination is a proof.

The elim restriction is a device that disallows computational eliminations for

most inductive predicates. Computational eliminations on transfer predicates with

a single proof constructor are often referred to as singleton eliminations. There is

the intuition that singleton eliminations are admissible since they don’t leak equal-

ity of proofs to equality of non-proofs.

The elim restriction is the price we pay so that assuming the law of excluded

middle ∀XP. X ∨ ¬X does not enable a proof of falsity and thus remains logically

meaningful. We will see in a later chapter that propositions have at most one proof

(under propositional equality) if the law of excluded middle is assumed. We remark

that even without the law of excluded middle the impredicativity of the universe P
of propositions would enable a proof of falsity. We may say that we get the impred-

icativity of P as a free extra once we impose the elim restriction.

In Chapter 3 we have seen many propositional eliminations for ⊥, ∧, and ∨.

The matches used there were all simply typed and relate to the eliminators E⊥, E∧,

and E∨ as follows:

E⊥ Zh ≈ match h []

E∧ Zfh ≈ match h [Cxy ⇒ fxy ]
E∨ Zfgh ≈ match h [ Lx ⇒ fx | Ry ⇒ gy ]

Exercise 6.4.1 Prove ∀x>∀y>. x = y using E>.

Exercise 6.4.2 Define an eliminator ∀XPYP∀pX∧Y→T. (∀xy. p(Cxy)) → ∀a.pa
for conjunction.
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6 Inductive Elimination

6.5 Disequality of Types

Informally, the types N and B of booleans and numbers are different since they have

different cardinality: While there are infinitely many numbers, there are only two

booleans. But can we show in the logical system we have arrived at that the types N

and B are not equal?

Since B and N both have type T1, we can write the propositions N = B and N ≠ B.

So the question is whether we can prove N ≠ B. From Exercise 8.1.3 we know (using

symmetry of equality) that it suffices to give a predicate p such that we can prove

p B and ¬pN. We choose the predicate

λXT.∀xXyXzX . x = y ∨ x = z ∨y = z

saying that a type has at most two elements. With boolean case analysis on the

variables x, y , z we can show that the property holds for B. Moreover, with x = 0,

y = 1, and z = 2 we get the proposition

0 = 1∨ 0 = 2∨ 1 = 2

which can be disproved with disjunctive elimination and disjointness and injectivity

of 0 and S.

Fact 6.5.1 N ≠ B.

On paper, it doesn’t make sense to work out the proof in more detail since this

involves a lot of writing and routine verification. With Coq, however, doing the com-

plete proof is quite rewarding since the writing and the tedious details are taken

care of by the system. When we do the proof with Coq we can see that the tech-

niques introduced so far smoothly scale to more involved proofs.

Exercise 6.5.2 Prove B ≠ > and B ≠ B× B.

Exercise 6.5.3 Prove B ≠ T .

Exercise 6.5.4 Note that one cannot prove B ≠ B×> since one cannot give a predi-

cate that distinguishes the two types. Neither can one prove B = B×>.

6.6 Abstract Return Types

Eliminators have abstract return types providing great flexibility. Two typical exam-

ples are

E⊥ : ∀ZT. ⊥ → Z
EB : ∀pB→T. p t→ p f→ ∀x.px
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6.6 Abstract Return Types

The point is that Z and px may be arbitrary types. This means in particular that

eliminators are functions that are polymorphic in the number of their arguments.

For instance:

E⊥N : ⊥ → N

E⊥ (N→ N) : ⊥ → N→ N

E⊥ (N→ N→ N) : ⊥ → N→ N→ N
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7 Case Study: Pairing Function

Cantor discovered that numbers are in bijection with pairs of numbers. Cantor’s

proof rests on a counting scheme where pairs appear as points in the plane. Based

on Cantors scheme, we realize the bijection between numbers and pairs with two

functions inverting each other. We obtain an elegant formal development using only

a few basic facts about numbers.

7.1 Definitions

We will construct and verify two functions

E : N× N→ N encode

D : N→ N× N decode

that invert each other: D(E(x,y)) = (x,y) and E(Dn)) = n. The functions are

based on the counting scheme for pairs shown in Figure 7.1. The pairs appear as

points in the plane following the usual coordinate representation. Counting starts

at the origin (0,0) and follows the diagonals from right to left:

(0,0) 1st diagonal 0

(1,0), (0,1) 2nd diagonal 1,2

(2,0), (1,1), (0,2) 3rd diagonal 3,4,5

Assuming a function

η : N× N→ N× N

that for every pair yields its successor on the diagonal walk described by the count-

ing scheme, we define the decoding function D as follows:

D(n) := ηn(0,0)

The definition of the successor function η for pairs is also straightforward:

η(0, y) := (Sy,0)

η(Sx,y) := (x, Sy)
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y
...

5 20

4 14 19

3 9 13 18

2 5 8 12 17

1 2 4 7 11 16

0 0 1 3 6 10 15 · · ·
0 1 2 3 4 5 x

Figure 7.1: Counting scheme for pairs of numbers

We now come to the definition of the encoding function E. We first observe that

all pairs (x,y) on a diagonal have the same sum x + y , and that the length of the

nth diagonal is n. We start with the equation

E(x,y) := σ(x +y)+y

where σ(x +y) is the first number on the diagonal x +y . We now observe that

σn = 0+ 1+ 2+ · · · +n

Thus we define σ recursively as follows:

σ(0) := 0

σ(Sn) := Sn+ σn

We remark that σn is known as Gaussian sum.

7.2 Proofs

We start with a useful equation saying that under the encoding function successors

of pairs agree with successors of numbers.

Fact 7.2.1 (Successor equation) E(ηc) = S(Ec) for all pairs c.

Proof Case analysis on c = (0, y), (Sx,y) and straightforward arithmetic. �

Fact 7.2.2 E(Dn) = n for all numbers n.

Proof By induction on n using Fact 7.2.1 for the successor case. �

Fact 7.2.3 D(Ec) = c for all pairs c.
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7.3 Discussion

Proof Given the recursive definition of D and E, we need to do an inductive proof.

The idea is to do induction on the number Ec. Formally, we prove the proposition

∀c. Ec = n → Dn = c

by induction on n.

For n = 0 the premise gives us c = (0,0) making the conclusion trivial.

For the successor case we prove

Ec = Sn → D(Sn) = c

We consider three cases: c = (0,0), (Sx,0), (x, Sy). The case c = (0,0) is trivial

since the premise is contradictory. The second and third case are similar. We show

the third case

E(x, Sy) = Sn → D(Sn) = (x, Sy)

We have η(Sx,y) = (x, Sy), hence using Fact 7.2.1 and the definition ofD it suffices

to show

S(E(Sx,y)) = Sn → η(Dn) = η(Sx,y)

The premise yields E(Sx,y) = n, thus Dn = (Sx,y) by the inductive hypothesis. �

Exercise 7.2.4 A bijection between two types X and Y consists of two functions

f : X → Y and g : Y → X such that ∀x. g(fx) = x and ∀y. f(gy) = y .

a) Give and verify a bijection between N and (N× N)× N.

b) Prove that there is no bijection between B and >.

7.3 Discussion

Technically, the most intriguing point of the development is the implicational in-

ductive lemma used in the proof of Fact 7.2.3 and the accompanying insertion of

η-applications (idea due to Andrej Dudenhefner, March 2020). Realizing the de-

velopment with Coq is pleasant, with the exception of the proof of the successor

equation (Fact 7.2.1), where Coq’s otherwise powerful tactic for linear arithmetic

fails since it cannot look into the recursive definition of σ .

What I like about the development of the pairing function is the interesting in-

terplay between geometric speak (e.g., diagonals) and formal definitions and proofs.

Their is great elegance at all levels. Cantor’s pairing function is a great example for

an educated Programming 1 course addressing functional programming and pro-

gram verification.

It is interesting to look up Cantor’s pairing function in the mathematical liter-

ature and in Wikipedia, where the computational aspects of the construction are
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ignored as much as possible. There one typically starts with the encoding function

and uses the Gaussian sum formula to avoid the recursion. Then injectivity and

surjectivity of the encoding function are shown, which non-constructively yields the

existence of the decoding function. The simple recursive definition of the decoding

function does not appear.
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8 Existential Quantification

An existential quantification ∃x :X.px says that there is a value of type X satisfying

the predicate p. As normal proofs of ∃x :X.px we take all pairs consisting of a

term s of type X and a proof of the proposition ps. This design can be captured

with an inductive predicate

ex : ∀XT. (X → P)→ P

and the notation

∃x : t. s := ex t (λxt. s)

The normal proofs of existential quantifications are obtained with a single proof

constructor

E : ∀XT∀pX→P∀xX . px → exX p

In this chapter we will prove two basic logical facts involving existential quan-

tification known as Barber theorem (a non-existence theorem) and Lawvere’s fixed

point theorem (an existence theorem). From Lawvere’s theorem we will obtain a

type-theoretic variant of Cantor’s theorem (no surjection from a set to its power

set).

Given the type theoretic foundation built up so far, the representation of ex-

istential quantifications with an inductive predicate is straightforward. Essential

ingredients are dependent function types, the conversion law, and lambda abstrac-

tions.

8.1 Inductive Definition and Basic Facts

Following the design laid out above, we accommodate existential quantification with

the inductive definition

ex (X : T, p : X → P) : P ::= E (x : X, px)

providing the constructors

ex : ∀XT. (X → P)→ P

E : ∀XT∀pX→P∀xX . px → exX p
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8 Existential Quantification

X :T, p :X → P ¬(∃x.px)←→ ∀x.¬px apply C

1 ¬(∃x.px)→ ∀x.¬px intros

f :¬(∃x.px), x :X, a :px ⊥ apply f
∃x.px η-conversion

exp Exa
2 (∀x.¬px)→ ¬(∃x.px) intros

f :∀x.¬px, x :X, a :px ⊥ fxa

Proof term: C (λfxa.f (Epxa)) (λfh.match h [ Exa⇒ fxa])

Figure 8.1: Proof of existential de Morgan law

We treat X as implicit argument of ex and X and p as implicit arguments of E, and

use the familiar notation

∃x.s := ex (λx.s)

Note that the abstraction λx.s ensures that x is a local variable visible only in the

term s. Given a proof E su, we call s the witness of the proof.

Note that the elim restriction applies to the inductive predicate ex since the

witness argument x : X of the proof constructor E is not a proof. Thus, we cannot

extract the witness from a proof of ∃x.s in a computational context. We define

an eliminator for existential quantification that suffices for all eliminations in this

chapter:

E∃ : ∀XT∀qX→P∀ZP. (∀x. qx → Z)→ exq → Z
E∃XqZf (Exh) := fxh

Figure 8.1 shows a proof diagram and the constructed proof term for a de

Morgan law for existential quantification. Note the use of an η-conversion step

(λx.px) ≈ p in the direction from left to right. Also note that the proof construc-

tor E is used for construction in the left-to-right direction and for elimination in the

right-to-left direction (in the pattern of a match).

Exercise 8.1.1 Prove the following propositions with proof diagrams and give the

resulting proof terms. Make all conversion steps explicit in the proof diagram.

a) (∃x∃y. pxy)→ ∃y∃x. pxy .

b) (∃x. px ∨ qx) ←→ (∃x.px)∨ (∃x.qx).
c) (∃x.px)→ ¬∀x.¬px.

d) ((∃x.px)→ Z) ←→ ∀x. px → Z .

e) ¬¬(∃x.px) ←→ ¬∀x.¬px.

f) (∃x.¬¬px) → ¬¬∃x.px.
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Exercise 8.1.2 Prove ∀XP. X ←→ ∃x :X.>.

Exercise 8.1.3 Verify the following existential characterization of disequality:

x ≠ y ←→ ∃p. px ∧¬py

Exercise 8.1.4 Verify the impredicative characterization of existential quantifica-

tion:

(∃x.px)←→ ∀ZP. (∀x. px → Z)→ Z

Exercise 8.1.5 Declare an eliminator E∃ for existential quantification that can re-

place the use of existential matches in proofs. Note that the type of the eliminator

is essentially the left-to-right direction of the impredicative characterization.

Exercise 8.1.6 Universal and existential quantification are compatible with propo-

sitional equivalence. Prove the following compatibility laws:

(∀x. px ←→ qx)→ (∀x.px)←→ (∀x.qx)
(∀x. px ←→ qx)→ (∃x.px)←→ (∃x.qx)

Exercise 8.1.7 Prove ∀XT∀pX→P∀ZP. (∃x.px)∧ Z ←→ ∃x. px ∧ Z .

8.2 Barber Theorem

Proofs of nonexistence are sometimes mystified and then attract a lot of attention.

Here are two famous examples:

1. Russell: There is no set containing exactly those sets that do not contain them-

selves: ¬∃x∀y. y ∈ x ←→ y ∉ y .

2. Turing: There is no Turing machine that halts exactly on the codes of those

Turing machines that don’t halt on their own code: ¬∃x∀y. Hxy ←→ ¬Hyy .

Here H is a predicate that applies to codes of Turing machines such that Hxy
says that Turing machine x halts on Turing machine y .

It turns out that both results are trivial consequences of a straightforward logical

fact known as barber theorem.

Fact 8.2.1 (Barber Theorem) Let X be a type and p be a binary predicate on X.

Then ¬∃x∀y. pxy ←→ ¬pyy .

Proof Suppose there is an x such that ∀y. pxy ←→ ¬pyy . Then pxx ←→ ¬pxx.

Contradiction by Russell’s law ¬(X ←→ ¬X) shown in Section 3.6. �

The barber theorem is related to a logical puzzle known as barber paradox.

Search the web to find out more.

Exercise 8.2.2 Give a proof diagram and a proof term for the barber theorem. Con-

struct a detailed proof with Coq.
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8 Existential Quantification

8.3 Lawvere’s Fixed Point Theorem

Another famous non-existence theorem is Cantor’s theorem. Cantor’s theorem says

that there is no surjection from a set into its power set. If we analyse the situation

in type theory, we find a proof that for no type X there is a surjective function

X → (X → B). If for X we take the type of numbers, the result says that the function

type N → B is uncountable. It turns out that in type theory facts like these are best

obtained as consequences of a general logical fact known as Lawvere’s fixed point

theorem.

A fixed point of a function f : X → X is an x such that fx = x.

Fact 8.3.1 Boolean negation has no fixed point.

Proof Consider !x = x and derive a contradiction with boolean case analysis on x.�

Fact 8.3.2 Propositional negation λP.¬P has no fixed point.

Proof Suppose ¬P = P . Then ¬P ←→ P . Contradiction with Russell’s law. �

A function f : X → Y is surjective if ∀y∃x. fx = y .

Theorem 8.3.3 (Lawvere) Suppose there exists a surjective function X → (X → Y).
Then every function Y → Y has a fixed point.

Proof Let f : X → (X → Y) be surjective and g : Y → Y . Then fa = λx.g(fxx) for

some a. We have faa = g(faa) by rewriting and conversion. �

Corollary 8.3.4 There is no surjective function X → (X → B).

Proof Boolean negation doesn’t have a fixed point. �

Corollary 8.3.5 There is no surjective function X → (X → P).

Proof Propositional negation doesn’t have a fixed point. �

We remark that Corollaries 8.3.4 and 8.3.5 may be seen as variants of Cantor’s

theorem.

Exercise 8.3.6 Construct with Coq detailed proofs of the results in this section.

Exercise 8.3.7 For each of the following types

Y = ⊥, B, B× B, N, P, T

give a function Y → Y that has no fixed point.
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8.3 Lawvere’s Fixed Point Theorem

Exercise 8.3.8 Show that every function > → > has a fixed point.

Exercise 8.3.9 With Lawvere’s theorem we can give another proof of Fact 8.3.2

(propositional negation has no fixed point). In contrast to the proof given with

Fact 8.3.2, the proof with Lawvere’s theorem uses mostly equational reasoning.

The argument goes as follows. Suppose (¬X) = X. Since the identity is a surjec-

tion X → X, the assumption gives us a surjection X → (X → ⊥). Lawvere’s theorem

now gives us a fixed point of the identity on ⊥ → ⊥. Contradiction since the fixed

point is a proof of falsity.

Do the proof with Coq.
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Coq’s type theory limits recursion in the definition of functions to structural re-

cursion on inductive types. This way, termination of computation can be ensured.

We can still write specifications with unconstrained recursion and ask whether a

function satisfying the specification can be defined. Often, a function satisfying a

recursive specification can be constructed although the recursion in the specifica-

tion is not structural. Specifications with unconstrained recursion can be elegantly

expressed as higher-order functions taking a continuation function as argument. In

this chapter, we will look at a few example specifications and discuss the notion of

functional extensionality. General techniques for constructing functions satisfying

specifications with terminating recursion will be studied in later chapters.

9.1 Step Functions as Specifications

Consider the following equations

f(0) = t

f(1) = f

f(S(Sn)) = f(n)

for a function f : N → B. We would hope that we can define a function f satisfying

the equations, and that all functions satisfying the equations agree on all numbers.

Also we would like to prove that every function satisfying the equations yields t for

exactly those arguments that are even numbers.

As it comes to defining a function f satisfying the equations, we notice that

the equations qualify for a definition except for the fact that the recursion is not

strictly structural. We aim at defining a function satisfying the equations using

strict structural recursion only.

As a first and essential step we define a function

Even : (N→ B)→ N→ B

Evenf 0 := t

Evenf 1 := f

Evenf (S(Sn)) := fn
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9 Recursive Specification of Functions

capturing the above equations except for the fact that the recursion is modeled with

a continuation function f taking the type of the specified function. We will refer to

Even as a step function.

We now note that a function f satisfies the above equations if and only if it

satisfies the step equation

∀n. fn = Evenfn

Moreover, if we have a function f satisfying the step equation, we can carry out

abstract computations by rewriting with the step equation:

f5 = Evenf 5 = f3 = Evenf 3 = f1 = Evenf 1 = f

Abstract definition of step functions

Step functions can serve as recursive specifications of functions X → Y in general.

Let us spell out the necessary definitions. A step function is a function

F : (X → Y)→ X → Y

and a function f : X → Y satisfies a step function F if it satisfies the step equation

∀x. fx = Ffx

The first argument of a step function is referred to as continuation function. More-

over, we say that a step function F is unique if any two functions satisfying F agree

on all arguments:

uniqueF := ∀fg. (∀x. fx = Ffx)→ (∀x. gx = Fgx)→ ∀x. fx = gx

Expressing recursive specifications of functions with step functions turns out

to be a good choice. Step functions provide the full definitional power of the un-

derlying type theory and add unconstrained recursion for the specified function.

Moreover, rewriting with the step equation provides an abstract form of compu-

tation. Step functions also make precise which systems of equations we admit as

specifications. In fact, step functions admit equational specifications as they are

provided by the type theory but remove the constraints on recursion.

Satisfiability and Uniqueness of Even

Having completed the abstract definitions, we now return to the concrete step func-

tion Even and define a satisfying function even using structural recursion. The trick

is to flip booleans with boolean negation ’!’ :

even : N→ B

even(0) := t

even(Sn) := ! even(n)
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We now define a function even satisfying the step function Even using strict

structural recursion. The trick is to use boolean negation ! to flip booleans:

even : N→ B

even(0) := t

even(Sn) := ! even(n)

Fact 9.1.1 (Satisfiability) ∀n. evenn = Even evenn

Proof We consider the cases n = 0, S0, S(Sn), which give us the three equations

of the informal specification as proof obligations. Satisfaction of the first two equa-

tions follows by computational equality, and satisfaction of the third equation fol-

lows by computational equality and the double negation law for boolean negation:

even(S(Sn)) = ! even(Sn) = ! ! even(n) = even(n). �

Fact 9.1.2 (Uniqueness) Even is unique.

Proof Let f and g satisfy Even. We prove

∀n. fn = gn∧ f(Sn) = g(Sn)

by induction on n. The base case follows with the specifying equations for 0 and 1.

For the successor case we prove f(Sn) = g(Sn) and f(S(Sn)) = g(S(Sn)). The first

equation is exactly the second inductive hypothesis. The second equation follows

with the third specifying equation and the first inductive hypothesis. �

Corollary 9.1.3 All functions satisfying Even agree with even.

Proof Follows with Fact 9.1.1 and uniqueness. �

Exercise 9.1.4 Prove evenn = t ←→ ∃k.n = 2 · k.

Exercise 9.1.5 Show that the following step function is unique and satisfiable:

D : (N→ N)→ N→ N

Df0 := 0

Df(Sn) := S(S(fn))

Exercise 9.1.6 Show that the following recursive specification is unique and satisfi-

able:

f(0) = f

f(1) = t

f(S(Sn)) = f(n)
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Exercise 9.1.7 (Hardt’s identity) Show that the step function

H : (N→ N)→ N→ N

Hf0 := 0

Hf(Sn) := S(f (fn))

is unique and satisfiable. Hint: Prove ∀n. fn = n for every function satisfying H.

The pattern of the specification can be varied and then uniqueness may not

be obvious. For instance, what happens if the second equation is changed to

f(Sx) = f(S(fx))?

Exercise 9.1.8 Consider the tail-recursive specification

add : N→ N→ N

addx 0 = x
addx (Sy) = add (Sx)y

a) Write a cascaded step function Add : (N → N → N) → N → N → N for the

specification.

b) Write a cartesian step function Add′ : (N×N→ N)→ N×N→ N for the specifica-

tion.

c) Prove that λxy. x +y satisfies the step function Add.

d) Prove that every function satisfying the step function Add agrees with the stan-

dard addition function: (∀xy. fxy = Addfxy) → ∀xy. fxy = x +y .

9.2 Fibonacci Numbers

The sequence of Fibonacci numbers

0,1,1,2,3,5,8,13, . . .

is obtained by starting with 0 and 1 and proceeding by repeatedly taking the sum

of the two preceding numbers. The step function

Fib : (N→ N)→ N→ N

Fibf 0 := 0

Fibf 1 := 1

Fibf (S(Sn)) := fn+ f(Sn)

formulates the iterative scheme behind the sequence with functional recursion. A

function satisfying Fib will yield for n the n-th Fibonacci number. We call functions

satisfying the step function Fib Fibonacci functions.
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9.2 Fibonacci Numbers

Following the iterative intuition behind the Fibonacci sequence, it is not difficult

to define a Fibonacci function with strict structural recursion. The trick is well-

known to functional programmers and consists in incrementing the initial pair (0,1)
of successive Fibonacci numbers using the function (a, b), (b,a+b) until the n-th

Fibonacci number is reached:

F : N→ N F ′ : N→ N→ N→ N

Fn := F ′ 0 1n F ′ab 0 := a

F ′ab (Sn) := F ′b (a+ b)n

The example computation

F5 = F ′ 0 1 5 = F ′ 1 1 4 = F ′ 1 2 3 = F ′ 2 3 2 = F ′ 3 5 1 = F ′ 5 8 0 = 5

shows how the tail recursive function F ′ realizes the iterative computation

(0,1) , (1,1) , (1,2) , (2,3) , (3,5) , (5,8)

We will prove that F satisfies the step function Fib. The first and the second

equation follow by computational equality. The third equation

F ′ 0 1 (S(Sn)) = F ′ 0 1n+ F ′ 0 1 (Sn)

follows by induction on n provided 0 and 1 are generalized to a and b.

Lemma 9.2.1 F ′ab(S(Sn)) = F ′abn+ F ′ab(Sn).

Proof By induction on n quantifying a and b. The base case follows by computa-

tional equality. For the successor case, we have

F ′ab(S(S(Sn))) = F ′b(a+ b)(S(Sn)) conversion

= F ′b(a+ b)n+ F ′b(a+ b)(Sn) inductive hypothesis

= F ′ab(Sn)+ F ′ab(S(Sn)) conversion �

Fact 9.2.2 F(S(Sn)) = Fn+ F(Sn).

Proof Immediate with Lemma 9.2.1. �

Fact 9.2.3 (Satisfiability) F satisfies Fib.

Proof We prove Fn = FibFn with the case analysis n = 0, 1, S(Sn)). The third case

follows with Fact 9.2.2. �
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The uniqueness proof for fib is analogous to the uniqueness proof for Even

(Fact 9.1.2).

Fact 9.2.4 (Uniqueness) Fib is unique.

Proof Let f and g satisfy Fib. We prove

∀n. fn = gn∧ f(Sn) = g(Sn)

by induction on n. The base case follows with the specifying equations for 0 and 1.

For the successor case we prove f(Sn) = g(Sn) and f(S(Sn)) = g(S(Sn)). The first

equation is exactly the second inductive hypothesis. The second equation follows

with the third specifying equation and the two inductive hypotheses. �

Corollary 9.2.5 All functions satisfying Fib agree with F .

Proof Follows with Fact 9.2.3 and uniqueness. �

Exercise 9.2.6 Prove the following induction lemma for numbers:

∀pN→T. p0→ p1→ (∀n. pn→ p(Sn)→ p(S(Sn)))→ ∀n.pn

Hint: Prove the strengthened conclusion pn × p(Sn). Note that the lemma fol-

lows the recursive structure of the Fibonacci specification. Use the lemma to prove

uniqueness of the step functions Even and Fib.

9.3 Functional Extensionality

Functional extensionality is a proposition saying that functions are equal if they

agree on all arguments:

∀XTYT∀fX→YgX→Y . (∀x. fx = gx)→ f = g

Functional extensionality is not provable in Coq’s type theory but may be assumed

consistently. This means in that in Coq’s type theory no proposition contradicting

functional extensionality can be shown. For instance, one cannot prove f ≠ g for

two functions f and g that agree on all arguments.

Assuming functional extensionality determines equality for many functions

where without functional extensionality equality was not determined (i.e., one can

prove neither f = g nor f ≠ g).

In set theory-based mathematics functional extensionality is a basic fact. In

set-theory, extensionality of functions follows from extensionality of sets (sets are

equal if they have the same arguments) since functions are obtained as sets of pairs.
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9.4 Ackermann Function

It is generally believed that in type theories functional extensionality is beneficial

for the way we think about functions.

Functionality extensionality has many nice consequences that are familiar from

set-theoretic mathematics. For instance, assuming functional extensionality, a func-

tion f satisfies a step function F if and only if f is a fixed point of F (i.e., Ff = f ).

It has been popular to characterize recursive functions as fixed points of their step

functions. We remark that recursive functions are often called fixed points in Coq

slang.

Exercise 9.3.1 (Fixed point characterization)

Let F : (X → Y) → X → Y and f : X → Y . Convince yourself that functional exten-

sionality implies (∀x. fx = Ffx) ←→ Ff = f .

9.4 Ackermann Function

The cascaded step function

Ack : (N→ N→ N)→ N→ N→ N

Ackf 0y = Sy

Ackf (Sx)0 = f x 1

Ackf (Sx) (Sy) = f x (f (Sx)y)

formulates a recursive specification that is satisfied by a variant of the prominent

Ackermann function (a set-theoretic function). It turns out that the specified re-

cursion can be seen as a structural recursion on the first argument with a nested

structural recursion on the second argument. The nested recursion can be encapsu-

lated into a higher-order auxiliary function A′ that is called by the main function A:

A : N→ N→ N A′ : (N→ N)→ N→ N

A0 := S

A(Sx) := A′(Ax)

A′h0 := h1

A′h(Sy) := h(A′hy)

Fact 9.4.1 A satisfies Ack.

Proof Case analysis (x,y) = (0, y), (Sx,0), (Sx, Sy) and computational equality.�

Given that the recursion in the specification is structural and nested, uniqueness

of the specification can be shown with nested structural induction.

Fact 9.4.2 Ack is unique.
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Proof Let f and g satisfy Ack. We prove

∀y. fxy = gxy

by structural induction on x. The base case f0y = g0y follows with the step

equations for f and g. For the successor case

f(Sx)y = g(Sx)y

we do structural induction on y . After rewriting with the step equations we have

fx1 = gx1 as base case and fx(f(Sx)y) = gx(g(Sx)y) as successor case. The

base case follows with the inductive hypothesis for x. The successor case follows

by the inductive hypothesis for y and the inductive hypothesis for x. �

The uniqueness proof for Ack is a nice example of a nested induction where

both the outer and the inner inductive hypothesis are used in the inner successor

case. Note that nested inductions come for free in the general setup we are in.

While the details of the nested induction in the above proof might be challenging

for a beginner on paper, the actual simplicity of the argument becomes apparent

when the proof is done with a proof assistant.

Exercise 9.4.3 Prove the following induction principle mimicking the recursive

structure of the step function Ack.

∀pN→N→T. (∀y. p0y)→
(∀x. px1→ p(Sx)0)→
(∀xy. (∀z. pxz)→ p(Sx)y → p(Sx)(Sy))→
∀xy. pxy

Use the induction principles to prove the uniqueness of Ack.

9.5 Summary

We have seen that recursive specifications of functions can be formalized with step

functions. Step functions follow the specifying equations but eliminate the recur-

sion by taking a continuation function as argument. We looked at three examples

for recursive specifications and in each case showed satisfiability and uniqueness.

The proofs turn out to be interesting.

As it comes to existence, the following ideas lead to definitions satisfying the

specifications:

• Use boolean negation to define an eveness test with structural recursion.
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9.5 Summary

• Use a bottom-up scheme with two auxiliary arguments (predecessor of predeces-

sor and predecessor) to compute Fibonacci numbers with structural recursion.

The bottom-up scheme yields a tail-recursive function that may be realized with

a loop.

• Use higher-order nested recursion to compute the Ackermann function.

To show the correctness of the defined functions, one has to verify the specify-

ing equations. For Ackermann this can be done with just computational equality.

For evenness the involution law is needed. For Fibonacci, the recursive equation

requires an inductive proof of a generalized equation.

For the uniqueness proofs one needs an induction scheme that works for the

specification. For evenness and Fibonacci, doing the induction on ∀n. pn ∧ p(Sn)
instead of ∀n.pn works. For Ackermann, nested induction on the two arguments

does the job.

Recursive specifications of functions can also be interpreted in a programming

language or in set theory. In contrast to computational type theory, termination

is not a primary concern with these systems: nonterminating procedures are fine

in programming languages and partial functions are the default case in set theory.

There is a first-order computational system of µ-recursive functions where termi-

nation is not an issue and where functions are interpreted as partial functions on

numbers.
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Informative types combine computational and propositional information. They are

obtained with computational variants of disjunctions and existential quantifications

known as sum types (X+Y ) and sigma types (Σx.px). Informative types are a unique

feature of Coq’s type theory having no equivalent in set-theoretic mathematics. With

informative types one can elegantly state computational properties that don’t have

adequate formal statements in set-theoretic mathematical language.

We explain informative types further with two examples. The informative type

∀xyN. (x = y)+ (x ≠ y)

describes functions that given two numbers decide equality and return a proof cer-

tifying the decision. The informative type compares to the propositional type

∀xyN. (x = y)∨ (x ≠ y)

and to the purely computational type

N→ N→ B

While the computational type admits all kind of tests, the propositional type agrees

with the informative type but for the crucial difference that functions of the propo-

sitional type cannot be used for computational decisions because of the elim re-

striction.

The informative type

∀xyN Σz. (x + z = y)∨ (y + z = x)

describes functions that given two numbers return the distance between the num-

bers and a proof certifying the result. The informative type compares to the propo-

sitional type

∀xyN ∃z. (x + z = y)∨ (y + z = x)

and to the purely computational type

N→ N→ N

While the computational type admits all kind of functions, the propositional type

agrees with the informative type except for the difference that for functions of the

propositional type the distance cannot be used computationally.
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An important application of sum types are decision types

D(P) := P +¬P

which may be used to write the types of certifying deciders for a predicate p:

∀x. D(px)

Certifying deciders combine computational deciders with correctness proofs. This

combination is beneficial for both the use and the construction of computational

deciders.

With informative types we can realize functions as typed constants hiding their

definitions. We speak of computational lemmas and computational proofs since the

construction generalizes propositional lemmas. Once we have a function of an in-

formative type, we can extract a function of a purely computational type together

with a correctness proof. We may see a function of an informative type as a combi-

nation of a computational function and a correctness proof.

Constructing functions as computational proofs is appropriate whenever there

is a sufficiently complete specification of the function, as in the case of the two

motivating examples.

The construction of computational proofs is very similar to the construction

of propositional proofs. Constructing computational proofs (i.e., functions) with

the abstractions commonly used for propositional proofs (e.g., structural induction

and structural case analysis) turns out to be pleasant. As with propositional proofs,

the construction is strongly guided by the accompanying types. When working with

Coq, computational proofs are best constructed with the tactics known from propo-

sitional proofs, which smoothly generalize to computational proofs.

10.1 Sum Types and Sigma Types

We start with a table listing propositional types together with their computational

counterparts:

∀ → × a + Σ computational types in T
∀ → ∧ ←→ ∨ ∃ propositional types in P

As it comes to function types (∀, →), the transition from the propositional variant

to the computational variant is implicit. For conjunctions we have product types as

computational counterpart, and for propositional equivalence we define the com-

putational variant (propositional equivalence of types) as follows:

a : T→ T→ T

Xa Y := (X → Y)× (Y → X)
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Thus an inhabitant of an equivalence Xa Y is a pair (f , g) of functions f : X → Y
and g : Y → X.

The computational counterparts for disjunctions and existential quantifications

are called sum types (X + Y ) and sigma types (Σx.px). Their inductive definitions

mimic the inductive definitions of disjunctions and existential quantifications and

simply replace the universe P with the universe T:

+ (X : T, Y : T) : T ::= L(X) | R(Y)

sig (X : T, p : X → T) : T ::= E (x : X, px)

Similar to the notation ∃x.s for propositions ex (λx.s), we shall use the notation

Σx.s for sigma types sig (λx.s). The full types of the value constructors for sum

and sigma types are as follows:

L : ∀XTYT. X → X + Y
R : ∀XTYT. Y → X + Y
E : ∀XTpX→TxX . px → sigXp

We will treat X and Y as implicit arguments.

A value of a sum type X + Y carries a value of X or a value of Y , where the

information which alternative is present can be used computationally. The elements

of sum types are sometimes called variants.

A value of a sigma type Σx.px carries a witness x : X and a certificate c : px
(which often is a proof). The values of sigma types may be called Σ-pairs or depen-

dent pairs (since the type of the certificate depends on the witness).

While most uses of sum types X + Y and sigma types Σx.px are such that X, Y ,

and px are propositions, the more general cases matter. They are for instance

needed when we nest informative types as in (P1 + P2)+ P3 or Σx.Σy.pxy .

We can define functions

P +Q → P ∨Q
(Σx.px)→ ∃x.px

establishing disjunctions and existential quantifications as consequences of their

computational variants. Functions in the other direction cannot be defined because

of the elim restriction.

Exercise 10.1.1 Prove the constructor laws for sum types:

a) Lx ≠ Ry .

b) Lx = Lx′ → x = x′.
c) Ry = Ry ′ → y = y ′.
Explain why Lx ≠ Ry cannot be shown for disjunctions.
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Exercise 10.1.2 (Functional characterisations)

Prove the following equivalences:

a) X + Y a ∀ZT. (X → Z)→ (Y → Z)→ Z .

b) (Σx.px) a ∀ZT. (∀x. px → Z)→ Z .

Exercise 10.1.3 Define functions as follows:

a) ∀bB. (b = t)+ (b = f).

b) ∀nN. (n = 0)+ (Σk.n = Sk).

c) ∀XYZT. (X → Z)→ (Y → Z)→ (X + Y)→ Z .

d) ∀XYZT. (Y a Z)→ (X + Y a X + Z).
e) ∀xyB. x & y = f a (x = f)+ (y = f).

f) ∀xyB. x | y = t a (x = t)+ (y = t).

10.2 Computational Lemmas

To state and demonstrate that a proposition P is provable we typically write some-

thing like

Fact P .

Proof. · · · �

The proof part is usually some informal text that explains how a value of type P
can be defined. Once the proof is closed the details of the proof don’t matter, what

matters is simply that an inhabitant of P is definable.

It turns out that the above scheme also works well for informative types. As with

propositions, the details of a definition of an inhabitant of an informative type do

not matter, but the fact that one can define an inhabitant is essential. We will speak

of a propositional lemma if P is a proposition, and of a computational lemma if P
is a type that is not a proposition. Following this line, we speak of propositional

proofs and of computational proofs.

We are now ready to prove two computational lemmas stating the definability of

functions satisfying the informative function types explained in the introduction of

the chapter.

Fact 10.2.1 ∀xyN. (x = y)+ (x ≠ y).

Proof By induction on x with y quantified, followed by case analysis on y . The

interesting case is (Sx = Sy)+ (Sx ≠ Sy). We do case analysis on the instantiated

inductive hypothesis (x = y) + (x ≠ y). The second case follows by injectivity of

the constructor S. �
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Note that the proof text agrees with the text we have given in § 6.2 for the corre-

sponding proposition

∀xyN. (x = y)∨ (x ≠ y)

When we check the proof for the informative type, we have to make sure that the

induction on x, the case analysis on y , and the case analysis on the instantiated

inductive hypothesis are all admissible in a computational context. As it comes to

induction and case analysis on numbers, this is always the case. As it comes to the

case analysis on the instantiated inductive hypothesis, there is no problem since

the inductive hypothesis is formulated with a sum type rather than a disjunction.

We now come to the distance example from the chapter introduction. We

strengthen the informative type by replacing the disjunction with a sum type.

Fact 10.2.2 ∀xyN Σz. (x + z = y)+ (y + z = x).

Proof By induction on x with y quantified, followed by case analysis on y in the

successor case. The cases where x = 0 or y = 0 are trivial. The interesting case

Σz. (Sx + z = Sy) + (Sy + z = Sx) follows by case analysis on the instantiated

inductive hypothesis Σz. (x + z = y)+ (y + z = x). �

Exercise 10.2.3 (Eliminator for some types) We define an eliminator for the sum

type X + Y as follows:

E+ : ∀pX+Y→T. (∀x.p(Lx))→ (∀y.p(Ry))→ ∀a.pa
E+ pfg (Lx) := fx

E+ pfg (Ry) := gy

Use the eliminator E+ to prove the following facts:

a) Lx = Lx′ → x = x′

b) ∀aX+Y . (Σx.a = Lx)+ (Σy.a = Ry)

10.3 Projections and Eliminator for Sigma Types

We assume a type function p : X → T and define two projections that yield the

witness and the certificate of the dependent pairs a : sigp obtained with p:

π1 : sigp → X π2 : ∀asigp. p(π1a)

π1 (Ex _) := x π2 (Exb) := b

Note that the type of π2 is given using the function π1. This expresses the fact

that the type of the certificate depends on the witness. Type checking the defining

equation of π2 requires conversion steps unfolding the definition of π1.
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We shall use the projections to define a translation function that, given a function

f : X → Y satisfying ∀x. px(fx), yields a certifying function ∀x Σy.pxy . We say

that the translation merges the function f and the correctness proof ∀x. px(fx)
into a single certifying function. We will also define a converse translation function

that decomposes a certifying function ∀x Σy.pxy into a function f : X → Y and

a correctness proof ∀x. px(fx). The definability of the two translations can be

stated elegantly using informative types.

Fact 10.3.1 (Skolem equivalence)

∀XYT∀pX→Y→T. (Σf ∀x. px(fx))a (∀x Σy. pxy).

Proof The translation ⇒ can be defined as λax. E(π1ax)(π2ax). The converse

translation ⇐ can be defined as λF. E(λx. π1(Fx))(λx. π2(Fx)). �

Note that type checking the above proof requires several conversion steps un-

folding the definitions of the projections π1 and π2.

The next fact says that sum types may be expressed as sigma types.

Fact 10.3.2 (Sum-sigma equivalence)

∀XYT. (X + Y)a (Σb. if b then X else Y).

Proof Translation ⇒: λa.match a [ Lx ⇒ E tx | Ry ⇒ E fy ].
Translation ⇐: λa.match a [ Ebc ⇒ (if b then L else R) c ]. �

Type checking of the translation functions makes again heavy use of conversion.

You may want to replace the nested conditional with an application of the boolean

eliminator to make the typing constraints more explicit.

Exercise 10.3.3 Try to prove the propositions corresponding to the informative

types of Facts 10.3.1 and 10.3.2 informally. Note that some parts of the infor-

mal proofs are far from the rigorous formulations given in the proofs of the facts.

On the other hand, the informal proofs translate smoothly into Coq proof scripts,

which also work for the informative types.

Exercise 10.3.4 (Distance) Let D : ∀xyN Σk. (x + k = y)+ (y + k = x). Prove the

following equations:

a) π1(Dxy) = (x −y)+ (y − x).
b) x −y = if π2(Dxy) then 0 else π1(Dxy).

Note that the definition of D is not needed for the proofs since all necessary infor-

mation about D is in the given type. Hint: Destructure Dxy and simplify. What

remains are equations involving truncating subtraction only.
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Exercise 10.3.5 (Eliminator) We assume a type function p : X → T and define an

eliminator for dependent pairs a : sigp:

EΣ : ∀qsig→T. (∀xc. q(Exc))→ ∀a.qa
EΣ q f (Exc) := fxc

a) Give the types for the variables x and c.

b) Prove the η-law E (π1a)(π2a) = a using the eiminator EΣ.

c) Define the two projection functions with EΣ and show that these definitions are

computationally equal to π1 and π2.

Exercise 10.3.6 (Injectivity laws) Consider dependent pairs a : sigp for a type

function p : X → T. One would think that the injectivity laws

Exc = Ex′c′ → x = x′

Exc = Exc′ → c = c′

are both provable. While the first law is easy to prove, the second law cannot be

shown in Coq’s type theory. This certainly conflicts with intuitions that worked

well so far. The problem is with subtleties of dependent type checking that we will

not discuss here.

a) Prove the first injectivity law.

b) Try to prove the second injectivity law. If you think you have found a proof with

pen and paper, check it with Coq to find out where it breaks. Note that the proof

that rewrites π2(Exc) to π2(Exc′) does not work since there is no well-typed

rewrite predicate validating the rewrite.

10.4 Decision Types and Certifying Deciders

We define decision types as follows:

D : P→ T

D(P) := P +¬P

We call values of decision types decisions. A decision of type D(P) carries either

a proof of P or a proof of ¬P . Because of the use of a sum type, the information

which variant is present can be used computationally.

A certifying decider for a predicate p : X → P is a function ∀x.D(px). That we

can define a certifying decider for a predicate in Coq’s type theory means that we

can show within Coq’s type theory that the predicate is algorithmically decidable

(since every function definable in Coq’s type theory is algorithmically computable).

We say that a predicate is decidable if we can define a certifying decider for it.
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We remark that the predicate

tsat : N→ B := λf . ∃n. fn = t

is not algorithmically decidable. Hence it cannot be shown in Coq’s type theory that

tsat is decidable. The predicate says that a boolean test for numbers is satisfiable,

that is, yields the boolean t for at least one number.

A boolean decider for a predicate p : X → P is a function f : X → B such that

∀x. px ←→ fx = t

It turns out that we can define translations between boolean deciders and certifying

deciders.

Fact 10.4.1 (Decider equivalence)

∀XT∀pX→P. (∀x.D(px)) a (Σf ∀x. px ←→ fx = t).

Proof We prefer to describe the translations informally. Using Coq’s tactic lan-

guage, it is matter of routine to construct formal function definitions following the

informal descriptions.

Let F : ∀x.D(px). We define a boolean decider fx := if Fx then t else f and

prove ∀x. px ←→ fx = t by fixing x and doing case analysis on Fx.

For the other direction, suppose ∀x. px ←→ fx = t. We fix x and showD(px)
by case analysis on fx. If fx = t, we show px, otherwise we show ¬px. �

We state the basic propagation laws for decisions. All of them are easy to prove.

Fact 10.4.2 (Propagation of decisions)

1. D(>) and D(⊥).
2. ∀PQ. D(P)→D(Q)→D(P → Q).
3. ∀PQ. D(P)→D(Q)→D(P ∧Q).
4. ∀PQ. D(P)→D(Q)→D(P ∨Q).
5. ∀P. D(P)→D(¬P).
6. ∀PQ. (P ←→ Q)→ (D(P)aD(Q)).

Exercise 10.4.3 Prove the claims of Fact 10.4.2.

Exercise 10.4.4 Define a function ∀XT fX→B xX . D(fx = t).

Exercise 10.4.5 Define functions as follows.

a) ∀PP. D(P) a ΣbB. if b then P else ¬P .

b) ∀PP. D(P) a ΣbB. P ←→ b = t.
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10.5 Discrete Types

We call a type X discrete if we can define a certifying equality decider for it:

∀xyX . D(x = y)

In other words, a type is discrete if its equality predicate is decidable. We define

E(XT) : T := (∀xyX . D(x = y))

Note that E(X) is the type of certifying equality deciders for X.

Fact 10.5.1 (Propagation of equality decisions)

1. E(⊥), E(>), E(B), E(N).
2. ∀XYT. E(X)→ E(Y)→ E(X × Y).
3. ∀XYT. E(X)→ E(Y)→ E(X + Y).
4. ∀XYT∀fX→Y . injective f→ E(Y)→ E(X).

Proof E(N) is immediate from Fact 10.2.1. The other claims all have straightfor-

ward proofs. We use injectivef := ∀xx′. fx = fx′ → x = x′. �

Exercise 10.5.2 Proof the claims of Fact 10.5.1.

Exercise 10.5.3 Prove that a type has a certifying equality decider if and only if it

has a boolean equality decider: ∀X. E(X)a ΣfX→X→B.∀xy. x = y ←→ fxy = t.

10.6 Option Types

Given a type X, we may see the sum type X + > as a type that extends X with one

additional element. Such one-element extensions are often useful and are accom-

modated with dedicated inductive types called option types:

O(X : T) : T ::= ◦X | �

The types of the constructors introduced by this inductive type definition are as

follows:

O : T→ T
◦ : ∀XT. X → O(X)
� : ∀XT. O(X)

As usual, we treat the argument X of the value constructors as implicit argument.

Following language from functional programming, we pronounce the constructors ◦

and � as some and none. We offer the intuition that � is the new element and that ◦

injects the elements of X into O(X).
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Fact 10.6.1 (Constructor laws)

The constructors ◦ and � are disjoint, and that the constructor ◦ is injective.

Proof Exercise. �

Fact 10.6.2 (Discreteness)

∀XT. E(X)→ E(O(X)).

Proof Exercise. �

Exercise 10.6.3 Prove ∀aO(X). a ≠ � a Σx. a = ◦x.

Exercise 10.6.4 (Truncation flag) Define a recursive function f : N → N → O(N)
that yields � if x − y truncates and ◦(x − y) if x − y doesn’t truncate. Prove the

equation fxy = if y − x then ◦(x −y) else �.

Exercise 10.6.5 (Bijectivity) We say that two types X and Y are in bijection if we

can define functions f : X → Y and g : Y → X such that ∀x. g(fx) = x and

∀y. f(gy) = y . Recall that we defined a bijection between N and N×N in Chapter 7.

Show that the following types are in bijection:

1. B and >+>.

2. B and O(O(⊥)).
3. > and O(⊥).
4. O(X) and X +>.

5. N and O(N).

Exercise 10.6.6 (Finite size) Note that On(⊥) is a type that has exactly n elements.

Given our definitions so far, this is an informal statement. If we want to have a

general definition of finite size, we may say that a type has size n if and only if it is

in bijection with On(⊥). To justify this definition, we should prove that Om(⊥) and

On(⊥) are in bijection if and only ifm = n. We will study this and related questions

in a later chapter on finite types.
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Numbers 0,1,2, . . . constitute the basic infinite data structure. Starting from the

familiar inductive definition, we develop a computational theory of numbers based

on type theory. A main topic is the familiar ordering of numbers. The computational

results we derive include operators for trichotomy and least witnesses. There is

much beauty in developing the theory of numbers from first principles.

11.1 Inductive Definition

Following the informal presentation in Chapter 1, we introduce the type of numbers

0,1,2 . . . with an inductive definition

N ::= 0 | S(N)

introducing three constructors:

N : T, 0 : N, S : N→ N

Based on the inductive type definition, we can define functions with equations us-

ing exhaustive case analysis and structural recursion. A basic inductive function

definition obtains an eliminator EN providing for inductive proofs on numbers:

EN : ∀pN→T. p 0→ (∀x. px → p(Sx))→ ∀x.px
EN paf 0 := a

EN paf (Sx) := fx(EN pafx)

A discussion of the eliminator appears in § 6.2. Matches for numbers can be ob-

tained as applications of the eliminator where no use of the inductive hypothesis

is made. More directly, a specialized elimination function for matches omitting the

inductive hypothesis can be defined.

Fact 11.1.1 (Constructors)

1. Sx ≠ 0 (disjointness)

2. Sx = Sy → x = y (injectivity)

3. Sx ≠ x (progress)
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Proof The proofs of (1) and (2) are discussed in § 5.2. Claim 3 follows by induction

on x using (1) and (2). �

Fact 11.1.2 (Discreteness) N is a discrete type: ∀xyN.D(x = y).

Proof Fact 10.2.1. �

Exercise 11.1.3 Show the constructor laws and discreteness using the eliminator

and without using matches.

Exercise 11.1.4 (Double induction) Prove the following double induction principle

for numbers (from Smullyan and Fitting [11]):

∀pN→N→T.

(∀x. px0)→
(∀xy. pxy → pyx → px(Sy))→
∀xy. pxy

There is a nice geometric intuition for the truth of the principle: See a pair (x,y) as

a point in the discrete plane spanned by N and convince yourself that the two rules

are enough to reach every point of the plane.

An interesting application of double induction appears in Exercise 11.5.14.

Hint: First do induction on y with x quantified. In the successor case, first apply

the second rule and then prove pxy by induction on x.

11.2 Addition

We accommodate addition of numbers with a recursively defined function:

+ : N→ N→ N

0+y := y
Sx +y := S(x +y)

The two most basic properties of addition are associativity and commutativity.

Fact 11.2.1 (x +y)+ z = x + (y + z) and x +y = y + x.

Proof Associativity follows by induction on x. Commutativity also follows by in-

duction on x, where the lemmas x + 0 = x and x + Sy = Sx + y are needed. Both

lemmas follow by induction on x. �
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We will use associativity and commutativity of addition tacitly in proofs. If we

omit parentheses for convenience, they are inserted from the left: x +y + z �
(x +y)+ z. Quite often the symmetric versions x + 0 = x and x + Sy = S(x + y)
of the defining equations will be used.

Another important fact about numbers is injectivity, which comes in two flavors.

Fact 11.2.2 (Injectivity) x +y = x + z → y = z and x +y = x → y = 0.

Proof Both claims follow by induction on x. �

Exercise 11.2.3 Prove x ≠ x + Sy .

11.3 Multiplication

We accommodate addition of numbers with a recursively defined function:

· : N→ N→ N

0 ·y := 0

Sx ·y := y + x ·y

The definition is such that the equations

0 ·y = 0 1 ·y = y + 0 2 ·y = y + (y + 0)

hold by computational equality.

Proving the familiar properties of multiplication like associativity, commutativ-

ity, and distributivity is routine. In contrast to addition, multiplication will play

only a minor role in this text.

Exercise 11.3.1 Prove that multiplication is commutative and associative.

11.4 Subtraction

We define (truncating) subtraction of numbers as a total operation that yields 0

whenever the standard subtraction operation for integers yields a negative number:

− : N→ N→ N

0−y := 0

Sx − 0 := Sx

Sx − Sy := x −y
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Note that the recursion is on the first argument and that in the successor case there

is a case analysis on the second argument. Truncating subtraction plays a major

role in our theory of numbers since we shall use it to define the canonical order on

numbers.

Fact 11.4.1

1. x − 0 = x
2. x − (x +y) = 0

3. x − x = 0

4. (x +y)− x = y

Proof Claim 1 follows by case analysis on x. Claim 2 follows by induction on x.

Claim 3 follows with (2) with y = 0. Claim 4 follows by induction on x using (1) for

the base case. �

11.5 Order

We define the order relation on numbers using truncating subtraction:

x ≤ y := (x −y = 0)

While this definition is nonstandard, it is quite convenient for deriving the basic

properties of the order relation. We define the usual notational variants for the

order relation:

x < y := Sx ≤ y
x ≥ y := y ≤ x
x > y := y < x

Fact 11.5.1 The following propositions hold by computational equality:

1. (Sx ≤ Sy) = (x ≤ y) (shift law)

2. 0 ≤ x
3. 0 < Sx

Fact 11.5.2 (Decidability) D(x ≤ y).

Proof Immediate with Fact 11.1.2. �

Fact 11.5.3 x ≤ y → x + (y − x) = y .
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Proof By induction on x with y quantified. The base case is immediate with (1) of

Fact 11.4.1. In the successor case we proceed with case analysis on y . Case y = 0

is contradictory. For the successor case, we exploit the shift law. We assume x ≤ y
and show S(x + (y − x)) = Sy , which follows by the inductive hypothesis. �

Fact 11.5.4 x ≤ y ←→ ∃k. x + k = y .

Proof Direction→ follows with Fact 11.5.3, direction← follows with Fact 11.4.1 (2).�

Fact 11.5.5

1. x ≤ x +y
2. x ≤ Sx

3. x +y ≤ x → y = 0

4. x ≤ 0 → x = 0

5. x ≤ x (reflexivity)

6. x ≤ y → y ≤ z → x ≤ z (transitivity)

7. x ≤ y → y ≤ x → x = y (antisymmetry)

Proof Claim 1 follows with Fact 11.4.1 (2). Claim 2 follows from (1). Claim 3 fol-

lows with Fact 11.4.1 (4). Claim 4 follows by case analysis on x and constructor

disjointness.

Reflexivity follows with Fact 11.4.1 (3).

For transitivity, we assume x + a = y and y + b = z using Fact 11.5.4. Then

z = x + a+ b. Thus x ≤ z by (1).

For antisymmetry, we assume x + a = y and x + a ≤ x using Fact 11.5.4. By (3)

we have a = 0, and thus x = y . �

Fact 11.5.6 (Strict transitivity)

1. x < y ≤ z → x < z
2. x ≤ y < z → x < z.

Proof We show (1), (2) is similar. Using Fact 11.5.4, the assumptions give us

Sx + a = y and y + b = z. Thus it suffices to prove Sx ≤ Sx + a+ b, which follows

by Fact 11.5.5 (1). �

Fact 11.5.7

1. ¬(x < 0)

2. ¬(x +y < x) (strictness)

3. ¬(x < x) (strictness)

4. x ≤ y → x ≤ y + z
5. x ≤ y → x ≤ Sy
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Proof Claim 1 converts to Sx ≠ 0. For Claim 2 we assume Sx+y−x = 0 and obtain

the contradiction Sy = 0 with Fact 11.4.1 (4). Claim 3 follows from (2). For Claim 4

we assume x+a = y using Fact 11.5.4 and show x ≤ x+a+z using Fact 11.5.5 (1).

Claim 5 follows from (4). �

Fact 11.5.8 x −y ≤ x

Proof Induction on x with y quantified. The base case follows by conversion. The

successor case is done with case analysis on y . If y = 0, the claim follows with

reflexivity. For the successor case y = Sy , we have to show Sx − Sy ≤ Sx. We have

Sx − Sy = x −y ≤ x ≤ Sx using shift, the inductive hypothesis, and Fact 11.5.5 (2).

The claim follows by transitivity. �

Next we prove an induction principle known as complete induction, which

improves on structural induction by providing an inductive hypothesis for every

y < x, not just the predecessor of x.

Fact 11.5.9 (Complete Induction)

∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x.px.

Proof We assume p and the step function

F : ∀x. (∀y. y < x → py)→ px

and show ∀x.px. The trick is now to prove the equivalent claim

∀nx. x < n→ px

by structural induction on n. For n = 0, the claim is trivial. In the successor case,

we assume x < Sn and prove px. We apply the step function F , which gives us

the assumption y < x and the claim py . By the inductive hypothesis it suffices to

show y < n, which follows by strict transitivity (Fact 11.5.6). �

We will not give examples for the use of complete induction here. Chapter 12

introduces a generalization of complete induction called size recursion and studies

an example (Euclidean division) that can be done with complete induction.

Exercise 11.5.10 Prove y > 0 → y − Sx < y .

Exercise 11.5.11 Prove x +y ≤ x + z → y ≤ z.

Exercise 11.5.12 Define a boolean decider for x ≤ y and prove its correctness.

Exercise 11.5.13 Define a function ∀xy. x ≤ y → Σk. x + k = y .

Exercise 11.5.14 Use the double induction operator from Exercise 11.1.4 to prove

∀xy. (x ≤ y)+ (y < x). No further induction or lemma is necessary.
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11.6 Trichotomy

We define a trichotomy operator that given two numbers decides how they are or-

dered.

Fact 11.6.1 (Trichotomy) ∀xyN. (x < y)+ (x = y)+ (y < x).

Proof By induction on x with y quantified. Both cases need case analysis on y . The

inductive hypothesis is needed only in the successor-successor case. Fact 11.5.1 is

useful. �

Fact 11.6.2 x ≤ y a (x < y)+ (x = y).

Proof For direction⇒, we assume x ≤ y and use the trichotomy operator. If y < x,

we have x < x by strict transitivity and a contradiction by strictness.

For direction ⇐, we assume either Sx ≤ y or x = y . For Sx ≤ y , x ≤ y follows

with transitivity from x ≤ Sx. For x = y , the claim holds by reflexivity. �

Fact 11.6.3 (x ≤ y)+ (y < x).

Proof By Facts 11.6.1 and 11.6.2. �

The following corollaries have the flavor of excluded middle, but do have con-

structive proofs using the trichotomy operator.

Corollary 11.6.4 (Contraposition) ¬(x > y)→ x ≤ y .

Corollary 11.6.5 (Equality by Contradiction) ¬(x < y)→ ¬(y < x)→ x = y .

Proof Follows by contraposition and antisymmetry. �

Fact 11.6.6 Bounded quantification preserves decidability:

1. (∀x.D(px))→D(∀x. x < k→ px).
2. (∀x.D(px))→D(∃x. x < k∧ px).

Proof By induction on k and Fact 11.6.2. �

Exercise 11.6.7 (Tightness) Prove x ≤ y ≤ Sx → x = y ∨y = Sx.

Exercise 11.6.8 Formulate the contraposition corollaries as equivalences and prove

them with the trichotomy operator.
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Exercise 11.6.9 We define divisibility and primality as follows:

k | x := ∃n. x = n · k
primex := x ≥ 2∧∀k. k | x → k = 1∨ k = x

Prove that both predicates are decidable. Hint: First prove

x > 0→ x = n · k→ n ≤ x
x > 0→ k | x → k ≤ x

and then exploit that bounded quantification preserves decidability.

11.7 Least Witnesses

Assume a predicate p : N → P on numbers. If the predicate is satisfied by some x
(i.e., px is provable), we would expect that there is a least x satisfying p. The result-

ing questions are interesting since we work in an intuitionistic logic and strive for

computational results. To get computational results, we will have to assume that p
is decidable. Then, given some number satisfying p, we will be able to compute

the least number satisfying p. It will be convenient to call numbers satisfying p
witnesses. We can now say that we want to define a function that given a witness

yields the least witness. We call such a function a least witness operator (LWO).

The computational idea for obtaining a least witness is called linear search: We

check p for k = 0,1,2, . . . until we find the first k satisfying p. If there is a number

satisfying p, linear search will terminate with the least such number. If there is no

such number, linear search will not terminate. The challenge now is to write with

structural recursion on numbers a function that given a witness returns the least

witness.

We start with the definition of a least witness predicate:

safepn := ∀k. pk→ k ≥ n
leastpn := pn∧ safepn

Fact 11.7.1

1. leastpn→ leastpn′ → n = n′ (uniqueness)

2. safep0

3. safepn→ ¬pn→ safep(Sn)

Proof Claim 1 follows with antisymmetry. Claim 2 is trivial. For Claim 3 we as-

sume pk and show k > n. By contraposition (Fact 11.6.4) we assume k ≤ n and

derive a contradiction. The first assumption and pk give us k ≥ n. Thus n = k by

antisymmetry, which makes pk contradict ¬pn. �
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We now approach the least witness operator and assume a decider for p. To

accommodate the needs of structural recursion, we will work with two arguments n
and k, where the recursion is on n and k is incremented when n is decremented.

We start with some n and k = 0 and decrement n until pk is satisfied. If we reach

n = 0, we return k without testing p.

L : N→ N→ N

L0k := k

L (Sn)k := if [pk\ then k else Ln(Sk)

Note the use of the upper-corner notation [pk\. It acts as a placeholder for an

application fk of a decision function f for p (boolean or informative). The use of

the upper-corner notation is convenient since it saves us from naming the decision

function.

To prove that Ln0 computes the least witness if n is a witness, we need to come

up with a strong enough invariant for n and k.

Lemma 11.7.2 (Invariant)

∀nk. p(n+ k)→ safepk→ leastp (Lnk).

Proof By induction on n with k quantified. For n = 0 the claim is trivial. For the

successor case we assume p(Sn + k), safepk, and show leastp (L(Sn)k). If pk,

it suffices to show leastpk, which is straightforward. Otherwise we have ¬pk and

show leastp (Ln(Sk)). By the inductive hypothesis it suffices to show p(n+Sk) and

safep(Sk). Given the assumptions, the first claim is straightforward. The second

claim follows with Fact 11.7.2 (3). �

Fact 11.7.3 (Least witness operator)

∀pN→P. (∀n.D(pn))→ ∀n. pn→ Σk. leastpk.

Proof Lemma 11.7.2 with k = 0. �

Note that the least witness operator is special in that it takes a proof of px
as argument. The proposition px expresses a precondition that must be satisfied

so that a least witness procedure terminates. This is the first time in this text we

have constructed a computational function that takes a proof of a precondition as

argument.

Corollary 11.7.4 ∀pN→P. (∀n.D(pn))→ (∃n.pn)→ (∃k. leastpk).

Fact 11.7.5 (Decidability)

∀pN→P. (∀n.D(pn))→ (∀n.D(leastpn)).
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Proof We show D(leastpn) for n : N. If ¬pn, we have ¬leastpn. Otherwise we

have pn. Thus leastpk for some k by Fact 11.7.3. If n = k, we are done. If

n ≠ k, we assume leastpn and obtain a contradiction with the uniqueness of leastp
(Fact 11.7.1). �

Exercise 11.7.6 Prove that x −y is the least z such that x ≤ y + z:

x −y = z ←→ least (λz.x ≤ y + z)z.

11.8 Least Witness Operator via Induction

We now give a compact definition of a least witness operator using the operator for

structural induction on numbers. The trick is to not define the auxiliary function L
explicitly but rather construct a certifying version using structural recursion on

numbers.

Fact 11.8.1 (Least witness operator)

∀pN→P. (∀n.D(pn))→ ∀n. pn→ Σx. leastpx.

Proof We assume p and a decider ∀n.D(pn) and prove the more general claim

∀nk. p(n+ k)→ safepk→ Σx. leastpx

mimicking the invariant lemma. We prove the claim by induction on n with k quan-

tified. If n = 0, the claim holds by the definition of least. In the successor case, we

assume H : p(Sn+ k) and safepk and prove Σx. leastpx. We now use the decider

and do case analysis on pk+¬pk. If pk, x = k satisfies the claim. If ¬pk, we have

safep(Sk). Since we also have p(n+Sk) by assumption H, the inductive hypothesis

yields the claim. �

Note that the inductive proof yields an elegant construction of a least witness

operator that saves unnecessary details. Induction operators of various kinds will

turn out to be the power tool for constructing functions that don’t have straight-

forward definitions with structural recursion. We will usually refer to an induction

operator as a recursion operator when using it for computational purposes.

11.9 Least Witnesses and Excluded Middle

The set-theoretic development of numbers comes with the prominent result that ev-

ery nonempty set of numbers has a least element. Transferring to our type-theoretic

setting, we can ask whether every satisfiable predicate on numbers has a least wit-

ness. Assuming the law of excluded middle, this is in fact the case. Even better,
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we can show that the law of excluded middle is equivalent to the existence of least

witnesses for satisfiable predicates on numbers.

We start with a lemma mimicking the invariant lemma 11.7.2 for a logically de-

cidable predicate.

Lemma 11.9.1 (∀x. px ∨¬px)→ p(n+ k)→ safepk→ ∃x. leastpx.

Proof By induction on n with k quantified. The proof follows the proof of

Lemma 11.7.2. Logical decidability of p suffices since the claim of the lemma is

a proposition rather than a Σ-type. �

Fact 11.9.2 (∀x. px ∨¬px)→ (∃x.px)→ ∃x. leastpx.

Proof Straightforward with Lemma 11.9.1. Eliminating the witness of the existential

assumption is fine since the claim is propositional. �

Theorem 11.9.3 (∀PP. P ∨ ¬P) ←→ (∀pN→P. (∃x.px)→ (∃x. leastpx)).

Proof Direction → follows with Fact 11.9.2. For direction ←, let P be a proposition.

We define pn := match n [0 ⇒ P | S_ ⇒ > ]. Since p is satisfiable, the assumption

gives us n such that leastpn. If n = 0, we have p0 and thus P . If n = Sk, we

assume P and obtain a contradiction since safep(Sk) but p0. �

11.10 Notes

Our definition of the order predicate deviates from Coq’s inductive definition. Coq

comes with a very helpful automation tactic lia for linear arithmetic that proves

almost all of the results in this chapter and that frees the user from knowing the

exact definitions and lemmas. All our further Coq developments will rely on lia.

The reader may find it interesting to compare the computational development

of the numbers given here with Landau’s [8] classical development from 1929.
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12 Size Recursion

We define a size recursion operator using structural recursion on numbers. With

the operator we can construct functions obeying recursion schemes decreasing the

argument size with respect to a numeric size function. We use the size recursion

operator to construct functions for Euclidean division, greatest common divisors,

and discrete inversion. In each case, we work with informative types stating the

totality of relational specifications. The concrete definition of the size recursion

operator does not matter since all information needed for its use is transported

through informative types.

The size recursion operator formulates a familiar induction principle generaliz-

ing complete induction on numbers. The size operator shows once more that in

type theory proof methods and computational methods come hand in hand.

The size recursion operator also shows that in a dependently typed high-order

setting more general forms of recursion can be defined with structural recursion.

12.1 Size Recursion Operator

A basic intuition about recursion says that when we compute fx we may obtain

fy by recursion for every y smaller than x. Similarly, when we prove px, we may

assume a proof for py for every y smaller than x. Formally, we may provide for

this intuition with a size recursion operator

∀XT∀σX→N∀pX→T.
(∀x. (∀y. σy < σx → py)→ px)→
∀x.px

where σy < σx formalizes that y is smaller than x using a size function σ . From

the type of the size recursion operator we see that the operator obtains a target

function ∀x.px from a step function

∀x. (∀y. σy < σx → py)→ px

The step function says how for x a px is computed, where for every y smaller

than x a py is provided by a continuation function

∀y. σy < σx → py
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It is helpful to see a size recursion operator as a generalisation of a structural

recursion operator for numbers:

∀pN→T. p0 → (∀x. px → p(Sx)) → ∀x.px

Generalising structural recursion, size recursion works on arbitrary types and pro-

vides recursion for every y smaller than x, not just the predecessor. Structural

recursion comes with a base value p0 and a step function

∀x. px → p(Sx)

saying how for every number x a value of p(Sx) can be obtained from a value of

px.

The special case of size recursion where X is N, p is a predicate, and σ is

the identity function is known as complete induction in mathematical reasoning

(Fact 11.5.9).

It turns out that a size recursion operator can be defined with structural recur-

sion. Given the step function, one can define an auxiliary function

∀nx. σx < n→ px

by structural recursion on the numeric argument n. By using the auxiliary function

with n = S(σx) one then obtains the target function ∀x.px.

Lemma 12.1.1 Let X : T, σ : X → N, p : X → T, and

F : ∀x. (∀y. σy < σx → py)→ px

Then there is a function ∀nx. σx < n→ px.

Proof We define the asserted function by structural recursion on n:

R : ∀nx. σx < n→ px
R0xh := match [⊥\ [] h : σx < 0

R(Sn)xh := Fx(λyh′. Rny[σy < n\) h : σx < Sn, h′ : σy < σx

We can also phrase the definition of R as an inductive proof. While more verbose,

the inductive proof formulation is easier to read and to write for humans.

We prove ∀nx. σx < n → px by induction on n. If n = 0, we can assume

σx < 0, which is contradictory. For the inductive step, we assume σx < Sn and

construct a value of px. Using the step function F , it suffices to construct a contin-

uation function ∀y. σy < σx → py . So we assume σy < σx an prove py . Since

σy < n by the assumptions σy < σx < Sn, the inductive hypothesis yields py . �
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Theorem 12.1.2 (Size Recursion)

∀XT∀σX→N∀pX→T. (∀x. (∀y. σy < σx → py)→ px) → ∀x.px.

Proof Straightforward with Lemma 12.1.1. �

We have now seen a definition of a size recursion operator in Coq’s type theory

using structural recursion. We will see several applications of size recursion, both to

construct functions and to prove theorems. For instance, we will use size induction

to show that for two numbers x and y there always exist numbers a and b such

that x = a · Sy + b and b ≤ y .

The size recursion theorem does not expose the definition of the recursion op-

erator and we will not use the defining equations of the operator. When we use the

size recursion operator to construct a function f : ∀x.px, we make sure that px is

an informative type giving us all the information we need about fx.

The accompanying Coq development gives a transparent definition of the size

recursion operator. This way we can actually compute with the functions defined

with the recursion operator. This makes it possible to prove concrete equations by

computational equality.

Exercise 12.1.3 Define operators for structural recursion on numbers

∀pN→T. p0→ (∀x. px → p(Sx))→ ∀x.px

and for complete recursion on numbers (Fact 11.5.9)

∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x.px

using the size recursion operator.

Exercise 12.1.4 (Binary size recursion) Define a binary size recursion operator

∀XYT∀σX→Y→N∀pX→Y→T.
(∀xy. (∀x′y ′. σx′y ′ < σxy → px′y ′)→ pxy)→
∀xy. pxy

using the size recursion operator on the product type X × Y .

12.2 Least Witness Operator Revisited

Recall from § 11.7 that a least witness operator (LWO) is a function

∀pN→P. (∀n.D(pn))→ ∀n. pn→ Σx. leastpx

It turns out that size recursion provides for a particularly elegant construction of

an LWO using the ideas discussed in § 11.7.
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Fact 12.2.1 ∀pN→P. (∀n.D(pn))→ ∀n. pn→ Σx. leastpx.

Proof We assume pn and a decider for p. Since safep0, it suffices to prove

∀k. safepk→ Σx. leastpx

by size induction on n − k. If pk, we are done. Otherwise, we have safep(Sk) and

the claim follows with the inductive hypothesis since n−Sk < n−k since pn yields

Sk ≤ n. �

12.3 Relational Specifications

We now sketch the method we will use in the following to construct functions with

the size recursion operator. The method requires a relational specification

ϕ : X → Y → P

of the function we want to construct. Given ϕ, we want a function

f : X → Y

such that

∀x.ϕx(fx)

We will obtain such a function f by constructing a certifying function

F : ∀x Σy.ϕxy

The function F may be seen as a computational proof of the totality of the rela-

tion ϕ. In the examples we will consider in this chapter, we will construct F with

size recursion using the return type function

px := Σy.ϕxy

and a suitable size function for the argument type X.

Note that Σ-totality of the specification predicateϕ says that the specificationϕ
is satisfiable. In practice, we will always work with functional specification predi-

cates:

∀xyy ′. ϕxy →ϕxy ′ → y = y ′

Functionality means that a satisfiable specification uniquely determines a function

up to functional extensionality.
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12.4 Euclidean Division

12.4 Euclidean Division

We will define a division operation inverting multiplication. There is the complica-

tion that inversion of multiplication is neither functional nor total on all numbers.

The problem can be solved with a relational specification subsuming inversion of

multiplication.

Relational Specification

We define the discrete quotient of two numbers x and Sy as the unique number z
such that

δxyz := z · Sy ≤ x < Sz · Sy

For instance, the discrete quotient of 8 and 4 is 2, and the discrete quotient of 12

and 4 is 3, as is the discrete quotient of 15 and 4.

Fact 12.4.1 (Functionality) The predicate δ is functional. Thus the discrete quo-

tient of two numbers is unique.

Proof Let δxyz and δxyz′. We show z = z′ by doing case analysis on the disjunc-

tion z < z′ ∨ z = z′ ∨ z′ < z (trichotomy, Fact 11.6.1). Wlog we assume z < z′ and

derive a contradiction. We have Sz ≤ z′ and hence x < Sz · Sy ≤ z′ · Sy ≤ x. �

Together with functionality, the following fact ensures that δ captures inversion

of multiplication.

Fact 12.4.2 (Agreement) x = z · Sy → δxyz.

Proof Straightforward. �

Procedure

Our goal is the construction of a function f : N→ N→ N such that

∀xy. δxy(fxy)

The computational idea for f is to subtract Sy from x as often as it is possible

without truncation and take the number of subtractions as the discrete quotient

of x and y . We formulate this computational idea with the recursive specification

shown in Figure 12.1. The procedure described by the specification terminates for

all arguments since every recursion step decreases the first argument x.

While the specification in Figure 12.1 can be realized easily in an execution-

oriented programming language with a recursive procedure, more effort is needed

to realize the specification with a function in type theory. The reason for the extra

effort is the fact that the recursion in the specification is not structural. Given that
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f : N→ N→ N

fxy =

0 if x ≤ y
S(f (x − Sy)y) if x > y

Figure 12.1: Recursive specification of a Euclidean division function

the recursion reduces the size of the argument x, we can use size recursion to con-

struct a function satisfying the specification in type theory. The easiest way to do

this consists in proving that the specification δ is Σ-total and functional.

To prove Σ-totality of δ, we will use size recursion. The following fact provides

so-called recursion rules that may be seen as certifying versions of the equations of

the specification in Figure 12.1. The recursion rules will be used for the construction

of the (certifying) step function providing for the proof of Σ-totality.

Fact 12.4.3 (Recursion Rules)

1. x ≤ y → δxy0.

2. x > y → δ(x − Sy)yz → δxy(Sz).

Proof Straightforward. �

Fact 12.4.4 There is a function Div : ∀xyΣz. δxyz.

Proof By size recursion on x using the recursion rules from Fact 12.4.3. �

Corollary 12.4.5 There is a function D : N→ N→ N such that ∀xy. δxy(Dxy).

Recursive Specification

We now show that a function satisfies the specification δ if and only if it satisfies

the recursive specification in Figure 12.1.

Fact 12.4.6 A function f : N → N → N satisfies ∀xy. δxy(fxy) if and only if it

satisfies the recursive specification in Figure 12.1.

Proof Both directions of the proof are interesting.

Assume ∀xy. δxy(fxy). We need to show that f satisfies the two equations

of the recursive specification. For the second equation, we assume x > y and show

fxy = S(f (x − Sy)y). By the assumption and the recursion rule from Fact 12.4.3

we have δxy(S(f (x − Sy)y)). Now the claim follows with the assumption and the

functionality of δ (Fact 12.4.1).

For the other direction, assume f satisfies the recursive specification. We can

now prove ∀xy. δxy(fxy) by complete induction on x using case analysis on

x ≤ y ∨ x > y and the recursion rules from Fact 12.4.3. �
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Corollary 12.4.7 The function D satisfies the recursive specification in Figure 12.1.

We remark that in this section y is never modified. Thus y can be pulled out as

a parameter. We have chosen this design in the Coq development.

Exercise 12.4.8 Use D to define a function f : N→ N satisfying the equations

f 0 = 0

f 1 = 0

f(S(Sn)) = S(fn)

Prove that your function is correct.

Recall that the construction of a function satisfying the equations was already

asked for in Exercise 1.5.2. There a construction with an extra boolean argument is

suggested. Prove this construction correct.

12.5 Euclidean Division Theorem

We prove a basic representation theorem for numbers using the results we have

obtained for discrete quotients.

Theorem 12.5.1 (Euclidean Division) Given two numbers x and y , there exist

unique numbers a and b such that x = a · Sy + b and b ≤ y .

In fact, we will see that a = Dxy and b = x −Dxy · Sy . Thus both a and b can

be computed. We define a function M that yields remainders:

Mxy := x −Dxy · Sy

Fact 12.5.2 (Existence) x = Dxy · Sy +Mxy and Mxy ≤ y .

Proof By linear arithmetic it suffices to show x ≥ Dxy · Sy , which follows with

Corollary 12.4.5 and linear arithmetic. �

Fact 12.5.3 (Uniqueness) Let x = a · Sy + b and b ≤ y .

Then a = Dxy and b = Mxy .

Proof By linear arithmetic it suffices to show a = Dxy . Since δ is functional

(Fact 12.4.1), it suffices to show δxya and δxy(Dxy). The first obligation fol-

lows with linear arithmetic and the second obligation is Corollary 12.4.5. �

Corollary 12.5.4 (Uniqueness) Let a · Sy + b = a′ · Sy + b′ and b,b′ ≤ y .

Then a = a′ and b = b′.
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We now have a complete proof of Theorem 12.5.1.

Exercise 12.5.5 Show that M satisfies the equation

Mxy =

x if x ≤ y
M(x − Sy)y if x > y

Exercise 12.5.6 Prove ∀nx. D(n | x). Hint: Show Sk | x ←→ Mxk = 0 first.

Exercise 12.5.7 Let evenn := ∃k. n = k · 2. Prove the following:

a) D (evenn).

b) evenn → ¬even (Sn).

c) ¬evenn → even (Sn).

Exercise 12.5.8 Prove S(2 ·x) ≠ 2 ·y using uniqueness of Euclidean division. Make

sure you know the proof idea for each of the facts in the following row:

Sx ≠ 0 Sx ≠ x S(2 · x) ≠ 2 ·y S(x · S(Sk)) ≠ y · S(Sk)

Exercise 12.5.9 It is possible to define D and M with structural recursion on num-

bers where the recursion is on an extra argument z such that x < z. Here are

equational definitions of the functions:

D : N→ N→ N→ N

Dxy0 := 0

Dxy(Sz) := 0 if x ≤ y
Dxy(Sz) := S(D(x − Sy)yz) if x > y

M : N→ N→ N→ N

Mxy0 := 0

Mxy(Sz) := x if x ≤ y
Mxy(Sz) := M(x − Sy)yz if x > y

a) Prove x < z → x = Dxyz · Sy +Mxyz.

b) Prove x = Dxy(Sx) · Sy +Mxy(Sx).

Exercise 12.5.10 We consider two specifications of two functionsD,M : N→ N→ N.

The liberal specification is

Mxy ≤ y
x = Dxy · Sy +Mxy
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The recursive specification is

Mxy =

x if x ≤ y
M(x − Sy)y if x > y

Dxy =

0 if x ≤ y
S(D(x − Sy)y) if x > y

Show that the two specifications are equivalent and unique up to functional exten-

sionality. Use results we have shown before.

12.6 Greatest Common Divisors

The techniques we have used for Euclidean division generalize to all situations

where the function we want to construct can be computed with size recursion and,

in addition, can be specified independently. For our second example we consider

the construction of a function computing greatest comon divisors with repeated

subtraction. This time we will need a size function depending on two arguments.

Relational Specification

We define the divisors of a number x as follows:

n | x := ∃k. x = k ·n n divides x

We will construct a function that given two numbers x and y computes a number z
such that the divisors of z are exactly the common divisors of x and y . We will

call z the gcd of x and y . Provided x and y are not both 0, the number z is in

fact the greatest common divisor of x and y . We specify gcds with the following

predicate:

γxyz := ∀n. n | z ←→ n | x ∧n | y gcd of x and y is z

We start with some facts about divisibility.

Fact 12.6.1

1. n | 0.

2. x ≤ y → n | x → (n | y ←→ n | y − x).
3. x > 0→ n | x → n ≤ x.

4. x > 0→ y > 0→ x | y → y | x → x = y .

5. (∀n. n | x ←→ n | y)→ x = y .

Proof The first three claims have straightforward proofs unfolding the existential

definition of divisibility. Claim (4) follows with (3) using antisymmetry. For Claim (5)

we first destructure x and y . In case x = 0 and y > 0, we obtain with (1) that Sy | y ,

which is contradictory by (3). In case x,y > 0, we obtain x = y with (4). �
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Fact 12.6.2 The predicate γ is functional. Thus the gcd of two numbers is unique.

Proof We need to show ∀xyzz′. γxyz → γxyz′ → z = z′. Follows with

Fact 12.6.1 (5). �

Procedure

Our goal is the construction of a function f : N→ N→ N such that

∀xy. γxy(fxy)

The underlying algorithm exploits the facts that the gcd of two numbers x and y
is y if x = 0, and is the gcd of x − y and y if x ≥ y . Thus it suffices to subtract

the smaller number from the larger number until one of the numbers is 0. The

algorithm terminates since the sum of the two numbers is decreased.

Fact 12.6.3 (Recursion Rules)

1. γ0yy .

2. x ≥ y → γ(x −y)yz → γxyz.

3. γxyz → γyxz.

4. γx0x.

5. y ≥ x → γx(y − x)z → γxyz.

Proof Claims (1) and (2) follow with (1) and (2) of Fact 12.6.1. Claim (3) is obvious.

Claims (4) and (5) follow with (1) and (2) and the symmetry rule (3). �

Fact 12.6.4 There is a function Gcd : ∀xy Σz. γxyz.

Proof By binary size recursion on x + y (Exercise 12.1.4) using the recursion rules

from Fact 12.6.3 and case analysis on x, y , and x ≥ y ∨y > x as in Figure 12.2. �

Corollary 12.6.5 There is a function gcd such that γxy(gcdxy).

Recursive Specification

Fact 12.6.6 A function f : N → N → N satisfies ∀xy. γxy(fxy) if and only if it

satisfies the recursive specification in Figure 12.2.

Proof Assume ∀xy. γxy(fxy). We need to show that f satisfies the four equa-

tions of the recursive specification. We show the final equation, the proofs of the

other equations are similar. Let y > x. We show f(Sx)(Sy) = f(Sx)(y − x). By

functionality of γ (Fact 12.6.2) and the assumption it suffices to show

γ(Sx)(Sy)(f(x −y)(Sy))
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f : N→ N→ N

f0y = y

f(Sx)0 = Sx

f(Sx)(Sy) =

f(x −y)(Sy) if x ≥ y
f(Sx)(y − x) if y > x

Figure 12.2: Recursive specification of a gcd function

Follows by recursion rule (5) of Fact 12.6.3 and the assumption.

Assume f satisfies the recursive specification in Figure 12.2. We prove

∀xy. γxy(fxy) by binary size induction on x + y and case analysis on x, y ,

and x ≥ y ∨ y > x. The proof obligations follow with the recursion rules from

Fact 12.6.3 and the inductive hypothesis. �

Corollary 12.6.7 The function gcd satisfies the recursive specification in Fig-

ure 12.2.

Exercise 12.6.8 Specify, define and verify a function L(N) → N that for a list of

numbers yields a number whose divisors are the common divisors of the numbers

in the list.

Exercise 12.6.9 Show that γx(Sy)z if and only if z is the greatest common divisor

of x and Sy .

Exercise 12.6.10 There is a straightforward algorithm computing gcds with the re-

mainder function. LetM be the remainder function from § 12.5. Prove the following:

a) γ(Sy)(Mxy)z → γx(Sy)z.

b) A function fN→N→N satisfies ∀xy. γxy(fxy) if and only if it satisfies the equa-

tions

fx 0 = x

fx(Sy) = f(Sy)(Mxy)

12.7 Discrete Inversion

For our third and final example we start from an informal specification and a

straightforward recursive procedure solving the problem. We develop a formal re-

lational specification and construct a function satisfying the relational specification
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g : N→ N→ N

gxk :=

k if x < f(Sk)

gx(Sk) if f(Sk) ≤ x

Figure 12.3: Recursive specification of a discrete inversion function

using the recursion rules underlying the recursive procedure. As before we show

that the relational specification and the recursive specification are equivalent.

Given a strictly increasing function f : N→ N

f0 < f1 < f2 < · · · < fn < f(Sn) < · · ·

we will define an inverse function g : N→ N such that g(fn) = n for all n. This way

we can invert functions like λn.2n, λn.n2, and λn.2n and thus compute discrete

quotients, discrete roots, and discrete logarithms.

Given x, we want to compute the unique n such that fn ≤ x < f(Sn). The num-

ber n exists if f0 ≤ x. We will compute n by incrementing a counter k = 0,1,2, . . .
until x < f(Sk). The final k is then the n we are looking for. We capture this

method with the recursive specification shown in Figure 12.3. The recursion in the

specification terminates since every recursion step decreases x − k. Note that the

recursion does not change x.

We fix a function f : N → N that is strictly increasing (i.e., ∀n, fn < f(Sn)). We

start by proving basic facts about f .

Fact 12.7.1 (Monotonicity)

1. n < n′ → fn < fn′.

2. n < n′ ←→ fn < fn′.

3. n ≤ n′ ←→ fn ≤ fn′.
4. fn ≤ x → f0 ≤ x.

5. n ≤ fn.

6. f(Sn) ≤ x → x − Sn < x −n. termination property

Proof Claim (1) follows by induction on n′. Both directions of Claim (2) follow with

Claim (1), where direction ← uses case analysis on n < n′ ∨ n = n′ ∨ n′ < n.

Claim (3) follows with Claim (1) and case analysis. Claim (4) follows with Claim (3).

Claim (5) follows by induction on n. Claim (6) follows with Claim (5). �

Claim (6) of the fact provides the termination argument for the recursive speci-

fication in Figure 12.3.
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We define a predicate

ϕxn := fn ≤ x < f(Sn)

Fact 12.7.2

1. ϕ(fn)n.

2. ϕ(fn)k→ n = k.

3. ϕxn→ϕxn′ → n = n′. functionality

4. ϕxn→ f0 ≤ x.

Proof Claim (1) is trivial. Claim (2) follows with the monotonicity statements of

Fact 12.7.1. Claim (3) follows by case analysis on n = n′ ∨ Sn ≤ n′ ∨ Sn′ ≤ n and

direction → of Fact 12.7.1 (3). Claim (4) follows with Fact 12.7.1 (4). �

We define the explicit specification corresponding to the recursive specification

in Figure 12.3 as follows:

ψxkn := if [x < f(Sk)\ then k = n elseϕxn

We will show ψxk(gk) for every function g satisfying the recursive specification in

Figure 12.3.

Fact 12.7.3

1. ψxkn→ ψxkn′ → n = n′. functionality

2. fk ≤ x → ψxkn→ϕxn.

3. x < f(Sk)→ ψxkk. base rule

4. f(Sk) ≤ x → ψx(Sk)n→ ψxkn. step rule

Proof Claim (1) follows with the functionality of ϕ. Claims (2) and (3) are straight-

forward. Claim (4) follows withClaim (2). �

Fact 12.7.4 There is a function Inv : ∀kΣn. ψxkn.

Proof By size recursion on x−k using the base and step rule of Fact 12.7.3 and the

termination property of Fact 12.7.1. �

Corollary 12.7.5 There is a function inv : N→ N→ N such that ∀xk. ψxk(invxk).

Fact 12.7.6 ϕxn ←→ invx0∧ f0 ≤ x.

Proof Follows with Corollary 12.7.5, Fact 12.7.1 (4) and Fact 12.7.2 (3). �

Corollary 12.7.7 (Inversion) inv (fn)0 = n.
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Proof Follows with Fact 12.7.6 and Fact 12.7.2 (1). �

Fact 12.7.8 (Recursive Specification) A function g satisfies ∀xk. ψxk(gxk) if and

only if it satisfies the recursive specification in Figure 12.3.

Proof Assume ∀xk. ψxk(gxk). We need to show that g satisfies the equa-

tion of the recursive specification. By the functionality of ψ it suffices to show

ψxk(INVxkg) where INV is the step function for the recursive specification. Fol-

lows with case analysis and the base and step rule of Fact 12.7.3.

Assume g satisfies the recursive specification in Figure 12.1. We prove

∀k. ψxk(gxk) by size induction on x − k and case analysis using the base and

step rule of Fact 12.7.3. The termination property of Fact 12.7.1 is needed for the

inductive hypothesis. �

Exercise 12.7.9 Define functions g as follows. In each case prove correctness.

a) ∀n. g(n3) = n. discrete square roots

b) ∀n. g(3n) = n. discrete logarithms

c) ∀n. g(3 ·n) = n. discrete divisors

12.8 Notes

We have studied three computational problems for numbers. In each case, we have

constructed a function satisfying a relational specification using size recursion. Size

recursion was used since natural formulations with structural recursion do not ex-

ist.

In each case, we have used size recursion with an informative return type. This

way we could uses the size recursion operator without knowing its defining equa-

tions.

In each case, there was a natural recursion scheme providing for the construction

of the function satisfying the relational specification using the size recursion oper-

ator. In contrast to execution-oriented programming languages, where arbitrary

recursive procedures can be constructed without specifications, we had to come up

with specifications before we could construct the desired functions.

In type theory, terminating recursive procedures can always be captured with

equational specifications of functions. While equational specifications capture the

recursion scheme, they do not provide for the existence of the specified function.

We mention that type theory can describe arbitrary recursive procedures with

indexed inductive predicates. Termination is not an issue with this method since

predicates may be partial.
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12.8 Notes

As a take-home message we conclude that the construction of functions in type

theory may take work and insight, although we know a terminating recursive pro-

cedure computing the function. Work is necessary if the recursion underlying the

procedure is not structural. If the termination of the procedure can be argued with

a size function, and the function computed by the procedure can be specified inde-

pendently in type theory, the function can be constructed using size recursion as

explained in this chapter.
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In this chapter, we will define an existential witness operator that for a decidable

predicate on numbers obtains a satisfying number given a satisfiability proof:

W : ∀pN→P. (∀n. D(pn))→ (∃n. pn)→ (Σn. pn)

The interesting point about an existential witness operator is the fact that it obtains

a witness that can be used computationally from a propositional satisfiability proof.

Existential witness operators are required for various computational constructions.

Given that the elim restriction disallows computational access to the witness

of an existential proof, the definition of a witness operator is not obvious. Our

definition will in fact rely on higher-order structural recursion, a feature of inductive

definitions we have not used before. The key idea is the use of an inductive transfer

predicate

T(n : N) : P ::= C (¬pn→ T(Sn))

featuring a recursion through the right-hand side of a function type. Derivations

of Tn thus carry a continuation function ϕ : ¬pn→ T(Sn) providing a structurally

smaller derivationϕh : T(Sn) for every proof h : ¬pn. By recursing on a derivation

of T0 we will be able to define a function performing a linear search n = 0,1,2, . . .
until pn holds. Since T0 is a proposition, we can construct a derivation of T0 in

propositional mode using the witness from the proof of ∃n.pn.

13.1 Recursive Transfer Predicate

Recall from § 6.4 that a transfer predicate is an inductive predicate exempted from

the elim restriction. Derivations of propositions obtained with a transfer predicate

can be decomposed in computation mode although they have been constructed in

proof mode. Recursive transfer predicates thus provide for computational recur-

sion.

We fix a predicate p : N→ P and define a inductive predicate T as follows:

T(n : N) : P ::= C (¬pn→ T(Sn))
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The argument of the single proof constructor C is a function

ϕ : ¬pn→ T(Sn)

counting as a proof since T is a predicate. Thus T is in fact a transfer predicate. We

will refer toϕ as the continuation function of a derivation. The important point now

is the fact that the continuation function of a derivation of type Tn yields a struc-

turally smaller derivation ϕh : T(Sn) for every proof h : ¬pn. Since the recursion

passes through the right constituent of a function type we speak of a higher-order

recursion. It is the flexibility coming with higher-order recursion that makes the

definition of a witness operator possible. We remark that Coq’s type theory admits

recursion only through the right-hand side of function types, a restriction known as

strict positivity condition.

We remark that the parameter n of T is nonuniform. While T can be defined with

the parameter p abstracted out (e.g., as a section variable in Coq), the parameter n
cannot be abstracted out since the application T(Sn) appears in the argument type

of the proof constructor.

Exercise 13.1.1 (Padding) Given a derivation d : Tn, we can always obtain a deriva-

tion of Tn that starts with as many constructors we would like to have. The basic

padding step is

Dd := let (ϕ) := d in ϕ

pad d := C(λa. Dda)

Define a function pad : N → ∀n. Tn → Tn such that padk pads a derivation with k
constructors. For instance,

pad 3d = C(λa. C(λb. C(λc. D(D(Dda)b)c)))

should hold by definitional equality. Note that n is treated as an implicit argument

of the constructor C . That padding is possible appears to be a distinctive feature of

higher-order recursion.

13.2 Definition of Existential Witness Operator

We now assume that p is a decidable predicate on numbers. We will define an

existential witness operator

W : (∃n.pn)→ Σn. pn

using two functions

W ′ : ∀n. Tn→ Σn. pn
V : ∀n. pn→ T0
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The idea is to first obtain a derivation d : T0 using V and the witness of the proof

of ∃n.pn, and then obtain a computational witness using W ′ and the derivation

d : T0.

We define W ′ by recursion on Tn:

W ′ : ∀n. Tn→ Σk.pk

W ′n(Cϕ) :=

Enh if h : pn

W ′ (Sn) (ϕh) if h : ¬pn

Note that the defining equation of W ′ makes use of the higher-order recursion com-

ing with Tn. The recursion is admissible since every derivation ϕh counts as struc-

turally smaller than the derivation Cϕ. Coq’s type theory is designed such that

higher-order structural recursion always terminates.

It remains to define a function V : ∀n. pn → T0. Given the definition of T , we

have

∀n. pn→ Tn (13.1)

∀n. T(Sn)→ Tn (13.2)

Using recursion on n, function (13.2) yields a function

∀n. Tn→ T0 (13.3)

Using function (13.1), we have a function V : ∀n. pn→ T0 as required.

Theorem 13.2.1 (Existential witness operator)

There is a function W : ∀pN→P. (∀n. D(pn))→ (∃n. pn)→ (Σn. pn).

Proof Using V we obtain a derivation d : T0 from the witness of the proof of ∃n.pn.

There is no problem with the elim restriction since T0 is a proposition. Now W ′

yields a computational witness for p. �

Exercise 13.2.2 Point out where in the defining equation ofW ′ it is exploited that T
is a transfer predicate (i.e., the elim restriction does not apply to T ).

Exercise 13.2.3 Define W ′ with fix and match. Note that fix must be given a lead-

ing argument n so that the recursive function can receive the type∀n. Tn→ Σk. pk
accommodating the recursive application for Sn.

13.3 More Existential Witness Operators

Fact 13.3.1 (Existential least witness operator)

There is a function ∀pN→P. (∀n. D(pn))→ (∃n. pn)→ (Σn. leastpn).
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Proof There are two ways to construct the operator using W . Either we use

Fact 11.7.3 that gives us a least witness for a witness, or Fact 11.7.5 and Corol-

lary 11.7.4 that tell us that leastp is a decidable and satisfiable predicate. �

Corollary 13.3.2 (Binary existential witness operator)

There is a function ∀pN→N→P. (∀xy.D(pxy))→ (∃xy.pxy)→ (Σxy.pxy).

Proof Follows with W and the paring bijection from Chapter 7. The trick is to use

W with λn. p(π1(Dn))(π2(Dn)). �

Corollary 13.3.3 (Disjunctive existential witness operator)

Let p and q be decidable predicates on numbers.

Then there is a function (∃n.pn)∨ (∃n.qn)→ (Σn.pn)+ (Σn.qn).

Proof Use W with the predicate λn.pn∨ qn. �

The following fact was discovered by Andrej Dudenhefner in March 2020.

Fact 13.3.4 (Discreteness via step-indexed equality decider)

Let fX→X→N→B be a function such that ∀xy. x = y ←→ ∃n. fxyn = t.

Then X has an equality decider.

Proof We proveD(x = y) for fixed x,y : X. Using the witness operator we obtain n
such that fxxn = t. If fxyn = t, we have x = y . If fxyn = f, we have x ≠ y . �

Exercise 13.3.5 (Infinite path)

Let p : N→ N→ P be a decidable predicate that is total: ∀x∃y. pxy .

a) Define a function f : N→ N such that ∀x. px(fx).
b) Given x, define a function f : N → N such that f0 = x and ∀n. p(fn)(f(Sn)).

We may say that f describes an infinite path starting from x in the graph de-

scribed by the edge predicate p.

Exercise 13.3.6 Let f : N→ B. Prove the following:

a) (∃n. fn = t)a (Σn. fn = t).

b) (∃n. fn = f)a (Σn. fn = f).

Exercise 13.3.7 Let p be a decidable predicate on numbers. Define a function

∀n. Tn→ Σk. k ≥ n∧ pk.

Exercise 13.3.8 Construct a witness operator (∃x. px) → (Σx. px) for decidable

predicates p on booleans. No transfer predicate is needed since there are only two

candidates for a witness.
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13.4 Eliminator and Existential Characterization

We define an eliminator for the transfer predicate:

ET : ∀qN→T. (∀n. (¬pn→ q(Sn))→ qn)→ ∀n. Tn→ qn
ET q fn(Cϕ) := fn(λh. ET q f(Sn)(ϕh))

The eliminator provides for inductive proofs on derivations of T . That the inductive

hypothesis q(Sn) in the type of f is guarded by ¬pn ensures that it can be obtained

with recursion through ϕ.

We remark that when translating the equational definition of ET to a compu-

tational definition with fix and match, the recursive abstraction with fix must

be given a leading argument n so that the recursive function can receive the type

∀n. Tn→ pn, which is needed for the recursive application, which is for Sn rather

than n.

Exercise 13.4.1 Define W ′ with the eliminator ET for T .

Exercise 13.4.2 (Existential characterization) Prove the following facts about the

transfer predicate T .

a) pn→ Tn.

b) T(Sn)→ Tn.

c) T(k+n)→ Tn.

d) Tn→ T0.

e) pn→ T0.

f) Tn ←→ ∃k. k ≥ n∧ pk.

Hints: Direction→ of (f) follows with induction on T using the eliminator ET . Part (c)

follows with induction on k. The rest follows without inductions, mostly using

previously shown claims.

Exercise 13.4.3 The eliminator we have defined for T is not the strongest one. One

can define a stronger eliminator where the target type depends on both n and a

derivation d : Tn. This eliminator makes it possible to prove properties of a linear

search function ∀n. Tn→ N with a noninformative target type.

13.5 Notes

With the transfer predicate T we have seen an inductive predicate that goes far

beyond the inductive definitions we have seen so far. The proof constructor of T
employs higher-order structural recursion through the right-hand side of a function
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type. Higher-order structural recursion greatly extends the power of structural re-

cursion. Higher-order structural recursion means that an argument of a recursive

constructor is a function that yields a structurally smaller value for every argument.

That higher-order structural recursions always terminates is a basic design feature

of Coq’s type theory.
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14 Lists

We study inductive list types providing a recursive representation for finite se-

quences over a base type. Besides numbers, lists are the most important recursive

data type in constructive type theory. Lists have much in common with numbers

since for both data structures recursion and induction are linear. Lists also have

much in common with finite sets since they have a notion of membership. In fact,

our focus will be on the membership relation for lists.

We will see recursive predicates for membership and disjointness of lists, and

also for repeating and nonrepeating lists. We will study nonrepeating lists and

relate non-repetition to cardinality of lists.

14.1 Inductive Definition

A list represents a finite sequence [x1 , . . . , xn] of values. Formally, lists are ob-

tained with two constructors nil and cons:

[] , nil

[x] , cons x nil

[x ,y] , cons x (cons y nil)
[x ,y , z] , cons x (cons y (cons z nil))

The constructor nil provides the empty list. The constructor cons yields for a

value x and a list [x1 , . . . , xn] the list [x ,x1 , . . . , xn]. Given a list cons x A, we

call x the head and A the tail of the list. Given a list [x1 , . . . , xn], we call n the

length of the list and x1, . . . , xn the elements of the list. An element may appear

more than once in a list. For instance, [2 ,2 ,3] is a list of length 3 that has 2 ele-

ments.

Formally, lists are accommodated with an inductive type definition

L(X : T) : T ::= nil | cons (X,L(X))

introducing three constructors:

L : T→ T

nil : ∀XT. L(X)
cons : ∀XT. X → L(X)→ L(X)
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14 Lists

Lists of type L(X) are called lists over X. The typing discipline enforces that all

elements of a list have the same type. For nil and cons, we don’t write the first

argument X and use the following notations:

[] := nil

x :: A := consxA

For cons, we omit parentheses as follows:

x :: y :: A � x :: (y :: A)

The inductive definition of lists provides for case analysis, recursion, and induc-

tion on lists, in a way that is similar to what we have seen for numbers. We define

the standard eliminator for lists as follows:

EL : ∀XT pL(X)→T. p []→ (∀xA. pA→ p(x :: A))→ ∀A.pA
ELXpaf [] := a

ELXpaf (x :: A) := fxA(ELXpafA)

The eliminator provides for inductive proofs, recursive function definitions, and

structural case analysis.

Fact 14.1.1 (Constructor laws)

1. [] ≠ x :: A (disjointness)

2. x :: A = y :: B → x = y (injectivity)

3. x :: A = y :: B → A = B (injectivity)

4. x :: A ≠ A (progress)

Proof The proofs are similar to the corresponding proofs for numbers (Fact 11.1.1).

Claim (4) corresponds to Sn ≠ n and follows by induction on A with x quantified.�

Fact 14.1.2 (Discreteness) If X is a discrete type, then L(X) is a discrete type:

E(X)→ E(L(X)).

Proof Let X be discrete and A, B be lists over X. We show D(A = B) by induction

over A with B quantified followed by destructuring of B using disjointness and

injectivity from Fact 14.1.1. In case both lists are nonempty with heads x and y , an

additional case analysis on x = y is needed. �

Exercise 14.1.3 Prove ∀XTAL(X). D(A = []).

Exercise 14.1.4 Prove ∀XTAL(X). (A = [])+ ΣxB. A = x :: B.
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14.2 Basic Operations

We introduce three basic operations on lists, which yield the length of a list, con-

catenate two lists, and apply a function to every position of a list:

len [x1, . . . , xn] = n length

[x1, . . . , xm]++ [y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn] concatenation

f@ [x1, . . . , xn] = [f@x1, . . . , f@xn] map

Formally, we define the operations as recursive functions:

len : ∀XT. L(X)→ N

len [] := 0

len (x :: A) := S (len A)

++ : ∀XT. L(X)→ L(X)→ L(X)
[]++B := B

(x :: A)++B := x :: (A++B)

@ : ∀XYT. (X → Y)→ L(X)→ L(Y)
f@ [] := []

f@(x :: A) := fx :: (f@A)

Note that in all three definitions we accommodate X as an implicit argument for

readability.

Fact 14.2.1

1. A++(B++C) = (A++B)++C (associativity)

2. A++[] = A
3. len (A++B) = lenA+ lenB

4. len (f@A) = lenA

5. lenA = 0←→ A = []

Proof The equations follow by induction on A. The equivalence follows by case

analysis on A. �

14.3 Membership

Informally, we may characterize membership in lists with the equivalence

x ∈ [x1 , . . . , xn] ←→ x = x1 ∨ · · · ∨ x = xn ∨⊥
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Formally, we define the membership predicate by structural recursion on lists:

(∈) : ∀XT. X → L(X)→ P

(x ∈ []) := ⊥
(x ∈ y :: A) := (x = y ∨ x ∈ A)

We treat the type argument X of the membership predicate as implicit argument. If

x ∈ A, we say that x is an element of A.

Fact 14.3.1 (Decidable Membership)

Membership in lists over discrete types is decidable:

∀XT. E(X)→ ∀xX∀AL(X). D(x ∈ A).

Proof By induction on A. �

Recall that bounded quantification over numbers preserves decidability

(Fact 11.6.6). Similarly, quantification over the elements of a list preserves de-

cidability.

Fact 14.3.2 (Bounded Quantification) Let p : X → P and A : L(X). Then:

1. (∀x. D(px))→D(∀x. x ∈ A→ px).
2. (∀x. D(px))→D(∃x. x ∈ A∧ px).
3. (∀x. D(px))→ (Σx. x ∈ A∧ px)+ (∀x. x ∈ A→ ¬px).

Proof By induction on A. �

Fact 14.3.3 (Membership laws)

1. x ∈ A++B ←→ x ∈ A∨ x ∈ B.

2. x ∈ f@A ←→ ∃a. a ∈ A∧ x = fa.

Proof By induction on A. �

Membership can also be characterized with existential quantification and con-

catenation. We speak of the explicit characterization of list membership.

Fact 14.3.4 (Explicit Characterization)

x ∈ A ←→ ∃A1A2. A = A1++x :: A2.

Proof Direction → follows by induction on A. Direction ← follows by induction

on A1. �

Fact 14.3.5 (Factorization)

For every discrete type X there is a function

∀xX AL(X). x ∈ A→ ΣA1A2. A = A1++x :: A2.
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Proof By induction on A. The nil case is contradictory. In the cons case a case

analysis on D(x = y) closes the proof. �

Exercise 14.3.6

Define a function δ : L(O(X))→ L(X) such that x ∈ δA←→ ◦x ∈ A.

Exercise 14.3.7 (Pigeonhole) Prove that a list of numbers whose sum is greater

than the length of the list must contain a number that is at least 2:

sumA > lenA → Σx. x ∈ A∧ x ≥ 2

First define the function sum.

14.4 List Inclusion and List Equivalence

We may see a list as a representation of a finite set. List membership then corre-

sponds to set membership. The list representation of sets is not unique since the

same set may have different list representations. For instance, [1 ,2], [2 ,1], and

[1 ,1 ,2] are different lists all representing the set {1,2}. In contrast to sets, lists

are ordered structures providing for multiple occurrences of elements.

From the type-theoretic perspective, sets are informal objects that may or may

not have representations in type theory. This is in sharp contrast to set-based

mathematics where sets are taken as basic formal objects. The reason sets don’t

appear natively in Coq’s type theory is that Coq’s type theory is a computational

theory while sets in general are noncomputational.

We will take lists over X as type-theoretic representations of finite sets over X.

With this interpretation of lists in mind, we define list inclusion and list equiva-

lence as follows:

A ⊆ B := ∀x. x ∈ A→ x ∈ B
A ≡ B := A ⊆ B ∧ B ⊆ A

Note that two lists are equivalent if and only if they represent the same set.

Fact 14.4.1 List inclusion A ⊆ B is reflexive and transitive. List equivalence A ≡ B
is reflexive, symmetric, and transitive.
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Fact 14.4.2 We have the following properties for membership, inclusion, and equiv-

alence of lists.

x ∉ [] x ∈ [y]←→ x = y
[] ⊆ A A ⊆ []→ A = []
x ∈ y :: A→ x ≠ y → x ∈ A x ∉ y :: A→ x ≠ y ∧ x ∉ A
A ⊆ B → x ∈ A→ x ∈ B A ≡ B → x ∈ A←→ x ∈ B
A ⊆ B → x :: A ⊆ x :: B A ≡ B → x :: A ≡ x :: B

A ⊆ B → A ⊆ x :: B x :: A ⊆ B ←→ x ∈ B ∧A ⊆ B
x :: A ⊆ x :: B → x ∉ A→ A ⊆ B x :: A ⊆ [y]←→ x = y ∧A ⊆ [y]
x :: A ≡ x :: x :: A x :: y :: A ≡ y :: x :: A

x ∈ A→ A ≡ x :: A

x ∈ A++B ←→ x ∈ A∨ x ∈ B
A ⊆ A′ → B ⊆ B′ → A++B ⊆ A′++B′ A++B ⊆ C ←→ A ⊆ C ∧ B ⊆ C

Proof Except for the membership fact for concatenation, which already appeared

as Fact 14.3.3, all claims have straightforward proofs not using induction. �

Fact 14.4.3 Let A and B be lists over a discrete type. ThenD(A ⊆ B) andD(A ≡ B).

Proof Holds since membership is decidable (Fact 14.3.1) and bounded quantifica-

tion preserves decidability (Fact 14.3.2). �

14.5 Setoid Rewriting

It is possible to rewrite a claim or an assumption in a proof goal with a propositional

equivalence P ←→ P ′ or a list equivalence A ≡ A′, provided the subterm P or A to

be rewritten occurs in a compatible position. This form of rewriting is known as

setoid rewriting. The following facts identify compatible positions by means of

compatibility laws.

Fact 14.5.1 (Compatibility laws for propositional equivalence)

Let P ←→ P ′ and Q ←→ Q′. Then:

P ∧Q ←→ P ′ ∧Q′ P ∨Q ←→ P ′ ∨Q′ (P → Q)←→ (P ′ → Q′)
¬P ←→ ¬P ′ (P ←→ Q)←→ (P ′ ←→ Q′)
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Fact 14.5.2 (Compatibility laws for list equivalence)

Let A ≡ A′ and B ≡ B′. Then:

x ∈ A←→ x ∈ A′ A ⊆ B ←→ A′ ⊆ B′ A ≡ B ←→ A′ ≡ B′

A++B ≡ A′++B′ f@A ≡ f@A′ A |f ≡ A′ |f
x :: A ≡ x :: A′

Coq’s setoid rewriting facility makes it possible to use the rewriting tactic for

rewriting with equivalences, provided the necessary compatibility laws and equiv-

alence relations have been registered with the facility. The compatibility laws for

propositional equivalence are preregistered.

Exercise 14.5.3 Which of the compatibility laws are needed to justify rewriting the

claim ¬(x ∈ y :: (f@A)++B) with the equivalence A ≡ A′ ?

14.6 Element Removal

Element removal for lists is an important operation that we will need for results

about nonrepeating lists and cardinality. We assume a discrete type X and define a

function A\x for element removal as follows:

\ : L(X)→ X → L(X)
[]\_ := []

(x :: A)\y := if [x = y\ then A\y else x :: (A\y)

Fact 14.6.1

1. x ∈ A\y ←→ x ∈ A∧ x ≠ y
2. len (A\x) ≤ lenA

3. x ∈ A→ len (A\x) < lenA.

4. x ∉ A→ A\x = A

Proof By induction on A. �

Exercise 14.6.2 Prove x ∈ A → A ≡ x :: (A \ x).

Exercise 14.6.3 Prove the following equations, which are useful in proofs:

1. (x :: A)\x = A\x
2. x ≠ y → (y :: A)\x = y :: (A\x)
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14.7 Nonrepeating Lists

A list is repeating if it contains some element more than once. For instance, [1,2,1]
is repeating and [1,2,3] is nonrepeating. Formally, we define repeating lists over a

base type X with a recursive predicate:

rep : L(X)→ P

rep [] := ⊥
rep (x :: A) := x ∈ A∨ repA

Fact 14.7.1 (Characterization)

For every list A over a discrete type we have:

repA ←→ ∃xA1A2. A = A1++x :: A2 ∧ x ∈ A2.

Proof By induction on repA using Fact 14.3.4. �

We also define a recursive predicate for nonrepeating lists over a base type X:

nrep : L(X)→ P

nrep [] := >
nrep (x :: A) := x ∉ A∧ nrepA

Theorem 14.7.2 (Partition) Let A be a list over a discrete type. Then:

1. repA→ nrepA→ ⊥ (disjointness)

2. repA+ nrepA (exhaustiveness)

Proof Both claims follow by induction on A. Discreteness is only needed for the

second claim. The second claim needs decidability of membership (Fact 14.3.1) for

the cons case. �

Corollary 14.7.3 Let A be a list over a discrete type. Then:

1. D(repA) and D(nrepA).

2. repA←→ ¬nrepA and nrepA←→ ¬repA.

Fact 14.7.4 (Equivalent nonrepeating list)

For every list over a discrete type one can obtain an equivalent nonrepeating list:

∀AΣB. B ≡ A∧ nrepB.

Proof By induction on A. For x :: A, let B be the list obtained for A with the

inductive hypothesis. If x ∈ A, B has the required properties for x :: A. If x ∉ A,

x :: B has the required properties for x :: A. �
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The next fact formulates a key property concerning the cardinality of lists (num-

ber of different elements). It is carefully chosen so that it provides a powerful

building block for further results (Corollary 14.7.6). Finding this fact took effort. To

get the taste of it, try to prove that equivalent nonrepeating lists have equal length

without looking at our development.

Fact 14.7.5 (Discriminating element)

Every nonrepeating list over a discrete type contains for every shorter list an ele-

ment not in the shorter list: ∀AB. nrepA→ lenB < lenA→ Σz. z ∈ A∧ z ∉ B.

Proof By induction on A with B quantified. For x :: A and x ∈ B, one uses the

inductive hypothesis for A and B \ x, as justified by Fact 14.6.1 (3). �

Corollary 14.7.6 Let A and B be lists over a discrete type X. Then:

1. nrepA→ A ⊆ B → lenA ≤ lenB.

2. nrepA→ nrepB → A ≡ B → lenA = lenB.

3. A ⊆ B → lenB < lenA → repA.

4. nrepA→ A ⊆ B → lenB ≤ lenA→ nrepB.

5. nrepA→ A ⊆ B → lenB ≤ lenA→ B ≡ A.

Proof Interestingly, all claims follow without induction from Facts 14.7.5, 14.7.1,

and 14.7.3.

For (1), assume lenA > lenB and derive a contradiction with Fact 14.7.5.

Claims (2) and (3) follow from Claim (1), where for (3) we assume nrepA and

derive a contradiction (justified by Corollary 14.7.3).

For (4), we assume repB and derive a contradiction (justified by Corollary 14.7.3).

By Fact 14.7.1, We obtain a list B′ such that A ⊆ B′ and lenB′ < lenA. Contradiction

with (1).

For (5), it suffices to show B ⊆ A. We assume x ∈ B and x ∉ A and derive a

contradiction with B\x and Fact 14.7.5. �

Exercise 14.7.7 Prove the following facts about map and nonrepeating lists:

a) injectivef → nrepA→ nrep (f@A).

b) nrep (f@A)→ x ∈ A→ x′ ∈ A→ fx = fx′ → x = x′.

Exercise 14.7.8 (Injectivity-surjectivity agreement) Let X be a discrete type and A
be a list containing all elements of X. Prove that a function X → X is surjective if

and only if it is injective.

This is an interesting exercise. It can be stated as soon as membership in lists

is defined. To solve it, however, one needs properties of length, map, element

removal, and nonrepeating lists. If one doesn’t know these notions, the exercise
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makes an interesting project since one has to invent these notions. Our solution

uses Corollary 14.7.6 and Exercise 14.7.7.

Exercise 14.7.9 Let A be a list over a discrete type.

Prove repA → ΣxA1A2A3. A = A1++x :: A2++x :: A3.

Exercise 14.7.10 (Partition) The proof of Corollary 14.7.3 is straightforward and

follows a general scheme. Let P and Q be propositions such that P → Q → ⊥
and P + Q. Prove decP and P ←→ ¬Q. Note that decQ and Q ←→ ¬P follow by

symmetry.

Exercise 14.7.11 (Even and Odd) Define recursive predicates even and odd on

numbers and show that they partition the numbers: evenn → oddn → ⊥ and

evenn+ oddn.

Exercise 14.7.12 Define a function seq : N→ N→ L(N) for which you can prove the

following:

a) seq 2 5 = [2,3,4,5,6]
b) seqn(Sk) = n :: seq (Sn)k

c) len (seqnk) = k
d) x ∈ seqnk ←→ n ≤ x < n+ k.

e) nrep (seqnk)

14.8 Cardinality

The cardinality of a list is the number of different elements in the list. For instance,

[1,1,1] has cardinality 1 and [1,2,3,2] has cardinality 3. Formally, we may say

that the cardinality of a list is the length of an equivalent nonrepeating list. This

characterization is justified since equivalent nonrepeating lists have equal length

(Corollary 14.7.6 (3)), and every list is equivalent to a non-repeating list (Fact 14.7.4).

We assume that lists are taken over a discrete type X and define a cardinality

function as follows:

card : L(X)→ N

card [] := 0

card(x :: A) := if [x ∈ A\ then cardA else S(cardA)

Note that we write [x ∈ A\ for the application of the membership decider provided

by Fact 14.3.1. We prove that the cardinality function agrees with the cardinalities

provided by equivalent nonrepeating lists.
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Fact 14.8.1 (Cardinality)

1. ∀AΣB. B ≡ A∧ nrepB ∧ lenB = cardA.

2. cardA = n ←→ ∃B. B ≡ A∧ nrepB ∧ lenB = n.

Proof Claim 1 follows by induction on A. Claim 2 follows with Claim 2 and Corol-

lary 14.7.6 (3). �

Corollary 14.8.2

1. cardA ≤ lenA

2. A ⊆ B → cardA ≤ cardB

3. A ≡ B → cardA = cardB.

4. repA ←→ cardA < lenA (pigeonhole)

5. nrepA ←→ cardA = lenA

6. x ∈ A ←→ cardA = S(card(A \ x))

Proof All facts follow without induction from Fact 14.8.1, Corollary 14.7.6, and

Corollary 14.7.3. �

Exercise 14.8.3 (Cardinality predicate) We define a recursive cardinality predicate:

Card : L(X)→ X → P

Card []0 := >
Card [] (Sn) := ⊥

Card (x :: A)0 := ⊥
Card (x :: A) (Sn) := if [x ∈ A\ then CardA(Sn) else CardAn

Prove that the cardinality predicate agrees with the cardinality function:

∀An. CardAn←→ cardA = n.

Exercise 14.8.4 (Disjointness predicate) We define disjointness of lists as follows:

disjointAB := ¬∃x. x ∈ A∧ x ∈ B

Define a recursive predicate Disjoint : L(X)→ L(X)→ P in the style of the cardinal-

ity predicate and verify that it agrees with the above predicate disjoint.

14.9 Position-Element Mappings

The positions of a list [x1 , . . . , xn] are the numbers 0, . . . , n − 1. More formally, a

number n is a position of a list A if n < lenA. If a list is nonrepeating, we have a
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bijective relation between the positions and the elements of the list. For instance,

the list [7,8,5] gives us the bijective relation

0↔ 7, 1↔ 8, 2↔ 5

It turns out that for a discrete type X we can define two functions

pos : L(X)→ X → N

sub : X → L(X)→ N→ X

realizing the position-element bijection.

x ∈ A→ subyA(posAx) = x
nrepA→ n < lenA→ posA(subyAn) = n

The function pos use 0 as escape value for positions, and the function sub uses a

given yX as escape value for elements of X. The name sub stands for subscript.

The functions pos and sub will be used in Chapter 17 for constructing injections

and bijections on finite types.

Here are the definitions of pos and sub we will use:

pos : L(X)→ X → N

pos []x := 0

pos (a :: A)x := if [a = x\ then 0 else S(posAx)

sub : X → L(X)→ N→ X
suby []n := y

suby (a :: A)0 := a

suby (a :: A) (Sn) := subyAn

Fact 14.9.1 Let A be a list over a discrete type. Then:

1. x ∈ A → subaA(posAx) = x
2. x ∈ A → posAx < lenA

3. n < lenA → subaAn ∈ A
4. nrepA→ n < lenA→ posA(subaAn) = n

Proof All claims follow by induction on A. For (3), the inductive hypothesis must

quantify n and the cons case needs case analysis on n. �

Exercise 14.9.2 Prove (∀XT. L(X)→ N→ X)→ ⊥.
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Exercise 14.9.3 One can realize pos and sub with option types

pos : L(X)→ X → O(N)
sub : L(X)→ N→ O(X)

and this way avoid the use of escape values. Define pos and sub with option types

for a discrete base type X and verify the following properties:

a) x ∈ A→ Σn. posAx = ◦n
b) n < lenA → Σx. subAn = ◦x
c) posAx = ◦n→ subAn = ◦x
d) nrepA→ subAn = ◦x → posAx = ◦n
e) subAn = ◦x → x ∈ A
f) posAx = ◦n → n < lenA
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15 Case Study: Expression Compiler

We verify a compiler translating arithmetic expressions into code for a stack ma-

chine. We use a reversible compilation scheme and verify a decompiler reconstruct-

ing expressions from their codes. The example hits a sweet spot of computational

type theory: Inductive types provide a perfect representation for abstract syntax,

and structural recursion on the abstract syntax provides for the definitions of the

necessary functions (evaluation, compiler, decompiler). The correctness conditions

for the functions can be expressed with equations, and generalized versions of the

equations can be verified with structural induction.

This is the first time in our text we see an inductive type with binary recursion

and two inductive hypotheses. Moreover, we see a notational convenience for func-

tion definitions known as catch-all equations.

15.1 Expressions and Evaluation

We will consider expressions for numbers that are obtained with constants, addi-

tion, and subtraction. Informally, we describe the abstract syntax of expressions

with a scheme known as BNF:

e : exp ::= x | e1 + e2 | e1 − e2 (x : N)

Following the BNF, we represent expressions with the inductive type

exp : T ::= con(N) | add(exp,exp) | sub(exp,exp)

The ease our presentation, we will write the formal expressions provided by the

inductive type exp using the notation suggested by the BNF. For instance:

e1 + e2 − e3 � sub(add e1e2)e3

We can now define an evaluation function computing the values of expressions:

E : exp→ N

E x := x

E (e1 + e2) := E e1 + E e2

E (e1 − e2) := E e1 − E e2
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15 Case Study: Expression Compiler

Note that E is defined with binary structural recursion. Moreover, E is executable.

For instance, E(3+ 5− 2) reduces to 6, and the equation E(3+ 5− 2) = E(2+ 3+ 1)
follows by computational equality.

Exercise 15.1.1 Do the reduction E(3+ 5− 2) �∗ 6 step by step (at the equational

level).

Exercise 15.1.2 Prove some of the constructor laws for expressions. For instance,

show that con is injective and that add and sub are disjoint.

Exercise 15.1.3 Define an eliminator for expressions providing for structural in-

duction on expressions. As usual the eliminator has a clause for each of the three

constructors for expression. Since additions and subtractions have two subexpres-

sions, the respective clauses of the eliminator have two inductive hypotheses.

15.2 Code and Execution

We will compile expressions into lists of numbers. We refer to the list obtained for

an expression as the code of the expression. The compilation will be such that an

expression can be reconstructed from its code, and that execution of the code yields

the same value as evaluation of the expression.

Code is executed on a stack and yields a stack, where stacks are list of numbers.

We define an execution function RCA executing a code C and a stack A as follows:

R : L(N)→ L(N)→ L(N)
R [] A := A

R (0 :: x :: C) A := R C (x :: A)

R (1 :: C) (x1 :: x2 :: A) := R C (x1 + x2 :: A)

R (2 :: C) (x1 :: x2 :: A) := R C (x1 − x2 :: A)

R _ _ := []

Note that the function R is defined by recursion on the first argument (the code) and

by case analysis on the second argument (the stack). From the equations defining R
you can see that the first number of the code determines what is done:

• 0: put the next number in the code on the stack.

• 1: take two numbers from the stack and put their sum on the stack.

• 2: take two numbers from the stack and put their difference on the stack.

• n ≥ 3: stop execution and return the stack obtained so far.
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15.3 Compilation

The first equation defining R returns the stack obtained so far if the code is ex-

hausted. The last equation defining R is a so-called catch-all equation: It applies

whenever none of the preceding equations applies. Catch-all equations are a nota-

tional convenience that can be replaced by several equations providing the full case

analysis.

Note that the execution function is defined with tail recursion, which can be real-

ized with a loop at the machine level. This is in contrast to the evaluation function,

which is defined with binary recursion. Binary recursion needs a procedure stack

when implemented with loops at the machine level.

Exercise 15.2.1 Do the reduction R[0,3,0,5,2][] �∗ [2] step by step (at the equa-

tional level).

15.3 Compilation

We will define a compilation function γ : exp → L(N) such that ∀e. R(γe)[] = [Ee].
That is, expressions are compiled to code that will yield the same value as evaluation

when executed on the empty stack.

We define the compilation function by structural recursion on expressions:

γ : exp→ L(N)
γx := [0, x]

γ(e1 + e2) := γe2++γe1++[1]
γ(e1 − e2) := γe2++γe1++[2]

We now would like to show the correctness of the compiler:

R (γe) [] = [Ee]

The first idea is to show the equation by induction on e. This, however, fails since

the recursive calls of R leave us with nonempty stacks and partial codes not ob-

tainable by compilation. So we have to generalize both the possible stacks and the

possible codes. The generalization of codes can be expressed with concatenation.

Altogether we obtain a beautiful correctness theorem telling us much more about

code execution than the correctness equation we started with.

Theorem 15.3.1 (Correctness) R (γe++C) A = R C (Ee :: A).
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Proof By induction on e. The case for addition proceeds as follows:

R (γ(e1 + e2)++C) A
= R (γe2++γe1++[1]++C) A definition γ

= R (γe1++[1]++C) (Ee2 :: A) inductive hypothesis

= R ([1]++C) (Ee1 :: Ee2 :: A) inductive hypothesis

= R C ((Ee1 + Ee2) :: A) definition R

= R C (E(e1 + e2) :: A) definition E

The equational reasoning implicitly employs conversion and associativity for con-

catenation ++. The full details can be explored with Coq. �

Corollary 15.3.2 R (γe) [] = [Ee].

Proof Theorem 15.3.1 with C = A = []. �

Exercise 15.3.3 Do the reduction γ(5−2) �∗ [0,3,0,5,2] step by step (at the equa-

tional level).

Exercise 15.3.4 Explore the proof of the correctness theorem starting from the

proof script in the accompanying Coq development.

15.4 Decompilation

We now define a decompilation function that for all expressions recovers the expres-

sion from its code. This is possible since the compiler uses a reversible compilation

scheme, or saying it abstractly, the compilation function is injective. The decompi-

lation function closely follows the scheme used for code execution, where this time

a stack of expressions is used.

δ : L(N)→ L(exp)→ L(exp)

δ [] A := A

δ (0 :: x :: C) A := δ C (x :: A)

δ (1 :: C) (e1 :: e2 :: A) := δ C (e1 + e2 :: A)

δ (2 :: C) (e1 :: e2 :: A) := δ C (e1 − e2 :: A)

δ _ _ := []

The correctness theorem for decompilation follows closely the correctness the-

orem for compilation.
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15.5 Discussion

Theorem 15.4.1 (Correctness) δ (γe++C) B = δ C (e :: B).

Proof By induction on e. The case for addition proceeds as follows:

δ (γ(e1 + e2)++C) B
= δ (γe2++γe1++[1]++C) B definition γ

= δ (γe1++[1]++C) (e2 :: B) inductive hypothesis

= δ ([1]++C) (e1 :: e2 :: B) inductive hypothesis

= δ C ((e1 + e2) :: B) definition δ

The equational reasoning implicitly employs conversion and associativity for con-

catenation ++. �

Corollary 15.4.2 δ (γe) [] = [e].

15.5 Discussion

The semantics of the expressions and programs considered here is particularly sim-

ple since evaluation of expressions and execution of programs can be accounted for

by structural recursion.

We represented expressions as abstract syntactic objects using an inductive type.

Inductive types are the canonical representation of abstract syntactic objects. A

concrete syntax for expressions would represent expressions as strings. While con-

crete syntax is important for the practical realisation of programming systems, it

has no semantic relevance.

Early papers (late 1960’s) on verifying compilation of expressions are McCarthy

and Painter [9] and Burstall [3]. Burstall’s paper is also remarkable because it seems

to be the first exposition of structural recursion and structural induction. Compi-

lation of expressions appears as first example in Chlipala’s textbook [4], where it is

used to get the reader acquainted with Coq.

The type of expressions is the first inductive type in this text featuring binary

recursion. This has the consequence that the respective clauses in the induction

principle have two inductive hypotheses. We find it remarkable that the generaliza-

tion from linear recursion (induction) to binary recursion (induction) comes without

intellectual cost.
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16 Data Types

We study computational bijections and injections. Both are bidirectional and are

obtained with two functions inverting each other. The inverse function of injections

yields options so that it can exist if the primary function is not surjective. Injections

transport equality deciders and existential witness operators from their codomain

to their domain.

We define data types as types that come with an injection into the type of num-

bers. Data types inherit the order features of numbers and include all first-order

inductive types. Data types can be characterized as types having an equality de-

cider and an enumerator. Infinite data types can be characterized as types that are

in bijection with the numbers.

You will see many option types and sigma types in this chapter. Option types

are needed for the inverses of injections. Sigma types are used to represent the

structures for bijections, injections, and data types.

16.1 Inverse Functions

We define predicates formulating basic properties of functions:

injectivef := ∀xx′. fx = fx′ → x = x′

surjectivef := ∀y∃x. fx = y
bijectivef := injectivef ∧ surjectivef

invgf := ∀x. g(fx) = x g inverts f

The predicate invgf is to be read as g inverts f or as g is an inverse function

for f . There may be different inverse functions for a given function, even with

functional extensionality.

Fact 16.1.1

1. invgf → surjectiveg ∧ injectivef

2. invgf → injectiveg ∨ surjectivef → invfg

3. surjectivef → invgf → invg′f → ∀y. gy = g′y

Proof All claims follow by straightforward equational reasoning. Details are best

understood with Coq. �
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Note that Fact 16.1.1 (3) says that all inverse functions of a surjective function

agree.

The following lemma facilitates the construction of inverse functions.

Lemma 16.1.2 ∀fX→Y . (∀yΣx. fx = y)→ Σg. invfg.

Proof Let G : ∀yΣx. fx = y and define gy := π1(Gy). �

Fact 16.1.3 (Transport) injectivefX→Y → EY → EX.

Proof Exercise. �

Exercise 16.1.4 Give a function N→ N that has disagreeing inverse functions.

16.2 Bijections

A bijection between two types X and Y consists of two functions

f : X → Y
g : Y → X

inverting each other

∀x. g(fx) = x
∀y. f(gy) = y

and thus establishing a bidirectional one-to-one connection between the elements

of the two types. Formally, we define bijection types as nested sigma types:

BXY := ΣfX→Y ΣgY→X . invgf ∧ invfg

We say that two types are in bijection if we have a bijection between them.

Fact 16.2.1 Bijectivity is a computational equivalence relation on types:

1. BXX.

2. BXY → BYX.

3. BXY → BYZ → BXZ .

Proof Straightforward. �

Fact 16.2.2 Both functions of a bijection are bijective.

Proof Straightforward. �
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16.3 Injections

Theorem 16.2.3 (Pairing) B N (N× N).

Proof See Chapter 7. �

Exercise 16.2.4 Show that the following types are in bijection.

a) B and >+>.

b) B and O(O(⊥)).
c) > and O(⊥).
d) O(X) and X +>.

e) X + Y and Y +X.

f) X × Y and Y ×X.

g) N and L(N).

16.3 Injections

An injection of a type X into a type Y consists of two functions

f : X → Y
g : Y → O(X)

such that

∀x. g(fx) = ◦x
∀xy. gy = ◦x → fx = y

We say that f and g quasi-invert each other. We may think of an injection as

an encoding or an embedding of a type X into a type Y . Following the encoding

metaphor, we will refer to f as the encoding function and to g as the decoding

function. We have the property that every x has a unique code and that every code

can be uniquely decoded.

The decoding function determines whether a member of Y is a code (gy ≠ �
iff y is a code). Obtaining this property is a main reason for using option types.

Option types also ensure that the empty type embeds into every type.

Formally, we define injection types as nested sigma types:

IXY := ΣfX→YΣgY→O(X). (∀x. g(fx) = ◦x)∧ (∀xy. gy = ◦x → fx = y)

We remark that our definition of injections is carefully chosen to fit practical and

theoretical concerns. A previous version did not require the second equation for f
and g. From the first equation one can obtain the second equation provided one is

willing to modify the decoding function (Lemma 16.3.5). The second equation for

injections for instance facilitates the construction of a least witness operator for

data types (Fact 16.5.2).
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Fact 16.3.1

Let f and g be the encoding and decoding function of an injection. Then:

1. The encoding function is injective: fx = fx′ → x = x′.
2. The decoding function is quasi-injective: gy ≠ �→ gy = gy ′ → y = y ′.
3. The decoding function is quasi-surjective: ∀x ∃y. gy = ◦x.

4. The decoding function determines the codes: gy ≠ �←→ ∃x. fx = y .

Proof Straightforward.

Fact 16.3.2

1. IXX (reflexivity)

2. IXY → IYZ → IXZ (transitivity)

3. BXY → IXY .

4. I ⊥X
5. I X(O(X))

Proof Straightforward. Claim 5 follows with fx := ◦x and ga := a. �

Fact 16.3.3 (Transport of equality deciders)

IXY → EY → EX.

Proof Let fX→Y from IXY . Then x = x′ ←→ fx = fx′ since f is injective. Thus an

equality decider for Y yields an equality decider for X. �

We define a type of witness operators:

W XT := ∀pX→P. (∀X. D(px))→ (∃x.px)→ (Σx.px)

Fact 16.3.4 (Transport of witness operators)

IXY →WY →WX.

Proof Let fX→Y and gY→O(X) from IXY . To show that there is a witness operator

for X, we assume a decidable and satisfiable predicate pX→P. We define a decidable

and satisfiable predicate qY→P as follows:

qy := match gy [ ◦x ⇒ px | �⇒ ⊥ ]

The witness operator for Y gives us a y such that qy . The definition of q gives us

an x such that px. �

When we construct an injection, it is sometimes convenient to first construct

a preliminary decoding function g that satisfies the first equation ∀x. g(fx) = ◦x
and then use a general construction that from g obtains a proper decoding function

satisfying both equations.
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Lemma 16.3.5 (Upgrade) Given two functions fX→Y and gY→O(X) such that Y is

discrete and ∀x. g(fx) = ◦x, one can define a function g′ such that f and g′ form

an injection I XY .

Proof We assume fX→Y and gY→O(X) such that

∀x. g(fx) = ◦x

and define g′Y→O(X) as follows:

g′y :=

◦x if gy = ◦x ∧ fx = y
� otherwise

Verifying the two conditions

∀x. g′(fx) = ◦x
∀xy. g′y = ◦x → fx = y

required so that f and g′ form an injection is straightforward. �

Using a technique known as diagonalisation, Cantor showed that for no set the

power set of a set embeds into the set. The result transfers to type theory where

the function type X → B takes the role of the power set.

Fact 16.3.6 (Cantor) I(X → B)X → ⊥.

Proof Let f and g be the functions from I(X → B)X. We define a function

h : X → B

hx := match gx [ ◦ϕ ⇒ !ϕx | �→ f ]

It suffices to show h(fh) = !h(fh). Follows using the definition of h and the

equation g(fh) = ◦h on the right hand side. �

A related result is discussed in §8.3.

Exercise 16.3.7 Show I(X → N)X → ⊥.

Exercise 16.3.8 Show ∀fX→Y∀g. invgf → EY → IXY .
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16.4 Data Types

We define data types as types that come with an injection into the type N of num-

bers:

datX := IXN

With this definition, data types are closed under forming product types, sum types,

option types, and list types. Moreover, data types will come with equality deciders,

existential witness operators, and least witness operators.

Fact 16.4.1

1. ⊥, >, and B are data types: dat⊥, dat>, dat B.

2. N is a data type: dat N.

3. Types that embed into data types are data types: IXY → datY → datX.

4. If X and Y are data types, then so are X × Y , X + Y , O(X), and L(X):
a) datX → datY → dat (X × Y)
b) datX → datY → dat (X + Y)
c) datX → dat (O(X))
d) datX → dat (L(X))

Proof The injections required for (4a) and (4b) can be constructed with the bijection

of Theorem 16.2.3. �

Fact 16.4.2 (Equality decider)

Data types have equality deciders.

Proof Follows with Fact 16.3.3. �

Fact 16.4.3 (Existential witness operator)

Data types have existential witness operators.

Proof Follows with Fact 16.3.4. �

Fact 16.4.4 (Inverse functions)

Bijective functions from data types to discrete types have inverse functions:

bijectivefX→Y → datX → EY → ΣgY→X . invgf ∧ invfg.

Proof By Fact 16.1.1 (2) it suffices to construct a function g such that invfg. By

Lemma 16.1.2 it suffices to show ∀yΣx. fx = y . Follows from the surjectivity of f
with the existential witness operator for X (Fact 16.4.3) and the discreteness of Y .�
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16.5 Data Types are Ordered

An enumerator for a type X is a function gN→O(X) such that ∀x ∃n. gn = ◦x. It

turns out that data types can be characterized as discrete enumerable types. To

state the connection precisely, we define enumerator types:

enumXT := ΣgN→O(X).∀x ∃n. gn = ◦x

Fact 16.4.5 (Enumerator)

A type is a data type if and only if it has an equality decider and an enumerator:

datX a EX × enumX.

Proof Direction ⇒ is obvious. For the other direction, we assume an equality de-

cider and an enumerator gN→O(X) for X. The equality decider gives us a decider for

the satisfiable predicate λn.gn = ◦x. Thus the existential witness operator for N

gives us a function fX→N such that ∀x. g(fx) = ◦x. Now the upgrade lemma 16.3.5

yields an injection IXN. �

Exercise 16.4.6 Show that N→ B is not a data type.

Exercise 16.4.7 Show datX →W(L(X)).

16.5 Data Types are Ordered

Data types inherit the order of numbers. If x is a member of a data type X, we will

write #x for the unique code the encoding function of the injection IXN assigns

to x.

Fact 16.5.1 (Trichotomy) Let X be a data type. Then:

∀xyX .(#x < #y)+ (x = y)+ (#y < #x).

Proof Trichotomy operator for numbers and injectivity of the encoding function. �

Fact 16.5.2 (Least witness operator)

datX → (∀x. D(px))→ (Σx.px)→ (Σx. px ∧∀y. py → #x ≤ #y).

Proof Let f and g be the functions from IXN. We define a predicate on numbers.

qn := match gn [ ◦x ⇒ px | �⇒ ⊥ ]

It is easy to see that q is decidable and Σ-satisfiable. Thus the least witness operator

for numbers (Fact 11.7.3) gives us a least witness n of q. By the definition of q there

is x such that px and fx = n. It remains to show ∀y. py → n ≤ fy . Let py . Then

q(fy). Thus n ≤ fy since n is the least witness of q. �

Exercise 16.5.3 Define an existential least witness operator for data types:

∀XT. datX → (∀x. D(px))→ (∃x. px)→ (Σx. px ∧∀y. py → #x ≤ #y).
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16.6 Infinite Types

There are several possibilities for defining infiniteness of types, not all of which

are equivalent. We choose a propositional definition that is strong enough to put

infinite data types into bijection with numbers. We define infinite types as types

that for every list have an element that is not in the list:

infiniteXT := ∀AL(X) ∃xX . x ∉ A

Fact 16.6.1 N is infinite.

Proof ∀AL(N)∃n∀x. x ∈ A→ x < n follows by induction on A. �

Fact 16.6.2 (Transport) IXY → infiniteX → infiniteY .

Proof Let B be a list over Y , and let fX→Y and gY→O(X) be the functions coming with

IXY . We show ∃y. y ∉ B. Let AL(X) be the list obtained from g@B by deleting the

occurrences of � and erasing the constructor ◦ (Exercise 14.3.6). Since X is infinite,

we have x ∉ A. Then fx ∉ B (if fx ∈ B, then x ∈ A). �

Given a type X, we call a function ∀AL(X) Σx. x ∉ A a generator function for X.

Fact 16.6.3 (Generator function)

1. Types with generator functions are infinite.

2. Infinite data types have generator functions.

3. Discrete types X with an injective function N→ X have generator functions.

Proof (1) is obvious.

(2) Follows from the fact that data types have equality deciders and witness

operators (Facts 16.4.2 and 16.4.3).

For (3) we assume a discrete type X and an injective function fN→X . Let AL(X)

and n := lenA. Since f is injective, the list f@[0, . . . , n] is nonrepeating (Exer-

cise 14.7.7). Since lenA < len (f@[0, . . . , n]), the discrimination lemma 14.7.5 gives

us an x ∉ A. �

Exercise 16.6.4 Show that B is not infinite.

Exercise 16.6.5 Show datX → infiniteX → ΣxX . >.
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16.7 Infinite Data Types

16.7 Infinite Data Types

We will show that a data type is infinite if and only if it is in bijection with the type

of numbers. We base this result on a lemma we call compression lemma.

Suppose we have a function g : N→ O(X) where X is an infinite data type. Then

we can see g as a sequence over X that has holes and repetitions.

g : �,x0, x1, x0, �, x2, x1, x3, . . .

If g covers all members of X, we can compress g into a sequence h : N→ X without

holes and repetitions:

h : x0, x1, x3, . . .

Seeing h as a function again, we have that h is a bijective function N→ X.

Lemma 16.7.1 (Compression) Let X be an infinite data type. Then we can define a

bijective function N→ X.

Proof Let g : N→ O(X) be the decoding function from IXN. We first define a chain

G0 ⊆ G1 ⊆ G2 ⊆ · · · collecting the values of g in X:

G0 := []

GSn := match gn [ ◦x ⇒ x :: Gn | �⇒ Gn]

We have ∀x∃n.x ∈ Gn since g is the decoding function from IXN.

For the next step we need a function

Φ : ∀AL(X) Σx. x ∉ A∧ ∃n. gn = ◦x ∧Gn ⊆ A

that for a list A yields the first x in g such that x ∉ A. We postpone the construction

of Φ and first show that Φ provides for the construction of a bijective function

N→ X.

Let ϕA := π1(ΦA). We define a chain H0 ⊆ H1 ⊆ H2 ⊆ · · · over X and h : N→ X
as follows:

H0 := []

HSn := ϕHn :: Hn
hn := ϕ(Hn)

It’s now straightforward to verify the following facts:

1. x ∈ A→ x ≠ϕA.

2. m < n→ hm ∈ Hn.
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3. m < n→ hm ≠ hn.

Thus h is injective.

To show that h is surjective, it suffices to show Gn ⊆ Hn and

x ∈ Hn → ∃k. hk = x

Both claims follow by induction on n.

To conclude the proof, it remains to construct Φ, which in fact is the most

beautiful part of the proof. We fix A and use the generator function provided by

Fact 16.6.3 to obtain some x0 ∉ A. Using the encoding function from IXN, we obtain

n0 such that gn0 = ◦x0. We now do a linear search k = 0,1,2, . . . until we find the

first k such that ∃x. gk = ◦x ∧Gn ⊆ A. The search can be realized with structural

recursion since we have the bound k ≤ n0. Formally, we construct a function

∀k. k ≤ n0 → Gk ⊆ A→ Σx. x ∉ A∧ ∃n. gn = ◦x ∧Gn ⊆ A

by size recursion on n0 − k. For gk = �, we recurse with Sk. For gk = ◦y , we check

y ∈ A. If y ∈ A, we recurse with Sk. If y ∉ A, we terminate with x = y and n = k.�

We can now show that infinite data types are exactly those types that are in

bijection with N. In other words, up to bijection, N is the only infinite data type.

Theorem 16.7.2 (Characterizations of infinite data types)

For every type X the following types are equivalent:

1. IXN × infiniteX

2. EX × ΣfN→X . bijectivef

3. BXN

4. IXN × INX
5. IXN × ΣfN→X . injectivef

Proof 1→ 2. Compression lemma 16.7.1.

2→ 3. Inverse function lemma 16.4.4.

3→ 4. Fact 16.3.2 (3).

4→ 5. Fact 16.3.1.

5→ 1. Fact 16.6.3 (3). �

154



17 Finite Types

We define finite types as types that come with an equality decider and a list contain-

ing all elements of the type. We fix the cardinality of finite types with nonrepeating

and covering lists. We show that finite types are data types, that that finite types

embed into each other if and only if their cardinality permits. As one would ex-

pect, finite types of the same cardinality are in bijection. For every number n, a

finite type of cardinality n can be obtained by n-times taking the option type of the

empty type.

17.1 Coverings and Listings

A covering of a type is a list that contains every member of the type:

covering AL(X) := ∀xX . x ∈ A

A listing of a type is a nonrepeating covering of the type:

listing AL(X) := covering A∧ nrepA

We need a couple of results for coverings and listings of discrete types.

Fact 17.1.1 Given a covering of a discrete type, one can obtain a listing of the type:

EX → covering AL(X) → ΣBL(X). listingB.

Proof Fact 14.7.4. �

Fact 17.1.2 All listings of a discrete type have the same length.

Proof Follows with Corollary 14.7.6 (2). �

Fact 17.1.3 Let A and B be lists over a discrete type X.

1. coveringA→ nrepB → lenA ≤ lenB → listingB.

2. listingA→ coveringB → lenB ≤ lenA→ listingB.

3. listingA→ lenB = lenA→ (nrepB ←→ coveringB).

Proof Follows with Corollary 14.7.6. �
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17.2 Finite Types

We definite finite types as discrete types that come with a covering list:

fin XT := E(X) × ΣAL(X). coveringA

This definition ensures that finite types are computational objects we can put our

hands on. We already know that for a covering of a discrete type we can compute

a listing of the type having a uniquely determined length. It will be convenient to

have a second definition for finite types fixing a listing and announcing the size of

the type:

finn XT := E(X) × ΣAL(X). listingA∧ lenA = n

Fact 17.2.1 For every type X:

1. finX a Σn.finnX

2. finmX → finnX →m = n (uniqueness)

Proof Facts 17.1.1 and 17.1.2. �

Fact 17.2.2 If X and Y are finite types, then so are X × Y , X + Y and O(X).

Proof Discreteness follows with Facts 10.5.1 and 17.3.1. We leave the construction

of the covering lists as an exercise. �

Fact 17.2.3 Finite types are data types: finX → CX.

Proof By Fact 17.2.1 we assume a covering A for X. We use the upgrade

lemma 16.3.5 so that only the first equation for IXN needs to be verified. If A
is empty, we construct IXN with fx := 0 and gn := �. Otherwise, A contains an

element a. We now use the position-element mappings pos and sub from § 14.9 and

define

fx := posAx

gn := ◦subaAn

The equation g(fx) = ◦x now follows with Fact 14.9.1 �

Fact 17.2.4 Finite types are not infinite: finX → infiniteX → ⊥.

Proof Exercise. �

Fact 17.2.5 finiteX → I NX → ⊥.

Proof Follows with Facts 16.6.2, 16.6.1, and 17.2.4. �
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Fact 17.2.6 (Injectivity-surjectivity agreement) Functions between finite types of

the same cardinality are injective if and only if they are surjective:

finnX → finn Y → ∀fX→Y . injectivef ←→ surjectivef .

Proof Let A and B be listings for X and Y , respectively, with lenA = lenB. We fix

fX→Y and have covering(f@A)←→ nrep(f@A) by Fact 17.1.3 (3).

Let f be injective. Then f@A is nonrepeating by Exercise 14.7.7 (a). Thus f@A
is covering. Hence f is surjective.

Let f be surjective. Then f@A is covering and thus nonrepeating. Thus f is

injective by Exercise 14.7.7 (b). �

Exercise 17.2.7 Prove fin0⊥, fin1>, and fin2 B.

Exercise 17.2.8 Prove the following:

a) datX → (∃AL(X)∀x. x ∈ A)→ finX.

b) XM→ datX → infinteX ∨ (∃AL(X)∀x. x ∈ A).
Proving (b) with a sum type rather than a disjunction seems impossible.

Exercise 17.2.9 (Bounded quantification)

Let p be a decidable predicate on a finite type X. Prove the following types:

a) D(∀x.px)
b) D(∃x.px)
c) (Σx.px)+ (∀x.¬px)

Exercise 17.2.10

Prove finmX → finn Y →m > 0→ (∀fX→Y . injectivef ←→ surjectivef)→ m = n.

17.3 Finite Ordinals

We define for every number n a finite type Fn with exactly n elements by applying

n-times the option type constructor to the empty type ⊥:

Fn := On(⊥)

We refer to the types Fn as finite ordinals.

Fact 17.3.1 (Discreteness) The finite ordinals are discrete: E(Fn).

Proof Follows by induction on n since ⊥ is discrete (Fact 10.5.1) and O preserves

discreteness (Fact 10.6.2). �
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We define a function L : ∀n. L(Fn) that yields a listing for every finite ordinal:

L0 := []

LSn := � :: (◦@ Ln)

For instance, L4 = [�, ◦�, ◦◦�, ◦◦◦�].

Fact 17.3.2 Ln is a listing of Fn having length n.

Proof By induction on n. �

Fact 17.3.3 Fn is a finite type of size n: finn Fn.

Proof Facts 17.3.1 and 17.3.2. �

17.4 Bijections and Finite Types

Fact 17.4.1 (Transport) BXY → finnX → finn Y .

Proof Bijections map listings to listings and preserve their length. �

Theorem 17.4.2 (Finite bijection)

Finite types of the same size are in bijection: finnX → finn Y → BX Y .

Proof Let A and B be listings of X and Y , respectively, both of length n. If

A = B = [], we can define functions X → ⊥ and Y → ⊥ and thus the claim fol-

lows with computational elimination for ⊥. Otherwise, we have a ∈ A and b ∈ B.

The listings A and B give us bijective connections between the elements of X and

the positions 0, . . . , n− 1, and the elements of Y and the positions 0, . . . , n− 1. We

realize the resulting bijection between X and Y using the list operations sub and

pos with escape values (§ 14.9):

fx := subbB (posAx)

gy := subaA (posB y)

Recall that pos yields the position of a value in a list, and that sub yields the value

at a position of a list. Since A and B are covering, the escape values a and b will not

be used by sub. �

Corollary 17.4.3 finmX → finn Y → (BXY a m = n).

Proof Direction⇒ follows with Facts 17.4.1 and 17.2.1 (2). Direction⇐ follows with

Theorem 17.4.2. �
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Exercise 17.4.4 Prove the following:

a) finnX → BXFn.

b) B Fm Fn → m = n.

c) B Fn FSn → ⊥.

17.5 Injections and Finite Types

We may consider a type X is smaller than a type Y if X can be embedded into Y with

an injection. For finite types, this abstract notion of size agrees with the numeric

size we have assigned to finite types through nonrepeating lists.

Lemma 17.5.1 (Transport of covering lists)

IXY → coveringY B → ΣA. coveringX A.

Proof Let B be a covering of Y , and let f : X → Y and g : Y → O(X) be the functions

coming with IXY . Let A : L(X) be the list obtained from g@B by deleting the

occurrences of � and erasing the constructor ◦ (Exercise 14.3.6). We show that A is

covering. Let x : X. Then fx ∈ B. Hence ◦x = g(fx) ∈ g@B. Thus x ∈ A. �

Fact 17.5.2 (Transport of finiteness)

IXY → finY → finX.

Proof Fact 16.3.3 and Lemma 17.5.1. �

Fact 17.5.3 (Characterizations of finite types)

For every type X the following types are equivalent:

1. finX

2. Σn.finnX

3. Σn.BXFn

4. ΣY . IXY × finY

Note that each of the types gives us a characterization of finite types.

Proof The equivalences follow with Facts 17.2.1 and 17.3.3, Theorem 17.4.2, and

Facts 16.3.2 (3) and 17.5.2. �

Fact 17.5.4

finmX → finn Y →m ≤ n→ I X Y .

Proof The proof is similar to the proof of Theorem 17.4.2. Again we use the up-

grade lemma 16.3.5 so that only the first equation for IXY needs to be verified.
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Let A be listing of X of lengthm and B be a listings of Y of length n ≥m. If A = [],
we can define a function X → ⊥ and the claim follows with computational elimina-

tion for ⊥. Otherwise, we have an escape values a ∈ A and b ∈ B. We realize the

injection of X into Y as follows:

fx := subbB (posAx)

gy := ◦subaA (posB y) �

Fact 17.5.5

finmX → finn Y → I X Y →m ≤ n.

Proof Let A be a nonrepeating list of length m over X, B be a covering list over Y
of length n, and f : X → Y be injective. Then f@A ⊆ B is nonrepeating and thus

m ≤ n by Corollary 14.7.6. �

Theorem 17.5.6 (Finite injection) finmX → finn Y → (m ≤ na IXY).

Proof Follows with Facts 17.5.4 and 17.5.5. �

Corollary 17.5.7 finmX → finn Y →m > n→ IXY → ⊥.

Fact 17.5.8 (Finite sandwich)

1. IXY → IYX → (finnXa finn Y).

2. IXY → IYX → finX → BXY .

Proof Claim 1 follows with Facts 17.2.1, 17.5.2, and 17.5.5. Claim 2 follows with

Fact 17.2.1, Claim 1, and Theorem 17.4.2. �

Exercise 17.5.9 Prove the following:

a) I Fm Fn a m ≤ n.

b) I FSn Fn → ⊥.

Exercise 17.5.10 Prove the following:

1. I N Fn → ⊥.

2. Fn ≠ N.
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18 Axiomatic Freedom

A proposition X is independent in a given proof system if neither X nor ¬X is

provable. There are many interesting propositions that are independent in Coq’s

type theory, among them functional extensionality and excluded middle.

Often it is interesting to explore the consequences of mathematical assumptions

and obtain results that depend on certain assumptions. For this purpose, a proof

system that has only basic logical assumptions built in is preferable over a proof

system that has many mathematical assumptions built in since the basic proof sys-

tem provides finer distinctions and grants more axiomatic freedom.

18.1 Metatheorems

Given a proposition, we may prove or disprove the proposition with Coq’s proof

system. Recall that a disproof of a proposition is a proof of its negation. We call a

proposition independent if we can neither prove nor disprove it. That a proposition

is independent cannot be shown with Coq’s proof system since unprovability of a

proposition cannot be stated as a proposition.

Given a proof system, results that cannot be shown within the system are called

metatheorems, and properties that cannot be stated within the system are called

metaproperties. Independence of a proposition is a metaproperty and a result say-

ing that a certain proposition is independent in Coq’s proof system is a metathe-

orem. Note that we can use Coq to show for many propositions that they are not

independent by proving or disproving the proposition with Coq.

An important metaproperty for any proof system is consistency saying that

there is no proof of falsity. There is a general result (Gödel’s incompleteness the-

orem) that says that no sufficiently strong proof system can prove its own consis-

tency.

18.2 Abstract Provability Predicates

There is a way to prove certain properties of provability within Coq. The trick is to

assume an abstract provability predicate

provable : P→ P
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18 Axiomatic Freedom

satisfying certain properties. For our purposes the following properties suffice:

PA : ∀XY. provable (X → Y)→ provable X → provable Y

PI : ∀X. provable (X → X)
PK : ∀XY. provable Y → provable (X → Y)
PN : ∀XY. provable (X → Y)→ provable (¬Y → ¬X)

Since Coq’s provability predicate satisfies these properties, we can expect that prop-

erties we can show for abstract provability predicates also hold for Coq’s provability

predicate.

We identify three prominent properties based on provability:

• A proposition X is contradictory if ¬X is provable.1

contradictory X := provable (¬X)

• A proposition is consistent if it is not contradictory.

consistent X := ¬contradictoryX

• A proposition is independent if it is unprovable and consistent.

independent X := ¬provableX ∧ consistentX

The assumption PA known as modus ponens says that provability transports

through implication. Unprovability thus transports in the reverse direction. With

PN we then obtain that consistency transports through implications the same way

provability does.

Fact 18.2.1 (Transport)

1. provable(X → Y) → ¬provableY → ¬provableX.

2. provable(X → Y) → consistentX → consistentY .

Proof Claim 1 follows with PA. Claim 2 follows with PN and (1). �

Corollary 18.2.2 Provability, unprovability, consistence, and independence all

transport through propositional equivalence. Formally, if X → Y and Y → X are

provable, then:

1. If X is provable, then Y is provable.

2. If X is unprovable, then Y is unprovable.

3. If X is consistent, then Y is consistent.

1Note that a proposition is contradictory iff we can disprove it.
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18.2 Abstract Provability Predicates

4. If X is independent, then Y is independent.

From the transport properties it follows that a proposition is independent if it

can be sandwiched between a consistent and an unprovable proposition.

Theorem 18.2.3 (Sandwich) A proposition Y is independent if there exist proposi-

tions X and Z such that:

1. X → Y and Y → Z are provable.

2. X is consistent and Z is unprovable.

Proof Follows with Fact 18.2.1. �

A key property of provability is consistency saying that there is no proof of

falsity. It turns out that consistency has interesting equivalent characterizations

that can be established for abstract proof predicates.

Fact 18.2.4 (Consistency) The following propositions are equivalent:

1. ¬provable⊥.

2. consistent (¬⊥).
3. There is a consistent proposition.

4. Every provable proposition is consistent.

Proof 1 → 2. We assume provable(¬¬⊥) and show provable⊥. By PA it suffices to

show provable(¬⊥), which holds by PI.

2→ 3. Trivial.

3→ 1. Suppose X is consistent. We assume provable⊥ and show provable (¬X).
Follows by PK.

1 → 4. We assume that ⊥ is unprovable, X is provable, and ¬X is provable. By

PA we have provable⊥. Contradiction.

4 → 1. We assume that ⊥ is provable and derive a contradiction. By the primary

assumption it follows that ¬⊥ is unprovable. Contradiction since ¬⊥ is provable

by PI. �

From Fact 18.2.4 we learn that a provability predicate is consistent if there are

consistent propositions.

Exercise 18.2.5 Show that the functions λXP.X and λXP.> are abstract provability

predicates satisfying PA, PI, PK, and PN.

Exercise 18.2.6 Let X → Y be provable. Show that X and Y are both independent

if X is consistent and Y is unprovable.
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Exercise 18.2.7 Assume a provability predicate satisfying PA, PI, PK, PN, and also

PE : ∀XP. provable ⊥ → provable X

Prove ¬provable ⊥ ←→ ¬∀XP. provable X.

Exercise 18.2.8 We may consider more abstract provability predicates

provable : prop→ P

where prop is an assumed type of propositions with two assumed constants

falsity : prop

impl : prop→ prop→ prop

Show all results of this section for such abstract proof systems.

18.3 Prominent Independent Propositions

Figure 18.1 lists prominent propositions that are independent in Coq. Here are

informal readings of the propositions.

• Truth value semantics (TVS) says that every proposition equals either > or ⊥.

• Excluded middle (XM) says that every proposition is either provable or disprov-

able.

• Limited propositional omniscience (LPO) says that tests on numbers are either

satisfiable or unsatisfiable.

• Markov’s principle (Markov) says that a test on numbers that is not constantly

false is true for some number. Markov’s principle may be seen as a specialized

de Morgan law.

• Propositional extensionality (PE) says that equivalent propositions are equal.

• Proof irrelevance (PI) says that propositions have at most one proof.

• Functional extensionality (FE) says that functions are equal if they agree on all

arguments.

Note that LPO and Markov talk about tests on numbers and quantify only over types

in T1. The other propositions in Figure 18.1 do not involve data types but quantify

over universes.

Using the sandwich theorem, we will be able to show that all propositions in

Figure 18.1 are independent provided we are given two nontrivial metatheorems.

Theorem 18.3.1 (Meta) TVS∧ FE is consistent.
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TVS := ∀XP. X = >∨X = ⊥
XM := ∀XP. X ∨¬X

LPO := ∀fN→B. (∃n. fn = t)∨¬(∃n. fn = t)

Markov := ∀fN→B. ¬(∀n. fn = f)→ (∃n. fn = t)

PE := ∀XPYP. X ←→ Y → X = Y
PI := ∀XP∀aXbX . a = b
FE := ∀XTYT∀fX→YgX→Y . (∀x. fx = gx)→ f = g

Figure 18.1: Independent propositions

TVS→ XM TVS→ PE PE→ PI

XM→ LPO XM→ PE→ TVS

LPO→ Markov

Figure 18.2: Provable implications

Theorem 18.3.2 (Meta) Neither Markov nor PI nor FE is provable.

From Theorem 18.3.1 we obtain consistency as a corollary.

Corollary 18.3.3 (Meta) ⊥ is unprovable.

Proof Follows with Fact 18.2.4 from Theorem 18.3.1. �

We will now prove the implications shown in Figure 18.2. The implications suffice

so that with the sandwich theorem 18.2.3 and the metatheorems 18.3.1 and 18.3.2

we know that all propositions of Figure 18.1 are independent.

Fact 18.3.4 XM←→ ∀XP. (X ←→ >)∨ (X ←→ ⊥).

Proof Straightforward. �

Fact 18.3.5 TVS ←→ XM∧ PE.

Proof Straightforward using Fact 18.3.4. �

Fact 18.3.6 XM→ LPO and LPO→ Markov.
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Proof The first claim is obvious. For the second claim assume LPO and f such that

H : ¬∀n. fn = f. By LPO we assume H1 : ¬∃n. fn = t and prove falsity. By H we

prove fn = f for some n. By boolean case analysis we assume fn = t and prove

falsity. The proof closes with H1. �

We call a proposition pure if it has at most one proof:

pure : P→ P

pure X := ∀aXbX . a = b

Note that PI says that all propositions are pure.

Fact 18.3.7 ⊥ and > are pure.

Proof Follows with the eliminators for ⊥ and >. �

Fact 18.3.8 PE→ PI.

Proof Assume PE and let a and b be two proofs of a proposition X. We show a = b.

Since X ←→ >, we have X = > by PE. Hence X is pure since > is pure. The claim

follows. �

Theorem 18.3.9 (Meta) All propositions in Figure 18.1 are independent.

Proof By the sandwich theorem 18.2.3 and Facts 18.3.5, 18.3.8, and 18.3.6 it suffices

to show that TVS and FE are consistent and that PI, Markov, and FE are unprovable.

This is exactly what Theorems 18.3.1 and 18.3.2 say. �

Exercise 18.3.10 Prove TVS ←→ ∀XYZ :P. X = Y ∨ X = Z ∨ Y = Z . Note that the

equivalence characterizes TVS without using > and ⊥.

Exercise 18.3.11 Prove TVS ←→ ∀pP→P. p> → p⊥ → ∀X.pX. Note that the equiv-

alence characterizes TVS without using propositional equality.

Exercise 18.3.12 Prove that ∀XT. X = >∨X = ⊥ is contradictory.

Exercise 18.3.13 We define implicational excluded middle as

IXM := ∀XPYP. (X → Y)∨ (Y → X)

a) Prove XM→ IXM.

b) Prove that IXM is consistent.

We remark that neither IXM nor IXM→ XM is provable in Coq’s type theory.
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Exercise 18.3.14 We define weak excluded middle as

WXM := ∀XP. ¬X ∨¬¬X

a) Prove WXM←→ ∀XP. ¬¬X ∨¬¬¬X.

b) Prove WXM←→ ∀XPYP. ¬(X ∧ Y)→ ¬X ∨¬Y .

c) Prove that WXM is consistent.

Note that (b) says that WXM is equivalent to the de Morgan law for conjunction. We

remark that neither WXM nor WXM→ XM is provable in Coq’s type theory.

Exercise 18.3.15 Prove FE→ pure (> → >).

Exercise 18.3.16 Prove FE→ B ≠ (> → >).

Exercise 18.3.17 Suppose there is a function f : (∃xB.>)→ B such that f(Ex I) = x
for all x. Prove ¬ PI. Convince yourself that without the elim restriction you could

define a function f as assumed.

Exercise 18.3.18 Suppose there is a function f : (> ∨ >) → B such that f(L I) = t

and f(R I) = f. Prove ¬ PI. Convince yourself that without the elim restriction you

could define a function f as assumed.

Exercise 18.3.19 Functional extensionality can be formulated more generally for

dependently typed functions:

∀XT∀pX→T∀f∀x.px∀g∀x.px. (∀x. fx = gx)→ f = g

Convince yourself that the dependently typed version implies the simply typed ver-

sion FE. We remark that the dependently typed version is consistent in conjunction

with TVS.

18.4 Sets

Given FE and PE, predicates over a type X correspond exactly to sets whose elements

are taken from X. We may define membership as x ∈ p := px. In particular, we

obtain that two sets (represented as predicates) are equal if they have the same

elements (set extensionality). Moreover, we can define the usual set operations:

� := λxX .⊥ empty set

p ∩ q := λxX .px ∧ qx intersection

p ∪ q := λxX .px ∨ qx union

p − q := λxX .px ∧¬qx difference
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Exercise 18.4.1 Prove x ∈ (p − q) ←→ x ∈ p ∧ x ∉ q. Check that the equation

(x ∈ (p − q)) = (x ∈ p ∧ x ∉ q) holds by computational equality.

Exercise 18.4.2 Assume FE and PE and prove the following:

1. (∀x. x ∈ p ←→ x ∈ q)→ p = q.

2. p − (q ∪ r) = (p − q)∩ (p − r).

18.5 No Computational Omniscience

Coq’s type theory is carefully designed such that every definable function is com-

putable. On the other hand, using existential quantification, we can ask for the

existence of functions having properties no computable function can have. Here is

a proposition we call computational omniscience:

CO := ∃F (N→B)→B∀fN→B. Ff = t←→ ∃n. fn = t

CO states the existence of a boolean function F deciding whether tests on numbers

are satisfiable. Computationally, we can apply a test f only finitely often, but after

finitely many negative outcomes it is still possible that f tests positively the next

number we try. In short, a computable satisfiability decider for tests on numbers

cannot exist because there are infinitely many numbers.

Fact 18.5.1 CO→ LPO.

Proof Straightforward. �

As pointed out in the discussion above, we expect that ¬CO is consistent in the

presence of TVS and FE.

Conjecture 18.5.2 (Meta) TVS∧ FE∧¬CO is consistent.

It turns out that assuming CO is also consistent.

Theorem 18.5.3 (Meta) TVS∧ FE∧ CO is consistent.

From the conjecture and the theorem it follows that CO is independent, even in

the presence of TVS and FE. So technically, we could go either way. In this text, we

want a type theory where all definable functions are computable, and hence will not

admit assumptions conflicting with ¬CO.
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18.6 Discussion

Basic Intuitionistic Reasoning

In mathematical practice TVS and FE are tacitly assumed. What is surprising at first

is that basic intuitionistic reasoning (the reasoning directly obtained with the propo-

sitions as types principle) can prove so many interesting theorems. Basic intuition-

istic reasoning is valuable in that it provides a basis for studying tacit assumptions

used in mathematical reasoning.

Markov versus LPO

Markov’s principle is weaker than LPO but still not provable with basic intuitionistic

reasoning. If we look at Markov’s principle

∀fN→B. ¬(∀n. fn = f)→ ∃n. fn = t

we see that a proof of the principle is a function that given a proof that a boolean

test for numbers is not constantly negative returns a number where the test is

positive. Such a function can be realized (not in Coq so) with an algorithm that

starting from n = 0 checks the test until it finds a number testing positively. In

contrast, such an algorithmic realization does not exist for a function proving LPO.

There is a philosophical direction called intuitionism that will only accept intu-

itionistic reasoning, which is basic intuitionistic reasoning plus assumptions whose

proof functions can be realized algorithmically. While the use of Markov’s principle

is fine for intuitionists, the use of LPO is not. The results in the literature suggest

that LPO does not imply XM.

Consistency of Proof Irrelevance

Given the setup of Coq’s proof system, where the structure of canonical proofs

is crucial for reasoning with proofs of inductive propositions, the consistency of

proof irrelevance is surprising, in particular, as it comes to disjunctions. There is

the important result that proof irrelevance is already implied by excluded middle

(we will see a proof in a later chapter).
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We formalize an intuitionistic and a classical ND system using indexed inductive

types. We prove properties of the systems using induction on derivations obtained

with recursive eliminators. We show that intuitionistic provability implies classical

provability, that the double negation law is independent in the intuitionistic system,

and that classical provability reduces to intuitionistic provability using double nega-

tion. We define boolean evaluation of formulas and show that a certifying boolean

solver yields agreement of classical ND with boolen entailment as well as decidabil-

ity. The chapter is designed such that it can serve as in introduction to propositional

ND systems, and also as first example for the use of indexed inductive definitions.

19.1 ND Systems

We start with an informal explanation of natural deduction systems. Natural deduc-

tion systems (ND systems) come with a class of formulas and a system of deduction

rules for building derivations of pairs (A, s) consisting of a list of formulas A (the

context) and a single formula s (the conclusion). The formulas in A play the role of

assumptions. That a pair (A, s) is derivable with the rules of the system is under-

stood as saying that s is provable with the assumptions in A and the rules of the

system. Given a concrete class of formulas, we can have different sets of rules and

compare their deductive power. Given a concrete deduction system, we may ask the

following questions:

• Consistency: Are there formulas we cannot derive?

• Weakening property: Given a derivation of (A, s) and a list B such that A ⊆ B,

can we always obtain a derivation of (B, s)?

• Cut property: Given derivations of (A, s) and (s :: A, t), can we always obtain a

derivation of (A, t)?

• Decidability: Is it decidable whether a pair (A, s) is derivable?

All but the last property formulate basic integrity conditions for natural deduction

systems.

We will consider the following type of formulas:

s, t,u, v : For := x | ⊥ | s → t | s ∧ t | s ∨ t (x : N)
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19 Natural Deduction

A`
s ∈ A
A ` s

E⊥
A ` ⊥
A ` s

I→
A, s ` t
A ` s → t

E→
A ` s → t A ` s

A ` t

I∧
A ` s A ` t
A ` s ∧ t

E∧
A ` s ∧ t A, s, t ` u

A ` u

I1∨
A ` s
A ` s ∨ t

I2∨
A ` t
A ` s ∨ t

E∨
A ` s ∨ t A, s ` u A, t ` u

A ` u

Figure 19.1: Deduction rules of the intuitinistic ND system

Formulas of the kind x are called atomic formulas. Atomic formulas represent

atomic propositions whose meaning is left open. For the other kinds of formulas the

symbols used give away the intended meaning. Formally, the type For of formulas

is accommodated as an inductive type that has a value constructor for each kind of

formula (5 altogether).1 We will use the notation ¬s := s → ⊥.

Exercise 19.1.1 (Formulas)

a) Show some of the constructor laws for the type of formulas.

b) Define an eliminator providing for structural induction on formulas.

c) Define an equality decider for the type of formulas.

19.2 Intuitionistic ND System

The deduction rules of the intuitionistic ND system we will consider are given in

Figure 19.1 using several notational gadgets:

• Turnstile notation A ` s for pairs (A, s).

• Comma notation A, s for lists s :: A.

• Ruler notation for deduction rules. For instance,

A ` s → t A ` s
A ` t

describes a rule (known as modus ponens) that obtains a derivation of (A, t)
from derivations of (A, s → t) and (A, s). We say that the rule has two premises

and one conclusion.

1The use of abstract syntax is discussed more carefully in Chapter 7.
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All rules in Figure 19.1 express proof rules you are familiar with from mathematical

reasoning and the logical reasoning you have seen in this text. In fact, the system

of rules in Figure 19.1 can derive exactly those pairs (A, s) that are known to be

intuitionistically deducible (given the formulas we consider). Since reasoning in

type theory is intuitionistic, Coq can prove a goal (A, s) if and only if the rules in

Figure 19.1 can derive the pair (A, s) (where atomic formulas are accommodated as

propositional variables in type theory). We will exploit this coincidence when we

construct derivations using the rules in Figure 19.1.

The rules in Figure 19.1 with a logical constant (i.e., ⊥, →, ∧, ∨) in the conclusion

are called introduction rules, and the rules with a logical constant in the leftmost

premise are called elimination rules. The first rule in Figure 19.1 is known as

assumption rule. Note that every rule but the assumption rule is an introduction or

an elimination rule for some logical constant. Also note that there is no introduction

rule for⊥, and that there are two introduction rules for∨. The elimination rule for⊥
is also known as explosion rule.

Note that no deduction rule contains more than one logical constant. This re-

sults in an important modularity property. If we want to omit a logical constant, for

instance ∧, we just omit all rules containing this constant. Note that every system

with ⊥ and→ can express negation. When trying to understand the structural prop-

erties of the system, it is usually a good idea to just consider ⊥ and→. Note that the

assumption rule cannot be omitted since it is the only rule not taking a derivation

as premise.

Exercise 19.2.1 A derivation for s ` ¬¬s may be depicted as a derivation tree as

follows:

s,¬s ` ¬s
A

s,¬s ` s
A

s,¬s ` ⊥
E→

s ` ¬¬s
I→

The labels A, E→, and I→ act as names for the rules used (assumption, elimination,

and introduction). We ease our notation by omitting the list brackets at the left

of `.

Give derivation trees for A ` (s → s) and ¬¬⊥ ` ⊥.

19.3 Formalisation with Indexed Inductive Type Definition

It turns out that propositional deduction systems like the one in Figure 19.2 can be

formalized elegantly and directly with inductive type definitions accommodating

deduction rules as value constructors of derivation types A ` s.
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19 Natural Deduction

s ∈ A → A ` s A`

A ` ⊥ → A ` s E⊥

A, s ` t → A ` (s → t) I→

A ` (s → t) → A ` s → A ` t E→

A ` s → A ` t → A ` (s ∧ t) I∧

A ` (s ∧ t) → A, s, t ` u → A ` u E∧

A ` s → A ` (s ∨ t) I1∨

A ` t → A ` (s ∨ t) I2∨

A ` (s ∨ t) → A, s ` u → A, t ` u → A ` u E∨

Prefixes for A, s, t, u omitted, constructor names given at the right

Figure 19.2: Value constructors for derivation types A ` s

Let us explain this fundamental idea. We may see the deduction rules in Fig-

ure 19.1 as functions that given derivations for the pairs in the premises yield a

derivation for the pair in the conclusion. The introduction rule for conjunctions,

for instance, may be seen as a function that given derivations for (A, s) and (A, t)
yields a derivation for (A, s ∧ t). We now go one step further and formalize the

deduction rules as the value constructors of an inductive type constructor

` : L(For)→ For→ T

This way the values of an inductive type A ` s represent the derivations of the pair

(A, s) we can obtain with the deduction rules. To emphasize this point, we call the

types A ` s derivation types.

The value constructors for the derivation types A ` s of the intuitionistic ND

system appear in Figure 19.2. Note that the types of the constructors follow exactly

the patterns of the deduction rules in Figure 19.2.

When we look at the target types of the constructors in Figure 19.2, it becomes

clear that the argument s of the type constructor A ` s is not a parameter since

it is instantiated by the constructors for the introduction rules (I→, I∧, I1∨, I2∨). Such

nonparametric arguments of type constructors are called indices. In contrast, the

argument A of the type constructor A ` s is a parameter since it is not instanti-

ated in the target types of the constructors. More precisely, the argument A is a

nonuniform parameter of the type constructor A ` s since it is instantiated in some

argument types of some of the constructors (I→, E∧, and E∨).

We call inductive type definitions where the type constructor has indices indexed

inductive definitions. Indexed inductive definitions can also introduce indexed
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inductive predicates. In fact, we alternatively could introduce ` as an indexed

inductive predicate and this way demote derivations from computational objects to

proofs.

The suggestive BNF-style notation we have used so far to write inductive type

definitions does not generalize to indexed inductive type definitions. So we will

use an explicit format giving the type constructor together with the list of value

constructors. Often, the format used in Figure 19.2 will be convenient.

We can now do simple proofs using the value constructors. We offer some ex-

amples. We ease our notation by writing ¬¬⊥ ` ⊥ for [¬¬⊥] ` ⊥, for instance.

Fact 19.3.1 (1) s,A ` s (2) ¬¬⊥ ` ⊥ (3) s ` ¬¬s

Proof (1) follows with A`.

(2) follows with E→ from ¬¬⊥ ` ¬¬⊥ and ¬¬⊥ ` ¬⊥. The first subgoal follows

with A`. The second subgoal follows with I→ and A`.

(3) follows with I→ from s,¬s ` ⊥, which follows with E→ from s,¬s ` ¬s and

s,¬s ` s, which both follow with A`. �

Fact 19.3.2 (Cut) A ` s → A, s ` t → A ` t.

Proof We assume A ` s and A, s ` t and derive A ` t. By I→ we have A ` (s → t).
Thus A ` t by E→. �

The cut lemma gives us a function that given a derivation A ` s and a derivation

A, s ` t yields a derivation A ` t. Informally, the cut lemma says that once we have

derived s from A, we can use s like an assumption.

Fact 19.3.3 (Bottom) A ` ¬¬⊥ → A ` ⊥.

Proof Exercise. �

19.4 The Eliminator

For more interesting proofs it will be necessary to do inductions on derivations.

As it was the case for non-indexed inductive types, we can define an eliminator

providing for the necessary inductions. The definition of the eliminator is shown in

Figure 19.3. While the definition of the eliminator is frighteningly long, it is regular

and modular: Every deduction rule (i.e., value constructor) is accounted for with a

separate type clause and a separate defining equation. To understand the definition

of the eliminator, it suffices that you pick one of the deduction rules and look at the

type clause and the defining equation for the respective value constructor.
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E` : ∀pL(For)→For→T.

(∀As. s ∈ A→ pAs)→
(∀As. pA⊥ → pAs)→
(∀Ast. p(s :: A)t → pA(s → t))→
(∀Ast. pA(s → t)→ pAs → pAt)→
(∀Ast. pAs → pAt → pA(s ∧ t))→
(∀Astu. pA(s ∧ t)→ p(s :: t :: A)u→ pAu)→
(∀Ast. pAs → pA(s ∨ t))→
(∀Ast. pAt → pA(s ∨ t))→
(∀Astu. pA(s ∨ t)→ p(s :: A)u→ p(t :: A)u→ pAu)→
∀As. A ` s → pAs

E` pf1 . . . f9A _ (A` sh) := f1Ash

(E⊥ sd) := f2As(E` . . . A⊥d)
(I→ std) := f3Ast(E` . . . (s :: A)td)

(E→ std1d2) := f4Ast(E` . . . A(s → t)d1)(E` . . . Asd2)

(I∧ std1d2) := f5Ast(E` . . . Asd1)(E` . . . Atd2)

(E∧ stud1d2) := f6Astu(E` . . . A(s ∧ t)d1)(E` . . . (s :: t :: A)ud2)

(I1∨ std) := f7Ast(E` . . . Asd)

(I2∨ std) := f8Ast(E` . . . Atd)

(E∨ stud1d2d3) := f9Astu(E` . . . A(s ∨ t)d1)

(E` . . . (s :: A)ud2)

(E` . . . (t :: A)ud3)

Figure 19.3: Eliminator for A ` s
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The eliminator formalizes the idea of induction on derivations, which informally

is easy to master. With a proof assistant, the eliminator can be derived automatically

from the inductive type definition, and its application can be supported such that

the user is presented the proof obligations for the constructors once the induction

is initiated.

As it comes to the patterns (i.e., the left-hand sides) of the defining equations,

there is a new feature coming with indexed inductive types. Recall that patterns

must be linear, that is, no variable must occur twice, and no constituent must be

referred to by more than one variable. With parameters, this requirement was easily

satisfied by not furnishing constructors in patterns with their parameter arguments.

If the type constructor we do the case analysis on has indices, there is the additional

complication that the value constructors for this type constructor may instantiate

the index arguments. Thus there is a conflict with the preceding arguments of the

defined function providing abstract arguments for the indices. Again, there is a sim-

ple general solution: The conflicting preceding arguments of the defined function

are written with the underline symbol ’_’ and thus don’t introduce variables, and

the necessary instantiation of the function type is postponed until the instantiating

constructor is reached. In the definition shown in Figure 19.3, the critical argument

of E` that needs to be written as ’_’ in the defining equations is s in the head type

∀As. A ` s → pAs of E`.

19.5 Induction on Derivations

We are now ready to prove interesting properties of the intuitionistic ND system

using induction on derivations. We will carry out the inductions informally and

leave it to reader to check (with Coq) that the informal proofs translate into formal

proofs applying the eliminator E`.

We start by defining a function translating derivations A ` s into derivations

B ` s provided B contains every formula in A.

Fact 19.5.1 (Weakening) A ` s → A ⊆ B → B ` s.

Proof By induction on A ` s with B quantified. All proof obligations are straight-

forward. We consider the constructor I→. We have A ⊆ B and a derivation A, s ` t,
and we need a derivation B ` (s → t). Since A, s ⊆ B, s, the inductive hypothesis

gives us a derivation B, s ` t. Thus I→ gives us a derivation B ` (s → t). �

Next we show that premises of top level implications are interchangeable with

assumptions.

Fact 19.5.2 (Implication) A ` (s → t) a A, s ` t.

177



19 Natural Deduction

Proof Direction ⇐ holds by I→. For direction ⇒ we assume A ` (s → t) and obtain

A, s ` (s → t) with weakening. Now A` and E→ yield A, s ` t. �

As a consequence, we can represent all assumptions of a derivation A ` s as

premises of implications at the right-hand side. To this purpose, we define a rever-

sion function A · s with [] · t := t and (s :: A) · t := A · (s → t). For instance, we have

[s1, s2, s3] · t = s3 → s2 → s1 → t.

Fact 19.5.3 (Reversion) A ` sa ` A · s.

Proof By induction on A with s quantified using the implication lemma. �

A formula is ground if it contains no variable. We assume a recursively defined

predicate ground s for groundness.

Fact 19.5.4 (Ground Prover) ∀s. ground s → ([] ` s)+ ([] ` ¬s).

Proof By induction on s using weakening. �

Exercise 19.5.5 Establish the following functions:

a) A ` (s1 → s2 → t) → A ` s1 → A ` s2 → A ` t.
b) ¬¬s ∈ A → A, s ` ⊥ → A ` ⊥.

c) A, s,¬t ` ⊥ → A ` ¬¬(s → t).

Exercise 19.5.6 Prove the following types.

a) A ` ((¬s → ¬¬⊥)→ ¬¬s).
b) A ` ((s → ¬¬t)→ ¬¬(s → t)).
c) A ` (¬¬(s → t)→ ¬¬s → ¬¬t).
d) A ` (¬¬¬s → ¬s).
e) A ` (¬s → ¬¬¬s).

Exercise 19.5.7 Prove ∀s. ground s → ` (s ∨¬s).

Exercise 19.5.8 Prove ∀As. ground s → A, s ` t → A,¬s ` t → A ` t.

Exercise 19.5.9 Prove the deduction laws for conjunctions and disjunctions:

a) A ` (s ∧ t) a A ` s × A ` t
b) A ` (s ∨ t) a ∀u. A, s ` u → A, t ` u → A ` u
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19.6 Heyting Entailment

19.6 Heyting Entailment

The proof techniques we have used so far do not suffice to show negative results

about the intuitionistic ND system. By a negative result we mean a proof saying that

a certain derivation type is empty, for instance,

6` ⊥ 6` x 6` (¬¬x → x)

(we write 6` s for the proposition ([] ` s) → ⊥). Speaking informally, the above

propositions say that there a no derivations for falsity, atomic formulas, and the

double negation law for atomic formulas.

A powerful technique for showing negative results is evaluation of formulas into

a finite and ordered domain of so-called truth values. Evaluation into the boolean

domain 0 < 1 is well-known and suffices to disprove ` ⊥ and ` x. To disprove

` (¬¬x → x), we need to switch to a three-valued domain 0 < 1 < 2. Using the

order of the truth values, we interpret conjunction as minimum and disjunction as

maximum. Falsity is interpreted as the least truth value. Implication of truth values

is interpreted as a comparison that in the positive case yields the greatest truth

value 2 and in the negative case yields the second argument:

imp ab := if a ≤ b then 2 else b

Note that the given order-theoretic interpretations of the logical constants agree

with the familiar boolean interpretations for the two-valued domain 0 < 1. The

order-theoretic evaluation of formulas originated around 1930 with the work of

Arend Heyting on so-called Heyting algebras generalizing Boolean algebras.

We will work with the truth value domain 0 < 1 < 2. Using evaluation into this

domain we will define a predicate A î s called Heyting entailment for which we

can show the implication

A ` s → A î s

known as soundness. Using soundness, we can disprove ` (¬¬x → x) by disprov-

ing î (¬¬x → x). It is common to refer to A ` s as a syntactic entailment relation

and to A î s as a semantic entailment relation.

We represent our domain of truth values 0 < 1 < 2 with an inductive type V and

the order of truth values with a boolean function a ≤ b. As a matter of convenience,

we will write the numbers 0, 1, 2 for the value constructors of V. An assignment is
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19 Natural Deduction

a function α : N→ V. We define evaluation of formulas Eαs as follows:

E : (N→ V)→ For→ V

Eαx := αx

Eα⊥ := 0

Eα(s → t) := if Eαs ≤ Eαt then 2 else Eαt
Eα(s ∧ t) := if Eαs ≤ Eαt then Eαs else Eαt
Eα(s ∨ t) := if Eαs ≤ Eαt then Eαt else Eαs

Note that conjunction is interpreted as minimum, disjunction is interpreted as max-

imum, and implications is interpreted as the test imp described above.

We define evaluation of contexts EαA such that the empty context yields the

greatest truth value and nonempty contexts yield the minimal truth value their

formulas evaluate to:

E : (N→ V)→ L(For)→ V

Eα[] = 2

Eα(s :: A) = if Eαs ≤ EαA then Eαs else EαA

You may think of a context as a conjunction of formulas where the empty context

yields the greatest truth value.

We now define Heyting entailment as

A î s := ∀α. (EαA ≤ Eαs) = t

There are some clever design decisions in our definition of Heyting entailment, con-

tributed by Chad. E. Brown, which much simplify the soundness proof on paper and

with Coq. Of particular importance is the separate evaluation of contexts.

With our definitions we have the computational equalities

E(λ_.1)⊥ = 0

E(λ_.1)x = 1

E(λ_.1)(¬x) = 0

E(λ_.1)(¬¬x) = 2

E(λ_.1)(¬¬x → x) = 1

So once we have soundness, we can disprove ` ⊥, ` x, and ` (¬¬x → x).

Lemma 19.6.1 s ∈ A → A î s.
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Proof By induction on A. The base case is trivial. For the cons case we distinguish

two cases.

For the first case we need to show s :: A î s. We fix an assignment, and do case

analysis on Eαs and EαA (9 cases). Each case is straightforward.

For the second case we need to show (Eα(u :: A) ≤ Eαs) = t where s ∈ A. The

inductive hypothesis gives us (EαA ≤ Eαs) = t. We do case analysis on Eαs, Eαu,

and EαA (27 cases). Each case is straightforward. �

Fact 19.6.2 (Soundness) A ` s → A î s.

Proof By induction on A ` s. The case for the assumption rule follows with

Lemma 19.6.1. The case for the explosion rule fixes an assignment α, obtains

(EαA ≤ 0) = t by the inductive hypothesis, and shows (EαA ≤ Eαs) = t by case

analysis on Eαs and EαA (9 cases). All cases are straightforward. The remaining

rules are similar. �

Corollary 19.6.3 ` s → Eαs = 2.

A formula s is independent in ` if one can prove both (` s)→ ⊥ and

(` ¬s)→ ⊥.

Corollary 19.6.4 (Independence) ¬¬x → x and x ∨¬x are independent in `.

Proof Follows with Corollary 19.6.3 and αn := 1. �

Corollary 19.6.5 (Consistency) 6` ⊥.

Exercise 19.6.6 Show that x, ¬x, and (x → y)→ x)→ x are independent in `.

Exercise 19.6.7 Show ¬∀s. ((` (¬¬s → s))→ ⊥).

Exercise 19.6.8 Show A î ⊥ ←→ ∀α. EαA = 0 and î s ←→ ∀α. Eαs = 2.

19.7 Classical ND System

The classical ND system is obtained from the intuitionistic ND system by replacing

the explosion rule

A ` ⊥
A ` s

with the proof by contradiction rule:

A,¬s ` ⊥
A ` s
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19 Natural Deduction

Formally, we accommodate the classical ND system with a separate derivation type

constructor
˙̀ : L(For)→ For→ T

with separate value constructors. Classical ND can prove the double negation law.

Fact 19.7.1 (Double Negation) A ˙̀(¬¬s → s).

Proof Straightforward using the contradiction rule. �

Fact 19.7.2 (Cut) A ˙̀ s → A, s ˙̀ t → A ˙̀ t.

Proof Same as for the intuitionistic system. �

Fact 19.7.3 (Weakening) A ˙̀ s → A ⊆ B → B ˙̀ s.

Proof By induction on A ˙̀ s with B quantified. Same proof as for intuitionistic ND,

except that now the proof obligation (∀B. A,¬s ⊆ B → B ˙̀ ⊥) → A ⊆ B → B ˙̀ s
for the contradiction rule must be checked. Straightforward with the contradiction

rule. �

The classical system can prove the explosion rule. Thus every intuitionistic

derivation A ` s can be translated into a classical derivation A ˙̀ s.

Fact 19.7.4 (Explosion) A ˙̀ ⊥ → A ˙̀ s.

Proof By contradiction and weakening. �

Fact 19.7.5 (Translation) A ` s → A ˙̀ s.

Proof By induction on A ` s using the explosion lemma for the explosion rule. �

Fact 19.7.6 (Implication) A, s ˙̀ t a A ˙̀(s → t).

Proof Same proof as for the intuitionistic system. �

Because of the contradiction rule the classical system has the distinguished prop-

erty that every proof problem can be turned into a refutation problem.

Fact 19.7.7 (Refutation) A ˙̀ s a A,¬s ˙̀ ⊥.

Proof Direction ⇒ follows with weakening. Direction ⇐ follows with the contradic-

tion rule. �
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While the refutation lemma tells us that classical ND can represent all infor-

mation in the context, the implication lemmas tell us that both intuitionistic and

classical ND can represent all information in the claim.

Exercise 19.7.8 Show ˙̀ s ∨¬s and ˙̀((s → t)→ s)→ s.

Exercise 19.7.9 Show that classical ND is not sound for Heyting entailment:

¬(∀As. A ˙̀ s → A î s).

Exercise 19.7.10 Prove the deduction laws for conjunctions and disjunctions:

a) A ˙̀(s ∧ t) a A ˙̀ s × A ˙̀ t

b) A ˙̀(s ∨ t) a ∀u. A, s ˙̀ u → A, t ˙̀ u → A ˙̀ u

Exercise 19.7.11 Show that classical ND can express conjunction and disjunction

with implication and falsity. To do so, define a translation function fst not using

conjunction and prove ˙̀(s ∧ t → fst) and ˙̀(f st → s ∧ t). Do the same for disjunc-

tion.

19.8 Glivenko’s Theorem

It turns out that a formula is classically provable if and only if its double negation

is intuitionistically provable. Thus a classical provability problem can be reduced

to an intuitionistic provability problem.

Lemma 19.8.1 A ˙̀ s → A ` ¬¬s.

Proof By induction on A ˙̀ s. This yields the following proof obligations.

1. s ∈ A → A ` ¬¬s.
2. A,¬s ` ¬¬⊥ → A ` ¬¬s.
3. A, s ` ¬¬t → A ` ¬¬(s → t).
4. A ` ¬¬(s → t) → A ` ¬¬s → A ` ¬¬t.
The obligations for conjunctions and disjunctions are omitted. The proofs are rou-

tine with Exercise 19.5.6 and the implication lemma 19.5.2. �

Theorem 19.8.2 (Glivenko) A ˙̀ s a A ` ¬¬s.

Proof Direction ⇒ follows with Lemma 19.8.1. Direction ⇐ follows with translation

(19.7.5) and double negation (19.7.1). �

Corollary 19.8.3

Classical ND reduces to intuitionistic ND refutation: A ˙̀ sa A,¬s ` ⊥.
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19 Natural Deduction

Corollary 19.8.4 Intuitionistic and classical refutation agree: A ` ⊥a A ˙̀ ⊥.

Proof Direction ⇒ follows with translation 19.7.5. Direction ← follows with

Glivenko’s theorem and the bottom law 19.3.3. �

Corollary 19.8.5 Classical ND is consistent: ( ˙̀⊥)→ ⊥.

Proof Let ˙̀⊥. By consistency of intuitionistic ND (19.6.5) it suffices to prove ` ⊥.

Follows by Glivenko and the bottom law 19.3.3. �

Exercise 19.8.6 Disprove ˙̀ x and ˙̀ ¬x.

Exercise 19.8.7 Disprove A ˙̀(s ∨ t)a A ˙̀ s ∨A ˙̀ t.

19.9 Boolean Entailment

Boolean evaluation evaluates formulas into a two-valued domain. We choose the

type B of boolean values and fix the order f < t. Specializing the ideas we have seen

for the three-valued Heyting evaluation of Section 19.6, we define boolean evalu-

ation and boolean entailment as shown in Figure 19.4. Note that the definitions

in the Figure respect the familiar unordered view of boolean evaluation and the or-

dered view coming with Heyting evaluation. We will call functions α : N→ B boolean

assignments.

It turns out that classical ND and boolean entailment agree: A ˙̀ sa A î̇ s. The

direction from ND entailment to boolean entailment is known as soundness, and

the direction from boolean entailment to ND entailment is known as completeness.

Recall that classical ND is not sound for Heyting entailment (Exercise 19.7.9).

The soundness proof for boolean entailment is analogous to the soundness proof

for Heyting entailment. In Coq, the exactly same proof scripts can be used.

Lemma 19.9.1 s ∈ A → A î̇ s.

Proof By induction on A. �

Fact 19.9.2 (Soundness) A ˙̀ s → A î̇ s.

Proof By induction on A ˙̀ s using Lemma 19.9.1 for the assumption rule. �

We can now give a consistency proof for classical ND that does not make use of

intuitionistic ND.

Corollary 19.9.3 Classical ND is consistent: ( ˙̀ ⊥)→ ⊥.

Proof Follows with soundness and Eα⊥ = 0. �
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E : (N→ B)→ For→ B

Eαx := αx

Eα⊥ := f

Eα(s → t) := if Eαs then Eαt else t

Eα(s ∧ t) := if Eαs then Eαt else f

Eα(s ∨ t) := if Eαs then t else Eαt

E : (N→ B)→ L(For)→ B

Eα([]) := t

Eα(s :: A) := if Eαs then EαA else f

A î̇ s := ∀α. if EαA then Eαs = t else >

Figure 19.4: Boolean evaluation and entailment

Fact 19.9.4

1. A î̇ s ←→ ∀α. EαA = t→ Eαs = t

2. A î̇⊥ ←→ ∀α. EαA = f

3. EαA = t ←→ ∀s ∈ A. Eαs = t

Proof Claims (1) and (2) have straightforward proofs with boolean case analysis.

Claim (3) follows by induction on A and boolean case analysis. �

Exercise 19.9.5 Show that x and ¬x are independent in ˙̀.

Exercise 19.9.6 Give boolean assignments showing that ¬¬¬x is independent in ˙̀.

Exercise 19.9.7 Show the following properties of boolean entailment:

a) A î̇ s ←→ A,¬s î̇⊥
b) A î̇ s ←→ î̇A · s
c) A î̇(s → t) ←→ A, s î̇ t

Exercise 19.9.8 Show (∀st. ˙̀(s ∨ t)→ ( ˙̀ s)+ ( ˙̀ t))→ ⊥.

Exercise 19.9.9 Show that boolean entailment can express conjunction and disjunc-

tion with implication and falsity. To do so, define a translation function fst not

using conjunction and prove î̇(s ∧ t → fst) and î̇(f st → s ∧ t). Do the same for

disjunction.
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19.10 Certifying Boolean Solvers

A certifying boolean solver is a function

∀A. (Σα. EαA = t)+ (A ˙̀ ⊥)

that given a list of formulas yields either an assignment satisfying all formulas in

the list or a classical ND refutation of the list. Note that a refutation A ˙̀ ⊥ certifies

that there is no boolean assignment satisfying all formulas in A (Fact 19.9.4 (2)).

Fact 19.10.1

Given a certifying boolean solver, classical ND is complete and decidable:

1. A î̇ s → A ˙̀ s (completeness)

2. D(A ˙̀ s) (decidability)

Proof By the refutation laws (Fact 19.7.7 and Exercise 19.9.7) it suffices to show the

claims for s = ⊥.

For (1) we assume A î̇⊥ and show A ˙̀ ⊥. The certifying boolean solver gives

us either the claim or EαA = t. The second case yields a contradiction with

Fact 19.9.4 (2).

For (2) the certifying boolean solver gives us either the claim or EαA = t. In

the second case we assume A ˙̀ ⊥ and obtain a contradiction with soundness and

Fact 19.9.4 (2). �

In Chapter 22, we will construct a certifying boolean solver using the tableau

method.

Exercise 19.10.2 (Refutation predicates)

A refutation predicate is a predicate ρ : L(For)→ P satisfying the following rules:

ρ(s :: A++B)→ ρ(A++ s :: B) rotation

ρ(x :: ¬x :: A) clash

ρ(⊥ :: A) falsity

ρ(¬s :: A)→ ρ(t :: A)→ ρ((s → t) :: A) implication

ρ(s :: ¬t :: A)→ ρ(¬(s → t) :: A)) implication−

ρ(s :: t :: A)→ ρ((s ∧ t) :: A) conjunction

ρ(¬s :: A)→ ρ(¬t :: A)→ ρ(¬(s ∧ t) :: A) conjunction−

ρ(s :: A)→ ρ(t :: A)→ ρ((s ∨ t) :: A) disjunction

ρ(¬s :: ¬t :: A)→ ρ(¬(s ∨ t) :: A) disjunction−
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We will show in Chapter 22 that there is a certifying solver

∀A. (Σα. EαA = t)+ ρA

that given a refutation predicate ρ yields either a satisfying assignment or a refuta-

tion using ρ.

a) Show that λA. A ˙̀ ⊥ is a refutation predicate.

b) Show that λA.∀α. EαA = f is a refutation predicate.

Exercise 19.10.3 Assume a certifying boolean solver and show D(A î̇ s).

19.11 Substitution

A substitution is a function θ : N → For mapping every variable to a formula. We

define application of substitutions to formulas and lists of formulas such that every

variable is replaced by the term provided by the substitution:

θ·x := θx

θ·⊥ := ⊥
θ·(s → t) := θ·s → θ·t
θ·(s ∧ t) := θ·s ∧ θ·t
θ·(s ∨ t) := θ·s ∨ θ·t

θ·[] := []

θ·(s :: A) := θ·s :: θ·A

We will write θs and θA for θ·s and θ·A.

We show that intuitionistic and classical ND provability are preserved under ap-

plication of substitutions. This says that atomic formulas may serve as variables

for formulas.

Fact 19.11.1 s ∈ A→ θs ∈ θA.

Proof By induction on A. �

Fact 19.11.2 A ` s → θA ` θs and A ˙̀ s → θA ˙̀ θs.

Proof By induction on A ` s and A ˙̀ s using Fact 19.11.1. �

Next we show that Heyting and boolean entailment are preserved under applica-

tion of substitutions.
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19 Natural Deduction

1. Assumption: s ∈ A→ A ð s.
2. Cut: A ð s → A, s ð t → A ð t.
3. Weakening: A ð s → A ⊆ B → B ð s.
4. Consistency: ∃s. 6ð s.
5. Substitutivity: A ð s → θA ð θs.
6. Explosion: A ð ⊥ → A ð s.
7. Implication: A ð (s → t) ←→ A, s ð t.
8. Conjunction: A ð (s ∧ t) ←→ A ð s ∧ A ð t.
9. Disjunction: A ð (s ∨ t) ←→ ∀u. A, s ð u → A, t ð u → A ð u.

Figure 19.5: Requirements for entailment predicates

Lemma 19.11.3

Eα(θs) = E(λn.Eα(θn))s holds both for Heyting and boolean evaluation.

Fact 19.11.4 A î s → θA î θs and A î̇ s → θA î̇θs.

Proof By induction on A using Lemma 19.11.3. �

19.12 Entailment Predicates

An entailment predicate is a predicate

ð: L(For)→ For→ P

satisfying the properties listed in Figure 19.5. Note that the first four requirements

don’t make any assumptions on formulas; they are called structural requirements.

Each of the remaining requirements concerns a particular form of formulas: Vari-

ables, falsity, implication, conjunction, and disjunction.

Fact 19.12.1 Intuitionistic ND (A ` s), classical ND (A ˙̀ s), Heyting entailment

(A î s), and boolean entailment (A î̇ s) are all entailment predicates.

Proof Follows with the results shown before. �

We will show that every entailment predicate ð satisfies A ` s → A ð s and

A ð s → A î̇ s; that is, every entailment predicate is sandwiched between intuition-

istic ND at the bottom and boolean entailment at the top. Let ð be an entailment

predicate in the following.

Fact 19.12.2 (Modus Ponens) A ð (s → t) → A ð s → A ð t.

Proof By implication and cut. �
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Fact 19.12.3 A ` s → A ð s. That is, intuitionistic ND is a least entailment predi-

cate.

Proof By induction on A ` s using modus ponens. �

Fact 19.12.4 ð s → ð ¬s → ⊥.

Proof Let ð s and ð ¬s. By Fact 19.12.2 we have ð ⊥. By consistency and explosion

we obtain a contradiction. �

Fact 19.12.5 (Reversion) A ð s ←→ ð A · s.

Proof By induction on A using implication. �

We now come to the key lemma for showing that abstract entailment implies

boolean entailment. The lemma was conceived by Tobias Tebbi in 2015. We define a

conversion function that given a boolean assignment α : N→ B yields a substitution

as follows: α̂n := if αn then ¬⊥ else ⊥.

Lemma 19.12.6 (Tebbi) if Eαs then ð α̂s else ð ¬α̂s.

Proof Induction on s using Fact 19.12.2 and assumption, weakening, explosion, and

implication. �

Note that we have formulated the lemma with a conditional. While this style of

formulation is uncommon in Mathematics, it is compact and convenient in a type

theory with computational equality.

Lemma 19.12.7 ð s → î̇ s.

Proof Let ð s and α. We assume Eαs = f and derive a contradiction. By Tebbi’s

Lemma we have ð ¬α̂s. By substitutivity we obtain ð α̂s from the primary assump-

tion. Contradiction by Fact 19.12.4. �

Theorem 19.12.8 (Sandwich)

Let ð be an entailment predicate. Then A ` s → A ð s and A ð s → A î̇ s.

Proof Claim 1 is Fact 19.12.3. Claim 2 follows with Lemma 19.12.7 and

Facts 19.12.5 and 19.12.1. �

Exercise 19.12.9 Let ð be an entailment predicate. Prove the following:

a) ∀s. ground s → (ð s)+ (ð ¬s).
b) ∀s. ground s → dec(ð s).

Exercise 19.12.10 Tebbi’s lemma provides for a particularly elegant proof of

Lemma 19.12.7. Verify that Lemma 19.12.7 can also be obtained from the facts

(1) ` α̂s ∨ ` ¬α̂s and (2) î̇ α̂s → Eαs = t using Facts 19.12.3 and 19.12.4.
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19.13 Notes

The study of natural deduction originated in the 1930’s with the work of Gerhard

Gentzen [5, 6] and Stanisław Jaśkowski [7]. The standard text on natural deduction

and proof theory is Troelstra and Schwichtenberg [12].

Decidability of intuitionistic ND One can show that intuitionistic ND is decidable.

This can be done with a method devised by Gentzen in the 1930s. First one shows

that intuitionistic ND is equivalent to a proof system called sequent calculus that

has the subformula property. Then one shows that sequent calculus is decidable,

which is feasible since it has the subformula property.

Kripke structures and Heyting structures One can construct evaluation-based

entailment predicates that coincide with intuitionistic ND using either finite Heyting

structures or finite Kripke structures. In contrast to classical ND, where a single two-

valued boolean structure invalidates all classically unprovable formulas, one needs

either infinitely many finite Heyting structures or infinitely many finite Kripke struc-

tures to invalidate all intuitionistically unprovable formulas. Heyting structures are

usually presented as Heyting algebras and were invented by Arend Heyting around

1930. Kripke structures were invented by Saul Kripke in the late 1950’s.

Intuitionistic Independence of logical constants Using boolean entailment, one

can show that falsity and implication can express conjunction and disjunction. On

the other hand, one can prove using Heyting structures that in intuitionistic ND the

logical constants are independent.
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20 Indexed Inductive Predicates

Inductive predicates are defined through systems of proof constructors. We have

seen basic examples in Chapter 3 on propositions as types and an advanced example

with guarded recursion in Chapter 13 on witness operators. We now explore a

degree of freedom in choosing the proof constructors for an inductive predicate

we have not seen before. This degree of freedom makes it possible to instantiate

arguments of the inductive predicate in the target type of proof constructors. If this

feature is used, we speak of index arguments and of indexed inductive predicates.

Indexed inductive predicates furnish Coq’s type theory with expressivity essential

for some important applications.

We study a series of example predicates developing the accompanying elimi-

nation techniques. This way we get familiar with the parameter-index distinction

and a new type-checking device for defining equations instantiating index variables.

A prominent example is the inductive definition of propositional equality that is

adopted by Coq.

We assume familiarity with the elimination techniques for inductive data types

introduced in Chapter 6. Familiarity with the recursive transfer predicate from

Chapter 13 will also be helpful but is not assumed.

Working with indexed inductive predicates requires a couple of new type-

theoretic techniques, so working yourself through enough exercises is essential.

Sections 20.9 and 20.10 address advanced topics and may be skipped on first

reading.

20.1 Zero

Our first indexed inductive predicate is

zero : N→ P

Z : zero 0

The single proof constructor Z provides a canonical proof for zero 0. Note that the

constructor Z instantiates the argument of the target predicate zero with 0. We

speak of an instantiating proof constructor.

Arguments of an inductive predicate that are instantiated by a proof constructor

are called indices to distinguish them from arguments that are not instantiated.
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Arguments of an inductive predicate that are not instantiated by a proof constructor

are called parameters. So far we have only seen inductive predicates where all

arguments are parameters. Inductive predicates with index arguments are called

indexed inductive predicates. Note that every argument of an inductive predicate

is either a parameter or and index, but not both.

Since zero has only a single proof constructor for 0, we should expect that we

can prove

zero x → x = 0

This proof can indeed be obtained with the eliminator1

Ezero : ∀pN→T. p0→ ∀x. zero x → px
Ezero pa _ Z := a : p0

If we look at the defining equation of the eliminator, we see that a new type checking

device is being used (we speak of indexed typing). In the left-hand side of the

defining equation the argument x for the index of the inductive predicate appears as

an underline. This indicates that the argument is determined by the index argument

of the target type of the proof constructor Z following as next argument. We thus

have the typings

Ezero pa _ Z : p 0 and Ezero pa0 Z : p 0

validating the right hand side of the defining equation.

We call the variable x in the type of Ezero an index variable since it is determined

as an index of an inductive predicate.

Following our convention for eliminators, we refer to Ezero as elimination lemma

when we use it as a declared constant. Nowhere in this chapter will we exploit that

Ezero is a defined function.

Exercise 20.1.1 Prove the following facts.

a) zero x ←→ x = 0

b) ¬zero(Sx)

c) ¬zero 1

d) D(zerox)

Exercise 20.1.2 Prove the following impredicative characterization for zero:

zero x ←→ ∀pN→P. p0→ px

Exercise 20.1.3 Convince yourself that Ezero(λx. if x then > else ⊥) I 5 is a proof

of ¬zero 5.
1Note that zero is not affected by the elim restriction.
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20.2 Inductive Propositional Equality

Recall the discussion of propositional equality in Chapter 5. There we justified

the constants eq, Q, and R with the Leibniz scheme. We will now see an inductive

definition of the constants, which in fact is the definition used for propositional

equality in Coq.

Coq defines propositional equality as an indexed inductive predicate:

eq : ∀XT. X → X → P

Q : ∀XT xX . eqXxx

The inductive definition introduces the constants eq and Q as constructors. Both X
and x are accommodated as parameters. Following the convention that parameters

precede indices, we accommodate the third argument of eq as an index. Exploiting

the index argument of eq, we define an eliminator for eq: 2

Eeq : ∀XT xX pX→T. px → ∀y. eqXxy → py
Eeq Xxpa _ (Q _ _) := a : px

The flow of information during type checking the left-hand side of the defining

equation of Eeq is as follows: First the arguments of Q are determined as the pa-

rameters X and x, then the index variable y is determined as the index of the

proposition eqXxx of QXx, which is x.

Using the eliminator Eeq, we can now define the rewriting law:

R : ∀XT xX yX pX→P. eqXxy → px → py
:= λXxypha. EeqXxpayh

Exercise 20.2.1 Prove ∀XT xX yX . eqXxy ←→ ∀pX→P. px → py .

20.3 Even

The even numbers can be obtained by starting at 0 and by adding 2 as often as one

likes:

0, 2, 4, 6, . . .

The idea can be captured with an inductive predicate

even : N→ P

evenB : even 0

evenS : ∀n. even n→ even(S(Sn))

2Note that eq is not affected by the elim restriction.
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with two proof constructors giving us proof terms for exactly the even numbers:

even 0 evenB

even 2 evenS 2 evenB

even 4 evenS 4 (evenS 2 evenB)

· · · · · ·

More generally, we can prove that every multiple of 2 is an even number:

even(k · 2) (20.1)

The proof is by induction on k. The base case is even 0. In the successor case

we have even(k · 2) as inductive hypothesis and need to show even(Sk · 2). Since

Sk · 2 ≈ S(S(k · 2)), the claim follows with the proof constructor evenS.

The proof constructors for even may be depicted as the proof rules

even 0

even n

even (S(Sn))

where the premises appear above the rule and the conclusion appears below the

rule.

To prove more results about even, we need an eliminator. Here is an eliminator

that suffices for our purposes:

Eeven : ∀pN→P. p0→ (∀n. even n→ pn→ p(S(Sn)))→ ∀n. even n→ pn
Eeven paf _ evenB := a : p0

Eeven paf _ (evenSn′h) := fn′h(Eeven pafn′h) : p(S(Sn′))

The eliminator is defined by recursive case analysis on the inductive argument,

which has type even n. Note that n acts as an index variable in the target type

of Eeven. The right hand sides of the defining equations receive the types given in

the right column. The types are obtained by instantiating the index variable n as

required by the proof constructors.

Note that the type of Eeven has a clause for each of the two constructors of even.

There is also a defining equation for each of the two constructors. The defining

equation for the recursive proof constructor evenS is recursive so that it can provide

the inductive hypothesis pn in the clause for evenS.

When we translate the equational definition of Eeven into a computational defini-

tion

Eeven : ∀pN→P. p0→ (∀n. even n→ pn→ p(S(Sn)))→ ∀n. even n→ pn
:= λpaf . fix Fnh. match h [evenB ⇒ a | evenSn′h′ ⇒ fn′h′(Fn′h′) ]
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we see that the recursive abstraction must take two arguments so that F receives

the dependent function type ∀n. even n → pn necessary to type the recursive

application Fn′h′. Note that the recursion is on the derivation h : even n and not

on the number n.

When we use the eliminator Eeven as a declared constant, we refer to it as induc-

tion lemma.

Exercise 20.3.1 (Impredicative Characterization) Prove the equivalence

even x ←→ ∀pN→P. p0→ (∀x. px → p(S(Sx)))→ px

establishing an impredicative characterization of even. Note that there is a clause

for each of the two constructors mimicking the type of the constructor.

Exercise 20.3.2 Define a recursive eliminator

Ẽeven : ∀pN→P. p0→ (∀n. pn→ p(S(Sn)))→ ∀n. even n→ pn

omitting the assumption evenn in the clause for the constructor evenS. The elim-

inator Ẽeven suffices for all proofs for even we do in this chapter. Show that the

induction lemma Eeven can be obtained from a declared eliminator Ẽeven. We remark

that Coq automatically generates the eliminator Eeven shown before.

Exercise 20.3.3 Define a nonrecursive eliminator

Meven : ∀pN→P. p0→ (∀n. even n→ p(S(Sn)))→ ∀n. even n→ pn

omitting the inductive hypothesis. Show that an elimination lemma Meven can be

obtained from a declared eliminator Eeven.

Exercise 20.3.4 Consider the inductive predicate

T : N→ P

TB0 : T 0

TB1 : T 1

TS : ∀n. Tn→ T(Sn)→ T(S(Sn))

a) Show that T holds for all numbers. Hint: Generalize the claim so you get a strong

enough inductive hypothesis.

b) Derive the induction lemma for T. Notice that the clause for TS has two inductive

hypotheses.
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20 Indexed Inductive Predicates

∀n. even n→ ∃ k. n = k · 2 apply Eeven, intros

1 ∃ k. 0 = k · 2 k, 0

0 = 0 · 2 comp. equality

2 IH: n = k · 2 ∃ k. S(Sn) = k · 2 k, Sk
S(Sn) = Sk · 2 rewrite IH

S(S(k · 2)) = Sk · 2 comp. equality

Figure 20.1: Proof diagram for an inductive proof with Eeven

20.4 Induction on Derivations

The recursive eliminator Eeven provides for inductive proofs known as inductions

on derivations in the literature. Derivations can be understood as canonical proof

terms for inductive propositions (e.g. even 36).

We explain the idea with a proof of the proposition

∀n. even n→ ∃ k. n = k · 2 (20.2)

The formal proof appears as a proof diagram in Figure 20.1. Informally, we say that

we prove (20.2) by induction on the derivation of even n. If even n is obtained with

evenB, we have n , 0 and must show ∃ k. 0 = k · 2, which follows with k , 0 and

computational equality. If even n is obtained with evenS, we have n , S(Sn) and

must show ∃ k. S(Sn) = k ·2. We also have the inductive hypothesis ∃ k. n = k ·2.

The inductive hypothesis gives us some k such that H : n = k · 2. To close the

proof, it suffices to show S(Sn) = Sk · 2, which follows by rewriting with H and

computational equality.

From our perspective, the formal proof laid out as a proof diagram in Figure 20.1

seems clearer than the informal proof talking about derivations. Historically, how-

ever, logicians did prove interesting facts about interesting inductive predicates

(called proof systems) using the induction on derivations model before the advent

of modern type theory.

We remark that Coq automatically derives the eliminator Eeven when the inductive

predicate even is defined. Once an induction on derivations for even is initiated with

the induction tactic, the eliminator is applied at the proof term level.

Soundness and Completeness

Fact 20.4.1 even n←→ ∃ k. n = k · 2.

Proof Follows with (20.2) and (20.1). �
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20.5 Inversion Lemmas and Unfolding

We may see the equivalence as a specification for the inductive predicate even.

We call the two directions of the equivalence soundness (→) and completeness (←).

Soundness says that everything we can prove to be even with the proof constructors

of even is in fact an even number, and completeness says that every even number

can in fact be derived with the proof constructors of even.

Informally, soundness results from the fact that the proof constructors for even

are sound, while completeness results from the fact that for every even number a

derivation can be constructed using the proof constructors for even.

Exercise 20.4.2 Define an inductive predicate odd and show that is satisfies the

specification odd x ←→ ∃k. x = S(k · 2).

Exercise 20.4.3 Give specifications for the inductive predicates zero and eq and

prove their corrrectness.

Exercise 20.4.4 Define an inductive proposition F :P with a single recursive proof

constructor L : F→ F and show F←→ ⊥.

Exercise 20.4.5 Prove D(evenx) using the division theorem.

20.5 Inversion Lemmas and Unfolding

Proving negative facts about even such as

¬even 1 (20.3)

¬even 3 (20.4)

¬even n→ ¬even (S(Sn)) (20.5)

¬even (S(n · 2)) (20.6)

takes insight and a technique called unfolding. Clearly, (20.3) and (20.4) both follow

from (20.6). Moreover, (20.6) follows by induction on n using (20.3) for the base

case and (20.5) for the successor case. Finally, (20.5) follows from the positive fact

even (S(Sn))→ even n (20.7)

We are thus left with (20.3) and (20.7), which we will refer to as inversion lemmas.

Note that (20.7) is in fact the converse of the proof constructor evenS.

For (20.3) it is best to prove the generalized fact

even k→ k = 1→ ⊥ (20.8)

which follows with the elimination lemma using 0 ≠ 1 and S(Sk) ≠ 1.
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20 Indexed Inductive Predicates

For (20.7) it is again best to prove the generalized fact

even k→ k = S(Sn)→ even n (20.9)

which follows with the elimination lemma using 0 ≠ S(Sn) and

even k→ S(Sk) = S(Sn)→ even n

where the latter follows by injectivity of S.

Note that the generalisations (20.8) and (20.9) used for proving the inversion

lemmas (20.3) and (20.7) are obtained with an unfolding scheme from the inversion

lemmas: The non-variable term in the index position of the inductive predicate even

is unfolded using a fresh variablen k. The unfolding scheme is generally useful

when working with indexed inductive predicates. For instance, to prove ¬zero 1,

one may unfold 1 from the index position and prove zerox → x = 1 → ⊥ using the

eliminator for zero.

We remark that Coq’s tactic depelim proves both inversion lemmas in one step.3

20.6 Proceed with Care

We now prove some further properties of evenness based on the inductive defini-

tion. Mathematically, working with the multiplicative definition λn.∃k. n = 2 · k
may be more appropriate. Our motivation for working with the inductive definition

of evenness is curiosity and the demonstration of proof techniques for indexed

inductive predicates.

Fact 20.6.1 The successors of even numbers are not even.

That is, evenn→ even(Sn)→ ⊥.

Proof By induction of the derivation of evenn using the inversion lemmas (20.3)

and (20.7). �

Next we aim at a native proof of D (evenn). We proceed by induction on n. In

the successor case we need ¬evenn → even(Sn), which we have not shown so far.

Showing this fact needs a new idea. The claim follows with induction on n provided

we show ¬even(Sn)→ evenn in parallel.

Fact 20.6.2 (¬evenn→ even(Sn))∧ (¬even(Sn)→ evenn).

Proof By induction on n using (20.3) and (20.7). �

3The tactic depelim comes with the Equations package supporting definition of functions with equa-
tions and well-founded recursion.

198



20.7 Linear Order on Numbers

Fact 20.6.3 D (evenn).

Proof By induction on n using Facts 20.6.1, 20.6.2, and (20.7). �

Exercise 20.6.4 Prove the following facts about even.

a) evenx → eveny → even(x +y)
b) evenx → even(x +y)→ eveny

20.7 Linear Order on Numbers

Coq defines the linear order on numbers inductively:

le : N→ N→ P

leB : ∀x. lexx
leS : ∀xy. lexy → lex(Sy)

Note that the first argument of le is a parameter and the second argument of le is

an index. The proof constructors for le may be depicted with the proof rules

lexx

lexy

lex(Sy)

Note that the proof rules express basics facts about the linear order on numbers.

Thus every proposition lexy that can be derived with the rules entails x ≤ y
(soundness). We can also prove that a proposition ley y can be derived with the

rules whenever x ≤ y (completeness).

Fact 20.7.1 lexy ←→ ∃k. k+ x = y .

Proof The direction → is by induction on the derivation of lexy . In the base case

we have y , x. In the successor case we have the inductive hypothesis ∃k. k+x = y
and need to show ∃k. k+ x = Sy , which is straightforward.

For the direction ← we show lex(k+ x) by induction on k. Straightforward. �

We have shown lexy ←→ ∃k. k+ x = y rather than lexy ←→ ∃k. x + k = y so

that we don’t need the commutativity of +.

Exercise 20.7.2 Define an eliminator for le that suffices for the induction used for

the direction → of Fact 20.7.1.

Exercise 20.7.3 Prove the following inversion lemma:

∀xy. lexy → x = y ∨ ∃y ′. y = Sy ′ ∧ lexy ′.
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20 Indexed Inductive Predicates

Exercise 20.7.4 Here is another inductive definition of the linear order on numbers:

le′ : N→ N→ P

le′B : ∀x. le′ 0x
le′S : ∀xy. le′ xy → le′ (Sx)(Sy)

Note that both arguments of le′ are indices.

a) Define an eliminator for le′.

b) Prove le′ xy ←→ ∃k. x + k = y .

c) Prove le′ xy ←→ lexy .

Exercise 20.7.5 It is possible to show the basic facts about linear order starting

from the inductive definition of le and not using the translation to addition provided

by Fact 20.7.1. Some of the direct proofs are tricky (i.e., strictness x < x) but

nevertheless provide interesting exercises for working with indexed inductive types.

Try the following:

1. 0 ≤ x
2. x ≤ 0→ x = 0

3. ¬(x < 0)

4. x ≤ y → Sx ≤ Sy (shift)

5. x ≤ y → y ≤ z → x ≤ z (transitivity)

6. x < y → y ≤ z → x < z (strict transitivity)

7. x ≤ y → y < z → x < z (strict transitivity)

8. x < y → x ≤ y
9. Sx ≤ Sy → x ≤ y
10. x < y → x ≠ y
11. ¬(x < x) (strictness)

12. x ≤ y → y ≤ x → x = y (antisymmetry)

13. x < y ∨ x = y ∨y < x
14. D(x ≤ y) (decidability)

Hints: Claim 1 follows by induction on x. Claim 2 follows by inversion on x ≤ 0.

Claim 3 follows from (2). Claim 4 follows by induction on x ≤ y . Claim 5 follows

by induction on y ≤ z. Claim 6 follows from (5). Claim 7 follows from (5) and (4).

Claim 8 follows from (5). Claim 9 follows by inversion of Sx ≤ Sy and (8). Claim 10

is tricky; follows by induction on y with x quantified using (3) and (9). Claim 11 fol-

lows from (10). Claim 12 follows by inversion of x ≤ y using (11) and (7). Claims 13

and 14 follow by induction on x with y quantified, case analysis of y , and (1), (3),

and (4).
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20.8 More Inductive Predicates

20.8 More Inductive Predicates

Given an informal or formal specification of a predicate, one often can come up

with an elegant system of proof constructors that is sound and complete for the

predicate and thus yields an inductive definition of the predicate. Coming up with

nice systems of proof constructors is a creative process nourished by experience.

Exercise 20.8.1 Give inductive definitions for the predicates specified below. Do

not use auxiliary functions like addition or multiplication and do not use auxiliary

predicates. Except for one case indexed inductive predicates are needed. Prove that

your inductive predicates satisfy their specifying equivalence. In each case try to

define the accompanying eliminator.

a) Dxy ←→ x = 2 ·y
b) Mxyz ←→ x = 3 ·y + z ∧ z ≤ 2

c) Upn ←→ ∃k. k ≥ n∧ pk (p : N→ P)

d) Lpn ←→ ∃k. k ≤ n∧ pk (p : N→ P)

20.9 Pureness of zero

We will now prove the proposition

∀hzero 0. h = Z (20.10)

Intuitively, this is an obvious fact. In Coq, there is indeed an automation tactic

(depelim) that derives h = Z from h : zero 0 in one step. Constructing a formal proof

of the fact does require new ideas, however. We need a stronger elimination lemma

modeling the dependency on the proof h, and we need to apply the elimination

lemma with a clever target predicate to avoid an unexpected typing conflict.

The full eliminator for zero is

Êzero : ∀p∀x. zerox→T. p0Z→ ∀xh.pxh
Êzero pa _ Z := a : p0Z

Note that the defining equation for Êzero is the same as for Ezero, so the difference

is just in the more general type of Êzero. This time the target predicate p takes both

the index xN and the proof hzerox as arguments.

We now prove (20.10) with the term

Êzero p (Q Z)0 : ∀hzero 0. h = Z

where p : ∀xN. zerox → P is a predicate satisfying

p0h ≈ (h = Z)
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20 Indexed Inductive Predicates

A first try defining p as p := λxhzerox. h = Z fails since the equation h = Z doesn’t

type check. We fix the problem with a match on x:

p : ∀xN. zerox → P

p0h := (h = Z)

p(S_)h := >

The proof we have given uses three essential features of Coq’s type theory: De-

pendent function types (Êzero and p), the conversion rule, and indexed typing in the

defining equation of Êzero.

Exercise 20.9.1 Explain why ∀xN hzerox. h = Z does not type check.

Exercise 20.9.2 Define Ezero with Êzero.

Exercise 20.9.3 Write Êzero and p with matches. Check your translation with Coq

and notice that Coq elaborates the matches with return type functions.

Exercise 20.9.4 Prove pure(zerox).

20.10 Axiom K

Axiom K is the proposition

K := ∀XT xX peqXxx→P. p(QXx)→ ∀h.ph.

stating that QXx is the only the proof of eqXxx. It turns out that K is indepen-

dent in Coq’s type theory, which is surprising given a naive understanding of the

inductive definition of eq. Note that Axiom K is only meaningful for an inductive

definition of propositional equality.

It seems that a proof of K should be possible following the ideas of the proof of

∀hzero 0. h = Z

in Section 20.9. Following the proof for zero, we may try to prove

∀XT xX heqXxx. h = QXx

which is equivalent to K. Defining a full eliminator for eq is not difficult:

Êeq : ∀XT xX p∀y. eqXxy→T. px(QXx)→ ∀yh. pyh
ÊeqXxpa _(Q _ _) := a : px(QXx)
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20.11 Summary

The crux now is that we cannot find a predicate p and a proof a such that

Êeq Xxpax : ∀heqXxx. h = QXx

type checks. The difference with zero is that 0 is a constructor that can be matched

on while x is abstract and cannot be matched on.

Exercise 20.10.1 Prove that K is equivalent to ∀XT xX heqXxx. h = QXx.

Exercise 20.10.2 Prove that PI implies K. See Section 18.3 for the definition of PI.

Exercise 20.10.3 Define Eeq with Êeq.

Exercise 20.10.4 Define Eeq and Êeq with matches. Check your translations with

Coq. Note that Coq elaborates the matches with appropriate return type functions.

20.11 Summary

We have defined inductive predicates satisfying the following specifications:

zerox ←→ x = 0

eqXxy ←→ ∀pX→P. px → py
evenn ←→ ∃k. x = 2 · k
lexy ←→ ∃k. x + k = y

In each case we used proof constructors whose target type instantiates arguments

of the inductive predicate. If such an instantiation takes place, we speak of index ar-

guments and of indexed inductive predicates. In each case we proved the specifying

equivalence. Proving the direction from right to left (known as completeness) was

routine in each case. For the directions from left to right (known as soundness) the

eliminators for the inductive predicates were needed. The types of the eliminators

have a special form reflecting the parameter-index distinction.

When working with inductive predicates we want to rely on intuitions, given that

the formal details are often involved. Working with inductive predicates in Coq

profits much from automation, in particular, the automatic derivation of elimina-

tors, the induction tactic, and the dependent elimination tactic depelim.

There are important applications of indexed inductive predicates, including

proof systems, operational semantics, type systems, and logic programming. As-

suming a reader not familiar with these applications, we have discussed the new

technical issues with example predicates that easily could be defined otherwise.

The exception is inductive equality, where the inductive definition adds important

qualities we will explore in a later chapter.
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21 Excluded Middle and Double Negation

We consider propositionally equivalent characterizations of excluded middle, in-

cluding Peirce’s law, the double negation law, and the counterexample law. We

show for several examples that the double negation of a quantification-free propo-

sition can be shown even if the proposition itself can only be shown with excluded

middle. We also consider definiteness and stability of propositions, two interesting

properties that trivially hold under excluded middle.

21.1 Characterizations of Excluded Middle

Recall that excluded middle

XM := ∀XP. X ∨¬X

is independent in Coq’s type theory. There are several propositionally equivalent

characterizations of excluded middle. Most amazing is Peirce’s law that formulates

excluded middle with just implication.

Fact 21.1.1 The following propositions are equivalent. That is, if we can prove one

of them, we can prove all of them.

1. ∀XP. X ∨¬X excluded middle

2. ∀XP. ¬¬X → X double negation

3. ∀XPYP. (¬X → ¬Y)→ Y → X contraposition

4. ∀XPYP. ((X → Y)→ X)→ X Peirce’s law

5. ∀XP. (X ←→ >)∨ (X ←→ ⊥)

Proof Since (5) is a minor reformulation of (1), proving the implications 1 → 5 and

5→ 1 is easy. It remains to prove the implications 1→ 2→ 3→ 4→ 1.

1 → 2. Assume ¬¬X and show X. By (1) we have either X or ¬X. Both cases are

easy.

2 → 3. Assume ¬X → ¬Y and Y and show X. By (2) it suffices to show ¬¬X. We

assume ¬X and show X. Follows by ex falso quodlibet since we have Y and ¬Y .

3→ 4. By (3) it suffices to show ¬X → ¬((X → Y)→ X)). Straightforward.

4→ 1. By (4) with X , (X∨¬X) and Y , ⊥ we can assume ¬(X∨¬X) and prove

X ∨¬X. We assume X and prove ⊥. Straightforward since we have ¬(X ∨¬X). �
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21 Excluded Middle and Double Negation

¬(X ∧ Y) ←→ ¬X ∨¬Y de Morgan

¬(∀a.pa) ←→ ∃a.¬pa de Morgan

(¬X → ¬Y) ←→ (Y → X) contraposition

(X → Y) ←→ ¬X ∨ Y classical implication

Figure 21.1: Prominent equivalences only provable with XM

There is another characterization of excluded middle asserting existence of

counterexamples, often used as tacit assumption in mathematical arguments.

Fact 21.1.2 (Counterexample) XM ←→ ∀AT∀pA→P. (∀a.pa)∨ ∃a.¬pa.

Proof Assume XM and pA→P. By XM we assume ¬∃a.¬pa and prove ∀a.pa. By the

de Morgan law for existential quantification we have ∀a.¬¬pa. The claim follows

since XM implies the double negation law.

Now assume the right hand side and let X be a proposition. We prove X ∨ ¬X.

We choose p := λa>.X. By the right hand side and conversion we have either∀a>.X
or ∃a>.¬X. In each case the claim follows. Note that choosing an inhabited type

for A is essential. �

Another common tacit use of XM in Mathematics is proof by contradiction: To

prove s, we assume ¬s and derive a contradiction. The lemma justifying proof by

contradiction is double negation:

XM→ (¬X → ⊥)→ X

Figure 21.1 shows prominent equivalences whose left-to-right directions are only

provable with XM. Note the de Morgan laws for conjunction and universal quantifi-

cation. Recall that the de Morgan laws for disjunction and existential quantification

¬(X ∨ Y) ←→ ¬X ∧¬Y de Morgan

¬(∃a.pa) ←→ ∀a.¬pa de Morgan

have constructive proofs.

Exercise 21.1.3

a) Prove the right-to-left directions of the equivalences in Figure 21.1.

b) Prove the left-to-right directions of the equivalences in Figure 21.1 using XM.
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21.2 Double Negation

Exercise 21.1.4 Prove the following equivalences possibly using XM. In each case

find out which direction needs XM.

¬(∃a.¬pa) ←→ ∀a.pa
¬(∃a.¬pa) ←→ ¬¬∀a.pa
¬¬(∃a.pa) ←→ ¬∀a.¬pa

Exercise 21.1.5 Prove that the left-to-right direction of the de Morgan law for uni-

versal quantification implies XM:

(∀XT∀pX→P. ¬(∀x.px)→ (∃x.¬px))→ XM

Hint: Instantiate the de Morgan law with X ∨¬X and λ_.⊥.

Exercise 21.1.6 Make sure you can prove the de Morgan laws for disjunction and

existential quantification (not using XM).

Exercise 21.1.7 Explain why Peirce’s law and the double negation law are indepen-

dent in Coq’s type theory.

Exercise 21.1.8 (Drinker Paradox) Consider a bar populated by at least one person.

Using excluded middle, one can argue that one can pick some person in the bar such

that everyone in the bar drinks Whiskey if this person drinks Whiskey.

We assume an inhabited type X representing the persons in the bar and a predi-

cate pX→P identifying the persons who drink Whiskey. The job is now to prove the

proposition ∃x. px → ∀x.px. Do the proof in detail and point out where XM and

inhabitation of X are needed. A nice proof can be done with the counterexample

law Fact 21.1.2.

21.2 Double Negation

Given a proposition X, we call ¬¬X the double negation of X. It turns out that the

double negation of a quantifier-free proposition is provable even if the proposition

by itself is only provable with XM. For instance,

∀XP. ¬¬(X ∨¬X)

is provable. This metaproperty cannot be proved in Coq. However, for every in-

stance a proof can be given in Coq.

There is a useful proof technique for working with double negation: If we have a

double negated assumption and need to derive a proof of falsity, we can drop the

double negation. The lemma behind this is simply identity:

¬¬X → (X → ⊥)→ ⊥
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21 Excluded Middle and Double Negation

With excluded middle, double negation distributes over all connectives and

quantifiers. Without excluded middle, we can still prove that double negation dis-

tributes over implication and conjunction.

Fact 21.2.1 The following distribution laws for double negation are provable:

¬¬(X → Y) ←→ (¬¬X → ¬¬Y)
¬¬(X ∧ Y) ←→ ¬¬X ∧¬¬Y

¬¬> ←→ >
¬¬⊥ ←→ ⊥

Exercise 21.2.2 Prove the equivalences of Fact 21.2.1.

Exercise 21.2.3 Prove the following propositions:

¬(X ∧ Y) ←→ ¬¬(¬X ∨¬Y)
(¬X → ¬Y) ←→ ¬¬(Y → X)
(¬X → ¬Y) ←→ (Y → ¬¬X)
(X → Y) → ¬¬(¬X ∨ Y)

Exercise 21.2.4 Prove ¬(∀a.¬pa) ←→ ¬¬∃a.pa.

Exercise 21.2.5 Prove the following implications:

¬¬X ∨¬¬Y → ¬¬(X ∨ Y)
(∃a.¬¬pa) → ¬¬∃a.pa
¬¬(∀a.pa) → ∀a.¬¬pa

Convince yourself that the converse directions are not provable without excluded

middle.

Exercise 21.2.6 Make sure you can prove the double negations of the following

propositions:

X ∨¬X
¬¬X → X

¬(X ∧ Y)→ ¬X ∨¬Y
(¬X → ¬Y)→ Y → X
((X → Y)→ X)→ X
(X → Y)→ ¬X ∨ Y
(X → Y)∨ (Y → X)
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21.3 Definiteness and Stability

We define definiteness and stability of propositions as follows:

definite XP := X ∨¬X
stable XP := ¬¬X → X

Fact 21.3.1

1. Every definite proposition is stable.

2. Every negated proposition is stable.

3. > and ⊥ are definite and stable.

4. Definiteness and stability are transported by propositional equivalence.

5. Under XM, all propositions are definite and stable.

Fact 21.3.2 Implication, conjunction, disjunction, and negation preserve definite-

ness:

1. definite X → definite Y → definite (X → Y).
2. definite X → definite Y → definite (X ∧ Y).
3. definite X → definite Y → definite (X ∨ Y).
4. definite X → definite (¬X).

Fact 21.3.3 (Definite de Morgan) definite X ∨ definite Y → ¬(X∧Y) ←→ ¬X∨¬Y .

Fact 21.3.4 Implication, conjunction, and universal quantification preserve stabil-

ity:

1. stable Y → stable (X → Y).
2. stable X → stable Y → stable (X ∧ Y).
3. (∀a. stable (pa)) → stable (∀a.pa).

Exercise 21.3.5 Prove the above facts.

Exercise 21.3.6 Prove Markov ←→ ∀fN→B. stable(∃n. fn = t). The equivalence

says that Markov is equivalent to stability of satisfiability of tests on numbers.

Exercise 21.3.7 Prove (∀a. stable (pa)) → ¬(∀a.pa) ←→ ¬¬∃a.¬pa.

Exercise 21.3.8 We define classical variants of conjunction, disjunction, and exis-

tential quantification:

X ∧c Y := (X → Y → ⊥)→ ⊥ ¬(X → ¬Y)
X ∨c Y := (X → ⊥)→ (Y → ⊥)→ ⊥ ¬X → ¬¬Y
∃ca.pa := (∀a.pa→ ⊥)→ ⊥ ¬(∀a.¬pa)
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21 Excluded Middle and Double Negation

The definitions are obtained from the impredicative characterisations by replacing

the quantified target proposition Z with ⊥. At the right we give computationally

equal variants using negation. The classical variants are implied by the originals

and are equivalent to the double negations of the originals. Under excluded middle,

the classical variants thus agree with the originals. Prove the following propositions.

a) X ∧ Y → X ∧c Y and X ∧c Y ←→ ¬¬(X ∧ Y).
b) X ∨ Y → X ∨c Y and X ∨c Y ←→ ¬¬(X ∨ Y).
c) (∃a.pa)→ ∃ca.pa and (∃ca.pa)←→ ¬¬(∃a.pa).
d) X ∨c ¬X.

e) ¬(X ∧c Y)←→ ¬X ∨c ¬Y .

f) (∀a. stable (pa)) → ¬(∀a.pa)←→ ∃ca.¬pa.

g) X ∧c Y , X ∨c Y , and ∃ca.pa are stable.
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22 Boolean Satisfiability

We study satisfiability of boolean formulas using a DNF-based solver and a tableau

system. The solver translates boolean formulas to equivalent clausal DNFs and

thereby decides satisfiability. The tableau system provides a proof system for un-

satisfiability and bridges the gap between natural deduction and satisfiability. Based

on the tableau system one can prove completeness and decidability of propositional

natural deduction.

The development presented here works for any choice of boolean connectives,

except for the final step making the connection with natural deduction. The inde-

pendence from particular connectives is obtained by representing conjunctions and

disjunctions with lists and negations with signs.

The (formal) proofs of the development are instructive in that they showcast

the interplay between evaluation of expressions, nontrivial recursive functions (the

DNF solver), and inductive predicates (the tableau system). Of particular interest

is the completeness proof for the tableau system, which is obtained by functional

induction on the recursion structure of the DNF solver.

22.1 Boolean Operations

We will work with the boolean operations conjunction, disjunction, and negation,

which we define as follows:

t & b = b t | b = t ! t = f

f & b = f f | b = b ! f = t

With these definitions all boolean identities have straightforward proofs by boolean

case analysis and computation. Recall that boolean conjunction and disjunction are

commutative and associative.

The idea behind disjunctive normal form (DNF) is that conjunctions are below

disjunctions, and that negations are below conjunctions. Negations can be pushed

downwards with the negation laws

!(a & b) = !a | !b !(a | b) = !a & !b ! !a = a

and conjunctions can be pushed below disjunctions with the distribution law

a & (b | c) = (a & b) | (a & b)
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22 Boolean Satisfiability

We will also make use of the negation law

b ∧ !b = f

to eliminate conjunctions.

There are also the reflection laws

a & b = t ←→ a = t∧ b = t

a | b = t ←→ a = t∨ b = t

!a = t ←→ ¬(a = t)

which offer the possibility to replace boolean operations with logical connectives.

As it comes to proofs, this is usually a bad idea since one looses the computation

coming with the boolean operations. An exception is the reflection rule for conjunc-

tion, which offers the possibility to replace the argument terms of a conjunction

with t.

22.2 Boolean Formulas

We will consider the boolean formulas

s, t,u := x | ⊥ | s → t | s ∧ t | s ∨ t (x : N)

realized with an inductive data type For representing each syntactic form with a

value constructor. Variables x are represented as numbers.

Our development will work with any choice of boolean connectives for formulas.

We have made the unusual design decision to have boolean implication as an ex-

plicit connective. On the other hand, we have omitted truth > and negation ¬. We

accommodate truth and negation with the notations

> := ⊥ → ⊥ ¬s := s → ⊥

An assignment is a function α : N → B mapping every variable to a boolean.

We define the evaluation function for boolean formulas as shown in Figure 22.1.

Note that every function Eα translates boolean formulas (object level) to boolean

terms (meta level). Also note that implications are expressed with negation and

disjunction. We define the notation

α î s := Eαs = t

and say that α satisfies s, or that α solves s, or that α is a solution of s. We say

that a formula s is satisfiable and write sat s if s has a solution. Finally, we say that

two formulas are equivalent if they have the same solutions.
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22.3 Clausal DNFs

Eαx := αx

Eα⊥ := f

Eα(s → t) := !Eαs | Eαt
Eα(s ∧ t) := Eαs & Eαt
Eα(s ∨ t) := Eαs | Eαt

Figure 22.1: Definition of the evaluation function E : (N→ B)→ For→ B

As it comes to proofs, it will be important to keep in mind that the notation α î s
abbreviates the boolean equation Eαs = t. Reasoning with boolean equations will

be the main workhorse in our proofs.

Exercise 22.2.1 Convince yourself that the predicate α î s is decidable.

Exercise 22.2.2 Verify a function translating formulas into equivalent formulas not

containing conjunctions and disjunctions.

Exercise 22.2.3 Verify the reflection laws

α î (s ∧ t) ←→ α î s ∧α î t
α î (s ∨ t) ←→ α î s ∨α î t

α î ¬s ←→ ¬(α î s)

22.3 Clausal DNFs

Informally, a DNF (disjunctive normal form) is a disjunction s1 ∨ · · · ∨ sn of solved

formulas si, where a solved formula is a conjunction of variables and negated vari-

ables where no variable appears both negated and unnegated. One can show that

every formula is equivalent to a DNF. There may be many different DNFs for a for-

mula. For instance, the DNFs x ∨ ¬x and y ∨ ¬y are equivalent since they are

satisfied by every assignment. On the other hand, we will arrange the exact DNF

format such that all unsatisfiable formulas have the same DNF, which may be seen

as the empty disjunction.

Formulas by themselves are not a good data structure for computing DNFs of

formulas. We will work with lists of signed formulas we call clauses:

S, T : SFor ::= s+ | s− signed formula

C,D : Cla := L(SFor) clause
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22 Boolean Satisfiability

Clauses represent conjunctions. We define evaluation of signed formulas and

clauses as follows:

Eα(s+) := Eαs Eα[] := t

Eα(s−) := !Eαs Eα(S :: C) := EαS & EαC

Note that the empty clause represents truth. We also consider lists of clauses

∆ : L(Cla)

and interpret them disjunctively:

Eα[] := f

Eα(C :: ∆) := EαC | Eα∆

Satisfaction of signed formulas, clauses, and lists of clauses is defined analogously

to formulas, and so are the notations α î S, α î C , α î ∆, and sat C . Since

formulas, signed formulas, clauses, and lists of clauses all come with the notion

of satisfying assignments, we can speak about equivalence between these objects

although they belong to different types. For instance, s, s+, [s+], and [[s+]], are all

equivalent since they are satisfied by the same assignments.

A solved clause is a clause consisting of signed variables (i.e., x+ and x−) such

that no variable appears positively and negatively. Note that a solved clause C is

satisfied by every assignment that maps the positive variables in C to t and the

negative variables in C to f.

Fact 22.3.1 Solved clauses are satisfiable. More specifically, a solved clause C is

satisfied by the assignment λx. [x+ ∈ C\.

A clausal DNF is a list of solved clauses.

Corollary 22.3.2 Every nonempty clausal DNF is satisfiable.

Exercise 22.3.3 Prove Eα(C ++D) = EαC & EαD and Eα(∆++∆′) = Eα∆ | Eα∆′.

Exercise 22.3.4 Write a function that maps lists of clauses to equivalent formulas.

Exercise 22.3.5 Our formal proof of Fact 22.3.1 is unexpectedly tedious in that it

requires two inductive lemmas:

1. α î C ←→ ∀S ∈ C. α î S.

2. solved C → S ∈ C → ∃x. (S = x+ ∧ x− ∉ C)∨ (S = x− ∧ x+ ∉ C).
The formal development captures solved clauses with an inductive predicate. This

is convenient for most purposes but doesn’t provide for a convenient proof of

Fact 22.3.1. Can you do better?
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22.4 DNF Function

dnf C [] := [C]

dnf C (x+ :: D) := if [x− ∈ C\ then [] else dnf (x+ :: C) D

dnf C (x− :: D) := if [x+ ∈ C\ then [] else dnf (x− :: C) D

dnf C (⊥+ :: D) := []

dnf C (⊥− :: D) := dnf C D

dnf C ((s → t)+ :: D) := dnf C (s− :: D)++dnf C (t+ :: D)

dnf C ((s → t)− :: D) := dnf C (s+ :: t− :: D)

dnf C ((s ∧ t)+ :: D) := dnf C (s+ :: t+ :: D)

dnf C ((s ∧ t)− :: D) := dnf C (s− :: D)++dnf C (t− :: D)

dnf C ((s ∨ t)+ :: D) := dnf C (s+ :: D)++dnf C (t+ :: D)

dnf C ((s ∨ t)− :: D) := dnf C (s− :: t− :: D)

Figure 22.2: Definition of the DNF function dnf : Cla→ Cla→ L(Cla)

22.4 DNF Function

We now define a function dnf that for every clause yields an equivalent clausal DNF.

The function has the type

dnf : Cla→ Cla→ L(Cla)

and satisfies two correctness properties:

Eα(dnf C D) = EαC & EαD (22.1)

solved C → E ∈ dnf C D → solved E (22.2)

Thus dnf [] [s+] computes a clausal DNF for the formula s. The second argument

of dnf (the agenda) holds the signed formulas still to be processed, and the first

argument of dnf (the accumulator) collects the signed variables taken from the

agenda. The function dnf is recursive and processes the formulas on the agenda one

by one decreasing the size of the agenda with every recursion step. The equations

defining dnf are shown in Figure 22.2. Note that the defining equations are clear

from the two correctness properties, the boolean identities given in Section 22.1,

and the idea that the first formula on the agenda controls the recursion.

Theorem 22.4.1 dnf [] C is a clausal DNF equivalent to C .
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22 Boolean Satisfiability

Proof The statement of the theorem follows from the two correctness properties

given above. Both correctness properties follow by induction on the recursion struc-

ture of dnf. There are 13 cases for each of the inductions where every case is

straightforward. �

Corollary 22.4.2 C is satisfiable if and only if dnf [] C is nonempty.

Corollary 22.4.3 Satisfiability of clauses and formulas is decidable.

Corollary 22.4.4 There is a solver ∀C. (Σα. α î C)+¬sat C .

Corollary 22.4.5 There is a solver ∀s. (Σα. α î s)+¬sat s.

Exercise 22.4.6 Convince yourself that the predicate S ∈ C is decidable.

Exercise 22.4.7 Write a size function for clauses such that every recursion step of

the DNF function decreases the size of the agenda.

Exercise 22.4.8 Rewrite the DNF function so that you obtain a boolean decider

D : Cla→ Cla→ B for satisfiability of clauses. Find suitable correctness properties

and verify the correctness of D.

22.5 Validity

A formula is valid if it is satisfied by all assignments. Validity reduces to unsatis-

fiability, and satisfiability reduces to non-validity. The latter fact follows with the

decidability of satisfiability.

Fact 22.5.1

1. A formula s is valid if and only if its negation is unsatisfiable.

2. A formula s is satisfiable if and only if its negation is not valid.

Proof Both directions of (1) and the left-to-right direction of (2) are routine. The

right-to-left direction of (2) follows by proof by contradiction, which is justified

since satisfiability of formulas is decidable (Corollary 22.4.3). �

Exercise 22.5.2 Declare a function ∀s. valid s+ (Σα. Eαs = f) that checks whether

a formula is valid and returns a counterexample in the negative case.
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22.6 Tableau Predicate

tab (S :: C ++D)
tab (C ++S :: D) tab (x+ :: x− :: C) tab (⊥+ :: C)

tab (s− :: C) tab (t+ :: C)

tab ((s → t)+ :: C)

tab (s+ :: t− :: C)

tab ((s → t)− :: C)

tab (s+ :: t+ :: C)

tab ((s ∧ t)+ :: C)

tab (s− :: C) tab (t− :: C)

tab ((s ∧ t)− :: C)

tab (s+ :: C) tab (t+ :: C)

tab ((s ∨ t)+ :: C)

tab (s− :: t− :: C)

tab ((s ∨ t)− :: C)

Figure 22.3: Definition of tab : Cla→ P

22.6 Tableau Predicate

The DNF function can be reformulated into an inductive predicate that derives ex-

actly the unsatisfiable clauses. Because termination is no longer an issue, the accu-

mulator argument is not needed anymore. Instead we add a rule that moves signed

formulas in the agenda. Figure 22.3 shows the resulting inductive predicate tab. We

speak of a tableau predicate since tab formalizes a proof system that belongs to

the family of tableau systems. We call the rules defining tab tableau rules.

We refer to the first rule of the tableau predicate as move rule and to the second

rule as clash rule. Note the use of list concatenation in the move rule.

The tableau rules are best understood in backwards fashion (from the conclusion

to the premises). All but the first rule are decomposition rules simplifying the

clause to be derived. The second and third rule derive clauses that are obviously

unsatisfiable. The move rule is needed so that non-variable formulas can be moved

to the front of a clause as it is required by most of the other rules.

Fact 22.6.1 (Soundness) Clauses derivable with tab are unsatisfiable.

Proof tab C → α î C → ⊥ follows by induction on tab. �

Fact 22.6.2 (Weakening) The following rules hold for tab:

tab (C)

tab (S :: C)

Proof By induction on tab. �
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22 Boolean Satisfiability

The move rule is strong enough to reorder clauses freely.

Fact 22.6.3 (Move Rules) The following rules hold for tab:

tab (revD++C ++E)
tab (C ++D++E)

tab (D++C ++E)
tab (C ++D++E)

tab (C ++S :: D)

tab (S :: C ++D)

We refer to the last rule as inverse move rule.

Proof The first rule follows by induction on tab. The second rule follows from the

first rule with C = [] and rev (revD) = D. The third rule follows from the second

rule with C = [S]. �

Lemma 22.6.4 dnf C D = []→ tab (D++C).

Proof By functional induction on dnf C D using the weakening and inverse move

rule. The weakening rule is needed for the deletion of ⊥− and the inverse move rule

is needed to account for the move of variables from the agenda to the accumulator.�

The proof of Lemma 22.6.4 demonstrates the power of functional induction.

With functional induction we can do induction on the recursion structure of dnf,

which is exactly what we need for constructing tableau derivations for unsatisfiable

clauses.

Theorem 22.6.5 The clauses derivable with tab are exactly the unsatisfiable

clauses.

Proof Follows with Fact 22.6.1, Corollary 22.4.2, and Lemma 22.6.4. �

Corollary 22.6.6 The tableau predicate is decidable.

We remark that the DNF function and the tableau predicate adapt to any choice

of boolean connectives. We just add or delete equations as needed. An extreme

case would be to not have variables. That one can choose the boolean connectives

freely is due to the use of clauses with signed formulas.

The tableau rules have the subformula property, that is, a derivation of a

clause C does only employ subformulas of formulas in C . That the tableau rules

satisfies the subformula property can be verified rule by rule.

Exercise 22.6.7 Prove tab (C ++S :: D++T :: E) ←→ tab (C ++T :: D++S :: E).

Exercise 22.6.8 Give an inductive predicate that derives exactly the satisfiable

clauses. Start with an inductive predicate deriving exactly the solved clauses.
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22.7 Refutation Predicates

22.7 Refutation Predicates

An unsigned clause is a list of formulas. We will now consider a tableau predicate

for unsigned clauses that comes close to the refutation predicate associated with

natural deduction. For the tableau predicate we will show decidability and agree-

ment with unsatisfiability. Based on the results for the tableau predicate one can

prove decidability and completeness of classical natural deduction.

The switch to unsigned clauses requires negation and falsity, but as it comes to

the other connectives we are still free to choose what we want. Negation could be

accommodated as an additional connective, but formally we continue to represent

negation with implication and falsity.

We can turn a signed clause C into an unsigned clause by replacing positive

formulas s+ with s and negative formulas s− with negations ¬s. We can also turn

an unsigned clause into a signed clause by labeling every formula with the positive

sign. The two conversions do not change the boolean value of a clause for a given

assignment. Moreover, going from an unsigned clause to a signed clause and back

yields the initial clause. From the above it is clear that satisfiability of unsigned

clauses reduces to satisfiability of signed clauses and thus is decidable.

Formalizing the above ideas is straightforward. The letters A and B will range

over unsigned clauses. We define α î A and satisfiability of unsigned clauses analo-

gous to signed clauses. We use Ĉ to denote the unsigned version of a signed clause

and A+ to denote the signed version of an unsigned clause.

Fact 22.7.1 EαĈ = EαC , EαA+ = EαA, and Â+ = A.

Fact 22.7.2 (Decidability) Satisfiability of unsigned clauses is decidable.

Proof Follows with Corollary 22.4.3 and EαA+ = EαA. �

We call a predicate ρ on unsigned clauses a refutation predicate if it satisfies

the rules in Figure 22.4. Note that the rules are obtained from the tableau rules for

signed clauses by replacing positive formulas s+ with s and negative formulas s−

with negations ¬s.

Lemma 22.7.3 Let ρ be a refutation predicate. Then tab C → ρĈ .

Proof Straightforward by induction on tab C . �

Fact 22.7.4 (Completeness)

Every refutation predicate holds for all unsatisfiable unsigned clauses.

Proof Follows with Theorem 22.6.5 and Lemma 22.7.3. �
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22 Boolean Satisfiability

ρ (s :: A++B)
ρ (A++ s :: B) ρ (x :: ¬x :: A) ρ (⊥ :: A)

ρ (¬s :: A) ρ (t :: A)

ρ ((s → t) :: A)

ρ (s :: ¬t :: A)

ρ (¬(s → t) :: A)

ρ (s :: t :: A)

ρ ((s ∧ t) :: A)

ρ (¬s :: A) ρ (¬t :: A)

ρ (¬(s ∧ t) :: A)

ρ (s :: A) ρ (t :: A)

ρ ((s ∨ t) :: A)

ρ (¬s :: ¬t :: A)

ρ (¬(s ∨ t) :: A)

Figure 22.4: Rules for refutation predicates ρ : L(For)→ P

We call a refutation predicate sound if it holds only for unsatisfiable unsigned

clauses (that is, ∀A. ρA→ ¬satA).

Fact 22.7.5 Every sound refutation predicate is decidable and holds exactly for un-

satisfiable unsigned clauses.

Proof Facts 22.7.4 and 22.7.2. �

Theorem 22.7.6 The minimal refutation predicate inductively defined with the

rules for refutation predicates derives exactly the unsatisfiable unsigned clauses.

Proof Follows with Fact 22.7.4 and a soundness lemma similar to Fact 22.6.1. �

Exercise 22.7.7 (Certifying Solver) Declare a function ∀A. (Σα. α î A)+¬satA.

Exercise 22.7.8 Show that boolean entailment

A î̇ s := ∀α. α î A → α î s

is decidable.

Exercise 22.7.9 Let A ˙̀ s be the inductive predicate for classical natural deduction.

Prove that A ˙̀ s is decidable and agrees with boolean entailment. Hint: Exploit

refutation completeness and show that A ˙̀ ⊥ is a refutation predicate.
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23 Well-Founded Recursion

We will define a recursion operator generalizing size recursion. The operator ob-

tains a function

∀x.px

from a step function

∀x. (∀y. Ryx → py)→ px

The step function provides for recursion that is guarded by a well-founded rela-

tion R. The prototype of a well-founded relation is the order relation x < y on

numbers. Well-founded relations are defined constructively with a transfer predi-

cate providing higher-order recursion as it is needed for the definition of the well-

founded recursion operator.

We will prove an unfolding equation for the well-founded recursion operator.

Using the unfolding equation, we can show that the function constructed by the

well-founded recursion operator satisfies the equational specification underlying

the step function. No complementary specification is needed for this purpose. Thus

we obtain a method that constructs satisfying functions for equational specifica-

tions whose recursion can be guarded by well-founded relations.

The topics presented in this chapter belong to the core of constructive type the-

ory. Our presentation consists of a theoretical thread and a practical development

for a gcd function.

23.1 Well-Founded Recursion Operator

We assume a binary relation R : X → X → P and say that a point y is below a point

x if Ryx. We define the accessible points of R inductively: A point x is accessible

if every point below x is accessible. Formally, we capture the accessible points of R
with a transfer predicate called accessibility:

AR(x : X) : P ::= CR(∀y. Ryx → ARy)

We say that a relation is well-founded if all points are accessible:

wfR := ∀x. AR(x)
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23 Well-Founded Recursion

The accessibility predicate AR provides for higher-order recursion: A derivation

CR(α) : AR(x) carries a function α : ∀y. Ryx → AR(y) that for all y below x
yields a structurally smaller derivation. This is exactly the recursion we need for

the well-founded recursion operator.

We assume a return type function p : X → T and a step function

F : ∀x. (∀y. Ryx → py)→ px

and define the worker function for the well-founded recursion operator as follows:

W ′ : ∀x. AR(x)→ px
W ′x(Cα) := Fx(λyr . W ′y(αyr))

The definition of the well-founded recursion operator

W : ∀XT∀RX→X→P∀pX→T. wfR → (∀x. (∀y. Ryx → py)→ px)→ ∀x.px

is now routine:

WXRpHFx := W ′XRpFx(Hx)

We will speak of well-founded induction when we use W for proofs.

We see W ′ as the canonical eliminator for the accessibility predicate A. The full

type of W ′ explains this view:

W ′ : ∀XT∀RX→X→P∀pX→T. (∀x. (∀y. Ryx → py)→ px)→ ∀x.AR(x)→ px

When we use W ′ for proofs, we speak of an accessibility induction or of an induc-

tion on AR(x).

23.2 Unfolding Equation

We show an unfolding equation for the well-founded recursion operator W saying

that the function constructed satisfies the equational specification underlying the

guard function. The unfolding equation is shown for step functions that are exten-

sional in their proof argument:

∀xϕϕ′. (∀zr . ϕzr =ϕ′zr)→ Fxϕ = Fxϕ′

Lemma 23.2.1 Let F be an extensional step function for a relation R.

Then ∀aa′. W ′Fxa = W ′Fxa′.

Proof It suffices to prove Ax → ∀aa′. W ′Fxa = W ′Fxa′. We proof this claim by

induction on AR(x). We destructure a and a′. Using the defining equation for W ′

and the extensionality of F , we need to show W ′Fy(ϕyr) = W ′Fy(ϕ′yr) for

r : Ryx, which follows with the inductive hypothesis. �
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23.2 Unfolding Equation

Fact 23.2.2 (Unfolding Equation)

Let F be an extensional step function for a well-founded relation R.

Then WFx = Fx(λy_. WFy).

Proof Unfold W on the left, destruct the accessibility derivation, and apply

the defining equation of W ′. Then use the extensionality of F to reduce to

W ′Fy(ϕyr) = WFy . Now unfold W on the right and conclude with Lemma 23.2.1.�

We will see that we can use the unfolding equation to directly construct solutions

for recursive specifications where the recursion respects a well-founded relation.

The first step is to formulate the recursive specification and the guarded proofs for

the recursive calls (i.e., the proofs for Ryx) as a step function F . The well-founded

recursion operator and the unfolding equation give us a function f := WF such

that fx = Fx(λy_. fy). Since the continuation function λy_. fy throws away the

guardedness proofs, the equation fx = Fx(λy_. fy) gives us that f satisfies the

recursive specification.

We say that a function f : ∀x.px satisfies a step function F if the equation

fx = Fx(λy_. fy) holds for all x. Fact 23.2.2 tells us thatWF satisfies F (assuming

a well-founded relation R). It turns out that WF is the only function satisfying F (up

to functional extensionality).

Theorem 23.2.3 Let F be an extensional step function for a well-founded relation R.

Then WF satisfies F and agrees with every function satisfying F .

Proof Fact 23.2.2 says that WF satisfies F . For the agreement we assume that f
satisfies F and show ∀x. fx = WFx. We do this by well-founded induction on x
and R. By using the assumption on the left and the unfolding equation (Fact 23.2.2)

on the right, the claim reduces to Fx(λy_.fy) = Fx(λy_.WFy). With the exten-

sionality of F this reduces to fy = WFy for Ryx, which follows by the inductive

hypothesis. �

For practical examples, showing extensionality of step functions is routine. We

remark that all step functions are trivially extensional once we assume that acces-

sibility propositions AR(x) are pure. Interestingly, it turns out that all accessibility

propositions are pure once we assume functional extensionality.

Fact 23.2.4 Assuming general functional extensionality, every accessibility propo-

sition AR(x) is pure.

Proof We assume general functional extensionality and prove

∀x. AR(x)→ ∀aAR(x)∀a′AR(x). a = a′
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23 Well-Founded Recursion

by induction on AR(x). After destructuring the derivations a and a′ it suffices to

prove α = α′ for two functions∀y. Ryx → AR(y). Using functional extensionality,

we assume r : Ryx and show αyr = α′yr at type AR(y). The equation follows

with the inductive hypothesis. �

Exercise 23.2.5 The proofs of Lemma 23.2.1 and Fact 23.2.4 use a particular setup

for accessibility induction which may be justified with an interface lemma

(∀x. AR(x)→ ∀a. pxa)→ ∀x∀aAR(x). pxa

Understand the need for a justification and prove the lemma.

23.3 Well-Founded Relations

Fact 23.3.1 (Accessibility function for numbers)

There is a function ∀nN. A<n.

Proof It suffices to construct a function

R : ∀nx. x < n→ A< x

We define R using structural recursion on n:

R0xh := match [⊥\ [] h : x < 0

R(Sn)xh := C<x(λyh′. Rny[y < n\) h : x < Sn, h′ : y < x �

Note that the proof of Fact 23.3.1 is very similar to the proof for Lemma 12.1.1.

Corollary 23.3.2 The order relation < on numbers is well-founded.

In practice, a size function mapping a type to the domain of a well-founded re-

lation is often useful. It turns out that preimages of well-founded relations under

functions are again well-founded relations. This way size recursion can be under-

stood as pure well-founded recursion. We will show that λxy.R(σx)(σy) is a

well-founded relation on X if σ is a function X → Z and R is a well-founded relation

on Z .

Lemma 23.3.3 (Transport)

Let R : Z → Z → P and σ : X → Z . Let S := λxy. R(σx)(σy).
Then AR(σx)→ AS(x).
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23.4 Gcd Example

Proof It suffices to show

∀z. AR(z)→ ∀x. σx = z → AS(x)

We do this by induction on AR(z). We assume σx = z and prove AS(x). It suffices

to construct a function ∀y. Syx → AS(y). We assume Syx and show AS(y). Since

R(σy)z, we have the inductive hypothesis ∀x′. σx′ = σy → AS(x′). The claim

AS(y) follows. �

Fact 23.3.4 (Preimage)

Let σ : X → Z , and R : Z → Z → P be a well-founded relation.

Then λxy. R(σx)(σy) is a well-founded relation.

Proof Immediate with Lemma 23.3.3. �

Corollary 23.3.5 (Well-founded size recursion)

Let σ : X → Z , and R : Z → Z → P be a well-founded relation.

Then we have a function

∀pX→T. (∀x. (∀y. R(σy)(σx)→ py)→ px)→ ∀x.px

Proof Follows with the well-founded recursion operator W and Fact 23.3.4. �

Exercise 23.3.6 Use the results of this chapter to define a size recursion operator

for numbers as used in Chapter 12. Write out the unfolding equation we now obtain

for the size recursion operator.

23.4 Gcd Example

Figure 23.1 shows a recursive specification of a function. Using the well-founded

recursion operator W , we will construct a function satisfying the specification. We

shall use the unfolding equation for the recursion operator to prove that the speci-

fying equations are satisfied. We remark that the specified function computes great-

est common divisors. This information will not be used for our construction and

proofs.

Using the recursion operator W , we will construct a cartesian version

N× N→ N

of the specified function using the return type function

p(x,y) := N
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23 Well-Founded Recursion

f : N→ N→ N

f 0y = y

f (Sx)0 = Sx

f (Sx) (Sy) =

f (x −y) (Sy) if y ≤ x
f (Sx) (y − x) if y > x

Termination conditions:

y ≤ x → (x −y)+ Sy < Sx + Sy

y > x → Sx + (y − x) < Sx + Sy

Figure 23.1: Recursive specification of a gcd function

F : ∀cN×N. (∀c′. Rc′c → N)→ N

F (0, y) _ := y

F (Sx,0) _ := Sx

F (Sx, Sy)ϕ :=

ϕ(x −y, Sy) [ (x −y)+ Sy < Sx + Sy \ if y ≤ x
ϕ(Sx, y − x) [ Sx + (y − x) < Sx + Sy \ if y > x

Figure 23.2: Step function for the specification in Figure 23.1

and the well-founded relation R on N× N obtained with the size function

σc := π1c +π2c

from the canonical order on N. We define the necessary step function

F : ∀cN×N. (∀c′. Rc′c → N)→ N

as shown in Figure 23.2 following the equations in Figure 23.1. The two recur-

sive calls are modeled with the continuation function ϕ : ∀c′. Rc′c → N, which

is supplied with the guardedness proofs needed. The guardedness proofs are for

the conclusions of the termination conditions appearing in Figure 23.1. The condi-

tions obtained with the case analysis on (y ≤ x) + (y > x) are not needed for the

guardedness proofs, which are omitted in Figure 23.2 for readability.

We now have a function WF (we omit the arguments for the well-founded rela-

tion R). We define a cascaded version

fxy := WF(x,y)
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With a routine proof we show that F is extensional. Fact 23.2.2 thus gives us the

unfolding equation

fxy = F(x,y)(λc _. f (π1c)(π2c))

A case analysis on x and y following the specification in Figure 23.1 now confirms

that f satisfies the equations of the specification.

23.5 Step Functions as Specifications

How can we represent a recursive specification of a function

f : ∀x.px

formally in type theory? The conventional fixed-point approach represents a recur-

sive specification with an unguarded step function

U : (∀x.px)→ ∀x.px

and looks for a function f such that

∀x. fx = Ufx

The first argument of U acts as continuation function providing for recursive calls.

We will call a function f satisfying the above equation a solution of U . Under

functional extensionality, the solutions of U are the fixed points of U .

Since Coq admits only total functions, not every unguarded step function U has

a solution in Coq. For a solution to exist it is sufficient that the recursion estab-

lished by U is terminating. We can ensure termination by providing a well-founded

relation R guarding the recursive calls in U . Formally, we switch to a guarded step

function

F : ∀x. (∀y. Ryx → py)→ px

taking a guarded continuation function as argument and define the solutions of F
as all functions satisfying the unfolding equation

∀x. fx = Fx(λy_. fy)

The solutions of a guarded step function F are thus the solutions of the associated

unguarded step function

UF := λfx. Fx(λy_. fy)

which throws away the guardedness proofs. Under functional extensionality, the

associated unguarded step function will be equal to the unguarded step function

used as starting point for the definition of the guarded step function. Thus, under
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23 Well-Founded Recursion

U : N→ N→ N

U 0y = y

U (Sx)0 = Sx

U (Sx) (Sy) =

U (x −y) (Sy) if y ≤ x
U (Sx) (y − x) if y > x

Figure 23.3: Unguarded step function for the specification in Figure 23.1

functional extensionality, the solutions of the guarded step function are exactly the

solutions of the unguarded step function.

We have shown that the well-founded recursion operator yields a solution for

every extensional guarded step function, and that the solutions of extensional

guarded step functions are unique.

We recall that the well-founded recursion operator is obtained by a straightfor-

ward application of the eliminator for the accessibility predicate. The elegance of

the entire approach thus rests on the accessibility predicate, which on the one hand

provides exactly the higher-order recursion needed for the well-founded recursion

operator, and on the other hand captures the notion of well-foundedness in way

that works very well constructively.

Figure 23.3 shows the cascaded version of the unguarded step function for the

recursive specification of a gcd function in Figure 23.1.

23.6 Functional Induction

When we prove properties of a function satisfying an equational specification, we

use well-founded induction to account for the recursion in the specification. It

turns out that one can formulate special induction predicates that combine the

equations of the specification with the well-founded induction corresponding to

the recursion. Figures 23.4 shows the induction predicate for the specification of a

gcd function in Figure 23.1. Note that the predicate has a clause for every equation

of the specification in Figure 23.1.

Fact 23.6.1 A function satisfies the induction predicate for a gcd function if and

only if it satisfies the unguarded step function for a gcd function. Formally, we

have

∀f . Ind(f )←→ ∀xy. fxy = Ufxy

The functions Ind and U are defined in Figures 23.4 and 23.3.
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23.6 Functional Induction

Ind : (N→ N→ N)→ T

:= λf .
∀pN→N→N→T.

(∀y. p0yy)→
(∀x. p(Sx)0(Sx))→
(∀xyz. y ≤ x → z = f(x −y)(Sy)→ p(x −y)(Sy)z → p(Sx)(Sy)z )→
(∀xyz. y > x → z = f(Sx)(y − x)→ p(Sx)(y − x)z → p(Sx)(Sy)z )→
∀xy. pxy(fxy)

Figure 23.4: Induction predicate for a gcd function

Proof Suppose H : Ind(f ). We show the claim with H and pxyz := (z = Ufxy).
This yields 4 proof obligations, one fo each equation of U . All proof obligations

have straightforward proofs.

Suppose ∀xy. fxy = Ufxy . Moreover, assume pN→N→N→T and the four con-

ditions on p. We show ∀xy. pxy(fxy) by size induction on x + y (formally, we

switch to pairs (x,y)). We use the assumption and show pxy(Ufxy). We now

consider the 4 cases underlying U and Ind. The base cases are immediate with the

respective conditions for p. The recursive cases follow with the inductive hypothe-

sis and the respective conditions for p. �

We remark that the induction predicate in Figure 23.4 can be formulated without

the auxiliary variable z. We have introduced the auxiliary variable for readability

and conciseness.

Induction predicates for recursively specified functions are special-purpose in-

duction schemes facilitating proofs about the specified functions. For instance,

assuming a function satisfying the induction predicate in Figure 23.4, no further

induction scheme is needed to show that the function computes greatest common

divisors.

Exercise 23.6.2 Prove that every function f satisfying the induction predicate in

Figure 23.4 satisfies γxy(fxy). Take the definition of γ given in § 12.6 and use

Fact 12.6.3.

Exercise 23.6.3 Give an unguarded step function and an induction predicate for a

division function and show that they are equivalent. Use the induction predicate to

show that the specified function is in fact a division function as specified in § 12.4.

Use the well-founded recursion operator and the unfolding equation to obtain a

division function satisfying the specifications.
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23 Well-Founded Recursion

23.7 Notes

Given an equational specification, a function satisfying the specifications can be

constructed provided the recursion of the specification can be guarded with a well-

founded relation. The construction comes with the proviso that the step function

modeling the specification and the guard conditions is extensional. The construc-

tion is based on a transfer predicate known as accessibility predicate providing a

constructive definition of well-foundedness using higher-order recursion.

The inductive definition of well-foundedness is due to Aczel [1]. Nordström [10]

adapts Aczel’s definition to a constructive type theory without propositions and ad-

vocates functions recursing on accessibility derivations. Balaa and Bertot [2] define

a well-founded recursion operator in Coq based on the transfer predicate for acces-

sibility. They prove the unfolding equation for the operator and suggest that Coq

should support the construction of functions with an automation tool taking care

of the tedious routine proofs coming with well-founded recursion. Currently, Coq

supports well-founded recursion with a package called Equations.
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24 Semi-Decidability

The theory of computation distinguishes between decidable and semi-decidable

predicates, where Post’s theorem says that a predicate is decidable if and only if

both the predicate and its complement are semi-decidable. There are important

semi-decidable problems that are undecidable. It turns out that semi-decidability

has an elegant definition in type theory using semi-decision types, and that Post’s

theorem is equivalent to Markov’s principle, where the direction from Markov to

Post needs a witness operator.

24.1 Semi-Deciders

A semi-decider for a predicate pX→P is a function FX→N→B such that

∀x. px ←→ tsat(Fx)

A predicate pX→P is semi-decidable if it has a semi-decider.

We offer two intuitions for semi-deciders. Let F be a semi-decider for p. This

means we have px ←→ ∃n. Fxn = t for every x. The fuel intuition says that F
confirms px if and only if px holds and F is given enough fuel n. The proof intuition

says that the proof system F has a proof n of px if and only if px holds.

Fact 24.1.1 Decidable predicates are semi-decidable.

Fact 24.1.2 tsat is semi-decidable.

We define semi-decision types S(X) as follows:

S : P→ T

S(X) := ΣfN→B. X ←→ tsatf

Fact 24.1.3 ∀XP. D(X)→ S(X).

Fact 24.1.4 (Transport) ∀XPYP. (X ←→ Y)→ S(X)→ S(Y).

Fact 24.1.5 ∀XPYP. S(X)→ S(Y)→ S(X ∨ Y).
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24 Semi-Decidability

Proof Let f be the test for X and g be the test for Y . Then λn.fn | gn is a test for

X ∨ Y . �

Fact 24.1.6 ∀XPYP. S(X)→ S(Y)→ S(X ∧ Y).

Proof Let f be the test for X and g be the test for Y . We assume a pairing function

for numbers. Let F : N → N → N, π1 : N → N and π2 : N → N such that π1(Fn1n2) =
n1 and π2(Fn1n2) = n2. Then λn.f(π1n)&g(π2n) is a test for X ∧ Y . �

A certifying semi-decider for a predicate pX→P is a function ∀xX . S(px). From

a certifying semi-decider for p we can obtain a semi-decider for p by forgetting the

proofs. Vice versa, we can construct from a semi-decider and its correctness proof

a certifying semi-decider.

Fact 24.1.7 ∀XTpX→P. (∀x.S(px))a (ΣFX→N→B∀x. px ←→ tsat (Fx)).

Proof Direction ⇒. We assume H : ∀x.S(px) and x : X and show px ←→ tsat(Fx)
for Fx := π1(Hx). Straightforward.

Direction ⇐. We assume H : ∀x. px ←→ tsat (Fx) and x : X and show S(px).
Trivial with Fx as test. �

Corollary 24.1.8 A predicate is semi-decidable iff it has a certifying semi-decider.

Recall the discussion of computational omniscience in Section 18.5. It turns out

that from a decider for tsat we can get a function translating semi-decisions into

decisions, and vice versa.

Fact 24.1.9 (∀XP. S(X)→D(X)) a (∀fN→B. D(tsatf)).

Proof Direction⇒ follows since f is a test for S(tsatf). For direction⇐ we assume

X ←→ tsatf and show D(X). By the primary assumption we have either tsatf or

¬tsatf . Thus D(X). �

24.2 Markov-Post Equivalence

Recall the definition of Markov’s principle:

Markov := ∀fN→B. ¬(∀n. fn = f)→ (∃n. fn = t)

We also need the function type

Post := ∀XP. S(X)→ S(¬X)→D(X)

We will refer to functions of type Post as Post operators.1

1Post operators are named after Emil Post, who first showed that predicates are decidable if they are
semi-decidable and co-semi-decidable.
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24.2 Markov-Post Equivalence

Fact 24.2.1 Post→ ∀XP. D(X)a S(X)× S(¬X).

Proof Straightforward. �

Fact 24.2.2 Markov→ Post.

Proof Assume Markov. Let f be a test for X and g be a test for ¬X. We showD(X).
Let hn := fn | gn. It suffices to show Σn. hn = t. Since we have a witness operator

and Markov, it suffices to show ¬∀n. hn = f. We assume H : ∀n. hn = f and show

¬X and ¬¬X. Follows since H implies that f and g are constantly false. �

Fact 24.2.3 Post→ Markov.

Proof We assume Post and H : ¬¬tsatf and prove tsatf (using Exercise 24.4.1). It

suffices to show D(tsatf). Using Post it suffices to show S(tsatf) and S(¬tsatf).
S(tsatf) holds with f as test. S(¬tsatf) holds with λ_.f as test. �

Theorem 24.2.4 Markov a Post.

Proof Facts 24.2.2 and 24.2.3. �

We say that a predicate p is co-semi-decidable if its complement p := λx.¬px
is semi-decidable.

Corollary 24.2.5 Given Markov, a predicate is decidable iff it is semi-decidable and

co-semi-decidable.

Corollary 24.2.6 Given Markov and ¬CO, tsat is not co-semi-decidable.

Proof Suppose that tsat is co-semi-decidable. Since tsat is semi-decidable

(Fact 24.1.2), tsat is decidable by Fact 24.2.2. Contradiction with ¬CO. �

Exercise 24.2.7 Prove ∀XP. (X ∨¬X)→ S(X)→ S(¬X)→D(X).

Exercise 24.2.8 Prove Markov→ ∀X. D(X)a S(X)× S(¬X).

Exercise 24.2.9 Prove Markov→ (∀X. S(X)→ S(¬X))→ CO. Note that this implies

that semi-decisions don’t propagate through implications and negations if Markov

and ¬CO are assumed.

233



24 Semi-Decidability

24.3 Reductions

The theory of computation employs so-called many-one reductions to transport

undecidability results between problems. In our setting problems are predicates

and many-one reductions can be easily defined since all functions are computable.

Given two predicates pX→P and qY→P, a reduction from p to q is a function fX→Y

such that ∀x. px ←→ q(fx). Formally, we define a predicate as follows:

red : ∀XTYT. (X → P)→ (Y → P)→ (X → Y)→ P

red XYpqf := ∀x. p(x)←→ q(fx)

We treat the polymorphic arguments of red as implicit arguments.

Fact 24.3.1 Decidability and undecidability propagate along reductions as follows.

redpqf → (∀y.D(qy))→ (∀x.D(px))
redpqf → (∀y.S(qy))→ (∀x.S(px))
ex (redpq)→ ex (bdecq)→ ex (bdecp)

ex (redpq)→ ¬ex (bdecp)→ ¬ex (bdecq)

Proof Straightforward. �

Fact 24.3.2 A predicate is semi-decidable if and only if it reduces to tsat. Formally:

∀XTpX→P. (∀x. S(px))a sig (redp tsat).

Proof Direction ⇒ follows with the reduction mapping x to the test for S(px).
Direction ⇐ uses the test the reduction yields for x. �

Exercise 24.3.3 The reducibility relation between predicates is reflexive and transi-

tive. Prove redpp(λx.x) and redpqf → redqrg → redpr(λx.g(fx)) to establish

this claim.

Exercise 24.3.4 Prove redpq f → red q p f .
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24.4 Heap

Technical Summary

D(X) := X +¬X
S(X) := Σf . X ←→ tsatf

tsatf := ∃nN. fn = t

bdecpg := ∀xX . px ←→ gx = t

CO := ex (bdec tsat)

Markov := ∀f . ¬(∀n. fn = f)→ tsatf

Post := ∀X. S(X)→ S(¬X)→D(X)
redpqf := ∀x. px ←→ q(fx)

tsatf a Σn. fn = t

tsat(λn. fn | gn)a tsatf + tsatg

(∀nN. D(pn))→ exp → sigp

sig (bdecp)a ∀x. D(px)
(∀f . D(tsatf))→ CO

D(X)→ S(X)× S(¬X)
S(tsatf)

(∀f . D(tsatf))a ∀X. S(X)→D(X)
Markov a Post

Markov→ (D(X)a S(X)× S(¬X))
Markov→ (∀f . S(¬tsatf))→ CO

(∀x. S(px))a sig (redp tsat)

• Decisions propagate through →, ¬, ∧, ∨.

• Semi-decisions propagate through ∧, ∨. (conjunction needs pairing function)

• Decisions and semi-decisions travel through ←→.

• Deciders and semi-deciders travel from target to source of reductions.

24.4 Heap

tsatf := ∃nN. fn = t

bdecpg := ∀xX . px ←→ gx = t

CO := ex (bdec tsat)

(∀f . D(tsatf))→ CO
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24 Semi-Decidability

Exercise 24.4.1 Prove the following equivalences:

CO ←→ ∃f . bdec tsatf

LPO ←→ ∀f . tsatf ∨¬tsatf

Markov ←→ ∀f . ¬¬tsatf → tsatf

Note that CO says that tsatf is decidable, that LPO says that tsatf is definite, and

that Markov says that tsatf is stable (in each case for all tests f ). Thus we may

write the above equivalences as follows:

CO ←→ ex (bdec tsat)

LPO ←→ ∀f . definite (tsatf)

Markov ←→ ∀f . stable (tsatf)
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[7] Stanisław Jaśkowski. On the rules of supposition in formal logic, Studia Logica

1: 5—32, 1934. Reprinted in Polish Logic 1920-1939, edited by Storrs McCall,

1967.

[8] Edmund Landau. Grundlagen der Analysis: With Complete German-English Vo-

cabulary, volume 141. American Mathematical Soc., 1965.

[9] John McCarthy and James Painter. Correctness of a compiler for arithmetic

expressions. Mathematical aspects of computer science, 1, 1967.

[10] Bengt Nordström. Terminating general recursion. BIT Numerical Mathematics,

28(3):605–619, Sep 1988.

[11] Raymond M. Smullyan and Melvin Fitting. Set Theory and the Continuum Hy-

pothesis. Dover, 2010.

[12] A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Cambridge University

Press, 2nd edition, 2000.

237


	Getting Started
	Booleans
	Numbers
	Structural Induction
	Ackermann Function
	Strict Structural Recursion
	Pairs and Polymorphic Functions
	Implicit Arguments
	Iteration
	Notational Conventions
	Final Remarks

	Computational Primitives
	Computational Definition of Functions
	Reduction Rules
	Well-Typed Terms and Normal Forms
	Computational Equality
	Canonical Terms and Values
	Notational Conventions

	Propositions as Types
	Propositions Informally
	Conjunction, Disjunction, and Implication
	Normal Proofs
	Propositional Equivalence
	Truth, Falsity, and Negation
	Proof Term Construction with Proof Diagrams
	Notational Issues
	Type Checking Rules
	Final Remarks

	Dependent Function Types
	Generalization of Polymorphic Function Types
	Impredicative Characterizations
	Predicates
	Conversion Law
	Negation and Equivalence as Defined Constants
	Hierarchy of Universes
	Type Checking Rules Revisited

	Propositional Equality as Leibniz Equality
	Propositional Equality with Three Constants
	Basic Equational Facts
	Declared Constants

	Inductive Elimination
	Boolean Elimination
	Elimination for Numbers
	Eliminator for Pairs
	Elim Restriction and Transfer Predicates
	Disequality of Types
	Abstract Return Types

	Case Study: Pairing Function
	Definitions
	Proofs
	Discussion

	Existential Quantification
	Inductive Definition and Basic Facts
	Barber Theorem
	Lawvere's Fixed Point Theorem

	Recursive Specification of Functions
	Step Functions as Specifications
	Fibonacci Numbers
	Functional Extensionality
	Ackermann Function
	Summary

	Informative Types
	Sum Types and Sigma Types
	Computational Lemmas
	Projections and Eliminator for Sigma Types
	Decision Types and Certifying Deciders
	Discrete Types
	Option Types

	Numbers
	Inductive Definition
	Addition
	Multiplication
	Subtraction
	Order
	Trichotomy
	Least Witnesses
	Least Witness Operator via Induction
	Least Witnesses and Excluded Middle
	Notes

	Size Recursion
	Size Recursion Operator
	Least Witness Operator Revisited
	Relational Specifications
	Euclidean Division
	Euclidean Division Theorem
	Greatest Common Divisors
	Discrete Inversion
	Notes

	Existential Witness Operators
	Recursive Transfer Predicate
	Definition of Existential Witness Operator
	More Existential Witness Operators
	Eliminator and Existential Characterization
	Notes

	Lists
	Inductive Definition
	Basic Operations
	Membership
	List Inclusion and List Equivalence
	Setoid Rewriting
	Element Removal
	Nonrepeating Lists
	Cardinality
	Position-Element Mappings

	Case Study: Expression Compiler
	Expressions and Evaluation
	Code and Execution
	Compilation
	Decompilation
	Discussion

	Data Types
	Inverse Functions
	Bijections
	Injections
	Data Types
	Data Types are Ordered
	Infinite Types
	Infinite Data Types

	Finite Types
	Coverings and Listings
	Finite Types
	Finite Ordinals
	Bijections and Finite Types
	Injections and Finite Types

	Axiomatic Freedom
	Metatheorems
	Abstract Provability Predicates
	Prominent Independent Propositions
	Sets
	No Computational Omniscience
	Discussion

	Natural Deduction
	ND Systems
	Intuitionistic ND System
	Formalisation with Indexed Inductive Type Definition
	The Eliminator
	Induction on Derivations
	Heyting Entailment
	Classical ND System
	Glivenko's Theorem
	Boolean Entailment
	Certifying Boolean Solvers
	Substitution
	Entailment Predicates
	Notes

	Indexed Inductive Predicates
	Zero
	Inductive Propositional Equality
	Even
	Induction on Derivations
	Inversion Lemmas and Unfolding
	Proceed with Care
	Linear Order on Numbers
	More Inductive Predicates
	Pureness of zero
	Axiom K
	Summary

	Excluded Middle and Double Negation
	Characterizations of Excluded Middle
	Double Negation
	Definiteness and Stability

	Boolean Satisfiability
	Boolean Operations
	Boolean Formulas
	Clausal DNFs
	DNF Function
	Validity
	Tableau Predicate
	Refutation Predicates

	Well-Founded Recursion
	Well-Founded Recursion Operator
	Unfolding Equation
	Well-Founded Relations
	Gcd Example
	Step Functions as Specifications
	Functional Induction
	Notes

	Semi-Decidability
	Semi-Deciders
	Markov-Post Equivalence
	Reductions
	Heap

	Bibliography

