
Modeling and Proving in
Computational Type Theory

Using the Coq Proof Assistant

Textbook under Construction

Version of July 26, 2022

Gert Smolka

Saarland University

Copyright © 2021-22 by Gert Smolka, all rights reserved

Contents

Preface xi

I Getting Started 1

1 Getting Started 3

1.1 Booleans . 3

1.2 Numbers . 5

1.3 Notational Conventions . 7

1.4 Structural Induction . 8

1.5 Quantified Inductive Hypotheses . 10

1.6 Procedural Specifications . 12

1.7 Pairs and Polymorphic Functions . 14

1.8 Implicit Arguments . 16

1.9 Iteration . 17

1.10 Ackermann Function . 19

1.11 Unfolding Functions . 20

1.12 Concluding Remarks . 22

2 Basic Computational Type Theory 25

2.1 Inductive Type Definitions . 25

2.2 Inductive Function Definitions . 26

2.3 Reduction . 28

2.4 Plain Definitions . 29

2.5 Lambda Abstractions . 30

2.6 Typing Rules . 31

2.7 Let Expressions . 31

2.8 Matches . 32

2.9 Recursive Abstractions . 33

2.10 Computational Equality . 34

2.11 Values and Canonical Terms . 35

2.12 Choices Made by Coq . 36

2.13 Discussion . 37

iii

Contents

3 Propositions as Types 39

3.1 Implication and Universal Quantification . 40

3.2 Falsity and Negation . 41

3.3 Conjunction and Disjunction . 42

3.4 Propositional Equivalence . 45

3.5 Notational Issues . 46

3.6 Impredicative Characterizations . 47

3.7 Proof Term Construction using Proof Diagrams 48

3.8 Law of Excluded Middle . 51

3.9 Discussion . 52

4 Conversion Rule, Universe Hierarchy, and Elimination Restriction 55

4.1 Conversion Rule . 55

4.2 Cumulative Universe Hierarchy . 57

4.3 Elimination Restriction . 58

5 Leibniz Equality 61

5.1 Abstract Propositional Equality . 61

5.2 Basic Equational Facts . 62

5.3 Definition of Leibniz Equality . 65

5.4 Abstract Presentation of Propositional Connectives 66

5.5 Declared Constants and Lemmas . 67

6 Inductive Eliminators 69

6.1 Boolean Eliminator . 69

6.2 Eliminator for Numbers . 72

6.3 Equality of Numbers is Logically Decidable 74

6.4 Eliminator for Pairs . 75

6.5 Disequality of Types . 76

6.6 Abstract Return Types . 77

6.7 Uniqueness of Procedural Specifications . 77

7 Case Study: Cantor Pairing 79

7.1 Definitions . 79

7.2 Proofs . 80

7.3 Discussion . 81

8 Existential Quantification 83

8.1 Inductive Definition and Basic Facts . 83

8.2 Barber Theorem . 86

8.3 Lawvere’s Fixed Point Theorem . 87

iv

Contents

9 Executive Summary 89

II More Type Theory 93

10 Informative Types and Certifying Functions 95

10.1 Lead Examples . 95

10.2 Sum Types and Sigma Types . 97

10.3 Projections and Skolem Equivalence . 100

10.4 Lead Examples Revisited . 102

10.5 Inhabitation . 104

10.6 Bijection Types . 106

10.7 Notes . 107

11 Decision Types, Discrete Types, and Option Types 109

11.1 Decision Types and Certifying Deciders . 109

11.2 Discrete Types . 111

11.3 Option Types . 111

11.4 Finite Types and Cardinality . 113

11.5 Notes . 117

12 Extensionality 119

12.1 Extensionality Assumptions . 119

12.2 Set Extensionality . 120

12.3 Proof Irrelevance . 121

12.4 Notes . 122

13 Excluded Middle and Double Negation 123

13.1 Characterizations of Excluded Middle . 123

13.2 Double Negation . 126

13.3 Stable Propositions . 127

13.4 Definite Propositions . 129

13.5 Variants of Excluded Middle . 130

13.6 Notes . 131

14 Provability 133

14.1 Provability Predicates . 133

14.2 Consistency . 135

v

Contents

III Numbers and Lists 137

15 Numbers 139

15.1 Inductive Definition . 139

15.2 Addition . 140

15.3 Multiplication . 141

15.4 Subtraction . 141

15.5 Order . 142

15.6 More Order . 143

15.7 Complete Induction . 145

15.8 Notes . 146

16 Euclidean Division 147

16.1 Certifying Version . 147

16.2 Simply Typed Version . 148

16.3 Uniqueness . 149

16.4 Repeated Subtraction with Complete Induction 151

16.5 Summary . 153

17 Least Witnesses 155

17.1 Least Witness Predicate . 155

17.2 Step-Indexed Linear Search . 156

17.3 Direct Search . 156

17.4 Variations . 158

17.5 Least Witnesses and Excluded Middle . 160

18 Size Recursion and Procedural Specifications 163

18.1 Basic Size Recursion Operator . 163

18.2 Euclidean Division . 166

18.3 Greatest Common Divisors . 168

18.4 Step-Indexed Function Construction . 172

18.5 Summary . 173

19 Lists 175

19.1 Inductive Definition . 175

19.2 Basic Operations . 177

19.3 Membership . 178

19.4 List Inclusion and List Equivalence . 179

19.5 Setoid Rewriting . 180

19.6 Nonrepeating Lists . 181

19.7 Constructive Discrimination Lemma . 184

19.8 Element Removal . 186

vi

Contents

19.9 Cardinality . 186

19.10 Position-Element Mappings . 188

20 Case Study: Expression Compiler 191

20.1 Expressions and Evaluation . 191

20.2 Code and Execution . 192

20.3 Compilation . 193

20.4 Decompilation . 194

20.5 Discussion . 195

IV Indexed Inductive Types 197

21 Numeral Types as Indexed Inductive Types 199

21.1 Numeral Types . 199

21.2 Index Condition and Predecessors . 200

21.3 Inversion Operator . 202

21.4 Embedding Numerals into Numbers . 203

21.5 Recursive Numeral Types . 205

22 Inductive Derivation Systems 207

22.1 Binary Derivation System for Comparisons 207

22.2 Linear Derivation System for Comparisons 210

22.3 Derivation Systems for GCDs . 213

22.4 Regular Expressions . 216

22.5 Decidability of Regular Expression Matching 219

22.6 Post Correspondence Problem . 221

23 Inductive Equality 223

23.1 Basic Definitions . 223

23.2 Uniqueness of Identity Proofs . 225

23.3 Hedberg’s Theorem . 227

23.4 Inversion with Casts . 228

23.5 Constructor Injectivity with DPI . 229

23.6 Inductive Equality at Type . 231

23.7 Notes . 232

24 Vectors 233

24.1 Basic Definitions . 233

24.2 Operations . 234

24.3 Converting between Vectors and Lists . 236

vii

Contents

V Higher Order Recursion 239

25 Existential Witness Operators 241

25.1 Linear Search Types . 241

25.2 Definition of Existential Witness Operator 242

25.3 More Existential Witness Operators . 244

25.4 Eliminator and Existential Characterization 245

25.5 Notes . 245

26 Well-Founded Recursion 247

26.1 Recursion Types . 247

26.2 Well-founded Relations . 249

26.3 Unfolding Equation . 251

26.4 Example: GCDs . 252

26.5 Unfolding Equation without FE . 254

26.6 Witness Operator . 255

26.7 Equations Package and Extraction . 256

26.8 Padding and Simplification . 257

26.9 Classical Well-foundedness . 258

26.10 Transitive Closure . 260

26.11 Notes . 261

27 Aczel Trees and Hierarchy Theorems 263

27.1 Inductive Types for Aczel Trees . 263

27.2 Propositional Aczel Trees . 265

27.3 Subtree Predicate and Wellfoundedness . 266

27.4 Propositional Hierarchy Theorem . 267

27.5 Excluded Middle Implies Proof Irrelevance 268

27.6 Hierarchy Theorem for Computational Universes 268

VI Case Studies 271

28 Propositional Deduction 273

28.1 ND Systems . 273

28.2 Intuitionistic ND System . 274

28.3 Formalisation with Indexed Inductive Type Family 276

28.4 The Eliminator . 279

28.5 Induction on Derivations . 279

28.6 Classical ND System . 282

28.7 Glivenko’s Theorem . 284

28.8 Intuitionistic Hilbert System . 285

viii

Contents

28.9 Heyting Interpretation . 287

28.10 Boolean Interpretation . 291

28.11 Boolean Formula Decomposition . 292

28.12 Certifying Solver . 295

28.13 Cumulative Refutation System . 296

28.14 Substitution . 298

28.15 Entailment Relations . 299

28.16 Notes . 302

29 Boolean Satisfiability 303

29.1 Boolean Operations . 303

29.2 Boolean Formulas . 304

29.3 Clausal DNFs . 306

29.4 DNF Solver . 307

29.5 DNF Recursion . 309

29.6 Tableau Refutations . 311

29.7 Abstract Refutation Systems . 313

30 Semi-Decidability and Markov’s Principle 317

30.1 Preliminaries . 317

30.2 Boolean Semi-Deciders . 319

30.3 Certifying Semi-Deciders . 320

30.4 Post Operators . 322

30.5 Enumerators . 323

30.6 Reductions . 325

30.7 Summary of Markov Characterizations . 326

31 Abstract Reduction Systems 329

31.1 Paths Types . 329

31.2 Reflexive Transitive Closure . 332

VII Data Types 335

32 Data Types 337

32.1 Inverse Functions . 337

32.2 Bijections . 338

32.3 Injections . 339

32.4 Data Types . 342

32.5 Data Types are Ordered . 343

32.6 Infinite Types . 344

32.7 Infinite Data Types . 345

ix

Contents

33 Finite Types 347

33.1 Coverings and Listings . 347

33.2 Finite Types . 348

33.3 Finite Ordinals . 349

33.4 Bijections and Finite Types . 350

33.5 Injections and Finite Types . 351

VIII Appendices 353

Appendix: Typing Rules 355

Appendix: Inductive Definitions 357

Appendix: Basic Definitions 361

Appendix: Favorite Problems 363

Appendix: Exercise Sheets 365

Appendix: Glossary 389

Appendix: Historical Remarks 391

Appendix: Ideas for Improvements 393

Bibliography 394

x

Preface

This text teaches topics in computational logic every computer scientist should

know when discussing correctness of software and hardware. We acquaint the

reader with a foundational theory and a programming language for interactively

constructing computational theories with machine-checked proofs. As common

with programming languages, we teach foundations, canonical case studies, and

practical programming in an interleaved fashion.

The foundational theory we are using is a computational type theory extending

Martin-Löf type theory with inductive definitions and impredicative propositions.

All functions definable in the theory are computable. The proof rules of the theory

are intuitionistic, and assuming the law of excluded middle is possible. As it will

become apparent through our case studies, computational type theory is a congenial

foundation for computational models and correctness arguments, improving much

on the set-theoretic language coming with mainstream mathematics.

We will use the Coq proof assistant implementing the computational type theory

we are using. The interactive proof assistant assists the user with the construction

of theories and checks all definitions and proofs for correctness. Learning com-

putational logic with an interactive proof assistant makes a dramatic difference to

learning computational logic offline. The immediate feedback from the proof as-

sistant provides for rapid experimentation and effectively teaches the rules of the

underlying type theory. While the proof assistant enforces the rules of type theory,

it provides much automation as it comes to routine verifications.

We will use mathematical notation throughout this text and confine all Coq code

to Coq files accompanying the chapters. We assume a reader unfamiliar with type

theory and the case studies we consider. So there is a lot of material to be explained

and understood at mathematical levels above the Coq programming language. In

any case, theories and proofs need informal explanations to be appreciated by hu-

mans, and informal explanations are needed to understand formalisations in Coq.

The abstraction level coming with mathematical notation gives us freedom in ex-

plaining the type theory and helps with separating principal ideas from engineering

aspects coming with the Coq language. For instance, we will have equational in-

ductive function definitions at the mathematical level and see Coq’s primitives for

expressing them only at the coding level. This way we get mathematically satisfying

function definitions and a fine explanation of Coq’s pattern matching construct.

xi

Preface

Acknowledgements

This text has been written for the course Introduction to Computational Logic I teach

every summer semester at Saarland University (since 2003). In 2010, we switched to

computational type theory and the proof assistant Coq. From 2010–2014 I taught

the course together with Chad E. Brown and we produced lecture notes discussing

Coq developments (in the style of Benjamin Pierce’s Software Foundations at the

time). It was great fun to explore with Chad intuitionistic reasoning and the propo-

sitions as types paradigm. It was then I learned about impredicative characteriza-

tions, Leibniz equality, and natural deduction. Expert advice on Coq often came

from Christian Doczkal.

By Summer 2017 I was dissatisfied with the programming-centered approach we

had followed so far and started writing lectures notes using mathematical language.

There were also plenty of exciting things about type theory I still had to learn. My

chief teaching assistants during this time were Yannick Forster (2017), Dominik

Kirst (2018-2020), and Andrej Dudenhefner (2021), all of them contributing exer-

cises and ideas to the text.

My thanks goes to the undergraduate and graduate students who took the course

and who worked on related topics with me, and to the persons who helped me teach

the course. You provided the challenge and motivation needed for the project. And

the human touch making it fun and worthwhile.

xii

Part I

Getting Started

1

1 Getting Started

We start with basic ideas from computational type theory and Coq. The main issues

we discuss are inductive types, structural recursion, and equational reasoning with

structural induction. We will see inductive types for booleans, natural numbers, and

pairs. On inductive types we will define inductive functions using equations and

structural case analysis. This will involve functions that are cascaded, recursive,

higher-order (i.e., take functions as arguments), and polymorphic (i.e., take types

as leading arguments). Recursion will be limited to structural recursion so that

functional computation always terminates.

Our main interest is in proving equations involving recursive functions (e.g., com-

mutativity of addition, x + y = y + x). This will involve proof steps known as

simplification, rewriting, structural case analysis, and structural induction. Equal-

ity will appear in a general form called propositional equality, and in a specialized

form called computational equality. Computational equality is a prominent design

aspect of type theory that is important for mechanized proofs.

We will follow the equational paradigm and define functions with equations,

thus avoiding lambda abstractions and matches. We will mostly define cascaded

functions and use the accompanying notation known from functional programming.

Type theory is a foundational theory starting from computational intuitions. Its

approach to mathematical foundations is very different from set theory. We may say

that type theory explains things computationally while set theory explains things

at a level of abstraction where computation is not an issue. When working with

computational type theory, set-theoretic explanations (e.g., of functions) are often

not helpful, so free your mind for a foundational restart.

1.1 Booleans

In Coq, even basic types like the type of booleans are defined as inductive types.

The type definition for the booleans

B ::= t | f

3

1 Getting Started

introduces three typed constants called constructors:

B : T

t : B

f : B

The constructors represent the type B and its two values t and f. Note that the

constructor B also has a type, which is the universe T (a special type whose elements

are types).

Inductive types provide for the definition of inductive functions, where a

defining equation is given for each value constructor. Our first example for an

inductive function is a boolean negation function:

! : B→ B

! t := f

! f := t

There is a defining equation for each of the two value constructors of B. We say

that an inductive function is defined by discrimination on an inductive argument

(an argument that has an inductive type). There must be exactly one defining equa-

tion for every value constructor of the type of the inductive argument the func-

tion discriminates on. In the literature, discrimination is known as structural case

analysis.

The defining equations of an inductive function serve as computation rules. For

computation, the equations are applied as left-to-right rewrite rules. For instance,

we have

! ! ! t = ! ! f = ! t = f

by rewriting with the first, the second, and again with the first defining equation

of !. Note that ! ! ! t is to be read as !(!(! t)), and that the first rewrite step replaces

the subterm ! t with f. Computation in Coq is logical and is used in proofs. For

instance, the equation

! ! ! t = ! t

follows by computation:

! ! ! t ! t

= ! ! f = f

= ! t

= f

4

1.2 Numbers

We speak of a proof by computational equality.

Proving the equation

! !x = x

involving a boolean variable x takes more than computation since none of the defin-

ing equations applies. What is needed is discrimination (i.e., case analysis) on the

boolean variable x, which reduces the claim ! !x = x to the equations ! ! t = t and

! ! f = f, which both hold by computational equality.

Next we define inductive functions for boolean conjunction and boolean disjunc-

tion:

& : B→ B→ B | : B→ B→ B

t & y := y

f & y := f

t | y := t

f | y := y

Both functions discriminate on their first argument. Alternatively, one could de-

fine the functions by discrimination on the second argument, resulting in different

computation rules. There is the general principle that computation rules must be

disjoint (at most one computation rule applies to a given term).

The left hand sides of defining equations are called patterns. Often, patterns

bind variables that can be used in the right hand side of the equation. The patterns

of the defining equations for & and | each bind the variable y .

Given the definitions of the basic boolean connectives, we can prove the usual

boolean indenties with discrimination and computational equality. For instance, the

distributivity law

x & (y | z) = (x & y) | (x & z)

follows by discrimination on x and computation, reducing the law to the trivial

equations y | z = y | z and f = f. Note that the commutativity law

x & y = y & x

needs case analysis on both x and y to reduce to computationally valid equations.

1.2 Numbers

The inductive type for the numbers 0, 1, 2, . . .

N ::= 0 | S(N)

5

1 Getting Started

introduces three constructors

N : T

0 : N

S : N→ N

The value constructors provide 0 and the successor function S. A number n can

be represented by the term that applies the constructor S n-times to the construc-

tor 0. For instance, the term S(S(S0)) represents the number 3. The constructor

representation of numbers dates back to the Dedekind-Peano axioms.

We will use the familiar notations 0, 1, 2, . . . for the terms 0, S0, S(S0),

Moreover, we will take the freedom to write terms like S(S(Sx)) without parentheses

as SSSx.

We define an inductive addition function discriminating on the first argument:

+ : N→ N→ N

0+y := y

Sx +y := S(x +y)

The second equation is recursive since it uses the function ’+’ being defined at the

right hand side.

Computational type theory does not admit partial functions. To fulfill this de-

sign principle, recursion must always terminate. To ensure termination, recursion is

restricted to inductive functions and must act on a single discriminating argument.

One speaks of structural recursion. Recursive applications must be on variables

introduced by the constructor of the pattern of the discriminating argument. In the

above definitions of ’+’, only the variable x in the second defining equation quali-

fies for recursion. Intuitively, structural recursion terminates since every recursion

step skips a constructor of the recursive argument. The condition for structural

recursion can be checked automatically by a proof assistant.

We define truncating subtraction for numbers:

− : N→ N→ N

0−y := 0

Sx − 0 := Sx

Sx − Sy := x −y

This time we have two discriminating arguments (we speak of a cascaded

discrimination). The primary discrimination is on the first argument, followed by

a secondary discrimination on the second argument in the successor case. The re-

cursion is on the first argument. We require that a structural recursion is always on

the first discriminating argument.

6

1.3 Notational Conventions

Following the scheme we have seen for addition, functions for multiplication and

exponentiation can be defined as follows:

· : N→ N→ N ˆ : N→ N→ N

0 ·y := 0

Sx ·y := y + x ·y
x0 := 1

xSn := x · xn

Exercise 1.2.1 Define functions as follows:

a) A function N→ N→ N yielding the minimum of two numbers.

b) A function N→ N→ B testing whether two numbers are equal.

c) A function N→ N→ B testing whether a number is smaller than another number.

Exercise 1.2.2 (Symmetric boolean conjunction and disjunction) Using cascaded

discrimination, we can define an inductive function for boolean conjunction with

symmetric defining equations:

& : B→ B→ B

t & t := t

t & f := f

f & t := f

f & f := f

a) Prove that the symmetric function satisfies the defining equations for the stan-

dard boolean conjunction function (t & y = y and f & y = f).

b) Prove that the symmetric function agrees with the standard boolean conjunction

function.

c) Define a symmetric boolean disjunction function and show that it agrees with

the standard boolean disjunction function.

1.3 Notational Conventions

We are using notational conventions common in type theory and functional pro-

gramming. In particular, we omit parentheses in types and applications relying on

the following rules:

s → t → u � s → (t → u)
stu � (st)u

For the arithmetic operations we assume the usual precedences, so multiplication ’·’
binds before addition ’+’ and subtraction ’−’, and all three of them are left associa-

tive. For instance:

x + 2 ·y − 5 · x + z � ((x + (2 ·y))− (5 · x))+ z

7

1 Getting Started

x + 0 = x induction x
1 0+ 0 = 0 computational equality

2 IH : x + 0 = x Sx + 0 = Sx simplification

S(x + 0) = Sx rewrite IH

Sx = Sx computational equality

Figure 1.1: Proof diagram for Equation 1.1

1.4 Structural Induction

We will now discuss proofs of the equations

x + 0 = x (1.1)

x + Sy = S(x +y) (1.2)

x +y = y + x (1.3)

(x +y)−y = x (1.4)

None of the equations can be shown with structural case analysis and computation

alone. In each case structural induction on numbers is needed. Structural induc-

tion strengthens structural case analysis by providing an inductive hypothesis in

the successor case. Figure 1.1 shows a proof diagram for Equation 1.1. The in-

duction rule reduces the initial proof goal to two subgoals appearing in the lines

numbered 1 and 2. The two subgoals are obtained by discrimination on x and by

adding the inductive hypothesis (IH) in the successor case. The inductive hypoth-

esis makes it possible to close the proof of the successor case by simplification

and by rewriting with the inductive hypothesis. A simplification step simplifies a

claim by applying defining equations from left to right. A rewriting step rewrites

with an equation that is either assumed or has been established as a lemma. In the

example above, rewriting takes place with the inductive hypothesis, an assumption

introduced by the induction rule.

We will explain later why structural induction is a valid proof principle. For now

we can say that inductive proofs are recursive proofs.

We remark that rewriting can apply an equation in either direction. The above

proof of Equation 1.1 can in fact be shortened by one line if the inductive hypothesis

is applied from right to left as first step in the second proof goal.

Note that Equations 1.1 and 1.2 are symmetric variants of the defining equations

of the addition function ’+’. Once these equations have been shown, they can be

used for rewriting in proofs.

Figure 1.2 shows a proof diagram giving an inductive proof of Equation 1.4.

Note that the proof of the base case involves a structural case analysis on x so

that the defining equations for subtraction apply. Also note that the proof rewrites

8

1.4 Structural Induction

x +y −y = x induction y
1 x + 0− 0 = x rewrite Equation 1.1

x − 0 = x case analysis x
1.1 0− 0 = 0 comp. eq.

1.2 Sx − 0 = Sx comp. eq.

2 IH : x +y −y = x x + Sy − Sy = x rewrite Equation 1.2

S(x +y)− Sy = x simplification

x +y −y = x IH

Figure 1.2: Proof diagram for Equation 1.4

with Equation 1.1 and Equation 1.2, assuming that the equations have been proved

before. The successor case closes with an application of the inductive hypothesis

(i.e., the remaining claim agrees with the inductive hypothesis).

We remark that a structural case analysis in a proof (as in Figure 1.2) may also

be called a discrimination or a destructuring.

The proof of Equation 1.3 is similar to the proof of Equation 1.4 (induction on x
and rewriting with 1.1 and 1.2). We leave the proof as exercise.

One reason for showing inductive proofs as proof diagrams is that proof dia-

grams explain how one construct proofs in interaction with Coq. With Coq one

states the initial proof goal and then enters commands called tactics performing

the proof actions given in the rightmost column of the proof diagrams. The induc-

tion tactic displays the subgoals and automatically provides the inductive hypoth-

esis. Except for the initial claim, all the equations appearing in the proof diagrams

are displayed automatically by Coq, saving a lot of tedious writing. Replay all proof

diagrams shown in this chapter with Coq to understand what is going on.

A proof goal consists of a claim and a list of assumptions called context. The

proof rules for structural case analysis and structural induction reduce a proof goal

to several subgoals. A proof is complete once all subgoals have been closed.

A proof diagram comes with three columns listing assumptions, claims, and

proof actions.1 Subgoals are marked by hierarchical numbers and horizontal lines.

Our proof diagrams may be called have-want digrams since they come with sep-

arate columns for assumptions we have, claims we want to prove, and actions we

perform to advance the proof.

Exercise 1.4.1 Give a proof diagram for Equation 1.2. Follow the layout of Fig-

ure 1.2.

1In this section, only inductive hypotheses appear as assumption. We will see more assumptions
once we prove claims with implication in Chapter 3.

9

1 Getting Started

Exercise 1.4.2 Prove that addition is commutative (1.3). Use equations (1.1)

and (1.2) as lemmas.

Exercise 1.4.3 Shorten the given proofs for Equations 1.1 and 1.4 by applying the

inductive hypothesis from right to left thus avoiding the simplification step.

Exercise 1.4.4 Prove that addition is associative: (x +y)+ z = x + (y + z). Give a

proof diagram.

Exercise 1.4.5 Prove the distributivity law (x +y) · z = x · z+y · z. You will need

associativity of addition.

Exercise 1.4.6 Prove that multiplication is commutative. You will need lemmas.

Exercise 1.4.7 (Truncating subtraction) Truncating subtraction is different from

the familiar subtraction in that it yields 0 where standard subtraction yields a neg-

ative number. Truncating subtraction has the nice property that x ≤ y if and only

if x −y = 0. Prove the following equations:

a) x − 0 = x
b) x − (x +y) = 0

c) x − x = 0

d) (x +y)− x = y
Hint: (d) follows with equations shown before.

1.5 Quantified Inductive Hypotheses

Sometimes it is necessary to do an inductive proof using a quantified inductive hy-

pothesis. As an example we consider a variant of the subtraction function returning

the distance between two numbers:

D : N→ N→ N

D 0y := y

D (Sx)0 := Sx

D (Sx)(Sy) := Dxy

The defining equations discriminate on the first argument and in the successor

case also on the second argument. The recursion occurs in the third equation and

is structural in the first argument.

We now want to prove

Dxy = (x −y)+ (y − x)

10

1.5 Quantified Inductive Hypotheses

∀y. Dxy = (x −y)+ (y − x) induction x
1 ∀y. D0y = (0−y)+ (y − 0) disc. y
1.1 D00 = (0− 0)+ (0− 0) comp. eq.

1.2 D0(Sy) = (0− Sy)+ (Sy − 0) comp. eq.

2 IH : ∀y. · · · ∀y. D(Sx)y = (Sx −y)+ (y − Sx) disc. y
2.1 D(Sx)0 = (Sx − 0)+ (0− Sx) simpl.

Sx = Sx + 0 apply (1.1)

2.2 D(Sx)(Sy) = (Sx − Sy)+ (Sy − Sx) simpl.

Dxy = (x −y)+ (y − x) apply IH

Figure 1.3: Proof diagram for a proof with a quantified inductive hypothesis

We do the proof by induction on x followed by discrimination on y . The base cases

with either x = 0 or y = 0 are easy. The interesting case is

D(Sx)(Sy) = (Sx − Sy)+ (Sy − Sx)

After simplification (i.e., application of defining equations) we have

Dxy = (x −y)+ (y − x)

If this was the inductive hypothesis, closing the proof is trivial. However, the actual

inductive hypothesis is

Dx(Sy) = (x − Sy)+ (Sy − x)

since it was instantiated by the discrimination on y . The problem can be solved by

starting with a quantified claim

∀y. Dxy = (x −y)+ (y − x)

where induction on x gives us a quantified inductive hypothesis that is not affected

by a discrimination on y . Figure 1.3 shows a complete proof diagram for the quan-

tified claim.

You may have questions about the precise rules for quantification and induction.

Given that this is a teaser chapter, you will have to wait a little bit. It will take until

Chapter 6 that quantification and induction are explained in depth.

Exercise 1.5.1 Prove Dxy = Dyx by induction on x. No lemma is needed.

Exercise 1.5.2 (Maximum)

Define an inductive maximum function M : N→ N→ N and prove the following:

a) Mxy = Myx (commutativity)

11

1 Getting Started

b) M(x +y)x = x +y (dominance)

Hint: Commutativity needs a quantified inductive hypothesis.

Extra: Do the exercise for a minimum function. Find a suitable reformulation for (b).

Exercise 1.5.3 (Symmetric addition) Using cascaded discrimination, we can define

an inductive addition function with symmetric defining equations:

+ : N→ N→ N

0+ 0 := 0

0+ Sy := Sy

Sx + 0 := Sx

Sx + Sy := S(S(x +y))

a) Prove that the symmetric addition function is commutative: x +y = y + x.

b) Prove that the symmetric addition function satisfies the defining equations for

the standard addition function (0+y = y and Sx +y = S(x +y)).
c) Prove that the symmetric addition function agrees with the standard addition

function.

1.6 Procedural Specifications

The rules we have given for defining inductive functions are very restrictive as it

comes to termination. There are many cases where a function can be specified

with a system of equations that are exhaustive, disjoint, and terminating. We then

speak of a procedural specification and its specifying equations. It turns out that

in practice using strict structural recursion one can construct inductive functions

satisfying procedural specifications relying on more permissive termination argu-

ments.

Our first example for a procedural specification specifies a function E : N → B

that checks whether a number is even:

E(0) = t

E(S0) = f

E(S(Sn)) = E(n)

The equations are exhaustive, disjoint, and terminating (two constructors are

skipped). However, the equations cannot serve as defining equations for an in-

ductive function since the recursion skips two constructors (rather that just one).

12

1.6 Procedural Specifications

We can define an inductive function satisfying the specifying equations using the

defining equations

E(0) := t

E(Sn) := !E(n)

(recall that ’!’ is boolean negation). The first and the second equation specifying E
hold by computational equality. The third specifying equation holds by simplifica-

tion and by rewriting with the lemma ! !b = b.

Our second example specifies the Fibonacci function F : N → N with the equa-

tions

F0 = 0

F1 = 1

F(S(Sn)) = Fn+ F(Sn)

The equations do not qualify as defining equations for the same reasons we ex-

plained for E. It is however possible to define a Fibonacci function using strict

structural recursion. One possibility is to obtain F with a helper function F ′ taking

an extra boolean argument such that, informally, F ′nb yields F(n+ b) :

F ′ : N→ B→ N

F ′0 f := 0

F ′0 t := 1

F ′(Sn)f := F ′nt

F ′(Sn)t := F ′nf+ F ′nt

Note that F ′ is defined by a cascaded discrimination on both arguments. We now

define

F : N→ N

F n := F ′n f

That F satisfies the specifying equations for the Fibonacci function follows by com-

putational equality.

Note that F is defined with a single defining equation without a discrimination.

We speak of a plain function and a plain function definition. Since there is no

discrimination, the defining equation of a plain function can be applied as soon

as the function is applied to enough arguments. The defining equation of a plain

function must not be recursive.

There are other possibilities for defining a Fibonacci function. Exercise 1.9.8 will

obtain a Fibonacci function by iteration on pairs, and Exercise 1.11.5 will obtain a

13

1 Getting Started

Fibonacci function with a tail recursive helper function taking two extra arguments.

Both alternatives employ linear recursion, while the definition shown above uses

binary recursion, following the pattern of the third specifying equation.

We remark that Coq supports a more permissive scheme for inductive functions,

providing for a straightforward definition of a Fibonacci function essentially follow-

ing the specifying equations. In this text we will stick to the restrictive format

explained so far. It will turn out that every function specified with a terminating

system of equations can be defined in the restrictive format we are using here (see

Chapter 26).

Exercise 1.6.1 Prove E(n · 2) = t.

Exercise 1.6.2 Verify that Fn := F ′nf satisfies the specifying equations for the

Fibonacci function.

Exercise 1.6.3 Define a function H : N→ N satisfying the equations

H 0 = 0

H 1 = 0

H(S(Sn)) = S(Hn)

using strict structural recursion. Hint: Use a helper function with an extra boolean

argument.

1.7 Pairs and Polymorphic Functions

We have seen that booleans and numbers can be accommodated as inductive types.

We will now see that (ordered) pairs (x,y) can also be accommodated with an

inductive type definition.

A pair (x,y) combines two values x and y into a single value such that the

components x and y can be recovered from the pair. Moreover, two pairs are equal

if and only if they have the same components. For instance, we have (3,2 + 3) =
(1+ 2,5) and (1,2) ≠ (2,1).

Pairs whose components are numbers can be accommodated with the inductive

definition

Pair ::= pair(N,N)

which introduces two constructors

Pair : T

pair : N→ N→ Pair

14

1.7 Pairs and Polymorphic Functions

A function swapping the components of a pair can be defined with a single equation:

swap : Pair→ Pair

swap (pair x y) := pair y x

Using discrimination for pairs, we can prove the equation

swap (swapp) = p

for all pairs p (that is, for a variable p of type Pair). Note that discrimination for

pairs involves only a single case for the single value constructor for pairs.

Above we have defined pairs where both components are numbers. Given two

types X and Y , we can repeat the definition to obtain pairs whose first component

has type X and whose second component has type Y . We can do much better,

however, by defining pair types for all component types in one go:

Pair(X : T, Y : T) ::= pair(X, Y)

This inductive type definition gives us two constructors:

Pair : T→ T→ T

pair : ∀X Y. X → Y → Pair X Y

The polymorphic value constructor pair comes with a polymorphic function type

saying that pair takes four arguments, where the first argument X and the second

argument Y fix the types of the third and the fourth argument. Put differently, the

types X and Y taken as first and second argument are the types for the components

of the pair constructed.

We shall use the familiar notation X × Y for product types PairX Y .

We can write partial applications of the value constructor pair :

pair N : ∀Y . N→ Y → N× Y
pair N B : N→ B→ N× B

pair N B 0 : B→ N× B

pair N B 0 t : N× B

We can also define a polymorphic swap function working for all pair types:

swap : ∀X Y. X × Y → Y ×X
swap X Y (pair _ _ x y) := pair Y X y x

Note that the first two arguments of pair in the pattern of the defining equation

(i.e, the left hand side of the defining equation) are given with the wildcard sym-

bol ’_’. The reason for writing wildcards is that the first two arguments of pair are

parameter arguments that don’t contribute relevant information in the pattern of

a defining equation.

15

1 Getting Started

1.8 Implicit Arguments

If we look at the type of the polymorphic pair constructor

pair : ∀X Y. X → Y → X × Y

we see that the first and second argument of pair provide the types of the third and

fourth argument. This means that the first and second argument can be derived

from the third and fourth argument. This fact can be exploited in Coq by declaring

the first and second argument of pair as implicit arguments. Implicit arguments

are not written explicitly but are derived and inserted automatically. This way we

can write pair 0 t for pair N B 0 t. If in addition we declare the type arguments of

swap : ∀X Y. X × Y → Y ×X

as implicit arguments, we can write

swap (swap (pair x y)) = pair x y

for the otherwise bloated equation

swap Y X (swap X Y (pair X Y x y)) = pair X Y x y

We will routinely use implicit arguments for polymorphic constructors and func-

tions.

With implicit arguments, we go one step further and use the standard notations

for pairs:

(x,y) := pairxy

With this final step we can write the definition of swap as follows:

swap : ∀X Y. X × Y → Y ×X
swap (x,y) := (y,x)

Note that it takes considerable effort to recover the usual mathematical nota-

tion for pairs in the typed setting of computational type theory. There were three

successive steps:

1. Polymorphic function types and functions taking types as arguments. We remark

that types are first-class objects in computational type theory.

2. Implicit arguments so that type arguments can be derived automatically from

other arguments.

3. The usual notation for pairs.

16

1.9 Iteration

Finally, we define two functions providing the first and the second projection

for pairs:

π1 : ∀X Y. X × Y → X π2 : ∀X Y. X × Y → Y
π1 (x,y) := x π2 (x,y) := y

We can now prove the η-law for pairs

(π1a,π2a) = a

by destructuring of a (i.e., replacing a with (x,y)) and computational equality.

Recall that a destructuring step is a discrimination step.

Exercise 1.8.1 Write the η-law and the definitions of the projections without using

the notation (x,y) and without implicit arguments.

Exercise 1.8.2 Let a be a variable of type X × Y . Write proof diagrams for the

equations swap (swapa) = a and (π1a,π2a) = a.

1.9 Iteration

If we look at the equations (all following by computational equality)

3+ x = S(S(Sx))

3 · x = x + (x + (x + 0))

x3 = x · (x · (x · 1))

we see a common scheme we call iteration. In general, iteration takes the form fn x
where a step function f is applied n-times to an initial value x. With the notation

fn x the equations from above generalize as follows:

n+ x = Snx

n · x = (+x)n 0

xn = (·x)n 1

The partial applications (+x) and (·x) supply only the first argument to the func-

tions for addition and multiplication. They yield functions N → N, as suggested by

the cascaded function type N→ N→ N of addition and multiplication.

We formalize the notation fnx with a polymorphic function:

iter : ∀X. (X → X)→ N→ X → X
iter X f 0 x := x

iter X f (Sn) x := f(iter X f n x)

17

1 Getting Started

n · x = iter (+x) n 0 induction n
1 0 · x = iter (+x) 0 0 comp. eq.

2 IH : n · x = iter (+x) n 0 Sn · x = iter (+x) (Sn) 0 simpl.

x +n · x = x + iter (+x) n 0 rewrite IH

x + iter (+x) n 0 = x + iter (+x) n 0 comp. eq.

Figure 1.4: Correctness of multiplication with iter

We will treat X as implicit argument of iter. The equations

3+ x = iter S 3 x

3 · x = iter (+x) 3 0

x3 = iter (·x) 3 1

now hold by computational equality. More generally, we can prove the following

equations by induction on n:

n+ x = iter S n x

n · x = iter (+x) n 0

xn = iter (·x) n 1

Figure 1.4 gives a proof diagram for the equation for multiplication.

Exercise 1.9.1 Check that iter S 2 = λx. S(Sx) holds by computational equality.

Exercise 1.9.2 Prove n+ x = iter S n x and xn = iter (·x) n 1 by induction.

Exercise 1.9.3 Check that the plain function

add : N→ N→ N

addxy := iter S xy

satisfies the defining equations for inductive addition

add 0y = y

add (Sx)y = S(addxy)

by computational equality.

Exercise 1.9.4 (Shift) Prove iter f (Sn) x = iter f n (fx).

Exercise 1.9.5 (Tail recursive iteration) Define a tail recursive version of iter and

verify that it agrees with iter.

18

1.10 Ackermann Function

Exercise 1.9.6 (Even) The term !n t tests whether a number n is even (’!’ is boolean

negation). Prove iter ! (n · 2) b = b and iter ! (S(n · 2)) b = !b.

Exercise 1.9.7 (Factorials with iteration) Factorials n! can be computed by itera-

tion on pairs (k, k!). Find a function f such that (n,n!) = fn(0,1). Define a factorial

function with the equations 0! = 1 and (Sn)! = Sn ·n! and prove (n,n!) = fn(0,1)
by induction on n.

Exercise 1.9.8 (Fibonacci with iteration) Fibonacci numbers (§1.6) can be com-

puted by iteration on pairs. Find a function f such that Fn := π1(fn(0,1)) satisfies

the specifying equations for the Fibonacci function:

F0 = 0

F1 = 1

F(S(Sn)) = Fn+ F(Sn)

Hint: If you formulate the step function with π1 and π2, the third specifying equa-

tion should follow by computational equality, otherwise discrimination on a sub-

term obtained with iter may be needed.

1.10 Ackermann Function

The following equations specify a function A : N → N → N known as Ackermann

function:

A0y = Sy

A(Sx)0 = Ax1

A(Sx)(Sy) = Ax(A(Sx)y)

The equations cannot serve as a defining equations since the recursion is not struc-

tural. The problem is with the nested recursive application A(Sx)y in the third

equation.

However, we can define a structurally recursive function satisfying the given

equations. The trick is to use a higher-order helper function: 2

A : N→ N→ N A′ : (N→ N)→ N→ N

A0 := S

A(Sx) := A′(Ax)

A′h0 := h1

A′h(Sy) := h(A′hy)

2A higher-order function is a function taking a function as argument.

19

1 Getting Started

Verifying that A satisfies the three specifying equations is straightforward. Here is

a verification of the third equation:

A(Sx)(Sy) Ax(A(Sx)y)

= A′(Ax)(Sy) = Ax(A′(Ax)y)

= Ax(A′(Ax)y)

Note that the three specifying equations hold by computational equality (i.e., both

sides of the equations reduce to the same term). Thus verifying the equations with

a proof assistant is trivial.

We remark that the three equations specifying A are exhaustive and disjoint.

They are also terminating, which can be seen with a lexical argument: Either the

first argument is decreased, or the first argument stays unchanged and the second

argument is decreased.

Exercise 1.10.1 (Truncating subtraction without cascaded discrimination)

Define a truncating subtraction function that discriminates on the first argument

and delegates discrimination on the second argument to a helper function. Prove

that your function agrees with the standard subtraction function sub from §1.2.

Arrange your definitions such that your function satisfies the defining equations of

sub by computational equality.

Exercise 1.10.2 (Ackermann with iteration)

There is an elegant iterative definition of the Ackermann function

An := Bn S

using a higher-order helper function B defined with iteration. Define B and verify

that A satisfies the specifying equations for the Ackermann function by computa-

tional equality. Consult Wikipedia to learn more about the Ackermann function.

1.11 Unfolding Functions

Procedural specifications can be faithfully represented as non-recursive inductive

functions taking a continuation function as first argument. We speak of unfold-

ing functions. Figure 1.5 shows the unfolding functions for the procedural spec-

ifications of the Fibonacci and Ackermann functions we have discussed in §1.6

and §1.10.

An unfolding function is a higher-order function specifying a recursive function

without recursion. We may say that an unfolding function abstracts out the recur-

sion of a procedural specification by taking a continuation function as argument.

20

1.11 Unfolding Functions

Fib : (N→ N)→ N→ N Ack : (N→ N→ N)→ N→ N→ N

Fibf 0 := 0

Fibf 1 := 1

Fibf (SSn) := fn+ f(Sn)

Ackf 0y := Sy

Ackf (Sx)0 := fx1

Ackf (Sx)(Sy) := fx(f(Sx)y)

Figure 1.5: Unfolding functions for the Fibonacci and Ackermann functions

Intuitively, it is clear that a function f satisfies the specifying equations for the

Fibonacci function if and only if it satisfies the unfolding equation

fn = Fibf n

for the unfolding function Fib. Formally, this follows from the fact that the specify-

ing equations for the Fibonacci function are computationally equal to the respective

instances of the unfolding equation:

f0 = Fibf 0

f1 = Fibf 1

f(SSn) = Fibf (SSn)

The same is true for the Ackermann function.

Exercise 1.11.1 Verify with the proof assistant that the realizations of the Fibonacci

function defined in §1.6 and Exercise 1.9.8 satisfy the unfolding equation for the

specifying unfolding function.

Exercise 1.11.2 Verify with the proof assistant that the realizations of the Acker-

mann function defined in §1.10 satisfies the unfolding equation for the specifying

unfolding function.

Exercise 1.11.3 Give unfolding functions for addition and truncating subtraction

and show that the unfolding equations are satisfied by the inductive functions we

defined for addition and subtraction.

Exercise 1.11.4 The unfolding function Fib is defined with a nested pattern SSn
in the third defining equation. Show how the nested pattern can be removed by

formulating the third equation with a helper function.

21

1 Getting Started

Exercise 1.11.5 (Iterative definition of a Fibonacci function) There is a different

definition of a Fibonacci function using the helper function

g : N→ N→ N→ N

gab0 := a

gab(Sn) := gb(a+ b)n

The underlying idea is to start with the first two Fibonacci numbers and then iterate

n-times to obtain the n-th Fibonacci number. For instance,

g 0 1 5 = g 1 1 4 = g 1 2 3 = g 2 3 2 = g 3 5 1 = g 5 8 0 = 5

a) Prove gab(SSn) = gabn+ gab(Sn) by induction on n.

b) Prove that g01 satisfies the unfolding equation for Fib.

c) Compare the iterative computation of Fibonacci numbers considered here with

the computation using iter in Exercise 1.9.8.

1.12 Concluding Remarks

The equational language we have seen in this chapter is a sweet spot in the type-

theoretic landscape. With a minimum of luggage we can define interesting func-

tions, explore equational computation, and prove equational properties using struc-

tural induction. Higher-order functions and polymorphic functions are natural fea-

tures of this equational language. The power of the language comes from the fact

that functions and types can serve as arguments and results of functions.

We have seen how booleans, numbers, and pairs can be accommodated as

inductive types using constructors, and how inductive functions discriminating on

inductives types can be defined using equations. Functional recursion is restricted

to structural recursion so that termination of computation is ensured.

As usual, we use the word function with two meanings. Usually, when we talk

about a function, we refer to its concrete definition in type theory. This way, we can

distinguish between inductive and plain functions, or recursive and non-recursive

functions. Sometimes, however, we refer to a function as an abstract object that

relates inputs to outputs but hides how this is done. The abstract view makes

it possible to speak of a uniquely determined Fibonacci function or of a uniquely

determined Ackermann function.

Here is a list of important technical terms introduced in this chapter:

• Inductive type definitions, type and value constructors

• Inductive functions, plain functions

• Booleans, numbers, and pairs obtained with inductive types

22

1.12 Concluding Remarks

• Defining equations, patterns, computation rules

• Disjoint, exhaustive, termining systems of equations

• Cascaded function types, partial applications

• Polymorphic function types, implicit arguments

• Structural recursion, structural case analysis, discrimination

• Structural induction, (quantified) inductive hypotheses

• Proof digrams, proof goals, subgoals, proof actions (tactics)

• Simplification steps, rewriting steps , computational equality

• Truncated subtraction, Fibonacci function, Ackermann function

• Iteration

• Procedural specifications, specifying equations

• Unfolding functions, unfolding equations, continuation functions

23

2 Basic Computational Type Theory

This chapter introduces key ideas of computational type theory in a nutshell. We

start with inductive type definitions and inductive function definitions and con-

tinue with reduction rules and computational equality. We discuss termination,

type preservation, and canonicity, three key properties of computational type the-

ory. We then continue with lambda abstractions, beta reduction, and eta equiva-

lence. Finally, we introduce matches and recursive abstractions, the Coq-specific

constructs for expressing inductive function definitions.

In this chapter computational type theory appears as a purely computational

system. That computational type theory can express logical propositions and proofs

will be shown in the next chapter. In Chapter 4 we will boost the expressivity of

computational type theory by enhancing type checking so that it operates modulo

computational equality of types. The resulting type theory covers equational and

inductive proofs.

2.1 Inductive Type Definitions

Our explanation of computational type theory starts with inductive type defini-

tions. Here are the already discussed definitions for a type of numbers and a family

of pair types:

N ::= 0 | S(N)

Pair(X : T, Y : T) ::= pair(X, Y)

Each of the definitions introduces a system of typed constants consisting of a type

constructor and a list of value constructors:

N : T

0 : N

S : N→ N

Pair : T→ T→ T

pair : ∀XT.∀YT. X → Y → Pair X Y

25

2 Basic Computational Type Theory

Note that the constructors S, Pair, and pair have types classifying them as functions.

From the types of 0 and S and the information that there are no other value con-

structors for N it is clear that the values of N are obtained as the terms 0, S0, S(S0),
S(S(S0)) and so forth. Analogously, given two types s and t, the values of the type

Pair st are described by terms pair stuv where u has type s and v has type t.
A distinguishing feature of computational type theory are dependent function

types

∀x : s. t

which we often write as ∀xs . t. An example for a dependent function type is the

type of the value constructor pair

∀XT.∀YT. X → Y → Pair X Y

which uses the primitive for dependent function types twice. This way Pair can

take two types s and t as arguments and then behave as a simply typed function

s → t → Pair st.
Computational type theory sees a simple function type s → t as a dependent

function type ∀x : s.t where the return type t does not depend on the argument x.

In other words, s → t is notation for ∀x : s.t, provided the variable x does not occur

in t. For instance, N→ N is notation for ∀x : N.N.

As usual, the names for bound variables do not matter. For instance, the terms

∀X.X → X and ∀Y .Y → Y are identified.

There is also the primitive type T, which may be understood as the type of all

types. For now, it is fine to assume T : T (i.e., the type of T is T). Later, we will re-

move the cycle and work with an infinite hierarchy of type universes T1 ⊂ T2 ⊂ · · ·.
A key feature of computational type theory is the fact that types and functions

are values like all other values. We say that types and functions are first-class

objects. Note that Pair and pair are functions taking types as arguments.

Type theory only admits well-typed terms. Examples for ill-typed terms are ST
and pair 0 N. In the basic type theory we are considering here, every well-typed term

has a unique type.

Exercise 2.1.1 Convince yourself that the following terms are all well-typed. In each

case give the type of the term.

S, Pair N, Pair (Pair N (N→ N)), Pair NT, pair (N→ N)T S N

2.2 Inductive Function Definitions

Inductive function definitions define functions by case analysis on one or more

inductive arguments called discriminating arguments. We shall look at the exam-

ples appearing in Figure 2.2. Each of the three definitions first declares the name

26

2.2 Inductive Function Definitions

add : N→ N→ N

add 0y := y

add (Sx)y := S(addxy)

sub : N→ N→ N

sub 0y := 0

sub (Sx)0 := Sx

sub (Sx) (Sy) := subxy

swap : ∀XT.∀YT. PairXY → PairYX

swapXY(pair_ _xy) := pairYXyx

Figure 2.1: Inductive function definitions

(a constant) and the type of the defined function. Then defining equations are

given realizing a disjoint and exhaustive case analysis. Note that add and swap

have exactly one discriminating argument, while sub has two discriminating argu-

ments. Since there is only one value constructor for pairs, there is only one defining

equation for swap.

The left hand sides of defining equations are called patterns. The variables oc-

curring in a pattern are local to the equation and can be used in the right hand side

of the equation. We say that a pattern binds the variables occurring in it. An impor-

tant requirement for patterns is linearity, that is, none of the variables bound by a

pattern can occur more that once in the pattern. Also for this reason the first two

arguments of the constructor pair in the pattern for swap are written as underlines.

The defining equations for a function must be exhaustive. That is, there must be a

defining equation for every value constructor of the type of the first discriminating

argument. If there are further discriminating arguments, as in the case of sub, the

conditions apply recursively.

Every defining equation must be well-typed. Using the type declared for the func-

tion, every variable bound by the pattern of a defining equation receives a unique

type. Give the types for the bound variables, type checking of the right-hand side

of a defining equation works as usual.

As long as there is exactly one discriminating argument, the patterns of the

defining equations are uniquely determined by the value constructors of the type

of the discriminating argument.

If an inductive function recurses, the recursion must be on the first discriminat-

ing argument and the variables introduced by the pattern for this argument. In the

27

2 Basic Computational Type Theory

examples in Figure 2.2, only the variable x in the defining equations for add and

sub qualify for recursion. We refer to this severely restricted form of recursion as

structural recursion.

2.3 Reduction

The defining equations of an inductive function serve as reduction rules that

rewrite applications of the defined function. For instance, the application

sub (Ss) (St) can be reduced to sub s t using the third defining equation of sub.

Things are arranged such that at most one defining equation applies to an applica-

tion (disjointness), and such that every application where all discriminating argu-

ments start with a constructor can be reduced (exhaustiveness). Thus a closed term

(no free variables) can be reduced as long as it contains an application of a defined

function. We refer to the process of applying reductions rules as reduction, and

we see reduction as computation. We refer to reduction rules also as computation

rules.

Things are arranged such that reduction always terminates. Without a restric-

tion on recursion, non-terminating inductive functions are possible. The structural

recursion requirement is a sufficient condition for termination that can be checked

algorithmically.

Since reduction always terminates, we can compute a normal form for every

term. There is no restriction on the application of reduction rules: Reduction rules

can be applied to any subterm of a term and in any order. Since the reduction

rules obtained from the defining equations do not overlap, terms nevertheless have

unique normal forms. We say that a term evaluates to its normal form and refer

to irreducible terms as normal terms. Terms that are closed and normal are also

called canonical terms.

We can now formulate four key properties of computational type theory:

• Termination Reduction always terminates.

• Unique normal forms Terms reduce to at most one normal form.

• Type preservation Reduction preserves types: If a term of type t is reduced,

the obtained term is again of type t.

• Canonicity Closed normal terms of an inductive type start with a value con-

structor of the type.

Canonicity gives an important integrity guarantee for inductive types saying that the

elements of an inductive type do not change when inductive functions returning

values of the type are added. Canonicity ensures that the canonical terms of an

inductive type are exactly the terms that one can build with the value constructors

of the type.

28

2.4 Plain Definitions

The definition format for inductive functions is carefully designed such that the

key properties are preserved when a definition is added. Exhaustiveness of the

defining equations is needed for canonicity, disjointness of the defining equations

is needed for uniqueness, and the structural recursion requirement ensures termi-

nation. Moreover, the type checking conditions for equations are needed for type

preservation.

Exercise 2.3.1 Give all reduction chains that reduce the term

sub (S0) (add (S(S0))0)

to its normal form. Note that there are chains of different length. Here is an example

for a unique reduction chain to normal form: sub (S0) (Sy) �δ sub 0y �δ 0. We use

the notation s �δ t for a single reduction step rewriting with a defining equation.

2.4 Plain Definitions

Besides inductive function definitions, there are plain definitions with a single

defining equation

cx1 . . . xn := s

where the pattern cx1 . . . xn must not contain a constructor. Only the variables

x1, . . . , xn may appear in s. We speak of a plain constant definition if n = 0 and a

plain function definition if n > 0. Similar to inductive function definitions, plain

definitions must declare the type of the defined constant c.
The reduction rule for plain definitions is known as delta reduction

(δ-reduction). It takes the form

cx1 . . . xn � s

where s is the term appearing as the right hand side of the definition of c.
Plain definitions must not be recursive. This ensures that the key properties of

computational type theory are preserved when plain additions are added.

Exercise 2.4.1 Recall the definition of iter (§1.9). Explain the difference between

the following plain definitions:

A := iter S

Bxy := iter Sxy

Note that the terms Axy and Bxy both reduce to the normal term iter Sxy . More-

over, note that the terms A and Ax are reducible, while the terms B and Bx are not

reducible.

29

2 Basic Computational Type Theory

2.5 Lambda Abstractions

A key ingredient of computational type theory are lambda abstractions

λxt.s

describing functions with a single argument. Lambda abstractions come with an

argument variable x and an argument type t. The argument variable x may be

used in the body s. A lambda abstraction does not give a name to the function it

describes. A nice example is the nested lambda abstraction

λXT.λxX .x

having the type ∀XT. X → X, which describes a polymorphic identity function. The

reduction rule for lambda abstractions

(λxt.s)u �β sxu

is called β-reduction and replaces an application (λxt.s)u with the term sxu ob-

tained from the term s by replacing every free occurence of the argument variable x
with the term u. Applications of the form (λxt.s)u are called β-redexes. Here is

an example for two β-reductions:

(λXT.λxX .x)N 7 �β (λxN.x)7 �β 7

As with dependent function types, the particular name of an argument variable

does not matter. For instance, λXT.λxX .x and λYT.λyY .y are understood as equal

terms.

For notational convenience, we usually omit the type of the argument variable of

a lambda abstraction (assuming that it is determined by the context). We also omit

parentheses and lambdas relying on two basic notational rules:

λx.st � λx.(st)

λxy.s � λx.λy.s

To specify the type of an argument variable, we use either the notation xt or the

notation x : t, depending on what we think is more readable.

Adding lambda abstractions and β-reduction to a computational type theory pre-

serves its key properties: termination, type preservation, and canonicity.

Exercise 2.5.1 Type checking is crucial for termination of β-reduction. Convince

yourself that β-reduction of the ill-typed term (λx.xx)(λx.xx) does not terminate,

and that no typing of the argument variables makes the term well-typed.

30

2.6 Typing Rules

2.6 Typing Rules

Type checking is an algorithm that determines whether a term or a defining equa-

tion or an entire definition is well-typed. In case a term is well-typed, the type of

the term is determined. In case a defining equation is well-typed, the types of the

variables bound by the pattern are determined. We will not say much about type

checking but rather rely on the reader’s intuition and the implementation of type

checking in the proof assistant. In case of doubt you may always ask the proof

assistant.

Type checking is based on typing rules. The typing rules for applications and

lambda abstractions may be written as

` s : ∀xu. v ` t : u

` s t : vxt

` u : T x :u ` s : v

` λxu. s : ∀xu. v

and may be read as follows:

• An application st has type vxt if s has type ∀xu.v and t has type u.

• An abstraction λxu.s has type ∀xu. v if u has type T and s has type v under

the assumption that the argument variable has type u.

The rule for applications makes precise how dependent function types are instanti-

ated with the argument term of an application.

Note that the rules admit any type u : T as argument type of a dependent func-

tion type ∀x :u.v . So far we have only seen examples of dependent function types

where u is T. Dependent function types ∀x :u.v where u is not the universe T will

turn out to be important.

Recall that simple function types u → v are dependent function types ∀x :u.v
where the argument variable x does not occur in the result type v . If we specialize

the typing rules to simple function types, we obtain rules that will look familiar to

functional programmers:

` s : u→ v ` t : u

` s t : v

` u : T x :u ` s : v

` λxu. s : u→ v

2.7 Let Expressions

We will also use let expressions

let xt = s in u

providing for local definitions. The reduction rule for let expressions

let xt = s in u � uxs

31

2 Basic Computational Type Theory

is called zeta rule (ζ-rule).

Let expressions can usually be expressed as β-redexes. There will be a feature

of computational type theory (the conversion rule in §4.1) that distinguishes let

expressions from β-redexes in that let expressions introduce local reduction rules.

Exercise 2.7.1 Express let xt = s in u with a β-redex. Reduction of the β-redex

should give the same term as reduction of the let expression.

2.8 Matches

Matches are expressions realizing the structural case analysis coming with inductive

types. Matches for numbers take the form

match s [0⇒ u | Sx ⇒ v]

and come with two reduction rules:

match 0 [0⇒ u | Sx ⇒ v] � u

match Ss [0⇒ u | Sx ⇒ v] � (λx.v)s

In general, a match for an inductive type has one clause for every constructor of

the type.

Matches can be expressed as applications of certain inductive functions, and

this translation will be our preferred view on matches. In other words, we will see

matches as derived constants. For matches on numbers, we may define the function

M : ∀ZT. N→ Z → (N→ Z)→ Z
MZ 0af := a

MZ (Sx)af := fx

and replace matches with applications of this function:

match s [0⇒ u | Sx ⇒ v] � M _ s u (λx.v)

We say that M is the simply typed match function for N.

Since matches are notation for applications of match functions, they are type

checked according to the typing rule for applications and the type of the match

function used. In practice, it is convenient to compile this information into a derived

typing rule for matches:

A term match s [· · ·] has type u if s is has an inductive type v , the match

has a clause for every constructor of v , and every clause of the match yields

a result of type u.

32

2.9 Recursive Abstractions

We may write boolean matches with the familiar if-then-else notation:

if s then t1 else t2 � match s [t⇒ t1 | f⇒ t2]

More generally, we may use the if-then-else notation for all inductive types with

exactly two value constructors, exploiting the order of the constructors.

Another notational device we take from Coq writes matches with exactly one

clause as pseudo-let expressions. For instance:

let (x,y) = s in t � match s [pair _ _xy ⇒ t]

Exercise 2.8.1 (Boolean negation) Consider the inductive type definition

B : T ::= t | f

for booleans and the plain definition

! := λxB. match x [t⇒ f | f⇒ t]

of a boolean negation function.

a) Define a boolean match function MB.

b) Give a complete reduction chain for !(! t). Distinguish between δ- and β-steps.

Exercise 2.8.2 (Swap function for pairs)

a) Define a function swap swapping the components of a pair using a plain defini-

tion, lambda abstractions, and a match.

b) Define a matching function for the type constructor Pair.

c) Give a complete reduction chain for swap N B (S0)t.

2.9 Recursive Abstractions

Recursive abstractions are like lambda abstractions but provide a local variable for

the function described so that recursion can be expressed:

fix f s→t xs . u

Using a recursive abstraction and a match, we can define a constant D reducing to

a recursive function doubling the number given as argument:

DN→N := fix fN→N xN. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′))]

The reduction rule for recursive abstractions looks as follows:

(fixfx. s) t � (λf .λx. s) (fixfx. s) t

Without limitations on recursive abstractions, one can easily write recursive abstrac-

tions whose reduction does not terminate. Coq imposes two limitations:

33

2 Basic Computational Type Theory

• An application of a recursive abstraction can only be reduced if the argument

term t starts with a constructor.

• A recursive abstraction is only admissible if its recursion goes through a match

and is structural.

In this text we will not use recursive abstractions at all since we prefer inductive

function definitions as means for describing recursive functions. Using an inductive

function definition, a function D doubling its argument can be defined as follows:

D : N→ N

D 0 := 0

D (Sx) := S(S(Dx))

Exercise 2.9.1 Figure 2.2 gives a complete reduction chain for D(S0) where D is

defined with a recursive abstraction as shown above. Verify every single reduction

step and convince yourself that there is no other reduction chain.

2.10 Computational Equality

Computational equality is an algorithmically decidable equivalence relation on well-

typed terms. Two terms are computationally equal if and only if their normal forms

are identical up to α-equivalence and η-equivalence. The notions of α-equivalence

and η-equivalence will be defined in the following.

Two terms are α-equivalent if they are equal up to renaming of bound vari-

ables. We have introduced several constructs involving bound variables, including

dependent function types ∀xt.s, patterns of defining equations, patterns of clauses

in matches, lambda abstractions λxt.s, let expressions, and recursive abstractions.

Alpha equivalence abstracts away from the particular names of bound variables

but preserves the reference structure described by bound variables. For instance,

λXT.λxX .x and λYT.λyY .y are α-equivalent abstractions having the α-equivalent

types ∀XT. X → X and ∀YT. Y → Y . For all technical purposes α-equivalent terms

are considered equal, so we can write the type of λXT.λxX .x as either ∀XT. X → X
or ∀YT. Y → Y . We mention that alpha equivalence is ubiquitous in mathematical

language. For instance, the terms {x ∈ N | x2 > 100·x } and {n ∈ N | n2 > 100·n }
are α-equivalent and thus describe the same set.

The notion of η-equivalence is obtained with the η-equivalence law

(λx.sx) ≈η s if x does not occur free in s

which equates a well-typed lambda abstraction λx.sx with the term s, provided x
does not occur free in t. Eta equivalence realizes the commitment to not distinguish

34

2.11 Values and Canonical Terms

between the function described by a term s and the lambda abstraction λx.sx. A

concrete example is the η-equivalence between the constructor S and the lambda

abstraction λnN.Sn.

Computational equality is compatible with the term structure. That is, if we

replace a subterm of a term s with a term that has the same type and is computa-

tionally equal, we obtain a term that is computationally equal to s.
Computational equality is also known as definitional equality. Moreover, we say

that two terms are convertible if they are computationally equal, and call con-

version the process of replacing a term with a convertible term. A simplification

is a conversion where the final term is obtained from the initial term by reduc-

tion. Examples for conversions that are not simplifications are applications of the

η-equivalence law, or expansions, which are reductions in reverse order (e.g., pro-

ceeding from x to 0 + x). Figure 5.2 in Chapter 5 contains several proof diagrams

with expansion steps.

A complex operation the reduction rules build on is substitution sxt . Substitu-

tion must be performed such that local binders do not capture free variables. To

make this possible, substitution must be allowed to rename local variables. For in-

stance, (λx.λy.fxy)y must not reduce to λy.fyy but to a term λz.fyz where

the new bound variable z avoids capture of the variable y . We speak of capture-free

substitution.

Exercise 2.10.1 (Currying) Assume types X, Y , Z and define functions

C : (X × Y → Z)→ (X → Y → Z)
U : (X → Y → Z)→ (X × Y → Z)

such that the equations C(Uf) = f and U(Cg)(x,y) = g(x,y) hold by computa-

tional equality. Find out where η-equivalence is used.

2.11 Values and Canonical Terms

We see terms as syntactic descriptions of informal semantic objects called values.

Example for values are numbers, functions, and types. Reduction of a term pre-

serves the value of the term, and also the type of the term. We often talk about

values ignoring their syntactic representation as terms. In a proof assistant, how-

ever, values will always be represented through syntactic descriptions. The same

is true for formalizations on paper, where we formalize syntactic descriptions, not

values. We may see values as objects of our mathematical imagination.

The values of a type are also referred to as elements, members, or inhabitants

of the type. We call a type inhabited if it has at least one inhabitant, and uninhab-

ited or empty or void if it has no inhabitant. Values of functional types are referred

to as functions.

35

2 Basic Computational Type Theory

As syntactic objects, terms may not be well-typed. Ill-typed terms are semanti-

cally meaningless and must not be used for computation and reasoning. Ill-typed

terms are always rejected by a proof assistant. Working with a proof assistant is the

best way to develop a reliable intuition for what goes through as well-typed. When

we say term in this text, we always mean a well-typed term.

Recall that a term is closed if it has no free variables (bound variables are fine),

and canonical if it is closed and irreducible. Computational type theory is designed

such that every canonical term is either a constant, or a constant applied to canon-

ical terms, or an abstraction (obtained with λ or fix), or a function type (obtained

with ∀), or a universe (so far we have T). A constant is either a constructor or a

defined constant.

Moreover, computational type theory is designed such that every closed term

reduces to a canonical term of the same type. More generally, every term reduces

to an irreducible term of the same type.

Different canonical terms may describe the same value, in particular when it

comes to functions. Canonical terms that are equal up to α- and η-equivalence

always describe the same value.

For simple inductive types such as N, the canonical terms of the type are in one-

to-one correspondence with the values of the type. In this case we may see the

values of the type as the canonical terms of the type. For function types the situa-

tion is more complicated since semantically we may want to consider two functions

as equal if they agree on all arguments.

2.12 Choices Made by Coq

Coq provides neither inductive function definitions nor plain function definitions.

Thus recursive functions must always be described with recursive abstractions.

There is syntactic sugar facilitating the translation of function definitions (induc-

tive or plain) into Coq’s kernel language. Coq has plain constant definitions without

arguments making it possible to preserve the constants coming with function def-

initions. We have already seen an example of the translation with the function D
in §2.9.

Not having function definitions makes reduction more fine-grained and intro-

duces additional normal forms, which can be annoying in practice. For that reasons

Coq refines the basic reduction rules with simplification rules simulating the reduc-

tions one would have with function definitions. Sometimes the simulation is not

perfect and the user is confronted with unpleasant intermediate terms.

Figure 2.2 shows a complete reduction chain for an application D(S0) where D
is defined in Coq style with recursive abstractions. The example shows the tedious-

ness coming with Coq’s fine-grained reduction style.

36

2.13 Discussion

D(S0) � (fix fx. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′))]) (S0) δ

= D̂ (S0)

� (λfx. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′))]) D̂ (S0) fix

� (λx. match x [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))]) (S0) β

� match (S0) [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))] β

� (λx′. S(S(D̂x′)))0 match

� S(S(D̂0)) β

� S(S((λx. match x [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))])0)) fix, β

� S(S(match 0 [0⇒ 0 | Sx′ ⇒ S(S(D̂x′))])) β

� S(S0) match

D̂ is the term the constant D reduces to

Figure 2.2: Reduction chain for D(S0) defined with a recursive abstraction

In this text we will work with inductive function definitions and not use recursive

abstractions at all. The accompanying demo files show how our high-level style can

be simulated with Coq’s primitives.

Having recursive abstractions and native matches is a design decision from Coq’s

early days (around 1990). Agda is a modern implementation of computational type

theory that comes with inductive function definitions and does not offer matches

and recursive abstractions.

2.13 Discussion

We have outlined a typed and terminating functional language where functions and

types are first-class objects that may appear as arguments and results of functions.

Termination is ensured by restricting recursion to structural recursion on inductive

types. Termination buys two important properties: decidability of computational

equality and integrity of inductive types (i.e., canonicity).

The generalisation of simple function types to dependent function types we have

seen is a key feature of modern type theories. One speaks of dependent type theories

to acknowledge the presence of dependent function types.

Our presentation of computational type theory is informal. We took some mo-

tivation from the previous chapter but it may take time until you fully understand

what is said in the current chapter. Previous familiarity with functional program-

ming will help. The next few chapters will explore the expressivity of the system

37

2 Basic Computational Type Theory

and provide you with examples and case studies. For details concerning type check-

ing and reduction, the Coq proof assistant and the accompanying demo files should

prove useful.

Formalizing the system presented in this chapter and proving the claimed prop-

erties is a major project we will not attack in this text. Instead we will explore the

expressivity of the system and study numerous formalizations based on the system.

In the system presented so far type checking and reduction are separated: For

type checking terms and definitions we don’t need reduction, and for reducing

terms we don’t need type checking. Soon we will boost the expressivity of the

system by extending it such that type checking operates modulo computational

equality of types.

Last but not least we mention that every function definable with a closed term

in computational type theory is algorithmically computable. This claim rests on

the fact that there is an algorithm that evaluates every closed term to a canonical

term. The evaluation algorithm performs reduction steps as long as reduction steps

are possible. The order in which reduction steps are chosen matters neither for

termination nor for the canonical term finally obtained.

A comprehensive discussion of the historical development of computational type

theories can be found in Constable’s survey paper [8]. We recommend the book

on homotopy type theory [26] for a complementary presentation of computational

type theory. The reader may also be interested in learning more about lambda

calculus [4, 15], a minimal computational system arranged around lambda abstrac-

tions and beta reduction.

38

3 Propositions as Types

A great idea coming with computational type theory is the propositions as types

principle. The principle says that propositions (i.e., logical statements) can be rep-

resented as types, and that the elements of the representing types can serve as

proofs of the propositions. This simple approach to logic works incredibly well

in practice and theory: It reduces proof checking to type checking, accommodates

proofs as first-call values, and provides a basic form of logical reasoning known as

intuitionistic reasoning.

The propositions as types principle is just perfect for implications s → t and

universal quantifications ∀xs . t. Both kind of propositions are accommodated as

function types1 and hence receive proofs as follows:

• A proof of an implication s → t is a function mapping every proof of the

premise s to a proof of the conclusion t.

• A proof of an universal quantification∀xs .t is a function mapping every element

of the type of s to a proof of the proposition t.

The types for conjunctions s∧t and disjunctions s∨t will be obtained with inductive

type constructors such that a proof of s∧ t consists of a proof of s and a proof of t,
and a proof of s ∨ t is either a proof of s or a proof of t. The proposition falsity

having no proof will be expressed as an empty inductive type ⊥. With falsity we

will express negations ¬s as implications s → ⊥. The types for equations s = t and

existential quantifications ∃xs .t will be discussed in later chapters once we have

extended the type theory with the conversion rule.

In this chapter you will see many terms describing proofs with lambda abstrac-

tions and matches. The construction of such proof terms is an incremental process

that can be carried out efficiently in interaction with a proof assistant. On paper we

will facilitate the construction of proof terms with proof diagrams.

1Note the notational coincidence.

39

3 Propositions as Types

3.1 Implication and Universal Quantification

We extend our type theory with a second universe P : T of propositional types. The

universe P contains all function types ∀xu.v where v is a propositional type:

` u : T x :u ` v : P

` ∀xu. v : P

We also accommodate P as a subuniverse of T:

` u : P

` u : T

The subuniverse rule ensures that a function type s → t expressing an implication

is both a proposition and a type. We use the suggestive notation P ⊆ T to say that

P is a subuniverse of T.

We can now write propositions using implications and universal quantifications

(i.e., function types), and proofs using lambda abstractions and applications. For

instance,

∀XP. X → X

is a proposition that has the proof λXP xX .x, and

∀XYZP. (X → Y)→ (Y → Z)→ X → Z

is a proposition that has the proof

λXP YP ZP fX→Y gY→Z xX . g(fx)

Interestingly,

∀XP. X

is a proposition that has no proof (see Exercise 3.2.1).

Here are more examples of propositions and their proofs assuming that X, Y ,

and Z are propositional variables (i.e., variables of type P):

X → X λx.x

X → Y → X λxy.x

X → Y → Y λxy.y

(X → Y → Z)→ Y → X → Z λfyx.fxy

We have omitted the types of the argument variables appearing in the lambda ab-

stractions on the right since they can be derived from the propositions appearing

on the left.

40

3.2 Falsity and Negation

Our final examples express mobility laws for universal quantifiers:

∀XT PP pX→P. (∀x. P → px)→ (P → ∀x.px) λXPpfax. fxa

∀XT PP pX→P. (P → ∀x.px)→ (∀x. P → px) λXPpfxa. fax

Functions that yield propositions once all arguments are supplied are called

predicates. In the above examples p is a unary predicate on the type X. In gen-

eral, a predicate has a type ending with P.

Exercise 3.1.1 (Exchange law)

Give a proof for the proposition ∀XYT∀pX→Y→P. (∀xy.pxy)→ (∀yx.pxy).

3.2 Falsity and Negation

A propositional constant ⊥ having no proof will be helpful since together with im-

plication it can express negations. The official name for ⊥ is falsity. The natural

idea for obtaining falsity is using an inductive type definition not declaring a value

constructor:

⊥ : P ::= []

Since ⊥ has no value constructor, the design of computational type theory ensures

that ⊥ has no element. We define an inductive function

E⊥ : ∀ZT. ⊥ → Z

discriminating on its second argument of type ⊥. Since ⊥ has no value constructor,

we need no defining equation for E⊥. The function E⊥ realizes an important logical

principle known as explosion rule or ex falso quodlibet: Given a hypothetical proof

of falsity, we can get a proof of everything. More generally, given a hypothetical

proof of falsity, E⊥ gives us an element of every type. Following language we explain

later, we call E⊥ the universal eliminator for ⊥.

We now define negation ¬s as notation for an implication s → ⊥:

¬s � s → ⊥

With this definition we have a proof of ⊥ if we have a proof of s and ¬s. Thus, given

a proof of¬s, we can be sure that there is no proof of s. We say that we can disprove

a proposition s if we can give a proof of ¬s. The situation that we have some

proposition s and hypothetical proofs of both s and ¬s is called a contradiction

in mathematical language. A hypothetical proof is a proof based on unproven

assumptions (called hypotheses in this situation).

Figure 3.1 shows proofs of propositions involving negations. To understand the

proofs, it is essential to see a negation ¬s as an implication s → ⊥. Only the proof

41

3 Propositions as Types

X → ¬X → ⊥ λxf . fx

X → ¬X → Y λxf . E⊥Y(fx)

(X → Y)→ ¬Y → ¬X λfgx. g(fx)

X → ¬¬X λxf .fx

¬X → ¬¬¬X λfg. gf

¬¬¬X → ¬X λfx. f (λg.gx)

¬¬X → (X → ¬X)→ ⊥ λfg. f (λx.gxx)

(X → ¬X)→ (¬X → X)→ ⊥ λfg. let x = g(λx.fxx) in fxx

Variable X ranges over propositions.

Figure 3.1: Proofs of propositions involving negations

involving the eliminator E⊥ makes use of the special properties of falsity. Note the

use of the let expression in the proof in the last line. It introduces a local name x
for the term g(λx.fxx) so that we don’t have to write it twice. Except for the proof

with let all proofs in Figure 3.1 are normal terms.

Coming from boolean logic, you may ask for a proof of ¬¬X → X. Such a proof

does not exist in general in an intuitionistic proof system like the type-theoretic

system we are exploring. However, such a proof exists if we assume the law of

excluded middle familiar from ordinary mathematical reasoning. We will discuss

this issue later.

Occasionally, it will be useful to have a propositional constant > having exactly

one proof. The official name for > is truth. The natural idea for obtaining truth is

using an inductive type definition declaring a single primitive value constructor:

> : P ::= I

Exercise 3.2.1 Show that ∀XP. X has no proof. That is, disprove ∀XP. X. That is,

prove ¬∀XP. X.

3.3 Conjunction and Disjunction

Most people are familiar with the boolean interpretation of conjunctions s ∧ t and

disjunctions s ∨ t. In the type-theoretic interpretation, a conjunction s ∧ t is a

proposition whose proofs consist of a proof of s and a proof of t, and a disjunction

s ∨ t is a proposition whose proofs consist of either a proof of s or a proof of t. We

42

3.3 Conjunction and Disjunction

make this design explicit with two inductive type definitions:

∧ (X : P, Y : P) : P ::= C(X, Y) ∨ (X : P, Y : P) : P ::= L(X) | R(Y)

The definitions introduce the following constructors:

∧ : P→ P→ P ∨ : P→ P→ P

C : ∀XPYP. X → Y → X ∧ Y L : ∀XPYP. X → X ∨ Y
R : ∀XPYP. Y → X ∨ Y

With the type constructors ’∧’ and ’∨’ we can form conjunctions s ∧ t and disjunc-

tions s ∨ t from given propositions s and t. With the value constructors C, L, and R

we can construct proofs of conjunctions and disjunctions:

• If u is a proof of s and v is a proof of t, then the term Cuv is a proof of the

conjunction s ∧ t.
• If u is a proof of s, then the term Lu is a proof of the disjunction s ∨ t.
• If v is a proof of t, then the term Rv is a proof of the disjunction s ∨ t.
Note that we treat the propositional arguments of the value constructors as implicit

arguments, something we have seen before with the value constructor for pairs.

Since the explicit arguments of the proof constructors for disjunctions determine

only one of the two implicit arguments, the other implicit argument must be derived

from the surrounding context. This works well in practice.

The type constructors ’∧’ and ’∨’ have the type P → P → P, which qualifies

them as predicates. We will call type constructors inductive predicates if their type

qualifies them as predicates. Moreover, we will call value constructors obtaining

values of propositions proof constructors. Using this language, we may say that

disjunctions are accommodated with an inductive predicate coming with two proof

constructors.

Proofs involving conjunctions and disjunctions will often make use of matches.

Recall that matches are notation for applications of match functions obtained with

inductive function definitions. For conjunctions and disjunctions, we will use the

definitions appearing in Figure 3.2.

We note that E⊥ (§3.2) is the match function for the inductive type ⊥. We define

the notation

match s [] � E⊥ _ s

Figure 3.3 shows proofs of propositions involving conjunctions and disjunctions.

The propositions formulate familiar logical laws. Note that we supply as subscripts

the implicit arguments of the proof constructors C, L, and R when we think it is

helpful.

43

3 Propositions as Types

M∧ : ∀XYZP. X ∧ Y → (X → Y → Z)→ Z
M∧XYZ (Cxy)e := exy

M∨ : ∀XYZP. X ∨ Y → (X → Z)→ (Y → Z)→ Z
M∨XYZ (Lx)e1e2 := e1x

M∨XYZ (Ry)e1e2 := e2y

match s [Cxy ⇒ t] � M∧ _ _ _ s (λxy.t)

match s [Lx ⇒ t1 | Ry ⇒ t2] � M∨ _ _ _ s (λx.t1) (λy.t2)

Figure 3.2: Matches for conjunctions and disjunctions

X → Y → X ∧ Y CXY

X → X ∨ Y LXY

Y → X ∨ Y RXY

X ∧ Y → X λa.match a [Cxy ⇒ x]
X ∧ Y → Y λa.match a [Cxy ⇒ y]
X ∧ Y → Y ∧X λa.match a [Cxy ⇒ Cyx]

X ∨ Y → Y ∨X λa.match a [Lx ⇒ RYX x | Ry ⇒ LYX y]

The variables X, Y , Z range over propositions.

Figure 3.3: Proofs for propositions involving conjunctions and disjunctions

Figure 3.4 shows proofs involving matches with nested patterns. Matches with

nested patterns are a notational convenience for nested plain matches. For in-

stance, the match

match a [C(Cxy)z ⇒ Cx(Cyz)]

with the nested pattern C(Cxy)z translates into the plain match

match a [Cbz ⇒ match b [Cxy ⇒ Cx(Cyz)]]

nesting a second plain match.

Exercise 3.3.1 Elaborate the proofs in Figure 3.4 such that they use nested plain

matches. Moreover, annote the implicite arguments of the constructors C, L and R

provided the application does not appear as part of a pattern.

44

3.4 Propositional Equivalence

(X ∧ Y)∧ Z → X ∧ (Y ∧ Z)
λa.match a [C(Cxy)z ⇒ Cx(Cyz)]

(X ∨ Y)∨ Z → X ∨ (Y ∨ Z)
λa.match a [L(Lx)⇒ Lx | L(Ry)⇒ R(Ly) | Rz ⇒ R(Rz)]

X ∧ (Y ∨ Z)→ (X ∧ Y)∨ (X ∧ Z)
λa.match a [Cx(Ly)⇒ L(Cxy) | Cx(Rz)⇒ R(Cxz)]

Figure 3.4: Proofs with nested patterns

X ∧ Y ←→ Y ∧X commutativity

X ∨ Y ←→ Y ∨X
X ∧ (Y ∧ Z)←→ (X ∧ Y)∧ Z associativity

X ∨ (Y ∨ Z)←→ (X ∨ Y)∨ Z
X ∧ (Y ∨ Z)←→ X ∧ Y ∨X ∧ Z distributivity

X ∨ (Y ∧ Z)←→ (X ∨ Y)∧ (X ∨ Z)
X ∧ (X ∨ Y)←→ X absorption

X ∨ (X ∧ Y)←→ X

Figure 3.5: Equivalence laws for conjunctions and disjunctions

3.4 Propositional Equivalence

We define propositional equivalence s ←→ t as notation for the conjunction of two

implications:

s ←→ t � (s → t)∧ (t → s)

Thus a propositional equivalence is a conjunction of two implications, and a proof

of an equivalence is a pair of two proof-transforming functions. Given a proof of

an equivalence s ←→ t, we can translate every proof of s into a proof of t, and every

proof of t into a proof of s. Thus we know that s is provable if and only if t is

provable.

Exercise 3.4.1 Give proofs for the equivalences shown in Figure 3.5. The equiva-

lences formulate well-known properties of conjunction and disjunction.

45

3 Propositions as Types

Exercise 3.4.2 Give proofs for the following propositions:

a) ¬¬⊥ ←→ ⊥
b) ¬¬> ←→ >
c) ¬¬¬X ←→ ¬X
d) ¬(X ∨ Y) ←→ ¬X ∧¬Y
e) (X → ¬¬Y) ←→ (¬Y → ¬X)
f) ¬(X ←→ ¬X)
Equivalence (d) is known as de Morgan law for disjunctions. We don’t ask for a

proof of the de Morgan law for conjunctions ¬(X∧Y)←→ ¬X∨¬Y since it requires

the law of excluded middle (§3.8). We call proposition (f) Russell’s law. Russell’s

law will be used in a couple of prominent proofs.

Exercise 3.4.3 Propositional equivalences yield an equivalence relation on proposi-

tions that is compatible with conjunction, disjunction, and implication. This high-

level speak can be validated by giving proofs for the following propositions:

X ←→ X reflexivity

(X ←→ Y)→ (Y ←→ X) symmetry

(X ←→ Y)→ (Y ←→ Z)→ (X ←→ Z) transitivity

(X ←→ X′)→ (Y ←→ Y ′)→ (X ∧ Y ←→ X′ ∧ Y ′) compatibility with ∧
(X ←→ X′)→ (Y ←→ Y)′ → (X ∨ Y ←→ X′ ∨ Y ′) compatibility with ∨
(X ←→ X′)→ (Y ←→ Y ′)→ ((X → Y)←→ (X′ → Y ′)) compatibility with →

3.5 Notational Issues

Following Coq, we use the precedence order

¬ ∧ ∨ ←→ →

for the logical connectives. Thus we may omit parentheses as in the following ex-

ample:

¬¬X ∧ Y ∨ Z ←→ Z → Y � (((¬(¬X)∧ Y)∨ Z)←→ Z)→ Y

The connectives ¬, ∧, and ∨ are right-associative. That is, parentheses may be

omitted as follows:

¬¬X � ¬(¬X)
X ∧ Y ∧ Z � X ∧ (Y ∧ Z)
X ∨ Y ∨ Z � X ∨ (Y ∨ Z)

46

3.6 Impredicative Characterizations

⊥ ←→ ∀ZP. Z
C (E⊥(∀ZP. Z)) (λf . f⊥)

X ∧ Y ←→ ∀ZP. (X → Y → Z)→ Z
C (λaZf .match a [Cxy ⇒ fxy]) (λf . f (X ∧ Y)CXY)

X ∨ Y ←→ ∀ZP. (X → Z)→ (Y → Z)→ Z
C (λaZfg.match a [Lx ⇒ fx | Ry ⇒ gy]) (λf . f (X ∨ Y) LXY RXY)

The subscripts give the implicit arguments of C, L, and R.

Figure 3.6: Impredicative characterizations with proof terms

3.6 Impredicative Characterizations

Quantification over propositions has amazing expressivity. Given two propositional

variables X and Y , we can prove the equivalences

⊥ ←→ ∀ZP. Z
X ∧ Y ←→ ∀ZP. (X → Y → Z)→ Z
X ∨ Y ←→ ∀ZP. (X → Z)→ (Y → Z)→ Z

which say that ⊥, X∧Y , and X∨Y can be characterized with just function types. The

equivalences are known as impredicative characterizations of falsity, conjunction,

and disjunction. Figure 3.6 gives proof terms for the equivalences. One speaks of

an impredicative proposition if the proposition contains a quantification over all

propositions.

Note that the impredicative characterizations are related to the types of the

match functions for ⊥, X ∧ Y , and X ∨ Y .

Exercise 3.6.1 Find an impredicative characterization for >.

Exercise 3.6.2 (Exclusive disjunction)

Consider exclusive disjunction X ⊕ Y ←→ (X ∧¬Y)∨ (¬X ∧ Y).
a) Define exclusive disjunction with an inductive type definition. Use two proof

constructors and prove the specifying equivalence.

b) Find and verify an impredicative characterization of exclusive disjunction.

47

3 Propositions as Types

3.7 Proof Term Construction using Proof Diagrams

The natural direction for proof term construction is top down, in particular as it

comes to lambda abstractions and matches. When we construct a proof term top

down, we need an information structure keeping track of the types we still have

to construct proof terms for and recording the typed variables introduced by sur-

rounding lambda abstractions and patterns of matches. It turns out that the proof

diagrams we have introduced in Chapter 1 provide a convenient information struc-

ture for constructing proof terms.

Here is a proof diagram showing the construction of a proof term for a proposi-

tion we call Russell’s law:

¬(X ←→ ¬X) intro

f : X → ¬X
g : ¬X → X ⊥ assert X

1 X apply g
¬X intro

x : X ⊥ exact fxx
2 x : X ⊥ exact fxx

The diagram is written top-down beginning with the initial claim. It records the

construction of the proof term

λaX←→¬X . match a [Cfg ⇒ let x = g(λx.fxx) in fxx]

for the proposition ¬(X ←→ ¬X).
Recall that proof diagrams are have-want diagrams that record on the left what

we have and on the right what we want. When we start, the proof diagram is partial

and just consists of the first line. As the proof term construction proceeds, we add

further lines and further proof goals until we arrive at a complete proof diagram.

The rightmost column of a proof diagram records the actions developing the

diagram and the corresponding proof term.

• The action intro introduces λ-abstractions and matches.

• The action assert creates subgoals for an intermediate claim and the current

claim with the intermediate claim assumed. An assert action is realised with a

let expression in the proof term.

• The action apply applies a function and creates subgoals for the arguments.

• The action exact proves the claim with a complete proof term. We will not write

the word “exact” in future proof diagrams since that an exact action is performed

will be clear from the context.

With Coq we can construct proof terms interactively following the structure of

proof diagrams. We start with the initial claim and have Coq perform the proof

48

3.7 Proof Term Construction using Proof Diagrams

∀XT∀pX→P. ¬¬(∀x.px)→ ∀x.¬¬px intro

X :T, p :X → P
f :¬¬(∀x.px)
x :X, g :¬px ⊥ apply f

¬(∀x.px) intro

f ′ :∀x.px ⊥ g(f ′x)

Proof term constructed: λXpfxg.f (λf ′.g(f ′x))

Figure 3.7: Proof diagram for a double negation law for universal quantification

actions with commands called tactics. Coq then maintains the proof goals and dis-

plays the assumptions and claims. Once all proof goals are closed, a proof term for

the initial claim has been constructed.

Technically, a proof goal consists of a list of assumptions called context and a

claim. The claim is a type, and the assumptions are typed variables. There may

be more than one proof goal open at a point in time and one may navigate freely

between open goals.

Interactive proof term construction with Coq is fun since writing, bookkeeping,

and verification are done by Coq. Here is a further example of a proof diagram:

¬¬X → (X → ¬X)→ ⊥ intro

f : ¬¬x
g : X → ¬X ⊥ apply f

¬x intro

x : X ⊥ gxx

The proof term constructed is λfg.f (λx.gxx). As announced before, we write the

proof action “exact gxx” without the word “exact”.

Figure 3.7 shows a proof diagram for a double negation law for universal quan-

tification. Since universal quantifications are function types like implications, no

new proof actions are needed.

Figure 3.8 shows a proof diagram using a destructuring action contributing a

match in the proof term. The reason we did not see a destructuring action before is

that so far the necessary matches could be inserted by the intro action.

Figure 3.9 gives a proof diagram for a distributivity law involving 6 subgoals.

Note the symmetry in the proof digram and the proof term constructed.

Figure 3.10 gives a proof diagram for a double negation law for implication. Note

the use of the exfalso action applying the explosion rule as realized by E⊥.

49

3 Propositions as Types

∀XT∀pX→P∀qX→P.
(∀x.px ←→ qx)→ (∀x.qx)→ ∀x.px intro

X :T, p :X → P, q :X → P
f :∀x.px ←→ qx
g :∀x.qx
x :X px destruct fx
h :qx → px h(gx)

Proof term constructed: λXpqfgx.match fx [C_h⇒ h(gx)]

Figure 3.8: Proof diagram using a destructuring action

X ∧ (Y ∨ Z)←→ (X ∧ Y)∨ (X ∧ Z) apply C

1 X ∧ (Y ∨ Z)→ (X ∧ Y)∨ (X ∧ Z) intro

x : X
1.1 y : Y (X ∧ Y)∨ (X ∧ Z) L(Cxy)
1.2 z : Z (X ∧ Y)∨ (X ∧ Z) R(Cxz)
2 (X ∧ Y)∨ (X ∧ Z)→ X ∧ (Y ∨ Z) intro

2.1 x : X, y : Y X ∧ (Y ∨ Z) Cx(Ly)
2.2 x : X, z : Z X ∧ (Y ∨ Z) Cx(Rz)

Proof term constructed:

C (λa. match a [Cx(Ly)⇒ L(Cxy) | Cx(Rz)⇒ R(Cxz)])

(λa. match a [L(Cxy)⇒ Cx(Ly) | R(Cxz)⇒ Cx(Rz)])

Figure 3.9: Proof diagram for a distributivity law

Exercise 3.7.1 Give proof diagrams and proof terms for the following propositions:

a) ¬¬(X ∨¬X)
b) ¬¬(¬¬X → X)
c) ¬¬(((X → Y)→ X)→ X)
d) ¬¬((¬Y → ¬X)→ X → Y)
e) ¬¬(X ∨¬X)
f) ¬(X ∨ Y) ←→ ¬X ∧¬Y
g) ¬¬¬X ←→ ¬X
h) ¬¬(X ∧ Y) ←→ ¬¬X ∧¬¬Y
i) ¬¬(X → Y) ←→ (¬¬X → ¬¬Y)
j) ¬¬(X → Y) ←→ ¬(X ∧¬Y)

50

3.8 Law of Excluded Middle

¬¬(X → Y)←→ (¬¬X → ¬¬Y) apply C, intro

1 f : ¬¬(X → Y)
g : ¬¬X
h : ¬Y ⊥ apply f , intro

f ′ : X → Y ⊥ apply g, intro

x : X ⊥ h(f ′x)
2 f : ¬¬X → ¬¬Y

g : ¬(X → Y) ⊥ apply g, intro

x : X Y exfalso

⊥ apply f
2.1 ¬¬X intro

h : ¬X ⊥ hx
2.2 ¬Y intro

y : Y ⊥ g(λx.y)

Proof term constructed:

C (λfgh. f (λf ′. g(λx. h(f ′x))))

(λfg. g(λx. E⊥Y(f(λh. hx) (λy. g(λx.y)))))

Figure 3.10: Proof diagram for a double negation law for implication

Exercise 3.7.2 Give a proof diagram and a proof term for the distribution law

∀XT∀pX→P∀qX→P. (∀x. px ∧ qx)←→ (∀x.px)∧ (∀x.qx).

Exercise 3.7.3 Find out why one direction of the equivalence

∀XT∀ZP. (∀xX. Z)←→ Z cannot be proved.

Exercise 3.7.4 Prove ∀XT∀pX→P∀ZP. (∀x.px)→ Z → ∀x. px ∧ Z .

3.8 Law of Excluded Middle

The propositions as types approach presented here yields a rich form of logical rea-

soning known as intuitionistic reasoning. Intuitionistic reasoning refines reasoning

in mathematics in that it does not build in the law of excluded middle. This way in-

tuitionistic reasoning makes finer differences than the so-called classical reasoning

used in mathematics. Since type-theoretic logic can quantify over propositions, the

law of excluded middle can be expressed as the proposition ∀PP. P ∨¬P . Once we

assume excluded middle, we can prove all the propositions we can prove in boolean

logic.

51

3 Propositions as Types

Exercise 3.8.1 Let XM be the proposition ∀PP. P ∨ ¬P formalizing the law of ex-

cluded middle. Construct proof terms for the following propositions:

a) XM→ ∀PP. ¬¬P → P double negation law

b) XM→ ∀PQP. ¬(P ∧Q)→ ¬P ∨¬Q de Morgan law

c) XM→ ∀PQP. (¬Q → ¬P)→ P → Q contraposition law

d) XM→ ∀PQP. ((P → Q)→ P)→ P Peirce’s law

It turns out that the reverse directions of the above implications can also be shown

intuitionistically, except in one case. Exercise 13.5.5 will tell you more.

3.9 Discussion

In this chapter we have seen that a computational type theory with dependent func-

tion types can express propositions as types and proofs as terms of propositional

types. Function types provide for implications and universal quantifications. Fal-

sity, conjunctions and disjunctions can be added using inductive type definitions.

Universal quantification as obtained with the propositions as types approach is gen-

eral in that it can quantify over all values including functions and types. Since

proofs are accommodated as first-class objects, one can even quantify over proofs.

In the following chapters we will see that the type-theoretic approach to logic scales

to equations and existential quantifications as well as to inductive proofs over in-

ductive types.

The propositions as types approach uses the typing rules of the underlying type

theory as proofs rules. This reuse reduces proof checking to type checking and

much simplifies the implementation of proof assistants.

In the propositions as types approach, proofs are obtained as terms built with

lambda abstractions, applications, and matches. The resulting proof language is

amazingly elegant and compact. The primitives of the language generalize famil-

iar proof patterns: making assumptions, applying implicational assumptions, and

destructuring of assumptions.

This chapter is the place where the reader will get fluent with lambda abstrac-

tions, matches, and dependent function types. We offer dozens of examples for ex-

ploration on paper and in interaction with the proof assistant. For proving on paper,

we use proof diagrams recording incremental constructions of proof terms. When

we construct proof terms in interaction with a proof assistant, we issue proof ac-

tions that incrementally build the proof term and display the information recorded

in the proof diagram.

In the system presented so far, proofs are verified with the typing rules and

no use is made of the reduction rules. This will change in the next chapter where

we extend the typing discipline with a conversion rule identifying computationally

52

3.9 Discussion

equal types.

We remark that all constructions shown in this chapter carry through if the uni-

verse P is replaced with T. In fact, the basic intuitions for the propositions as types

approach don’t require the presence of a universe of propositions. The reasons for

having P in addition to T will become clearer in the next chapter.

The details of the typing rules matter. What prevents a proof of falsity are the

typing rules and the rules restricting the form of inductive definitions. In this text,

we explain the details of the typing rules mostly informally, exploiting that com-

pliance with the typing rules is verified automatically by the proof assistant. To be

sure that something is well-typed or has a certain type, it is always a good idea to

have it checked by the proof assistant. We expect that you train your understanding

of the typing rules using the proof assistant.

53

4 Conversion Rule, Universe Hierarchy,
and Elimination Restriction

We now introduce an additional typing rule called conversion rule liberating the

typing discipline such that typing operates modulo computational equality of types.

The conversion rule is needed so that equations and existential quantifications can

be accommodated with propositional types. It also provides for abstraction tech-

niques facilitating inductive proofs.

We also discuss two essential restrictions of the typing discipline. First, we with-

draw the self-membership T : T and replace it with a cumulative universe hierarchy

T1 : T2 : T3 : · · · and T1 ⊂ T2 ⊂ T3 ⊂ · · ·. Second, we introduce the so-called elimi-

nation restriction, restricting inductive function definitions such that the result type

must be propositional if the type of a discriminating argument is propositional but

not computational.

4.1 Conversion Rule

Recall the typing rules for applications and lambda abstractions from §2.6.

` s : ∀xu.v ` t : u

` s t : vxt

` u : T x :u ` s : v

` λxu. s : ∀xu. v

The conversion rule is an additional typing rule relaxing typing by making it oper-

ate modulo computational equality of types:

` s : u′ u ≈ u′ ` u : T

` s : u

The rule says that a term s has type u if s has type u′ and u and u′ are compu-

tationally equal (§2.10). We use the notation u ≈ u′ to say that two terms u and

u′ are computationally equal. Note that the conversion rule has a premise ` u : T,

which ensures that the term u describes a type.

Adding the conversion rule preserves the key properties of computational type

theory (§2.3). As before, there is an algorithm that given a term decides whether

the term is well-typed and if so derives a type of the term. The derived type is

55

4 Conversion Rule, Universe Hierarchy, and Elimination Restriction

X :T, x :X, y :X
f : ∀pX→P. px → py ∀pX→P. py → px intro

p : X → P py → px conversion

(λz. pz → px)y apply f
(λz. pz → px)x conversion

px → px λapx.a

Proof term constructed: λp. f (λz. pz → px)(λa.a)

Figure 4.1: Proof diagram for Leibniz symmetry

unique up to computational equality of types and minimal with respect to universe

subtyping (e.g., P ⊂ T).

We explain the conversion rule with two applications.

Negation and propositional equivalence as defined functions

Exploiting the presence of the conversion rule, we can accommodate negation and

propositional equivalence as defined functions:

¬ : P→ P ←→ : P→ P→ P

¬X := X → ⊥ X ←→ Y := (X → Y)∧ (Y → X)

The plain definitions provide us with the constants ¬ and ←→ for functions con-

structing negations and propositional equivalences. Delta reduction replaces ap-

plications ¬s with propositions s → ⊥, and applications s ←→ t with propositions

(s → t) ∧ (t → s). The conversion rules ensures that proofs of s → ⊥ are proofs

of ¬s (and vice versa), and that proofs of (s → t)∧ (t → s) are proofs of s ←→ t (and

vice versa).

Leibniz symmetry

The conversion rule yields proofs for propositions that are not provable without the

conversion rule. As example we choose a proposition we call Leibniz symmetry:

∀XT∀xyX . (∀pX→P. px → py)→ (∀pX→P. py → px)

Leibniz symmetry says that if a value y satisfies every property a value x satisfies,

then conversely x satisfies every property y satisfies. Figure 4.1 shows a proof

diagram for Leibniz symmetry. The diagram involves two conversion steps

py → px ≈ (λz. pz → px)y
(λz. pz → px)x ≈ px → px

both of which are justified by β-reduction. The proof term constructed is

λp. f (λz. pz → px)(λa.a)

56

4.2 Cumulative Universe Hierarchy

The two conversions are not visible in the proof term, but they appear with an appli-

cation of the conversion rule needed for type checking the term. To better explain

the use of the conversion rule, we start with the typing for the first application of

the variable f :

` f(λz. pz → px) : (λz. pz → px)x → (λz. pz → px)y

Using the conversion rule we can switch to the typing

` f(λz. pz → px) : (px → px)→ (py → px)

from which we obtain the typing

` λp. f (λz. pz → px)(λapx.a) : ∀pX→P. py → px

using the typing rules for applications and lambda abstractions.

4.2 Cumulative Universe Hierarchy

We have seen the universes P and T so far. Universes are types whose elements

are types. The universe P of propositions is accommodated as a subuniverse of the

universe of types T, a design realized with the typing rules

` P ⊂ T

` s : u ` u ⊂ u′

` s : u′
` u : T ` v ⊂ v′

` ∀xu. v ⊂ ∀xu. v′

Note that third rule establishes subtyping of function types so that, for instance, we

obtain the inclusion (u→ P) ⊂ (u→ T) for all types u.

Types are first class objects in computational type theory and first class objects

always have a type. So what are the types of P and T? Giving T the type T does

not work since the self-membership T : T yields a proof of falsity (see §27.3). What

works, however, is an infinite cumulative hierarchy of universes

T1 : T2 : T3 : · · ·
P ⊂ T1 ⊂ T2 ⊂ T3 ⊂ · · ·
P : T2

realized with the following typing rules:

` P : T2 ` Ti : Ti+1 ` P ⊂ Ti

i < j

` Ti ⊂ Tj

57

4 Conversion Rule, Universe Hierarchy, and Elimination Restriction

For dependent function types we have two closure rules

` u : Ti x :u ` v : P

` ∀xu. v : P

` u : Ti x :u ` v : Ti

` ∀xu. v : Ti

The rule for P says that the universe of propositions is closed under all quantifi-

cations including big quantifications quantifying over the types of universes. In

contrast, a dependent function type ∀xTi .v where v is not a proposition will not

be an inhabitant of the universe Ti it quantifies over.

The universe P is called impredicative since it is closed under big quantifica-

tions. The impredicative characterizations we have seen for falsity, conjunctions,

and disjunctions exploit this fact.

It is common practice to not annotate the universe level and just write T for all

universes Ti. This is justified by the observation that the exact universe levels don’t

matter as long as they can be assigned consistently. Coq’s type checking ensures

that universe levels can be assigned consistently.

Ordinary types like B, N, N × N, and N → N are all placed in the lowest type uni-

verse T1, which is called Set in Coq (a historical name, not related to mathematical

sets).

Following Coq, we have placed P in T2. This again is one of Coq’s historical

design decisions, placing P in T1 is also possible and would be simpler. In this

case P could be understood as T0, the lowest universe level.

4.3 Elimination Restriction

Coq’s type theory imposes the restriction that inductive functions discriminating

on the values of an inductive proposition must have propositional result types,

except if the inductive proposition is computational. We refer to this restriction as

elimination restriction. We first give the necessary definitions and then explain why

the elimination restriction is imposed.

An inductive type cs1 . . . sn with n ≥ 0 is computational if its type constructor c
is computational. A type constructor c is computational if in case it targets P it has

at most one proof constructor d and all nonparametric arguments of d have propo-

sitional types. Examples for computational propositions we have already seen are

⊥, >, and conjunctions s ∧ t. Examples for noncomputational propositions we have

already seen are disjunctions s ∨ t. Note that by our definition every nonproposi-

tional inductive type is computational.

The elimination restriction applies to inductive function definitions and re-

quires that the result type of the defined function must be propositional if there

is a discriminating argument whose type is a noncomputational proposition.

58

4.3 Elimination Restriction

If we look at the inductively defined match functions for conjunctions and dis-

junctions in Figure 3.2, we notice that we could type Z more generally with T for

conjunctions, and that the elimination restriction prevents us from doing so for

disjunctions. Moreover, we notice that the elimination function for ⊥

E⊥ : ∀ZT. ⊥ → Z

defined in §3.2 types Z with T rather than P, which is in accordance with the elim-

ination restriction since ⊥ is a computational proposition. We speak of a compu-

tational falsity elimination when we use E⊥ with a nonpropositional type. It turns

out that computational falsity elimination is essential for defining certain functions

(examples are in §11.3 and §18.1).

We now explain one reason why the elimination restriction is imposed. An im-

portant requirement for Coq’s type discipline is that assuming the law of excluded

middle (§3.8)

XM := ∀PP. P ∨¬P

must not lead to a proof of falsity. Formally, this means that the proposition

XM→ ⊥

must not be provable in Coq’s type theory. It now turns out that XM implies

that all proofs of a proposition are equal semantically, a property known as proof

irrelevance. In fact, we may express proof irrelevance as a proposition

PI := ∀PP∀pP→T∀abP . pa→ pb

and prove

XM→ PI

in Coq’s type theory (see §27.5).

Recall that the disjunction > ∨ > has two different canonical proof terms, (L I)
and (R I). Proof irrelevance now says that (L I) and (R I) are indistinguishable seman-

tically. Without the elimination restriction we could write the term

match (L I) [L _⇒ ⊥ | R _⇒ >]

which is computationally equal to ⊥. Using PI, this term is inhabited if the term

match (R I) [L _⇒ ⊥ | R _⇒ >]

is inhabited. The term with (R I) is computationally equal to > and thus inhabited

by the conversion rule. Thus we would have a proof of PI→ ⊥ if the two matches for

(L I) and (R I) would be well-typed, which, however, is prevented by the elimination

restriction. Note that the type of the matches is P, which is not a propositional type.

59

4 Conversion Rule, Universe Hierarchy, and Elimination Restriction

We remark that the impredicativity of the universe P of propositions (§4.2) would

also yield a proof of falsity if no elimination restriction was imposed (see Chap-

ter 27).

You have now seen a rather delicate aspect of Coq’s type theory. It arises from

the fact that Coq’s type theory reconciles the propositions as types approach with

the assumption of proof irrelevance or, even stronger, with the law of excluded mid-

dle. It turns out that there are many good reasons for assuming proof irrelevance,

even if the law of excluded middle is not needed.

If you work with Coq’s type theory, it is not necessary that you understand the

above arguments concerning proof irrelevance and excluded middle in detail. It

suffices that you know about the elimination restriction. In any case, the proof

assistant will ensure that the elimination restriction is observed.

It will turn out that the presence of certain computational propositions is crucial

for the definition of many important functions. One such computational propo-

sition is ⊥. The other essential computational propositions are recursion types

involving higher-order recursion (Chapters 25 and 26), and inductive equality types

providing for casts (Chapter 23).

Exercise 4.3.1 One can define a computational falsity proposition with a recursive

proof constructor:

F : P ::= C(F)

We can define a computational eliminator for F similar to the falsity eliminator:

E : ∀ZT. F → Z
E Z(Ca) := E Za

Thus we don’t need inductive types with zero constructors to express falsity with

computational elimination.

60

5 Leibniz Equality

We will now define propositional equality s = t following a scheme known as Leib-

niz equality. It turns out that three typed constants suffice: One constant accom-

modating equations s = t as propositions, one constant providing canonical proofs

of trivial equations s = s, and one constant providing for rewriting. To prove with

the constants, it suffices to know their types, their actual definitions are not needed.

We will speak of declared constants.

The conversion rule of the type theory gives the constants for trivial equations

and for rewriting the necessary proof power. In particular, the conversion rule has

the effect that propositional equality subsumes computational equality. Moreover,

the conversion rule and quantification over predicates ensure that all equational

rewriting situations can be captured with a single rewriting constant.

There is much elegance and surprise in this chapter. Much of the technical

essence of computational type theory is exercised with propositional equality. Take

your time to understand this beautiful construction in depth.

5.1 Abstract Propositional Equality

With dependent function types and the conversion rule at our disposal, we can

now show how the propositions as types approach can accommodate propositional

equality. It turns out that all we need are three typed constants:

eq : ∀XT. X → X → P

Q : ∀XT∀xX . eqX xx

R : ∀XT∀xyX ∀pX→P. eqXxy → px → py

For now we keep the constants abstract. It turns out that we can do equational

reasoning without knowing the definitions of the constants. All we need are the

constants and their types.

The constant eq allows us to write equations as propositional types. We treat X
as implicit argument and use the notations

s = t � eq st

s ≠ t � ¬eq st

61

5 Leibniz Equality

The constants Q and R provide two basic proof rules for equations. With Q we can

prove every trivial equation s = s. Given the conversion rule, we can also prove

with Q every equation s = t where s and t are computationally equal. In other

words, Q provides for proofs by computational equality. This is a remarkable fact.

The constant R provides for equational rewriting: Given a proof of an equation

s = t, we can place a claim pt with the claim ps using R. Moreover, we can get from

an assumption ps an additional assumption pt by asserting pt and proving pt
with R and ps.

We refer to R as rewriting law, and to the argument p of R as rewriting pred-

icate. Moreover, we refer to the predicate eq as propositional equality or just

equality. We will treat X, x and y as implicit arguments of R, and X as implicit

argument of eq and Q.

Exercise 5.1.1 Give a proof term for the equation ! t = f. Explain why the term is

also a proof term for the equation f = ! ! f.

Exercise 5.1.2 Give a proof term for the converse rewriting law

∀XT∀xy∀pX→P. eqXxy → py → px.

Exercise 5.1.3 Suppose we want to rewrite a subterm u in a proposition t using the

rewriting law R. Then we need a rewrite predicate λx.s such that t and (λx.s)u
are convertible and s is obtained from t by replacing the occurrence of u with the

variable x. Let t be the proposition x +y + x = y .

a) Give a predicate for rewriting the first occurrence of x in t.

b) Give a predicate for rewriting the second occurrence of y in t.

c) Give a predicate for rewriting all occurrences of y in t.

d) Give a predicate for rewriting the term x +y in t.

e) Explain why the term y + x cannot be rewritten in t.

Exercise 5.1.4 Give a term applying R to 7 arguments (including implicit argu-

ments). In fact, for every number n there is a term that applies R to exactly n
arguments.

5.2 Basic Equational Facts

The constants Q and R give us straightforward proofs for many equational facts.

To say it once more, Q together with the conversion rule provides proofs by com-

putational equality, and R together with the conversion rule provides equational

rewriting. Figure 5.1 shows a collection of basic equational facts, and Figure 5.2

62

5.2 Basic Equational Facts

> ≠ ⊥ propositional disjointness

t ≠ f constructor disjointness for B

∀xN. 0 ≠ Sx constructor disjointness for N

∀xNyN. Sx = Sy → x = y injectivity of successor

∀XT YT fX→Y xy. x = y → fx = fy applicative closure (feq)

∀XT xX yX . x = y → y = x symmetry

∀XT xX yX zX . x = y → y = z → x = z transitivity

Figure 5.1: Basic equational facts

gives proof diagrams and the resulting proof terms for most of them. The remain-

ing proofs are left as exercise. It is important that you understand each of the

proofs in detail.

Note that the proof diagrams in Figure 5.2 all follow the same scheme: First

comes a step introducing assumptions, then a conversion step making the rewriting

predicate explicit, then the rewriting step as application of R, then a conversion step

simplifying the claim, and then the final step proving the simplified claim.

We now understand how the basic proof steps “rewriting” and “proof by compu-

tational equality” used in the diagrams in Chapter 1 are realized in the propositions

as types approach.

If we look at the facts in Figure 5.2, we see that three of them

t ≠ f constructor disjointness for B

∀xN. 0 ≠ Sx constructor disjointness for N

∀xNyN. Sx = Sy → x = y injectivity of successor

concern inductive types while the others are not specifically concerned with induc-

tive types. We speak of constructor laws for inductive types. Note that the proofs

of the constructor laws all involve a match on the underlying inductive type, and

recall that matches are obtained as inductive functions. So to prove a constructor

law, one needs to discriminate on the underlying inductive type at some point.

Interestingly, the proof of the transitivity law

∀XT xX yX zX . x = y → y = z → x = z

can be simplified so that the conversion rule is not used. The simplified proof term

λXxyze1e2. R (eqx) e2 e1

exploits the fact that the equation x = z is the application (eqx)z up to notation.

63

5 Leibniz Equality

> ≠ ⊥ intro

e : > = ⊥ ⊥ conversion

(λXP.X)⊥ apply R _ e
(λXP.X)> conversion

> I

Proof term: λe. R (λXP.X) e I

t ≠ f intro

e : t = f ⊥ conversion

(λxB. match x [t⇒ > | f⇒ ⊥])f apply R _ e
(λxB. match x [t⇒ > | f⇒ ⊥])t conversion

> I

Proof term: λe. R (λxB. match x [t⇒>|f⇒⊥]) e I

x : N, y : N Sx = Sy → x = y intro

e : Sx = Sy x = y conversion

(λz. x = match z [0⇒ 0 | Sz′ ⇒ z′]) (Sy) apply R _ e
(λz. x = match z [0⇒ 0 | Sz′ ⇒ z′]) (Sx) conversion

x = x Qx

Proof term: λxye. R (λz. x=match z [0⇒0|Sz′⇒z′]) e (Qx)

X :T, x :X, y :X, z :X, x = y → y = z → x = z intro

e : x = y y = z → x = z conversion

(λy. y = z → x = z)y apply R _ e
(λy. y = z → x = z)x conversion

x = z → x = z λe.e

Proof term: λXxyze. R (λy. y=z→x=z) e (λe.e)

Figure 5.2: Proofs of basic equational facts

64

5.3 Definition of Leibniz Equality

Exercise 5.2.1 Study the two proof terms given for transitivity in detail using Coq.

Give the proof diagram for the simplified proof term. Convince yourself that there

is no proof term for symmetry that can be type-checked without the conversion

rule.

Exercise 5.2.2 Give proof diagrams and proof terms for the following propositions:

a) ∀xN. 0 ≠ Sx

b) ∀XT YT fX→y xy. x = y → fx = fy
c) ∀XT xX yX . x = y → y = x
d) ∀XT YT fX→Y gX→Y x. f = g → fx = gx

Exercise 5.2.3 (Constructor law for pairs)

Prove that the pair constructor is injective: pairxy = pairx′y ′ → x = x′∧y = y ′.

Exercise 5.2.4 (Leibniz characterization of equality)

Verify the following characterization of equality:

x = y ←→ ∀pX→P. px → py

The equivalence is known as Leibniz characterization or as impredicative character-

ization of equality. Also verify the symmetric Leibniz characterization

x = y ←→ ∀pX→P. px ←→ py

which may be phrased as saying that two objects are equal if and only if they satisfy

the same properties.

Exercise 5.2.5 (Disequality) From the Leibniz characterization of equality it fol-

lows that x ≠ y if there is a predicate that holds for x but does not hold for y .

Prove the proposition ∀XT∀xyX ∀pX→P. px → ¬py → x ≠ y expressing this

insight.

5.3 Definition of Leibniz Equality

Here are plain function definitions defining the constants for abstract propositional

equality:

eq : ∀XT. X → X → P

eqXxy := ∀pX→P. px → py

Q : ∀XT∀x. eqX xx

QXx := λpa.a

R : ∀XT∀xy∀pX→P. eqXxy → px → py
RXxypf := fp

65

5 Leibniz Equality

⊥ : P

E⊥ : ∀ZP. ⊥ → Z

∧ : P→ P→ P

C : ∀XPYP. X → Y → X ∧ Y
E∧ : ∀XPYPZP. X ∧ Y → (X → Y → Z)→ Z

∨ : P→ P→ P

L : ∀XPYP. X → X ∨ Y
R : ∀XPYP. Y → X ∨ Y

E∨ : ∀XPYPZP. X ∨ Y → (X → Z)→ (Y → Z)→ Z

Figure 5.3: Abstract constants for falsity, conjunctions, and disjunctions

The definitions are amazingly simple. Note that the conversion rule is needed to

make use of the defining equation of eq. The definition of eq follows the Leibniz

characterization of equality established in Exercise 5.2.4.

The above definition of propositional equality is known as Leibniz equality

and appears already in Whitehead and Russell’s Principia Mathematica (1910-1913).

Computational type theory also provides for the definition of a richer form of

propositional equality using an indexed inductive type family. We will study the

definition of inductive equality in Chapter 23. Until then the concrete definition

of propositional equality does not matter since all we will be using are the three

abstract constants provided by both definitions.

5.4 Abstract Presentation of Propositional Connectives

Like propositional equality, falsity, conjunction, and disjunction can be accommo-

dated with systems of abstract constants, as shown in Figure 5.3. This demonstrates

a general abstractness property of logical reasoning. Among the constants in Fig-

ure 5.3, we distinguish between constructors and eliminators. The inductive defini-

tions of falsity, conjunction, and disjunction in Chapter 3 provide the constructors

directly as constructors. The eliminators may then be obtained as inductive func-

tions. We have seen the eliminators before in Chapter 3 as explosion rule and match

functions (Figure 3.2). If we look at the abstract constants for equality, we can iden-

tify eq and Q as constructors and R as eliminator.

There is great beauty to the abstract presentation of the propositional connec-

tives with typed constants. Each constant serves a particular purpose:

66

5.5 Declared Constants and Lemmas

• The formation constants (⊥, ∧, ∨) provide the abstract syntax for the respective

connectives.

• The introduction constants (C, L, R) provide the basic proof rules for the con-

nectives.

• The elimination constants (E⊥, E∧, E∨) provide proof rules that for the proof of

an arbitrary proposition Z make use of the proof of the respective connective.

We emphasize that the definitions of the constants do not matter for the use of the

constants as proof rules. In other words, the definitions of the constants do not

contribute to the essence of the propositional connectives, which is fully covered

by the types of the constants. The constants can be defined either inductively or

impredicatively. The impredicative definitions are purely functional and do not

involve inductive definitions.

We will see later that existential quantification and propositional equality can

also be incorporated with systems of typed constants, and that once again the con-

stants can be defined either inductively or impredicatively.

Exercise 5.4.1 (Impredicative definitions) Define the constructors and eliminators

for falsity, conjunction, and disjunction assuming that the logical constants are

defined using their impredicative characterizations. Do not use the inductive defi-

nitions. Note that we have typed Z in the eliminator for falsity in Figure 5.3 with P
rather than T to enable an impredicative definition.

Exercise 5.4.2 Prove commutativity of conjunction and disjunction just using the

abstract constructors and eliminators.

Exercise 5.4.3 Assume two sets ∧, C, E∧ and ∧′, C′, E∧′ of constants for conjunc-

tions. Prove X ∧ Y ←→ X ∧′ Y . Do the same for disjunction and propositional

equality. We may say that the constructors and eliminators for a propositional con-

struct characterize the propositional construct up to propositional equivalence.

5.5 Declared Constants and Lemmas

Assuming constants without justification is something one does not do in type the-

ory. For instance, if we assume a constant of type ⊥, we can prove everything using

the explosion rule, which completely ruins the carefully constructed logical system.

A safe way for introducing a constant we would like to have consists in obtaining it

with one of the definitional facilities of computational type theory: inductive type

definitions, inductive function definitions, and plain definitions. The definitional

facilities are controlled by carefully designed restrictions ensuring that nothing bad

can happen (e.g., a proof of falsity).

67

5 Leibniz Equality

It will often be useful to hide the definition of a constant and just keep its type.

We will speak of declared constants. The idea is that we declare a system of typed

constants for which we then provide definitions that will be kept confidential. The

definitions may be seen as justifications of the constants. Declared constants pro-

vide us with a notion of abstraction that is well known from mathematics (e.g., ab-

stract groups) and programming (interfaces and implementations). We remark that

the (hidden) definitions of declared constants do not contribute reduction rules to

computational equality.

We will accommodate lemmas and theorems as declared constants.1 This makes

explicit that when we use a lemma we don’t need its proof but just its representation

as a typed constant.

A surprisingly useful lemma for propositional equality is applicative closure:

f_eq : ∀XZT∀fX→Z ∀xyX . x = y → fx = fy

Using the predecessor function

P : N→ N

P 0 := 0

P (Sn) := n

the lemma can be used to give an elegant proof for the injectivity of S:

f_eq N N P (Sx) (Sy) : Sx = Sy → x = y

What makes the proof so concise is the conversion rule, which converts the equation

P(Sx) = P(Sy) into the target equation x = y .

Exercise 5.5.1 Give a plain definition for f_eq.

Exercise 5.5.2 Prove 0 = Sx → t = f using f_eq and an inductive function Z : N→ B

testing for zero.

Exercise 5.5.3 There is a second form of applicative closure

∀XZT∀fgX→Z ∀xX . f = g → fx = gx

that may be used to instantiate equations between functions. Prove this proposition.

1Whether we say theorem, lemma, corollary, or fact is a matter of style and doesn’t make a formal
difference. We shall use theorem as generic name (as in interactive theorem proving). As it comes
to style, a lemma is a technical theorem needed for proving other theorems, a corollary is a con-
sequence of a major theorem, and a fact is a straightforward theorem to be used tacitly in further
proofs.

68

6 Inductive Eliminators

For inductive types we can define functions called eliminators that through their

types provide proof rules for case analysis and induction, and that through their

defining equations provide schemes for defining functions discriminating and re-

cursing on the underlying inductive type. Eliminators are the final step in the fas-

cinating logical bootstrap accommodating the proofs in Chapter 1 inside computa-

tional type theory.

It turns out that one eliminator per inductive type suffices. This generality be-

comes possible through the use of return type functions and the flexibility provided

by the conversion rule. Return type functions are similar to the return type predi-

cates used with the rewriting rule for propositional equality.

We will see proofs for three prominent problems: Kaminski’s equation, decid-

ability of equality of numbers, and disequality of the types N and B.

6.1 Boolean Eliminator

Recall the inductive type of booleans from §1.1 :

B ::= t | f

We can define a single function that can express all boolean case analysis we need

for definitions and proofs. We call this function boolean eliminator and define it as

follows:

EB : ∀pB→T. p t→ p f→ ∀x.px
EB p e1e2 t := e1 : p t

EB p e1e2 f := e2 : p f

First look at the type of EB. It says that we can prove ∀x.px by proving p t and p f.

This amounts to a general boolean case analysis since we can choose the return

type function p freely. We have seen the use of a return type function before with

the replacement constant for propositional equality.

Note that the type of the return type function p is B → T. Since P ⊆ T, we have

B → P ⊆ B → T. Thus we can use the boolean eliminator for proofs where p is a

predicate B→ P.

69

6 Inductive Eliminators

∀x. x = t∨ x = f conversion

∀x. (λx. x = t∨ x = f)x apply EB

1 (λx. x = t∨ x = f)t conversion

t = t∨ t = f trivial

2 (λx. x = t∨ x = f)f conversion

f = t∨ f = f trivial

Proof term constructed: EB (λx. x = t∨ x = f) (L(Q t)) (R(Q f))

Figure 6.1: Proof diagram for a boolean elimination

Now look at the defining equations of EB. They are well-typed since the patterns

EB pab t and EB pab f on the left instantiate the return type to p t and p f, which

are the types of the variables a and b, respectively.

First Example: Partial Proof Terms

Suppose we want to prove

∀x. x = t∨ x = f

Then we can use the boolean eliminator and obtain the partial proof term

EB (λx. x = t∨ x = f) [t = t∨ t = f\ [f = t∨ f = f\

which poses the subgoals [t = t ∨ t = f\ and [f = t ∨ f = f\. Note that the

subgoals are obtained with the conversion rule. We now use the proof terms L(Q t)
and R(Q f) for the subgoals and obtain the complete proof term

EB (λx. x = t∨ x = f) (L(Q t)) (R(Q f))

Figure 6.1 shows a proof diagram constructing this proof term. The diagram

makes explicit the conversions handling the applications of the return type func-

tions. That we can model all boolean case analysis with a single eliminator crucially

depends on the fact that type checking builds in (through the conversion rule) the

conversions handling return type functions.

Second Example: Kaminski’s Equation

Here is a more challenging fact known as Kaminski’s equation1 that can be shown

with boolean elimination:

∀f B→B∀x. f(f(fx)) = fx
1The equation was brought up as a proof challenge by Mark Kaminski in 2005 when he wrote his

Bachelor’s thesis on a calculus for classical higher-order logic.

70

6.1 Boolean Eliminator

Obviously, a boolean case analysis on just x does not suffice for a proof. What we

need in addition is boolean case analysis on the terms f t and f f. To make this

possible, we prove the equivalent claim

∀xyz. f t = y → f f = z → f(f(fx)) = fx

by boolean case analysis on x, y , and z. This gives us 8 subgoals, all of which have

straightforward equational proofs. Here is the subgoal for x = f, y = f, and z = t :

f t = f → f f = t = → f(f(f f)) = f f

This was the first time we saw a proof discriminating on a term rather than a

variable. Speaking informally, the proof Kaminski’s equation proceeds by cascaded

discrimination on x, ft, and ff, where the equations recording the discriminations

on the terms ft, and ff are made available as assumptions. While this proof pat-

tern is not primitive in type theory, it can be expressed as shown above. A proof

assistant may support this and other proof patterns with specialized tactics.2

Exercise 6.1.1 Define boolean negation and boolean conjunction with the boolean

eliminator.

Exercise 6.1.2 For each of the following propositions give a proof term applying

the boolean eliminator.

a) ∀pB→P∀x. (x = t→ pt)→ (x = f→ pf)→ px.

b) ∀pB→P. (∀xy. y = x → px)→ ∀x.px.

c) x & y = t ←→ x = t∧y = t.

d) x | y = f ←→ x = f∧y = f.

Exercise 6.1.3 (Boolean pigeonhole principle)

a) Prove the boolean pigeonhole principle: ∀xyzB. x = y ∨ x = z ∨y = z.

b) Prove Kaminski’s equation based on the instance of the boolean pigeonhole

principle for f(fx), fx, and x.

Exercise 6.1.4 (Boolean enumeration) Prove∀xB. x = t∨x = f and use it to prove

Kaminski’s equation by enumerating x, fx, and f(fx) and solving the resulting 23

cases with Coq’s congruence tactic.

Exercise 6.1.5 (Eliminator for >)

Recall that > is an inductive type with exactly one element.

a) Define an eliminator for > following the design you have seen for B.

b) Use the eliminator to show that all elements of > are equal.

2Coq supports the pattern with the destruct tactic and the eqn modifier.

71

6 Inductive Eliminators

6.2 Eliminator for Numbers

Recall the inductive type of numbers from §1.2 :

N ::= 0 | S(N)

Match Eliminator for Numbers

Suppose we have a constant

MN : ∀pN→T. p0→ (∀n.p(Sn))→ ∀n.pn

Then we can use MN to do case analysis on numbers in proofs: To prove ∀n.pn, we

prove a base case p0 and a successor case ∀n.p(Sn). Defining MN as an inductive

function is straightforward:

MN : ∀pN→T. p0→ (∀n.p(Sn))→ ∀n.pn
MN p e1e2 0 := e1 : p0

MN p e1e2(Sn) := e2n : p(Sn)

The types of the defining equations as they are determined by their patterns are

annotated on the right.

Recursive Eliminator for Numbers

The type of the match eliminator for numbers gives us the structure we need for

structural induction on numbers except that the inductive hypothesis is missing.

Our informal understanding of inductive proofs suggests that we add the inductive

hypothesis as implicational premise to the successor clause:

EN : ∀pN→T. p0→ (∀n. pn→ p(Sn))→ ∀n.pn

There are two questions now: Can we define a recursive eliminator EN with the

given type, and does the type of EN really suffice to do proofs by structural induc-

tion? The answer to both questions is yes.

To define EN, we take the defining equations for MN and obtain the additional ar-

gument for the inductive hypothesis of the continuation function f in the successor

case with structural recursion:

EN : ∀pN→T. p0→ (∀n. pn→ p(Sn))→ ∀n.pn
EN p e1e2 0 := e1 : p0

EN p e1e2(Sn) := e2n(EN p e1e2n) : p(Sn)

72

6.2 Eliminator for Numbers

x + 0 = x conversion

(λx. x + 0 = x)x apply EN

1 (λx. x + 0 = x)0 conversion

0 = 0 comp. eq.

2 ∀x. (λx. x + 0 = x)x → (λx. x + 0 = x)(Sx) conversion

∀x. x + 0 = x → Sx + 0 = Sx intro

IH :x + 0 = x Sx + 0 = Sx conversion

S(x + 0) = Sx rewrite IH

Sx = Sx comp. eq.

Proof term constructed:

EN (λx.x + 0 = x) (Q 0) (λxh. R′ (λz.Sz = Sx)h(Q(Sx)))x

Figure 6.2: Proof diagram for x + 0 = x

The type of EN clarifies many aspects of informal inductive proofs. For instance,

the type of EN makes clear that the variable n in the final claim ∀n.pn is different

from the variable n in the successor case ∀n. pn → p(Sn). Nevertheless, it makes

sense to use the same name for both variables since this makes the inductive hy-

pothesis pn agree with the final claim.

We can now do inductive proofs completely formally. As first example we con-

sider the fact

∀x. x + 0 = x

We do the proof by induction on n, which amounts to an application of the elimi-

nator EN :

EN (λx. x + 0 = x) [0+ 0 = 0\ [∀x. x + 0 = x → Sx + 0 = Sx\

The partial proof term leaves two subgoals known as base case and successor case.

Both subgoals have straightforward proofs. Note how the inductive hypothesis ap-

pears as an implicational premise in the successor case. Figure 6.2 shows a proof

diagram for a proof term completing the partial proof term obtained with EN.

Exercise 6.2.1 Prove the following propositions in Coq using EN and MN.

a) Sn ≠ n.

b) n+ Sk ≠ n.

c) x +y = x + z → y = z (addition is injective in its 2nd argument)

Also give high-level proof diagrams in the style of Chapter 1.

Exercise 6.2.2 Write a term expressing the addition function using an application

of EN. Prove that your addition function agrees with the standard addition function

using EN.

73

6 Inductive Eliminators

Exercise 6.2.3 Define a match function MN with the eliminator EN and prove the

equations MNaf0 = a and MNaf(Sx) = fx.

Exercise 6.2.4 Express the Ackermann function using two applications of EN. Fol-

low the scheme from §1.10. Verify that the specifying equations hold by computa-

tional equality.

6.3 Equality of Numbers is Logically Decidable

We now show that equality of numbers is logically decidable:

∀xNyN. x = y ∨ x ≠ y

To prove this claim we need induction on x and case analysis on y . Moreover, it is

essential that y is quantified in the inductive hypothesis. We start with the partial

proof term

EN (λx. ∀y. x = y ∨ x ≠ y)
[∀y. 0 = y ∨ 0 ≠ y\

[∀x. (∀y. x = y ∨ x ≠ y)→ ∀y. Sx = y ∨ Sx ≠ y\

The base case follows with case analysis on y :

MN (λy. 0 = y ∨ 0 ≠ y)

[0 = 0∨ 0 ≠ 0\

[∀y. 0 = Sy ∨ 0 ≠ Sy\

The first subgoal is trivial, and the second subgoal follows with constructor dis-

jointness. The successor case also needs case analysis on y :

λxh∀y. x=y∨x≠y . MN (λy. Sx = y ∨ Sx ≠ y)

[Sx = 0∨ Sx ≠ 0\

[∀y. Sx = Sy ∨ Sx ≠ Sy\

The first subgoal follows with constructor disjointness. The second subgoal follows

with the instantiated inductive hypothesis hy and injectivity of S.

Figure 6.3 shows a proof diagram for the partial proof term developed above.

We have described the above proof with much formal detail. This was done so

that the reader understands that inductive proofs can be formalized with only a

few basic type-theoretic principles. If we do the proof with a proof assistant, a fully

formal proof is constructed but most of the details are taken care of by automation.

If we want to document the proof informally for a human reader, we may just write

something like the following:

74

6.4 Eliminator for Pairs

∀xNyN. x = y ∨ x ≠ y apply EN, intro

1 0 = y ∨ 0 ≠ y destruct y
1.1 0 = 0∨ 0 ≠ 0 trivial

1.2 0 = Sy ∨ 0 ≠ Sy trivial

2 IH: ∀yN. x = y ∨ x ≠ y Sx = y ∨ Sx = y destruct y
2.1 Sx = 0∨ Sx ≠ 0 trivial

2.2 Sx = Sy ∨ Sx ≠ Sy destruct IHy
2.2.1 H: x = y Sx = Sy rewrite H, trivial

2.2.2 H: x ≠ y Sx ≠ Sy intro, apply H

H1: Sx = Sy x = y injectivity

Figure 6.3: Proof diagram with a quantified inductive hypothesis

The claim follows by induction on x and case analysis on y , where y is quanti-

fied in the inductive hypothesis and disjointness and injectivity of the construc-

tors 0 and S are used.

Exercise 6.3.1 Define a function M : N→ N→ N for truncating subtraction using EN

(both for the recursion on the first argument and the discrimination on the second

argument). Prove Mxy = x −y using EN.

Exercise 6.3.2 (Boolean equality decider for numbers)

Write a function eqb : N → N → B such that ∀xy. x = y ←→ eqN xy = t. Prove

the equivalence using EN. Next express eqb using EN for both the recursion and the

discrimination.

6.4 Eliminator for Pairs

Recall the inductive type definition for pairs from §1.7 :

Pair(X : T, Y : T) ::= pair(X, Y)

As before we use use the notations

s × t � Pair st

(s, t) � pair _ _ st

Following the scheme we have seen for booleans and numbers, we can define an

eliminator for pairs as follows:

E× : ∀XTYT∀pX×Y→T. (∀xy. p(x,y))→ ∀a.pa
E×XYpe (x,y) := exy : p(x,y)

75

6 Inductive Eliminators

Exercise 6.4.1 Prove the following facts for pairs a :X × Y using the eliminator E×:

a) (π1a,π2a) = a η-law

b) swap(swap a) involution law

Exercise 6.4.2 Use E× to write functions that agree with π1, π2, and swap (see §1.7).

Exercise 6.4.3 By now you know enough to do all proofs of Chapter 1 with proof

terms. Do some of the proofs in Coq without using the tactics for destructuring and

induction. Use the eliminators you have seen in this chapter instead.

6.5 Disequality of Types

Informally, the types N and B of booleans and numbers are different since they have

different cardinality: While there are infinitely many numbers, there are only two

booleans. But can we show in the logical system we have arrived at that the types N

and B are not equal?

Since B and N both have type T1, we can write the propositions N = B and N ≠ B.

So the question is whether we can prove N ≠ B. We can do this with a property

distinguishing the two types (Exercise 5.2.5). We choose the predicate

p(XT) := ∀xXyXzX . x = y ∨ x = z ∨y = z

saying that a type has at most two elements. I now suffices to prove pB and ¬pN.

With boolean case analysis on the variables x, y , z we can show that p holds for B.

Moreover, we can disprove pN by choosing x = 0, y = 1, and z = 2 and proving

(0 = 1∨ 0 = 2∨ 1 = 2)→ ⊥

by disjunctive case analysis and disjointness and injectivity of 0 and S.

Fact 6.5.1 N ≠ B.

On paper, it doesn’t make sense to work out the proof in more detail since this

involves a lot of writing and routine verification. With Coq, however, doing the

complete proof is quite rewarding since the writing and the tedious details are taken

care of by the proof assistant. When we do the proof with Coq, we can see that the

techniques introduced so far smoothly scale to more involved proofs.

Exercise 6.5.2 Prove the following inequations between types.

a) B ≠ B× B

b) ⊥ ≠ >
c) ⊥ ≠ B

d) B ≠ >
e) P ≠ >
f) B ≠ T

Hint: You will need the eliminator for > (Exercise 6.1.5).

76

6.6 Abstract Return Types

Exercise 6.5.3 Note that one cannot prove B ≠ B×> since one cannot give a predi-

cate that distinguishes the two types. Neither can one prove B = B×>.

6.6 Abstract Return Types

Eliminators have abstract return types providing great flexibility. Two typical exam-

ples are

E⊥ : ∀ZT. ⊥ → Z
EB : ∀pB→T. p t→ p f→ ∀x.px

The point is that Z and px may be arbitrary types. This means in particular that

eliminators are functions that are polymorphic in the number of their arguments.

For instance:

E⊥N : ⊥ → N

E⊥ (N→ N) : ⊥ → N→ N

E⊥ (N→ N→ N) : ⊥ → N→ N→ N

6.7 Uniqueness of Procedural Specifications

Recall from §1.11 that we can specify functions with non-recursive unfolding func-

tions. For instance, we can specify the Fibonacci function and the Ackermann func-

tion with unfolding functions. Procedural specifications are interesting whenever

the recursion pattern of an equational specification does not meet the format re-

quired for inductive function definitions. Given an unfolding function, we can

ask whether there is a function satisfying the unfolding function (existence), and

whether two function satisfying the unfolding function always agree (uniqueness).

In Chapter 1 we show that the procedural specifications for the Fibonacci and the

Ackermann function are satisfiable. We can now show that these specifications are

also unique.

To get the feel for uniqueness proofs, we start with an unfolding function for

the addition function:

Add : (N→ N→ N)→ N→ N→ N

Addf 0y := y

Addf (Sx)y := S(fxy)

77

6 Inductive Eliminators

Clearly, the addition function + from §1.2 satisfies the procedural specification:

∀xy. x+y = Add(+)xy follows by discrimination on x and computational equal-

ity. Moreover, we can show that all functions satisfying Add agree:

∀fg. (∀xy. fxy = Addfxy)→ (∀xy. gxy = Addgxy)→ ∀xy. fxy = gxy

The proof is by induction on x and equational reasoning (i.e., rewriting and compu-

tational equality).

We remark that for every inductive function definition the corresponding proce-

dural specification is unique. In each case induction and discrimination following

the recursion and discrimination of the inductive function definition suffice for a

proof.

Showing the uniqueness of the procedural specifications for the Ackermann and

Fibonacci functions is more challenging. For Ackermann, one starts with induction

on x keeping the quantification for y . The base case then follows after discrimina-

tion on y . For the successor case, one does a nested induction on y . The base case

follows with the outer induction hypothesis. The successor case follows using both

inductive hypotheses.

Proving uniqueness of the Fibonacci specification requires another idea. Here we

prove

∀n. fn = gn∧ f(Sn) = g(Sn)

rather than just ∀n. fn = gn to obtain a strong enough inductive hypothesis.

Exercise 6.7.1 Do the following proofs with the proof assistant:

a) Define the unfolding function for truncating subtraction and show that all func-

tions satisfying it agree.

b) Show that all functions satisfying the unfolding function for the Fibonacci func-

tion agree.

c) Show that all functions satisfying the unfolding function for the Ackermann

function agree.

78

7 Case Study: Cantor Pairing

Cantor discovered that numbers are in bijection with pairs of numbers. Cantor’s

proof rests on a counting scheme where pairs appear as points in the plane. Based

on Cantors scheme, we realize the bijection between numbers and pairs with two

functions inverting each other. We obtain an elegant formal development using only

a few basic facts about numbers.

7.1 Definitions

We will construct and verify two functions

E : N× N→ N encode

D : N→ N× N decode

that invert each other: D(E(x,y)) = (x,y) and E(Dn)) = n. The functions are

based on the counting scheme for pairs shown in Figure 7.1. The pairs appear as

points in the plane following the usual coordinate representation. Counting starts

at the origin (0,0) and follows the diagonals from right to left:

(0,0) 1st diagonal 0

(1,0), (0,1) 2nd diagonal 1,2

(2,0), (1,1), (0,2) 3rd diagonal 3,4,5

Assuming a function

η : N× N→ N× N

that for every pair yields its successor on the diagonal walk described by the count-

ing scheme, we define the decoding function D as follows:

D(n) := ηn(0,0)

The definition of the successor function η for pairs is straightforward:

η(0, y) := (Sy,0)

η(Sx,y) := (x, Sy)

79

7 Case Study: Cantor Pairing

y
...

5 20

4 14 19

3 9 13 18

2 5 8 12 17

1 2 4 7 11 16

0 0 1 3 6 10 15 · · ·
0 1 2 3 4 5 x

Figure 7.1: Counting scheme for pairs of numbers

We now come to the definition of the encoding function E. We first observe that

all pairs (x,y) on a diagonal have the same sum x + y , and that the length of the

nth diagonal is n. We start with the equation

E(x,y) := σ(x +y)+y

where σ(x +y) is the first number on the diagonal x +y . We now observe that

σn = 0+ 1+ 2+ · · · +n

Thus we define σ recursively as follows:

σ(0) := 0

σ(Sn) := Sn+ σn

We remark that σn is known as Gaussian sum.

7.2 Proofs

We start with a useful equation saying that under the encoding function successors

of pairs agree with successors of numbers.

Fact 7.2.1 (Successor equation) E(ηc) = S(Ec) for all pairs c.

Proof Case analysis on c = (0, y), (Sx,y) and straightforward arithmetic. �

Fact 7.2.2 E(Dn) = n for all numbers n.

Proof By induction on n using Fact 7.2.1 for the successor case. �

Fact 7.2.3 D(Ec) = c for all pairs c.

80

7.3 Discussion

Proof Given the recursive definition of D and E, we need to do an inductive proof.

The idea is to do induction on the number Ec. Formally, we prove the proposition

∀c. Ec = n → Dn = c

by induction on n.

For n = 0 the premise gives us c = (0,0) making the conclusion trivial.

For the successor case we prove

Ec = Sn → D(Sn) = c

We consider three cases: c = (0,0), (Sx,0), (x, Sy). The case c = (0,0) is trivial

since the premise is contradictory. The second and third case are similar. We show

the third case

E(x, Sy) = Sn → D(Sn) = (x, Sy)

We have η(Sx,y) = (x, Sy), hence using Fact 7.2.1 and the definition ofD it suffices

to show

S(E(Sx,y)) = Sn → η(Dn) = η(Sx,y)

The premise yields E(Sx,y) = n, thus Dn = (Sx,y) by the inductive hypothesis. �

Exercise 7.2.4 A bijection between two types X and Y consists of two functions

f : X → Y and g : Y → X such that ∀x. g(fx) = x and ∀y. f(gy) = y .

a) Give and verify a bijection between N and (N× N)× N.

b) Prove that there is no bijection between B and >.

7.3 Discussion

Technically, the most intriguing point of the development is the implicational in-

ductive lemma used in the proof of Fact 7.2.3 and the accompanying insertion of

η-applications (idea due to Andrej Dudenhefner, March 2020). Realizing the de-

velopment with Coq is pleasant, with the exception of the proof of the successor

equation (Fact 7.2.1), where Coq’s otherwise powerful tactic for linear arithmetic

fails since it cannot look into the recursive definition of σ .

What I like about the development of the pairing function is the interesting in-

terplay between geometric speak (e.g., diagonals) and formal definitions and proofs.

Their is much elegance at all levels. Cantor’s pairing function is a great example for

an educated Programming 1 course addressing functional programming and pro-

gram verification.

It is interesting to look up Cantor’s pairing function in the mathematical liter-

ature and in Wikipedia, where the computational aspects of the construction are

81

7 Case Study: Cantor Pairing

ignored as much as possible. There one typically starts with the encoding function

and uses the Gaussian sum formula to avoid the recursion. Then injectivity and

surjectivity of the encoding function are shown, which non-constructively yields the

existence of the decoding function. The simple recursive definition of the decoding

function does not appear.

82

8 Existential Quantification

An existential quantification ∃xt. s says that the predicate λxt.s is satisfiable, that

is, that there is some u such that the proposition (λxt.s)u is provable. Follow-

ing this idea, a basic proof of ∃xt. s is a pair (u,v) consisting of a witness u : t
and a certificate v : (λxt.s)u. This design may be realized with an inductive type

definition.

We will prove two prominent logical facts involving existential quantification:

Russell’s Barber theorem (a non-existence theorem) and Lawvere’s fixed point theo-

rem (an existence theorem). From Lawvere’s theorem we will obtain a type-theoretic

variant of Cantor’s power set theorem (there is no surjection from a set to its power

set).

8.1 Inductive Definition and Basic Facts

We first assume a formation constant

ex : ∀XT. (X → P)→ P

so that we can write an existential quantifications as function applications (as

usual, X is treated as implicit argument):

∃xt. s � ex (λxt. s)

Next we assume an introduction constant

E : ∀XT∀pX→P∀xX . px → exX p

so that we can prove an existential quantification ∃xt. s by providing a witness u : t
and a certificate v : (λxt.s)u. Finally, we assume an elimination constant

M∃ : ∀XT∀pX→P∀ZP. exp → (∀x. px → Z)→ Z

so that given a proof of an existential quantification we can prove an arbitrary

proposition Z by assuming that there is a witness and certificate as asserted by

the existential quantification.

We will see that the constants E and M∃ provide us with all the proof rules we

need for existential quantification. As usual, the definitions of the constants are not

needed for proving with existential quantifications.

83

8 Existential Quantification

The constants ex and E can be defined with an inductive type definition:

ex (X : T, p : X → P) : P ::= E (x : X, px)

The inductive type definition for ex and E has two parameters where the type of the

second parameter p depends on the first parameter X. This is the first time we see

such a parameter dependence. The inductive definitions for pair types and conjunc-

tions also have two parameters, but there is no dependency. Also, the definition for

existential quantification is the first time we see a parameter (p) that is not a type.

The elimination constant M∃ can now be defined as an inductive function:

M∃ : ∀XT∀pX→P∀ZP. exp → (∀x. px → Z)→ Z
M∃XpZ (E _ _xa)f := fxa

We now recognize M∃ as the simply typed match function for existential types.

When convenient, we will use the match notation

match s [Exa⇒ t] � M∃ _ _ _ s (λxa.t)

for applications of M∃. Note that the elimination restriction applies to all inductive

propositions exXp.

Figure 8.1 shows a proof diagram and the constructed proof term for a de Mor-

gan law for existential quantification. The proof diagram makes all conversions

explicit so that you can see where they are needed. Each of the two conversions can

be justified with either the η- or the β-law for λ-abstractions. We also have

(∃x.px) = ex(λx.px) = ex(p)

where the first equation is just a notational change and the second equation is by

application of the η-law.

In practice, it is not a good idea to make explicit inessential conversions like the

ones in Figure 8.1. Instead, it is preferable to think modulo conversion. Figure 8.2

shows a proof diagram with implicit conversions constructing the same proof term.

This is certainly a better presentation of the proof. The second diagram gives a fair

representation of the interaction you will have with Coq. In fact, Coq will immedi-

ately reduce the first two β-redexes you see in Figure 8.1 as part of the proof actions

introducing them. This way there will be no need for explicit conversion steps.

Exercise 8.1.1 Prove the following propositions with proof diagrams and give the

resulting proof terms. Mark the proof actions involving implicit conversions.

a) (∃x∃y. pxy)→ ∃y∃x. pxy
b) (∃x.px)→ ¬∀x.¬px
c) ((∃x.px)→ Z) ←→ ∀x. px → Z
d) (∃x.px)∧ Z ←→ ∃x. px ∧ Z

e) (∃x. px∨qx) ←→ (∃x.px)∨ (∃x.qx)
f) ¬¬(∃x.px) ←→ ¬∀x.¬px
g) (∃x.¬¬px) → ¬¬∃x.px
h) ∀XP. X ←→ ∃xX .>

84

8.1 Inductive Definition and Basic Facts

X :T, p :X → P ¬(∃x.px)←→ ∀x.¬px apply C

1 ¬(∃x.px)→ ∀x.¬px intro

f :¬(∃x.px), x :X, a :px ⊥ apply f
∃x.px apply Ex

(λx.px)x conversion

px a

2 (∀x.¬px)→ ¬(∃x.px) intro with M∃
f :∀x.¬px, x :X
a : (λx.px)x ⊥ apply fx

px conversion

(λx.px)x a

Proof term: C (λfxa.f (Epxa)) (λfb.match b [Exa⇒ fxa])

Figure 8.1: Proof of existential de Morgan law with explicit conversions

X :T, p :X → P ¬(∃x.px)←→ ∀x.¬px apply C

1 ¬(∃x.px)→ ∀x.¬px intro

f :¬(∃x.px), x :X, a :px ⊥ apply f
∃x.px Exa

2 (∀x.¬px)→ ¬(∃x.px) intro with M∃
f :∀x.¬px, x :X, a :px ⊥ fxa

Proof term: C (λfxa.f (Epxa)) (λfb.match b [Exa⇒ fxa])

Figure 8.2: Proof of existential de Morgan law with implicit conversions

Exercise 8.1.2 Give a proof term for (∃x.px)→ ¬∀x.¬px using the constants ex,

E, and M∃. Do not use matches.

Exercise 8.1.3 Verify the following existential characterization of disequality:

x ≠ y ←→ ∃p. px ∧¬py

Exercise 8.1.4 Verify the impredicative characterization of existential quantifica-

tion:

(∃x.px)←→ ∀ZP. (∀x. px → Z)→ Z

85

8 Existential Quantification

Exercise 8.1.5 Universal and existential quantification are compatible with propo-

sitional equivalence. Prove the following compatibility laws:

(∀x. px ←→ qx)→ (∀x.px)←→ (∀x.qx)
(∀x. px ←→ qx)→ (∃x.px)←→ (∃x.qx)

Exercise 8.1.6 (Abstract presentation) We have seen that conjunction, disjunction,

and propositional equality can be modeled with abstract constants (§5.4). For exis-

tential quantification, we may use the constants

Ex : ∀XT. (X → P)→ P

E : ∀XT∀pX→P∀xX . px → ExX p

M : ∀XT∀pX→P∀ZP. exp → (∀x. px → Z)→ Z

we have obtained above with inductive definitions.

a) Assuming the constants, prove that the impredicative characterization holds:

ExXp ←→ ∀ZP. (∀x. px → Z)→ Z .

b) Define the constants impredicatively (i.e., not using inductive types).

Exercise 8.1.7 (Intuitionistic drinker) Using excluded middle, one can argue that

in a bar populated with at least one person one can always find a person such that

if this person drinks milk everyone in the bar drinks milk:

∀XT∀pX→P. (∃xX .>)→ ∃x. px → ∀y.py

The fact follows intuitionistically once two double negations are inserted:

∀XT∀pX→P. (∃xX .>)→ ¬¬∃x. px → ∀y.¬¬py

Prove the intuitionistic version.

8.2 Barber Theorem

Nonexistence results often get a lot of attention. Here are two famous examples:

1. Russell: There is no set containing exactly those sets that do not contain them-

selves: ¬∃x∀y. y ∈ x ←→ y ∉ y .

2. Turing: There is no Turing machine that halts exactly on the codes of those

Turing machines that don’t halt on their own code: ¬∃x∀y. Hxy ←→ ¬Hyy .

Here H is a predicate that applies to codes of Turing machines such that Hxy
says that Turing machine x halts on Turing machine y .

It turns out that both results are trivial consequences of a straightforward logical

fact known as barber theorem.

86

8.3 Lawvere’s Fixed Point Theorem

Fact 8.2.1 (Barber Theorem)

∀XT∀pX→X→P. ¬∃x∀y. pxy ←→ ¬pyy .

Proof Suppose there is an x such that ∀y. pxy ←→ ¬pyy . Then pxx ←→ ¬pxx.

Contradiction by Russell’s law ¬(X ←→ ¬X) as shown in §3.7. �

The barber theorem is related to a logical puzzle known as barber paradox.

Search the web to find out more.

Exercise 8.2.2 Give a proof diagram and a proof term for the barber theorem. Con-

struct a detailed proof with Coq.

Exercise 8.2.3 Consider the following predicate on types:

p(XT) := ∃fgX→X∀xy. fx = y ∨ gy = x

Prove p(B) and ¬p(N).
Hint: It suffices to consider the numbers 0, 1, 2.

8.3 Lawvere’s Fixed Point Theorem

Another famous non-existence theorem is Cantor’s theorem. Cantor’s theorem says

that there is no surjection from a set into its power set. If we analyse the situation

in type theory, we find a proof that for no type X there is a surjective function

X → (X → B). If for X we take the type of numbers, the result says that the function

type N → B is uncountable. It turns out that in type theory facts like these are best

obtained as consequences of a general logical fact known as Lawvere’s fixed point

theorem.

A fixed point of a function fX→X is an x such that fx = x.

Fact 8.3.1 Boolean negation has no fixed point.

Proof Consider !x = x and derive a contradiction with boolean case analysis on x.�

Fact 8.3.2 Propositional negation λP.¬P has no fixed point.

Proof Suppose ¬P = P . Then ¬P ←→ P . Contradiction with Russell’s law. �

A function fX→Y is surjective if ∀y∃x. fx = y .

Theorem 8.3.3 (Lawvere) Suppose there exists a surjective function X → (X → Y).
Then every function Y → Y has a fixed point.

Proof Let fX→(X→Y) be surjective and gY→Y . Then fa = λx.g(fxx) for some a.

We have faa = g(faa) by rewriting and conversion. �

87

8 Existential Quantification

Corollary 8.3.4 There is no surjective function X → (X → B).

Proof Boolean negation doesn’t have a fixed point. �

Corollary 8.3.5 There is no surjective function X → (X → P).

Proof Propositional negation doesn’t have a fixed point. �

We remark that Corollaries 8.3.4 and 8.3.5 may be seen as variants of Cantor’s

theorem.

Exercise 8.3.6 Construct with Coq detailed proofs of the results in this section.

Exercise 8.3.7

a) Prove that all functions > → > have fixed points.

b) Prove that the successor function S : N→ N has no fixed point.

c) For each type Y = ⊥, B, B× B, N, P, T give a function Y → Y that has no fixed

point.

Exercise 8.3.8 With Lawvere’s theorem we can give another proof of Fact 8.3.2

(propositional negation has no fixed point). In contrast to the proof given with

Fact 8.3.2, the proof with Lawvere’s theorem uses mostly equational reasoning.

The argument goes as follows. Suppose (¬X) = X. Since the identity is a surjec-

tion X → X, the assumption gives us a surjection X → (X → ⊥). Lawvere’s theorem

now gives us a fixed point of the identity on ⊥ → ⊥. Contradiction since the type of

the fixed point is falsity.

Do the proof with Coq.

88

9 Executive Summary

We have arrived at a computational type theory where typing is modulo computa-

tional equality. There are dependent function types ∀xu.v , applications st, plain

definitions, inductive type definitions, and inductive functions definitions. The def-

initions introduce typed constants, where the constants introduced by plain def-

initions and inductive function definitions come with equational reduction rules.

The resulting reduction system has four essential properties: termination, unique

normal forms, type preservation, and canonicity. Types are accommodated as first

class values, necessitating a hierarchy of universe types

P ⊂ T1 ⊂ T2 ⊂ T3 ⊂ · · ·

taking types as values. The lowest universe P is impredicative. There are also

lambda expressions with β-reduction and η-equivalence.

In computational type theory, all definable functions are computational. This

makes a key difference to set-theoretic mathematics, where functions are merely

sets of input-output pairs. Inductive function definitions can be recursive. To en-

sure termination, recursion must follow the recursion pattern of an inductive type.

Theories are developed as sequences of type-theoretic definitions building on

each other. At the lowest level we have definitions accommodating particular propo-

sitions. Lemmas and theorems for particular theories (e.g., numbers, lists) are ac-

commodated with plain definitions. Theories will build on each other, but in the

end all theories are derived from a small set of type-theoretic principles.

Propositions as Types

Propositions are accommodated as types of the lowest universe. This yields propo-

sitions that can quantify over functions, types, propositions, and proofs (proofs

appear as elements of propositional types). Propositional equality can be modeled

elegantly as Leibniz equality making use of the conversion rule and the impredica-

tivity of P. Powerful lemmas, including induction principles, can be formulated as

propositions and can be defined as functions.

Logical reasoning as obtained with the propositions as types approach is intu-

itionistic reasoning not building in the law of excluded middle. When desired, the

law of excluded middle can be assumed.

The propositions as types approach is both natural and powerful. Modeling

lemmas as functions and proofs as combination of functions is in perfect corre-

89

9 Executive Summary

spondence with mathematical practice. Describing functions and combination of

functions with terms is an obvious elaboration coming with the benefit that proof

checking is obtained as type checking. The propositions as types approach turns

out to be a powerful explanation and formalization of what we do with proposi-

tions and proofs in mathematical practice. It opens new mathematical possibilities

by turning propositions and types into first-class objects. The type-theoretic ex-

planation of the proof rule for induction on numbers is of spectacular elegance. As

generations of students have witnessed, informal mathematics just doesn’t succeed

in giving a clear explanation of what is happening when we do an inductive proof.

Computational type theory gives us an expressive and uniform language for

propositions and proofs serving all levels of mathematical reasoning. On the one

hand, we can do proofs at a low level with first principles. On the other hand, we

can do proofs at a high level using abstractions and lemmas.

Logical constructs like falsity, conjunction, disjunction, existential quantification

and equality can be incorporated with typed constants whose definition does not

matter for their use. Remarkably, the constants come with functional types provid-

ing the proof rules for the logical constructs. The constants may be defined either

inductively or impredicatively, where the concrete definitions do not matter for the

use of the constructs.1 The impredicative definitions are purely functional and do

not involve inductive definitions.

Proof Assistants

Computational type theories are designed to be implemented as programming lan-

guages. We can implement a verifier reading a sequence of definitions and checking

that everything is well-formed according to the rules of the type theory, a process

known as type checking. Computational type theories are designed such that type

checking can be done algorithmically, and that proof checking is obtained as type

checking.

We may assume that a verifier sees a sequence of definitions in fully elaborated

form; that is, all implicit arguments have been derived and all notational conve-

niences (i.e., infix operators) have been removed. This way, the complexity of elab-

oration can be handled separately by an elaborator, and the verifier can be realized

with a relatively small program.

At a higher level one has an interactive proof assistant, which is a tool supporting

users in developing theories (i.e., sequences of definitions). The user sees the inter-

active proof assistant as a command interpreter. The proof assistant integrates an

incremental elaborator and an incremental verifier building a type-checked theory

definition by definition. There is also a secondary tactic interpreter for type-driven

incremental top-down construction of terms. The tactic interpreter executes com-

1The inductive definition of equality will be discussed in Chapter 23.

90

mands called tactics contributing to a term construction initiated by the command

interpreter. Besides simple tactics, there are automation tactics building complete

proofs in one go. Powerful automation tactics exist for propositional and arithmetic

reasoning.

The top level of an interactive proof assistant provides commands for construct-

ing terms using the tactic interpreter, type checking, simplifying, and evaluating

terms, defining and assuming constants, hiding definitions of constants, querying

existing definitions, establishing notations and implicit arguments, setting the de-

tails of printing, and loading libraries.

For the engineering of a proof assistant, the separation of verification, elabora-

tion, and incremental term construction with tactics is essential. Concerning the

software effort needed, verification ranks lowest, elaboration ranks in the middle,

and tactics rank highest. By design, everything produced by tactics and elaboration

is checked by the kernel, the software component responsible for verification. This

way the trusted base of an interactive proof assistant can be kept small.

Recursion in inductive function definitions is tuned down by a guard condition. A

guard condition must be decidable and must ensure termination. We are assuming

a simple and well-understood guard condition in this text. More permissive guard

conditions are being used in proof assistants.

The computational type theory presented in this text is compatible with what is

implemented by the proof assistant Coq. We take the freedom to assume features

not directly available in Coq. Most notably, we use inductive and plain function

definitions where Coq only provides plain constant definitions. We make no effort

to cover all features of Coq. Every chapter of the text comes with a Coq file realizing

the development of the chapter in Coq.

Further Remarks

1. It much simplifies the realization of a proof assistant (and a verifier in particu-

lar) that propositions and proofs are derived notions and that proof checking is

obtained as type checking.

2. It is fascinating to see how the mathematical notions of propositions, proofs,

and theorems are reduced to the computational primitives of a type theory.

3. An important aspect of mathematical proving is subgoal and assumption man-

agement. In the propositions as types approach subgoal management boils down

to type-driven construction of terms, and assumption management is obtained

as nesting of typed lambda abstractions and let expressions.

4. A collapsed universe hierarchy P ⊂ T with T : T would be nice but is not an

option since the vicious cycle T : T destroys canonicity and consistency of the

system. Nevertheless, for most developments, we can ignore universe levels and

have the elaborator check that universe levels can be consistently assigned.

91

9 Executive Summary

5. We will eventually see methods providing for the construction of functions spec-

ified with general terminating recursion.

92

Part II

More Type Theory

93

10 Informative Types and
Certifying Functions

Informative types combine computational and propositional information. They are

obtained with computational variants of disjunctions (s ∨ t) and existential quan-

tifications (∃x.s) called sum types (s + t) and sigma types (Σx.s). Informative types

are an important feature of computational type theory having no equivalent in set-

theoretic mathematics. With informative types one can describe computational sit-

uations often lacking adequate descriptions in set-theoretic language.

Mathematics comes with a rich language for describing proofs at a high level of

abstraction. Using this language, we can write mathematical proofs in such a way

that they can be elaborated into formal proofs. The tactic level of the Coq proof

assistant provides an abstraction layer for the elaboration of mathematical proofs

making it possible to delegate to the proof assistant the details coming with proof

terms.

It turns out that the idea of high-level proof extends to the construction of

certifying functions, which are functions with an informative target type. The proof-

style construction of certifying functions turns out to be advantageous in practice.

Technically, it comes for free since the tactic level of a proof assistant addresses

types in general, not just propositional types. Methodologically, the proof-style

construction of a certifying function is guided by an informative specification and

may use high-level building blocks like induction following ideas from proof con-

struction. Typically, one first shows a for-all-exists lemma ∀xXΣyY .pxy and then

extracts a function fX→Y and a correctness lemma ∀x.px(fx).

10.1 Lead Examples

Consider the propositional lemmas

L1 : ∀xyN. x = y ∨ x ≠ y
L2 : ∀xyN ∃zN. x + z = y ∨y + z = x

Type-theoretically, both lemmas are functions, which may be described as follows:

• Given two numbers, L1 decides whether the numbers are equal and returns a

proof certifying the decision.

95

10 Informative Types and Certifying Functions

• Given two numbers, L2 returns the distance between the numbers and a proof

certifying the result.

Both lemmas have routine proofs proceeding by induction on x and case analysis

on y . We observe that the proofs of the lemmas act as high-level definitions of

functions.

We now ask how we can obtain functions

f1 : N→ N→ B

f2 : N→ N→ N

satisfying the correctness lemma

C1 : ∀xyN. f1xy = t←→ x = y
C2 : ∀xyN. (x + f2xy = y)∨ (y + f2xy = x)

Because of the elimination restriction for disjunctions and existential quantifica-

tions, we cannot get suitable functions f1 and f2 from the lemmas L1 and L2. This

is unfortunate since the proofs of L1 and L2 do contain information on how the

functions can be constructed.

The situation changes if we prove the computational lemmas

F1 : ∀xyN. (x = y)+ (x ≠ y)
F2 : ∀xyN Σz. (x + z = y)+ (y + z = x)

using sum types (+) for the disjunctions (∨) and a sigma type (Σ) for the existential

quantification (∃). Because sum type and sigma types are defined at a computa-

tional universe T, there is no elimination restriction and we can easily obtain the

functions f1 and f2 with their correctness lemmas C1 and C2 from the computa-

tional lemmas F1 and F2. As it turns out, the proof scripts one would use for the

propositional lemmas in the Coq proof assistant can be reused for the computa-

tional lemmas.

Let us fix our language. An informative type is either a sum type or a sigma

type, or a functional type with an informative target type. A certifying function is

a function whose target type is informative.

We use the words lemma and proof informally. Formally, lemmas are accommo-

dated as constants. The idea is that mostly the type of a lemma matters for its use,

not the details of its definition. We refer to the definition of a lemma as its proof.

We speak of a propositional lemma if the type of the lemma is a propositional

type, and of a computational lemma if the type of the lemma is not a propositional

type. Propositional lemmas are typically accommodated as declared constants hid-

ing their proofs. For computational lemmas it may be convenient to not hide their

proofs so that they can contribute to computational equality.

96

10.2 Sum Types and Sigma Types

From now on, when we say show t or prove t we want to say that a term s of

type t is to be constructed. When using proof-oriented language, it does not matter

whether t is a propositional or a nonpropositional type. The view that one can prove

any type is fully realized by the tactics interpreter of the Coq proof assistant, which

does not make a difference between propositional and nonpropositional types.

Exercise 10.1.1 Consider the proposition ∀xN ∃n. (x = n · 2)∨ (x = S(n · 2)).

a) Formulate the proposition as an informative type.

b) Explain what a certifying function of this type computes.

c) Explain how from a certifying function of this type one can obtain a function

N→ B deciding whether a number is even.

d) Explain how from a certifying function of this type one can obtain a function

N→ N that for every number x yields the largest n such that 2n ≤ x.

e) Prove the proposition.

Remark: We write n · 2 rather than 2n since n · 2 doesn’t require commutativity

lemmas.

10.2 Sum Types and Sigma Types

We start with a table listing propositional types together with their computational

counterparts:

∀ → × a + Σ computational types in T
∀ → ∧ ←→ ∨ ∃ propositional types in P

For function types (∀, →) there is no difference. For conjunctions we have product

types as computational counterpart, and for propositional equivalence we define

the computational variant (propositional equivalence of types) as follows:

a : T→ T→ T

Xa Y := (X → Y)× (Y → X)

Thus an inhabitant of an equivalence Xa Y is a pair (f , g) of two functions

f : X → Y and g : Y → X.

The computational counterparts for disjunctions and existential quantifications

are called sum types (s + t) and sigma types (Σx.s). Their inductive definitions

mimic the inductive definitions of disjunctions and existential quantifications by

replacing the universe P with the universe T:

+ (X : T, Y : T) : T ::= L(X) | R(Y)

sig (X : T, p : X → T) : T ::= E (x : X, px)

97

10 Informative Types and Certifying Functions

M+ : ∀XYZT. X + Y → (X → Z)→ (Y → Z)→ Z
M+XYZ (Lx)e1e2 := e1x

M+XYZ (Ry)e1e2 := e2y

MΣ : ∀XT∀pX→T∀ZT. sigp → (∀x. px → Z)→ Z
MΣXpZ (Exa)e := exa

match s [Lx ⇒ t1 | Ry ⇒ t2] � M+ _ _ _ s (λx.t1) (λy.t2)

match s [Exa⇒ t] � MΣ _ _ _ s (λxa.t)

Figure 10.1: Simply typed match functions for sum and sigma types

Similar to the notation ∃x.s for propositions ex (λx.s), we shall use the notation

Σx.s for sigma types sig (λx.s). The full types of the value constructors for sum

and sigma types are as follows:

L : ∀XTYT. X → X + Y
R : ∀XTYT. Y → X + Y
E : ∀XTpX→T∀xX . px → sigXp

We will treat X and Y as implicit arguments.

A value of a sum type X + Y carries a value of X or a value of Y , where the

information which alternative is present can be used computationally. The elements

of sum types are called variants.

We see a value Epxc of a sigma type Σx.px as a dependent pair (x, c)p and

speak of the first and second component of the pair (x and c). We may also refer

to x as the witness and to c as the certificate of the pair. We may write Exc for

Epxc if the type function is clear from the context.

While many uses of sum types X +Y and sigma types Σx.px are such that X, Y ,

and px are propositions, the more general cases matter. They are for instance

needed when we nest informative types as in (P1 + P2)+ P3 or Σx.Σy.pxy .

Figure 10.1 defines the simply typed match functions for sum types and sigma

types following the definitions of the match functions for disjunctions (Figure 3.2)

and existential quantifications (§8.1).

Often, the simply typed match functions for sum and sigma types do not suffice.

We may then use the universal eliminators

E+ : ∀XYT∀qX+Y→T. (∀x.q(Lx))→ (∀y.q(Ry))→ ∀a. qa

EΣ : ∀XT∀pX→T∀qsigp→T. (∀xc. q(Exc))→ ∀a. qa

98

10.2 Sum Types and Sigma Types

providing dependently typed matches for sum and sigma types. We leave the

straightforward definitions as exercise.

Exercise 10.2.1 Recall that there is no elimination restriction for P ←→ Q.

a) Prove ∀PQP. (P ←→ Q)a (P a Q).

b) Explain why ∀XT. X ∧X does not type check.

Exercise 10.2.2 Define the universal eliminators for sum and sigma types.

Hint: The defining equations are similar to the defining equations for the simply

typed match functions. Note that the universal eliminators move the discriminating

argument to the end for clarity. A careful consideration of the differences between

the simply typed match functions and the universal eliminators will help your un-

derstanding.

Exercise 10.2.3 Define the simply typed match functions for sum and sigma types

using the universal eliminators for sum and sigma types.

Exercise 10.2.4 Define the so-called truncation functions for sum and sigma types

∀PQP. P +Q → P ∨Q
∀pX→P. (Σx.px)→ ∃x.px

using the simply typed match functions. Note that converse functions cannot be

defined because of the elimination restriction.

Exercise 10.2.5 Define functions as follows:

a) ∀bB. (b = t)+ (b = f).

b) ∀nN. (n = 0)+ (Σk.n = Sk).

c) ∀XYZT. (Y → Z)→ X + Y → X + Z .

d) ∀xyB. x & y = f a (x = f)+ (y = f).

e) ∀xyB. x | y = t a (x = t)+ (y = t).

Exercise 10.2.6 (Constructor laws for sum types)

Prove the constructor laws for sum types using the simply typed match function:

a) Lx ≠ Ry .

b) Lx = Lx′ → x = x′.
c) Ry = Ry ′ → y = y ′.
Hint: The techniques used for numbers (Figure 5.2) also work for sums.

Exercise 10.2.7 (Equational match law for sum types)

Prove ∀aX+Y . (Σx. a = Lx) + (Σy. a = Ry) using the universal eliminator E+ .

Convince yourself that the simply typed match function M+ does not suffice for the

proof.

99

10 Informative Types and Certifying Functions

Exercise 10.2.8 (Functional characterizations)

Prove the following propositional equivalences for sum types and sigma types using

the simply typed match functions:

a) X + Y a ∀ZT. (X → Z)→ (Y → Z)→ Z .

b) (Σx.px) a ∀ZT. (∀x. px → Z)→ Z .

Note that the equivalences are analogous to the impredicative characterizations of

disjunctions and existential quantifications.

Exercise 10.2.9 (Product and sum types are in bijection with sigma types)

Sigma types can express pair types X × Y and sum types X + Y up to bijection.

a) Show that X × Y and sig (λxX .Y) are in bijection.

b) Show that X + Y and sig (λbB. if b then X else Y) are in bijection.

The functions for the bijections can be defined using the simply typed match func-

tions. The proofs of the roundtrip equations, however, require the universal elimi-

nators but for one exception.

10.3 Projections and Skolem Equivalence

We assume a type function p : X → T and define two projections that yield the first

and the second component of a dependent pair a : sigp :

π1 : sigp → X π2 : ∀asigp. p(π1a)

π1 (Exc) := x π2 (Exc) := c

Note that the type of π2 is given using the projection π1. This acknowledges the

fact that the type of the second component depends on the first component. Type

checking the defining equation of π2 requires a conversion step unfolding the defi-

nition of π1.

We will use the projections to define a translation function that, given a func-

tion fX→Y satisfying ∀x. px(fx), yields a certifying function ∀x Σy.pxy . We say

that the translation merges the function f and the correctness proof ∀x. px(fx)
into a single certifying function. We will also define a converse translation function

that decomposes a certifying function ∀x Σy.pxy into a simply typed function

f : X → Y and a correctness proof ∀x. px(fx). The definability of the two trans-

lations can be stated elegantly as a propositional equivalence between informative

types.

Fact 10.3.1 (Skolem equivalence)

∀XYT∀pX→Y→T. (∀x Σy. pxy)a (Σf ∀x. px(fx)).

Proof The translation → can be defined as λF. E(λx. π1(Fx))(λx. π2(Fx)). The

converse translation ← can be defined as λax. E(π1ax)(π2ax). �

100

10.3 Projections and Skolem Equivalence

Note that type checking the above proof requires several conversion steps un-

folding the definitions of the projections π1 and π2.

The Skolem equivalence (Fact 10.3.1) is of practical importance. Often we will

prove a computational lemma ∀x Σy. pxy to then obtain a function fX→Y satisfy-

ing the specification ∀x. px(fx).
We use the term Skolem equivalence since there is a ressemblance with the equiv-

alence for Skolem functions in first-order logic.

Exercise 10.3.2 Define a simply typed match function

∀XT∀pX→T∀ZT. sigp → (∀x. px → Z)→ Z

using the projections π1 and π2.

Exercise 10.3.3 Express π1 with the simply typed match function MΣ. Convince

yourself that π2 cannot be expressed with MΣ.

Exercise 10.3.4 Express the projections π1 and π2 for sigma types with terms t1
and t2 using the universal eliminator EΣ such that π1 ≈ t1 and π2 ≈ t2.

Exercise 10.3.5 (Eta law) Prove the eta law E (π1a)(π2a) = a for dependent pairs

a : sigp. Convince yourself that the proof requires the universal eliminator EΣ and

cannot be done with the match function MΣ.

Exercise 10.3.6 (Propositional Skolem) Due to the elimination restriction for exis-

tential quantification, the direction → of the Skolem equivalence cannot be shown

for all types X and Y if Σ-quantification is replaced with existential quantification.

(The unprovability persists if excluded middle is assumed.) There are two notewor-

thy exceptions. Prove the following:

a) ∀YT∀pB→Y→P. (∀x∃y. pxy)→ ∃f ∀x. px(fx).
b) ∀XT∀YP∀pX→Y→P. (∀x∃y. pxy)→ ∃f ∀x. px(fx).
Remarks: (1) The boolean version (a) generalizes to all finite types X presented with

a covering list. (2) The unprovability of the propositional Skolem equivalence per-

sists if the law of excluded is assumed. The difficulty is in proving the existence of

the function f since functions must be constructed with computational principles.

(3) In the literature, f is often called a choice function and the direction → of the

Skolem equivalence is called a choice principle.

Exercise 10.3.7 (Existential quantification) Existential quantifications exXp are

subject to the elimination restriction if and only if X is not a proposition. Thus

a function extracting the witness can only be defined if X is a proposition.

a) Define projections π1 and π2 for quantifications exXp where X is a proposition.

b) Prove a = E (π1a)(π2a) for all a : exXp where X is a proposition.

101

10 Informative Types and Certifying Functions

Exercise 10.3.8 (Injectivity laws)

One would think that the injectivity laws for dependent pairs

Exc = Ex′c′ → x = x′

Exc = Exc′ → c = c′

are both provable. While the first law is easy to prove, the second law cannot be

shown in general in computational type theory. This certainly conflicts with intu-

itions that worked well so far. The problem is with subtleties of dependent type

checking. In Chapter 23, we will show that the second injectivity law does hold if

the type of the first component has an equality decider.

a) Prove the first injectivity law.

b) Try to prove the second injectivity law. If you think you have found a proof on

paper, check it with Coq to find out where it breaks. The obvious proof idea that

rewrites π2(Exc) to π2(Exc′) does not work since there is no well-typed rewrite

predicate validating the rewrite.

10.4 Lead Examples Revisited

We are now ready to prove the computational lemmas discussed in §10.1 and ex-

plore applications. We shall be using proof-oriented language.

Fact 10.4.1 (Certifying equality decider)

∀xyN. (x = y)+ (x ≠ y).

Proof By induction on x with y quantified, followed by case analysis on y . The

interesting case is (Sx = Sy)+ (Sx ≠ Sy). We do case analysis on the instantiated

inductive hypothesis (x = y)+ (x ≠ y). The second case follows by contraposition

and injectivity of the constructor S. �

Note that the proof text agrees with the proof text we have given in §6.2 for the

proposition ∀xyN. (x = y) ∨ (x ≠ y). When we check the proof for the infor-

mative type, we have to make sure that the induction on x, the case analysis on y ,

and the case analysis on the instantiated inductive hypothesis are all admissible in

a computational context. As it comes to induction and case analysis on numbers,

this is certainly the case. As it comes to the case analysis on the instantiated induc-

tive hypothesis, there is no problem either since the inductive hypothesis is now

formulated with a sum type rather than a disjunction.

We remark that the informal textual description of the function asserted by

Fact 10.4.1 is efficient and adequate for humans. Writing down the exact term

would be tedious, as well as reading and understanding it. Using the tactic inter-

preter of a proof assistant, the term can be easily synthesized following the informal

102

10.4 Lead Examples Revisited

description. Of course, the exact term is needed for a rigorous verification of the

construction.

Once we have a certifying function F : ∀xyN. (x = y)+ (x ≠ y), we can define

further functions using it. Since the type of F is informative, the definition of F is

not needed to prove properties of functions defined using F . We may summarize

this situation with the slogan the type says it all. To explain this point, we define a

boolean decider for equality of numbers based on F :

fxy := if Fxy then t else f

We can prove the correctness of the boolean decider

∀xyN. x = y ←→ fxy = t

by discrimination on Fxy : Either Fxy = La and x = y (since a : x = y), or

Fxy = Ra and x ≠ y (since a : x ≠ y). This results in two proof obligations

x = y → (t = t←→ x = y)
x ≠ y → (f = t←→ x = y)

which are easily discharged. Formally, the discrimination on Fxy can be performed

with the universal eliminator for sum types. We delegate the formal details of the

correctness proof to Exercise 10.4.3.

Fact 10.4.2 (Certifying distance function)

∀xyN ΣzN. (x + z = y)+ (y + z = x).

Proof By induction on x with y quantified, followed by case analysis on y in the

successor case. The cases where x = 0 or y = 0 are trivial. The interesting case

Σz. (Sx + z = Sy) + (Sy + z = Sx) follows by case analysis on the instantiated

inductive hypothesis Σz. (x + z = y)+ (y + z = x). �

Exercise 10.4.3 Recall the boolean decider f based on the certifying function F
asserted by Fact 10.4.1.

a) Prove ∀xyN. x = y ←→ fxy = t using a proof diagram. After a conversion

step, an application of the universal eliminator for sums yields two proof obliga-

tions x = y → (t = t ←→ x = y) and x ≠ y → (f = t ←→ x = y) with obvious

proofs.

b) Do the proof with Coq using the universal eliminator for sums.

c) Do the proof with Coq using the tactic destruct (which much reduces the intel-

lectual effort).

103

10 Informative Types and Certifying Functions

Exercise 10.4.4 (Distance)

Assume a function D : ∀xyN Σz. (x+z = y)+(y+z = x) and prove the following:

a) π1(Dxy) = (x −y)+ (y − x).
b) π1(D 3 7) = 4.

c) x −y = if π2(Dxy) then 0 else π1(Dxy).

Note that a definition of D is not needed for the proofs since all information needed

about D is in its type. Hint: For (a) and (c) discriminate on Dxy and simplify. What

remains are equations involving truncating subtraction only.

Exercise 10.4.5 Prove x + z = y → y + z = x → z = 0.

Exercise 10.4.6 (Certifying division by 2)

Define a certifying function F : ∀xN Σn. (x = n · 2)+ (x = S(n · 2)).

Exercise 10.4.7 (Certifying division by 2)

Assume a function F : ∀xN Σn. (x = n · 2)+ (x = S(n · 2)).

a) Use F to define a function that for a number x yields a pair (n, k) such that

x = k+n · 2 and k is 0 or 1. Prove the correctness of your function.

b) Use F to define a function that tests whether a number is even. Prove the cor-

rectness of your function.

Exercise 10.4.8 Using the Coq proof assistant, write a script synthesizing a term

describing the Ackermann function. Use nested induction and follow the design

in §1.10. Prove that the synthesized function satisfies the specifying equations for

the Ackermann function by computational equality.

10.5 Inhabitation

We now define a type constructor I : T → P mapping every type X to a proposition

I(X) that is provable if and only if X is inhabited:

I(X : T) : P ::= T(X)

We call I inhabitation operator and I(X) the truncation of X. Moreover, we read

a proposition I(X) as X is inhabited. Truncation deletes computational informa-

tion but keeps propositional information. The elimination restriction applies to

inhabitation types I(X) except if X is a proposition. It turns out that conjunction,

disjunction, and existential quantification can be characterized by the truncations

of their computational counterparts (pair types, sum types, and sigma types).

104

10.5 Inhabitation

Fact 10.5.1 (Logical truncations)

1. (P ∧Q) ←→ I(P ×Q).
2. (P ∨Q) ←→ I(P +Q).
3. (∃x.px) ←→ I(Σx.px).

Fact 10.5.2 (Characterizations of inhabitation)

1. ∀XT. I(X)←→ ∀ZP. (X → Z)→ Z .

2. ∀XT. I(X)←→ ∃xX .>.

3. ∀PP. I(P)←→ P .

Exercise 10.5.3 Define a simply typed match function for inhabitation types and

prove the facts stated above.

Fact 10.5.4 Prove (X → Y)→ I(X)→ I(Y).

Exercise 10.5.5 Prove that double negated existential quantification agrees with

double negated sigma quantification: ¬¬exp ←→ ¬(sigp → ⊥).

Exercise 10.5.6 Prove that double negated disjunction agrees with double negated

sum: ¬¬(P ∨Q)←→ ¬(P +Q → ⊥).

Exercise 10.5.7 Think of I(sigXp) as existential quantification and prove the fol-

lowing:

a) ∀xX . px → I(sigXp).

b) ∀ZP. I(sigXp)→ (∀x. px → Z)→ Z .

Exercise 10.5.8 (Advanced material) We define the type functions

choice X Y := ∀pX→Y→P. (∀x∃y.pxy)→ ∃f ∀x.px(fx)
witness X := ∀pX→P. exp → sigp

You will show that there are translations between ∀XYT. choice X Y and

I(∀XT. witness X). The translation from choice to witness needs to navigate

cleverly around the elimination restriction. The presence of the inhabitation

operator is essential for this direction.

a) Prove I(∀XT. witness X)→ (∀XYT. choice X Y).

b) Prove (∀XYT. choice X Y)→ I(∀XT. witness X).

c) Convince yourself that the equivalence

(∀XYT. choice X Y)←→ I(∀XT. witness X)

is not provable since the two directions require different universe levels for X
and Y .

105

10 Informative Types and Certifying Functions

Hints. For (a) use f := λx. π1(WY(px)(Fx)) where W is the witness operator and F
is the assumption from the choice operator. For (b) use the choice operator with

the predicate λaΣ(X,p).exp. λb Σ(X,p). sigp. π1a = π1b where pX→P. Keeping the argu-

ments of the predicate abstract makes it possible to obtain the choice function f
before the inhabitation operator is removed. The proof idea is taken from the Coq

library ChoiceFacts.

10.6 Bijection Types

A (computational) bijection between two types X and Y consists of two functions

f : X → Y
g : Y → X

inverting each other

∀x. g(fx) = x
∀y. f(gy) = y

We may say that a bijection establishes a bidirectional one-to-one correspondence

between the elements of the two types. We have already established several inter-

esting bijections:

• A bijection between N× N and N (Chapter 7).

• A bijection between X × Y and sig(λx :X.Y) (Exercise 10.2.9).

• A bijection between X + Y and sig(λb : B. if b then X else Y) (Exercise 10.2.9).

Our interest is now in the formal representation of bijections in computational

type theory. Give two types X and Y , we would like to have a bijection type B such

that the elements of B represent the bijections between X and Y . Informally, the

elements of B should be tuples (f , g, I1, I2) such that

• f is a function X → Y and g is a function Y → X.

• I1 is a proof that g inverts f and I2 is a proof that f inverts g.

Following this design, we first define an inversion predicate

inv : ∀XYT. (X → Y)→ (Y → X)→ P

invXYfg := ∀x. g(fx) = x

saying that that a function g inverts a function f . The arguments X and Y of the

inversion predicate will be kept implicit. One possible representation of bijection

types are nested sigma types

ΣfX→Y ΣgY→X . invgf ∧ invfg

106

10.7 Notes

A more direct representation of bijection types can be obtained with an inductive

type definition

B(X : T, Y : T) : T ::= B(f : X → Y , g : Y → X, invgf , invfg)

introducing a type constructor B that yields bijection types BXY whose elements

are bijections between X and Y .

Exercise 10.6.1 Prove the following facts about inversion.

a) invgf → (fx = fx′ ←→ x = x′).
b) invgf → injectivef ∧ surjectiveg.

Exercise 10.6.2 Show that bijectivity is a computational equivalence relation on

types:

a) BXX.

b) BXY → BYX.

c) BXY → BYZ → BXZ .

Exercise 10.6.3 Show that the following types are in bijection using bijection types.

a) B and >+>.

b) X × Y and Y ×X.

c) X + Y and Y +X.

d) X and X ×>.

Exercise 10.6.4 Show that BXY and ΣfX→Y ΣgY→X . invgf∧invfg are in bijection:

a) BXY a ΣfX→Y ΣgY→X . invgf ∧ invfg.

b) B (BXY) (ΣgY→X . invgf ∧ invfg).

Exercise 10.6.5 Prove BN B→ ⊥.

10.7 Notes

Most propositions have functional readings. Once we describe propositions as infor-

mative types, their proofs become certifying functions that may be used in compu-

tational contexts. Informative types are obtained with sum types and sigma types,

the computational versions of disjunctions and existential quantifications. Certify-

ing functions carry their specifications in their types and may be seen as computa-

tional lemmas. Like propositional lemmas, certifying functions are best described

with high-level proof outlines, which may be translated into actual terms using the

tactic interpreter of a proof assistant. There is a truncation operation obtaining

107

10 Informative Types and Certifying Functions

conjunctions, disjunctions, and existential quantifications from their computational

counterparts.

Product, sum, and sigma types are obtained as inductive types. In contrast to the

propositional variants, where simply typed eliminators are sufficient, constructions

involving product, sum, and sigma types often require dependently typed elimina-

tors (called universal eliminators in this chapter). Moreover, existential quantifi-

cations and sigma types are distinguished from the other inductive types we have

encountered so far in that their value constructors model a dependency between

witness and certificate using a type function.

A simplified computational type theory would not have a special universe for

propositions and thus avoid the complication of the elimination restriction. Such a

theory would model propositions as computational types using product, sum, and

sigma types. Adding an impredicative universe of propositions pays off in that ex-

cluded middle can be assumed without destroying the computational interpretation

of sum and sigma types. Computational type theory without a special universe of

propositions is known as Martin-Löf type theory [20]. Having an impredicative uni-

verse of propositions is a key feature of the computational type theory underlying

the Coq proof assistant [9].

108

11 Decision Types, Discrete Types, and
Option Types

Every function definable in computational type theory is algorithmically com-

putable. Thus we can prove within computational type theory that predicates are

algorithmically decidable by characterizing them with decision functions. Decidabil-

ity proofs in computational type theory are formal computability proofs avoiding

the tediousness coming with explicit models of computation (e.g., Turing machines).

We call a predicate decidable if it can be characterized with a decision function.

Decidable predicates are algorithmically decidable. Moreover, decidable predicates

are logically decidable in that the law of excluded middle holds for their accompa-

nying propositions (i.e., ∀x. px ∨¬px).

Technically, decision functions are best realized as certifying deciders using spe-

cial sum types called decision types. It turns out that the propagation laws for de-

ciders (i.e., decision functions) follow from the propagation laws for decisions (i.e.,

the elements of decision types).

A discrete type is a type that comes with a decider for its equality predicate.

Concrete data types like the booleans or the numbers do have equality deciders.

We also introduce option types, which are inductive types extending a given base

type with a new element. Option types preserve discreteness of their base type.

Based on option types we define finite types and finite cardinality.

11.1 Decision Types and Certifying Deciders

We define decision types as follows:

D(XT) : T := X + (X → ⊥)

We call values of decision types decisions. A decision of type D(X) carries either

an element of X or a proof that X is void.

A certifying decider for a predicate pX→P is a function ∀x.D(px). That we can

define a certifying decider for a predicate in computational type theory means that

we can show within computational type theory that the predicate is algorithmically

decidable. We say that a predicate is decidable if we can define a certifying decider

for it.

109

11 Decision Types, Discrete Types, and Option Types

We remark that the satisfiability predicate for tests on numbers

tsat (fN→B) : P := ∃n. fn = t

is not algorithmically decidable. Hence it cannot be shown in computational type

theory that tsat is decidable. The predicate says that a boolean test for numbers is

satisfiable, that is, yields the boolean t for at least one number.

A boolean decider for a predicate pX→P is a function fX→B such that

∀x. px ←→ fx = t

It turns out that we can define general translations between boolean deciders and

certifying deciders.

Fact 11.1.1 (Decider equivalence)

∀XT∀pX→P. (∀x.D(px)) a (Σf .∀x. px ←→ fx = t).

Proof Let F : ∀x.D(px). We define a boolean decider fx := if Fx then t else f

and prove ∀x. px ←→ fx = t by fixing x and doing case analysis on Fx.

For the other direction, suppose ∀x. px ←→ fx = t. We fix x and showD(px)
by case analysis on fx. If fx = t, we show px, otherwise we show ¬px. �

We state the basic propagation laws for decisions. All of them have straightfor-

ward proofs.

Fact 11.1.2 (Propagation laws for decisions)

1. D(>) and D(⊥).
2. ∀XYT. D(X)→D(Y)→D(X → Y).
3. ∀XYP. D(X)→D(Y)→D(X ∧ Y).
4. ∀XYP. D(X)→D(Y)→D(X ∨ Y).
5. ∀XP. D(X)→D(¬X).
6. ∀XYT. (Xa Y)→ (D(X)aD(Y)).

In words we may say, that decidable propositions are closed under the boolean

connectives, and that decidability is invariant under propositional equivalence.

Exercise 11.1.3 Prove the claims of Fact 11.1.2.

Exercise 11.1.4 Define a function ∀XT fX→B xX . D(fx = t).

Exercise 11.1.5 Define functions as follows:

a) ∀XT. D(X) a ΣbB. if b then X else X → ⊥.

b) ∀XT. D(X) a ΣbB. Xa b = t.

Exercise 11.1.6 Prove ∀XT. (D(X)→ ⊥)→ ⊥.

110

11.2 Discrete Types

11.2 Discrete Types

We call a type X discrete if we can define a certifying equality decider for it:

∀xyX . D(x = y)

In other words, a type is discrete if its equality predicate is decidable. We define

E(XT) : T := (∀xyX . D(x = y))

Note that E(X) is the type of certifying equality deciders for X.

Fact 11.2.1 (Propagation of equality deciders)

1. E(⊥), E(>), E(B), E(N).
2. ∀XYT. E(X)→ E(Y)→ E(X × Y).
3. ∀XYT. E(X)→ E(Y)→ E(X + Y).

Proof E(N) is immediate from Fact 10.4.1. The other claims all have straightfor-

ward proofs. �

Fact 11.2.2 Discreteness propagates backwards through injective functions:

∀XYT∀fX→Y . injective f→ E(Y)→ E(X).

Exercise 11.2.3 Proof the claims of Facts 11.2.1 and 11.2.2.

Exercise 11.2.4 Prove BXY → (E(X)a E(Y)).

Exercise 11.2.5 Prove that a type has a certifying equality decider if and only if it

has a boolean equality decider: ∀X. E(X)a ΣfX→X→B.∀xy. x = y ←→ fxy = t.

Exercise 11.2.6 Prove E(> → ⊥).

11.3 Option Types

Given a type X, we may see the sum type X + > as a type that extends X with

one additional element. Such one-element extensions are often useful and can be

accommodated with dedicated inductive types called option types:

O(X : T) : T ::= ◦X | �

The inductive type definition introduces the constructors

O : T→ T
◦ : ∀XT. X → O(X)
� : ∀XT. O(X)

111

11 Decision Types, Discrete Types, and Option Types

We treat the argument X of the value constructors as implicit argument. Following

language from functional programming, we pronounce the constructors ◦ and � as

some and none. We offer the intuition that � is the new element and that ◦ injects

the elements of X into O(X).

Fact 11.3.1 (Constructor laws)

The constructors ◦ and � are disjoint, and that the constructor ◦ is injective.

Proof Follows with the techniques used for the constructor laws for numbers (Fig-

ure 5.2). Exercise. �

Fact 11.3.2 (Option types preserve discreteness)

∀XT. E(X)→ E(O(X)).

Proof Exercise. �

Exercise 11.3.3 Prove ∀aO(X). a ≠ � a Σx. a = ◦x.

Note that direction → needs computational falsity elimination.

Exercise 11.3.4 Prove ∀fX→O(Y). (∀x. fx ≠ �)→ ∀x Σy. fx = ◦y .

Note the need for computational falsity elimination. Show that assuming the above

claim yields computational falsity elimination in the form ∀XT. ⊥ → X (instantiate

with X := ⊥, Y := X, and f = λ_.�).

Exercise 11.3.5 (Truncating subtraction with flag)

Define a recursive function f : N→ N→ O(N) that yields ◦(x −y) if the subtraction

x−y doesn’t truncate, and � if the subtraction x−y truncates. Prove the equation

fxy = if y − x then ◦(x −y) else �.

Exercise 11.3.6 (Bijectivity) Show that the following types are in bijection:

1. > and O(⊥).
2. B and O(O(⊥)).
3. O(X) and X +>.

4. N and O(N).

Exercise 11.3.7 (Kaminski reloaded)

Prove ∀f O3(⊥)→O3(⊥)∀x. f 8(x) = f 2(x).
Hint: Prove ∀xO3(⊥). x = �∨ x = ◦�∨ x = ◦◦� and use it to enumerate x, fx, f 2x,

and f 3x. This yields 34 cases, all of which are solved by Coq’s congruence tactic.

Exercise 11.3.8 (Counterexample) Find a type X and functions f : X → O(X) and

g : O(X)→ X such that you can prove invg f and disprove invf g.

112

11.4 Finite Types and Cardinality

Bijection Theorem for Option Types

Given a bijection between O(X) and O(Y), we can construct a bijection between X
and Y . Suppose f and g provide a bijection between O(X) and O(Y). To map x,

we look at f(◦x). If f(◦x) = ◦y , we map x to y . If f(◦x) = �, we have f� = ◦y for

some y and map x to y . The other direction is symmetric.

Defining a function X → Y as described above involves a computational falsity

elimination. For that reason it is crucial that the function is first obtained as a

certifying function so that the definition of the function is not needed for proving

its required properties.

Lemma 11.3.9 Let g invert fO(X)→O(Y). Then

∀x Σy. match f(◦x) [◦y ′ ⇒ y = y ′ | �⇒ f� = ◦y].

Proof Case analysis of f(◦x). If f(◦x) = ◦y , we return y . If f(◦x) = �, we do case

analysis on f�. If f� = ◦y , we return y . Otherwise, we have a contradiction since g
inverts f . We finish with computational falsity elimination. �

Theorem 11.3.10 (Bijection) ∀XY. B (O(X)) (O(Y)) → BXY .

Proof Let f and g provide a bijection B (O(X)) (O(Y)). By Lemma 11.3.9 we obtain

functions f ′ : X → Y and g′ : Y → X such that

∀x. match f(◦x) [◦y ⇒ f ′x = y | �⇒ f� = ◦f ′x]
∀y. match g(◦y) [◦x ⇒ g′y = x | �⇒ g� = ◦g′y]

We show g′(f ′x) = x, the other inversion follows analogously. We discriminate

on f ◦x. If f ◦x = ◦y , we have g◦y = ◦x and g′(f ′x) = x follows. If f ◦x = �, we have

f� = ◦y for some y and g′(f ′x) = x follows. �

Exercise 11.3.11 Prove the bijection theorem for options with the proof assistant

not looking at the code we provide. Formulate a lemma providing for the two sym-

metric cases in the proof of Theorem 11.3.10.

11.4 Finite Types and Cardinality

We use option types and bijectivity to formally define finite types and their car-

dinality. We refer to On(⊥) as a numeral type and to the elements of On(⊥) as

numerals. Since every application of the option constructor adds one element, the

types On(⊥) are finite and have exactly n elements. Formally, we say that a type X
is a finite type of cardinality n if X is in bijection with On(⊥). To show that the

cardinality of finite types is unique, it suffices to show that m equals n if Om(⊥)
and On(⊥) are in bijection.

113

11 Decision Types, Discrete Types, and Option Types

Fact 11.4.1 (Cardinality) If Om(⊥) and On(⊥) are in bijection, then m = n.

Proof By induction onm with n quantified followed by case analysis on n. Ifm = 0

or n = 0, the claim is easy to show. Otherwise, the claim follows with the bijection

theorem for options (11.3.10) and the inductive hypothesis. �

A basic mathematical insight concerning finiteness is that a function X → X
where X is finite is injective if and only if it is surjective. A proof of this fact

requires induction, a clever construction, and considerable case analysis. We will

prove the variant stated by Theorem 11.4.3. The key idea is that given two functions

f : O2(X) → O2(Y) and g : O2(Y) → O2(X) we can lower f and g to functions

f ′ : O(X) → O(Y) and g′ : O(Y) → O(X) such that g′ inverts f ′ if g inverts f . We

define a lowering operator as follows:

L : ∀XY. (O(X)→ O2(Y))→ X → O(Y)
LXYfx := match f(◦x) [◦b ⇒ b | �⇒ match f� [◦b ⇒ b | �⇒ �]]

The idea is simple: Given x, Lf checks whether f maps ◦x to ◦b. If so, Lf maps x
to b. Otherwise, Lf checks whether f maps � to ◦b. If so, Lf maps x to b. If not,

Lf maps x to �.

Lemma 11.4.2 (Lowering) Let f : O2(X)→ O2(Y) and g : O2(Y)→ O2(X).
Then invgf → inv (Lg)(Lf).

Proof Let invgf . We show (Lg)(Lfa) = a by case analysis following the matches

of Lf and Lg and linear equational reasoning. There are 8 cases. �

Theorem 11.4.3 (Bijection)

Let f and g be functions On(⊥)→ On(⊥). Then invgf → invfg.

Proof We prove the claim by induction on n. For n = 0 and n = 1 the proofs are

straightforward.

Let f , g : OSSn(⊥) → OSSn(⊥) and invgf . By Lemma 11.4.2 and the inductive

hypothesis we have inv (Lf)(Lg). We consider 2 cases:

1. f(g�) = �. We show f(g◦b) = ◦b. We have (Lf)(Lgb) = b. The claim now

follows by case analysis and linear equational reasoning following the definitions

of Lf and Lg (7 cases are needed).

2. f(g�) = ◦b. We derive a contradiction.

a) f� = ◦b′ We have (Lf)(Lgb′) = b′. A contradiction follows by case anal-

ysis and linear equational reasoning following the definitions of Lf and Lg
(4 cases are needed).

b) f� = �. Contradictory since invgf . �

114

11.4 Finite Types and Cardinality

The above proof requires the verification of 12 cases by linear equational reason-

ing as realized by Coq’s congruence tactic. The cascaded case analysis of the proof

is cleverly chosen as to minimize the cases that need to be considered. The need

for cascaded case analysis of function applications so that linear equational rea-

soning can finish the current branch of the proof appeared before with Kaminski’s

equation (§6.1).

We remark that the lowering operator is related to the certifying lowering op-

erator established by Lemma 11.3.9. However, there are essential differences. The

lowering operator uses a default value while Lemma 11.3.9 exploits an assumption

and computational falsity elimination to avoid the need for a default value. In fact,

the default value is not available in the setting of Lemma 11.3.9, and the assumption

is not available in the setting of the lowering operator.

Using the lowering lemma, we can prove a cardinality result for numeral types.1

Theorem 11.4.4 (Cardinality) Let f : Om(⊥)→ On(⊥) and invgf . Then m ≤ n.

Proof If m = 0 or n = 0 the claim is straightforward. Otherwise we have f :

OSm(⊥)→ OSn(⊥) and invgf . We provem ≤ n by induction onm with n, f , and g
quantified. For m = 0 the claim is trivial. In the successor case, we need to show

Sm ≤ n. If n = 0, we have f : OSSm(⊥) → O(⊥) contradicting invgf . If n > 0, the

claim follows by Lemma 11.4.2 and the inductive hypothesis. �

We now have a second proof of Fact 11.4.1.

Corollary 11.4.5 If Om(⊥) and On(⊥) are in bijection, then m = n.

Exercise 11.4.6 Prove that finite types are discrete.

Exercise 11.4.7 Prove that the type N of numbers is not finite.

Hint: First prove that for every function f : On(⊥) → N there is a number u such

that fx ≤ u for all x.

Exercise 11.4.8 (Decidability over finite types)

Let d be a certifying decider for p : On(⊥)→ T. Prove the following:

a) D(∀x.px)
b) D(∃x.px)

c) (Σx.px)+ (∀x.px → ⊥)

1We shall use the linear order x ≤ y on numbers. A formal definition and proofs of the necessary
properties will appear in §15.5.

115

11 Decision Types, Discrete Types, and Option Types

Exercise 11.4.9 (Formal definition of numeral types) We have not given a formal

definition of numeral types. One possibility is to obtain numeral types with an

iteration operator as in §1.9, as is suggested by our notation. A second possibility

is to define numeral types directly:

F : N→ T

F(0) := ⊥
F(Sn) := O(F(n))

Which definition is used doesn’t make a difference for the constructions considered

in this section.

a) Prove ∀n. On(⊥) = F(n).
b) Verify that O7(⊥) = F(7) holds by computational equality, but that this is not

the case for On(⊥) = F(n) where n is a variable. The situation is similar to

x + 0 = 0+ x.

Exercise 11.4.10 We have obtained finite types with option types. Alternatively,

one may obtain finite types by iterating the function λX.X + > on an empty type.

Prove that (λX.X +>)n(⊥) and On(⊥) are in bijection.

Exercise 11.4.11 (Embedding numeral types into the numbers)

Numeral types can be embedded into the numbers by interpreting the constructor �
as 0 and the constructor ◦ as successor.

a) Define an encoding function E : ∀n. On(⊥)→ N.

b) Define a decoding function D : N→ ∀n. OSn(⊥).
c) Prove Ena < n.

d) Prove D(E(Sn)a)n = a.

e) Prove k ≤ n→ E(Sn)(Dkn) = k.

Hint: The definition of E needs computational falsity elimination.

Exercise 11.4.12 Try to do the proof of Theorem 11.4.3 without looking at the de-

tails of the given proof. This will make you appreciate the cleverness of the case

analysis of the given proof. It took a few iterations to arrive at this proof. Acknowl-

edgements go to Andrej Dudenhefner.

Exercise 11.4.13 (Pigeonhole)

Prove ∀fOSn(⊥)→On(⊥). Σab. a ≠ b ∧ fa = fb.

Intuition: If n + 1 pigeons are in n holes, there must be a hole with at least two

pigeons in it.

Hint: A proof similar to the proof of Theorem 11.4.4 works, but the situation is

simpler. The decision function from Exercise 11.4.8 (c) is essential.

116

11.5 Notes

Exercise 11.4.14 (Finite Choice) We define the choice property for two types X
and Y as follows:

choiceXY := ∀pX→Y→P. (∀x∃y.pxy)→ ∃f ∀y.px(fx)

Prove choiceXY for all finite types X:

a) choice⊥Y
b) choiceX Y → choice (OX)Y
c) choice (On(⊥)) Y
d) BX (On(⊥))→ choiceXY

The proposition choice NY is known as countable choice. The computational type

theory we are considering cannot prove countable choice for all types Y .

11.5 Notes

One significant construction in this chapter is the bijection theorem for option

types. This is the first time computational falsity elimination is needed to define

a computational function. We learned that such functions should be defined as a

certifying function so that proofs about the function do not require its definition.

The definitions of finite types and finite cardinality based on numeral types are

also remarkable. The definitions are backed up by two bijection theorems (11.4.1

and 11.4.3). Theorem 11.4.3 stands out in that its proof requires the verification

of more cases than one feels comfortable with on paper. Here a machine-checked

verification with a proof assistant gives confidence beyond intuition and common

belief. The proofs of the bijection theorems are also remarkable in that they are

obtained with just the few principles computational type theory provides for basic

inductive types.

117

12 Extensionality

Computational type theory does not fully determine equality of functions, propo-

sitions, and proofs. The missing commitment can be added through extensionality

assumptions.

12.1 Extensionality Assumptions

Computational type theory fails to fully determine equality between functions,

propositions, and proofs:

• Given two functions of the same type that agree on all elements, computational

type theory does not prove that the functions are equal.

• Given two equivalent propositions, computational type theory does not prove

that the propositions are equal.

• Given two proofs of the same proposition, computational type theory does not

prove that the proofs are equal.

From a modeling perspective, it would be desirable to add the missing proof power

for functions, propositions, and proofs. This can be done with three assumptions

expressible as propositions:

• Function extensionality

FE := ∀XT∀pX→T. ∀fg∀x.px. (∀x.fx = gx)→ f = g
• Propositional extensionality

PE := ∀PQP. (P ←→ Q)→ P = Q
• Proof irrelevance

PI := ∀QP. ∀abQ. a = b
Function extensionality gives us the equality for functions we are used to from

set-theoretic foundations. Together, function and propositional extensionality turn

predicates X → P into sets: Two predicates (i.e., sets) are equal if and only if they

have the same witnesses (i.e., elements). Proof irrelevance ensures that functions

taking proofs as arguments don’t depend on the particular proofs given. This way

propositional arguments can play the role of preconditions. Moreover, dependent

pair types sigp taken over predicates pX→P can model subtypes of X. Proof irrele-

vance also gives us dependent pair injectivity in the second component (§23.2).

119

12 Extensionality

We can represent boolean functions f B→B as boolean pairs (f t, f f). Under FE,

the boolean function can be fully recovered from the pair.

Fact 12.1.1 FE → ∀f B→B. f = (λab. if b then π1a else π2a) (f t, f f).

Exercise 12.1.2 Prove the following:

a) FE→ ∀fgB→B. ft = gt→ ff = gf→ f = g.

b) FE→ ∀f B→B. (f = λb. b)∨ (f = λb. !b)∨ (f = λb. t)∨ (f = λb. f).

Exercise 12.1.3 Prove the following:

a) FE→ ∀f>→>. f = λa>.a.

b) FE→ B (> → >)>.

c) FE→ B ≠ (> → >).
d) FE→ B (B→ B) (B× B).

e) FE→ E(B→ B).

12.2 Set Extensionality

Given FE and PE, predicates over a type X correspond exactly to sets whose elements

are taken from X. We may define membership as x ∈ p := px. In particular, we

obtain that two sets (represented as predicates) are equal if they have the same

elements (set extensionality). Moreover, we can define the usual set operations:

� := λxX .⊥ empty set

p ∩ q := λxX .px ∧ qx intersection

p ∪ q := λxX .px ∨ qx union

p − q := λxX .px ∧¬qx difference

Exercise 12.2.1 Prove x ∈ (p − q) ←→ x ∈ p ∧ x ∉ q. Check that the equation

(x ∈ (p − q)) = (x ∈ p ∧ x ∉ q) holds by computational equality.

Exercise 12.2.2 We define set extensionality as

SE := ∀XT∀pqX→P. (∀x. px ←→ qx)→ p = q

Prove the following:

a) FE→ PE→ SE.

b) SE→ PE.

c) SE→ (∀x. x ∈ p ←→ x ∈ q)→ p = q.

d) SE→ p − (q ∪ r) = (p − q)∩ (p − r).

120

12.3 Proof Irrelevance

12.3 Proof Irrelevance

We call a type unique if it has at most one element:

unique (XT) := ∀xyX . x = y

Note that PI says that all propositions are unique.

Fact 12.3.1 ⊥ and > are unique.

Proof Follows with the eliminators for ⊥ and >. �

It turns out that PI is a straightforward consequence of PE.

Fact 12.3.2 PE→ PI.

Proof Assume PE and let a and b be two proofs of a proposition X. We show a = b.

Since X ←→ >, we have X = > by PE. Hence X is unique since > is unique. The claim

follows. �

Exercise 12.3.3 Prove D(unique(>+⊥)) and D(unique(>+>)).

Exercise 12.3.4 Prove the following for all types X:

a) unique(X)→ E(X).
b) X → unique(X)→ BX>.

Exercise 12.3.5 Prove the following:

a) Uniqueness propagates forward through surjective functions:

∀XYT∀fX→Y . surjective f→ unique(X)→ unique(X).

b) Uniqueness propagates backwards through injective functions:

∀XYT∀fX→Y . injective f→ unique(Y)→ unique(X).

Exercise 12.3.6 Prove FE→ unique (> → >).

Exercise 12.3.7 Assume PI and pX→P. Prove ∀xy∀ab. x = y → (x,a)p = (y, b)p.

Exercise 12.3.8 Suppose there is a function f : (>∨>)→ B such that f(L I) = t and

f(R I) = f. Prove ¬ PI. Convince yourself that without the elimination restriction

you could define a function f as assumed.

Exercise 12.3.9 Suppose there is a function f : (∃xB.>) → B such that f(Ex I) = x
for all x. Prove ¬ PI. Convince yourself that without the elimination restriction you

could define a function f as assumed.

Exercise 12.3.10 Assume functions E : P → A and D : A → P embedding P into a

proposition A. That is, we assume ∀PP. D(EP)←→ P . Prove that A is not unique.

Remark: Later we will show Coquand’s theorem (27.4.1), which says that P embeds

into no proposition.

121

12 Extensionality

12.4 Notes

There is general agreement that a computational type theory should be extensional,

that is, prove FE and PE. In our case, we may assume FE and PE as constants. There

are general results saying that adding the extensionality assumptions is consistent,

that is, does not enable a proof of falsity. There is research underway aiming at

a computational type theory integrating extensionality assumptions in such a way

that canonicity of the type theory is preserved. This is not the case in our setting

since reduction of a term build with assumed constants may get stuck on one of the

constants before a canonical term is reached.

Coq offers a facility that determines the assumed constants a constant depends

on. Terms not depending on assumed constants are guaranteed to reduce to canon-

ical terms.

We will always make explicit when we use extensionality assumptions. It turns

out that most of the theory in this text does not require extensionality assumptions.

122

13 Excluded Middle and Double Negation

One of the first laws of logic one learns in an introductory course on mathematics

is excluded middle saying that a proposition is either true or false. On the other

hand, computational type theory does not prove P ∨ ¬P for every proposition P .

It turns out that most results in computational mathematics can be formulated

such that they can be proved without assuming a law of excluded middle, and that

such a constructive account gives more insight than a naive account using excluded

middle. On the other hand, the law of excluded middle can be formulated with the

proposition

∀PP. P ∨¬P

and assuming it in computational type theory is consistent and meaningful.

In this chapter, we study several characterizations of excluded middle and the

special reasoning patterns provided by excluded middle. We show that these rea-

soning patterns are locally available for double negated claims without assuming

excluded middle.

13.1 Characterizations of Excluded Middle

We formulate the law of excluded middle with the proposition

XM := ∀PP. P ∨¬P

Computational type theory neither proves nor disproves XM. Thus it is interesting

to assume XM and study its consequences. This study becomes most revealing if

we assume XM only locally using implication.

There are several propositionally equivalent characterizations of excluded mid-

dle. Most amazing is may be Peirce’s law that formulates excluded middle with just

implication.

Fact 13.1.1 The following propositions are equivalent. That is, if we can prove one

of them, we can prove all of them.

1. ∀PP. P ∨¬P excluded middle

2. ∀PP. ¬¬P → P double negation

3. ∀PPQP. (¬P → ¬Q)→ Q → P contraposition

4. ∀PPQP. ((P → Q)→ P)→ P Peirce’s law

123

13 Excluded Middle and Double Negation

Proof We prove the implications 1→ 2→ 3→ 4→ 1.

1 → 2. Assume ¬¬P and show P . By (1) we have either P or ¬P . Both cases are

easy.

2 → 3. Assume ¬P → ¬Q and Q and show P . By (2) it suffices to show ¬¬P . We

assume ¬P and show ⊥. Follows from the assumptions.

3→ 4. By (3) it suffices to show ¬P → ¬((P → Q)→ P)). Straightforward.

4→ 1. By (4) with P , (P ∨¬P) and Q , ⊥ we can assume ¬(P ∨¬P) and prove

P ∨¬P . We assume P and prove ⊥. Straightforward since we have ¬(P ∨¬P). �

A common use of XM in mathematics is proof by contradiction: To prove s, we

assume ¬s and derive a contradiction. The lemma justifying proof by contradiction

is double negation:

XM→ (¬P → ⊥)→ P

There is another characterization of excluded middle asserting existence of

counterexamples, often used as tacit assumption in mathematical arguments.

Fact 13.1.2 (Counterexample) XM ←→ ∀XT∀pX→P. (∀x.px)∨ ∃x.¬px.

Proof Assume XM and pX→P. By XM we assume ¬∃x.¬px and prove∀x.px. By the

de Morgan law for existential quantification we have ∀x.¬¬px. The claim follows

since XM implies the double negation law.

Now assume the right hand side and let P be a proposition. We prove P∨¬P . We

choose p := λa>.P . By the right hand side and conversion we have either ∀a>.P or

∃a>.¬P . In each case the claim follows. Note that choosing an inhabited type for X
is essential. �

Figure 13.1 shows prominent equivalences whose left-to-right directions are only

provable with XM. Note the de Morgan laws for conjunction and universal quantifi-

cation. Recall that the de Morgan laws for disjunction and existential quantification

¬(P ∨Q) ←→ ¬P ∧¬Q de Morgan

¬(∃x.px) ←→ ∀x.¬px de Morgan

have constructive proofs.

Exercise 13.1.3

a) Prove the right-to-left directions of the equivalences in Figure 13.1.

b) Prove the left-to-right directions of the equivalences in Figure 13.1 using XM.

124

13.1 Characterizations of Excluded Middle

¬(P ∧Q) ←→ ¬P ∨¬Q de Morgan

¬(∀x.px) ←→ ∃x.¬px de Morgan

(¬P → ¬Q) ←→ (Q → P) contraposition

(P → Q) ←→ ¬P ∨Q classical implication

Figure 13.1: Prominent equivalences only provable with XM

Exercise 13.1.4 Prove the following equivalences possibly using XM. In each case

find out which direction needs XM.

¬(∃x.¬px) ←→ ∀x.px
¬(∃x.¬px) ←→ ¬¬∀x.px
¬(∃x.¬px) ←→ ¬¬∀x.¬¬px
¬¬(∃x.px) ←→ ¬∀x.¬px

Exercise 13.1.5 Prove that the left-to-right direction of the de Morgan law for uni-

versal quantification implies XM:

(∀PT∀pP→P. ¬(∀x.px)→ (∃x.¬px))→ XM

Hint: Instantiate the de Morgan law with P ∨¬P and λ_.⊥.

Exercise 13.1.6 Make sure you can prove the de Morgan laws for disjunction and

existential quantification (not using XM).

Exercise 13.1.7 Prove that ∀PQRP. (P → Q)∨ (Q → R) is equivalent to XM.

Exercise 13.1.8 Explain why Peirce’s law and the double negation law are indepen-

dent in Coq’s type theory.

Exercise 13.1.9 (Drinker Paradox) Consider a bar populated by at least one person.

Using excluded middle, one can argue that one can pick some person in the bar such

that everyone in the bar drinks Whiskey if this person drinks Whiskey.

We assume an inhabited type X representing the persons in the bar and a predi-

cate pX→P identifying the persons who drink Whiskey. The job is now to prove the

proposition ∃x. px → ∀y.py . Do the proof in detail and point out where XM and

inhabitation of X are needed. A nice proof can be done with the counterexample

law Fact 13.1.2.

An informal proof may proceed as follows. Either everyone in the bar is drinking

Whisky. Then we can pick any person for x. Otherwise, we pick a person for x not

drinking Whisky, making the implication vacuously true.

125

13 Excluded Middle and Double Negation

There is a paper [27] on the drinker paradox suggesting that the drinker propo-

sition does not imply excluded middle.

13.2 Double Negation

Given a proposition P , we call ¬¬P the double negation of P . It turns out that the

double negation of a quantifier-free proposition is provable even if the proposition

by itself is only provable with XM. For instance,

∀PP. ¬¬(P ∨¬P)

is provable. This metaproperty cannot be proved in Coq. However, for every in-

stance a proof can be given in Coq. Moreover, for concrete propositional proof

systems the translation of classical proofs into constructive proofs of the double

negated claim can be formalized and verified (Glivenko’s theorem 28.7.2).

There is a useful proof technique for working with double negation: If we have a

double negated assumption and need to derive a proof of falsity, we can drop the

double negation. The lemma behind this is an instance of the polymorphic identity

function:

¬¬P → (P → ⊥)→ ⊥

With excluded middle, double negation distributes over all connectives and

quantifiers. Without excluded middle, we can still prove that double negation dis-

tributes over implication and conjunction.

Fact 13.2.1 The following distribution laws for double negation are provable:

¬¬(P → Q) ←→ (¬¬P → ¬¬Q)
¬¬(P ∧Q) ←→ ¬¬P ∧¬¬Q

¬¬> ←→ >
¬¬⊥ ←→ ⊥

Exercise 13.2.2 Prove the equivalences of Fact 13.2.1.

Exercise 13.2.3 Prove the following propositions:

¬(P ∧Q) ←→ ¬¬(¬P ∨¬Q)
(¬P → ¬Q) ←→ ¬¬(Q → P)
(¬P → ¬Q) ←→ (Q → ¬¬P)
(P → Q) → ¬¬(¬P ∨Q)

126

13.3 Stable Propositions

Exercise 13.2.4 Prove ¬(∀x.¬px) ←→ ¬¬∃x.px.

Exercise 13.2.5 Prove the following implications:

¬¬P ∨¬¬Q → ¬¬(P ∨Q)
(∃x.¬¬px) → ¬¬∃x.px
¬¬(∀x.px) → ∀x.¬¬px

Convince yourself that the converse directions are not provable without excluded

middle.

Exercise 13.2.6 Make sure you can prove the double negations of the following

propositions:

P ∨¬P
¬¬P → P

¬(P ∧Q)→ ¬P ∨¬Q
(¬P → ¬Q)→ Q → P
((P → Q)→ P)→ P
(P → Q)→ ¬P ∨Q
(P → Q)∨ (Q → P)

13.3 Stable Propositions

We define stable propositions as follows:

stable PP := ¬¬P → P

We may see stable propositions as propositions where double negation elimination

is possible. We will see that the XM-avoiding proof techniques for double negated

propositions extend to stable propositions.

Fact 13.3.1 XM←→ ∀PP. stableP .

Fact 13.3.2 (Characterization) stableP ←→ ∃QP. P ←→ ¬Q.

Corollary 13.3.3 Negated propositions are stable: ∀PP. stable(¬P).

Fact 13.3.4 Decidable propositions are stable: ∀PP. D(P)→ stableP .

Fact 13.3.5 > and ⊥ are stable.

127

13 Excluded Middle and Double Negation

Fact 13.3.6 (Closure Rules)

Implication, conjunction, and universal quantification preserve stability:

1. stable Q → stable (P → Q).
2. stable P → stable Q → stable (P ∧Q).
3. (∀x. stable (px)) → stable (∀x.px).

Fact 13.3.7 (Extensionality) Stability is invariant under propositional equivalence:

(P ←→ Q)→ stableP → stableQ.

Stable propositions matter since there are proof rules providing classical reason-

ing for stable claims.

Fact 13.3.8 (Classical reasoning rules for stable claims)

1. stableQ → (P ∨¬P → Q)→ Q.

2. stableQ → ¬¬P → (P → Q)→ Q.

The first rule says that when we prove a stable claim, we can assume P ∨¬P for

every proposition P . The second rule says that when we prove a stable claim, we

can obtain P from a double negated assumption ¬¬P .

Exercise 13.3.9 Prove the above facts. All proofs are straightforward.

Exercise 13.3.10 Prove the following classical reasoning rules for stable claims:

a) stableQ → (P → Q)→ (¬P → Q)→ Q.

b) stableQ → ¬(P1 ∧ P2)→ (¬P1 ∨¬P2 → Q)→ Q.

c) stableQ → (¬P1 → ¬P2)→ ((P2 → P1)→ Q)→ Q.

Exercise 13.3.11 Prove (∀x. stable (px)) → ¬(∀x.px) ←→ ¬¬∃x.¬px.

Exercise 13.3.12 Prove FE→ ∀fgN→B. stable(f = g).

Exercise 13.3.13 Prove XM←→ ∀PP ∃QP. P ←→ ¬Q.

Exercise 13.3.14 We define classical variants of conjunction, disjunction, and ex-

istential quantification:

P ∧c Q := (P → Q → ⊥)→ ⊥ ¬(P → ¬Q)
P ∨c Q := (P → ⊥)→ (Q → ⊥)→ ⊥ ¬P → ¬¬Q
∃cx.px := (∀x.px → ⊥)→ ⊥ ¬(∀x.¬px)

The definitions are obtained from the impredicative characterizations of ∧, ∨, and ∃
by replacing the quantified target proposition Z with ⊥. At the right we give com-

putationally equal variants using negation. The classical variants are implied by

128

13.4 Definite Propositions

the originals and are equivalent to the double negations of the originals. Under

excluded middle, the classical variants thus agree with the originals. Prove the fol-

lowing propositions.

a) P ∧Q → P ∧c Q and P ∧c Q ←→ ¬¬(P ∧Q).
b) P ∨Q → P ∨c Q and P ∨c Q ←→ ¬¬(P ∨Q).
c) (∃x.px)→ ∃cx.px and (∃cx.px)←→ ¬¬(∃x.px).
d) P ∨c ¬P .

e) ¬(P ∧c Q)←→ ¬P ∨c ¬Q.

f) (∀x. stable (px)) → ¬(∀x.px)←→ ∃cx.¬px.

g) P ∧c Q, P ∨c Q, and ∃cx.px are stable.

13.4 Definite Propositions

We define definite propositions as follows:

definite PP := P ∨¬P

We may see definite propositions as propositionally decided propositions. Com-

putationally decided propositions are always propositionally decided, but bot nec-

essarily vice versa. The structural properties of definite propositions are familiar

from decided propositions.

Fact 13.4.1 XM←→ ∀PP. definiteP .

Fact 13.4.2

1. Decidable propositions are definite: ∀PP. D(P)→ definiteP .

2. Definite propositions are stable: ∀PP. definiteP → stableP .

3. > and ⊥ are definite.

4. Definiteness is invariant under propositional equivalence.

Fact 13.4.3 (Closure Rules)

Implication, conjunction, disjunction, and negation preserve definiteness:

1. definite P → definite Q → definite (P → Q).
2. definite P → definite Q → definite (P ∧Q).
3. definite P → definite Q → definite (P ∨Q).
4. definite P → definite (¬P).

Fact 13.4.4 (Definite de Morgan) definite P ∨ definiteQ → ¬(P∧Q) ←→ ¬P∨¬Q.

Exercise 13.4.5 Prove the above facts.

129

13 Excluded Middle and Double Negation

13.5 Variants of Excluded Middle

A stronger formulation of excluded middle is truth value semantics:

TVS := ∀PP. P = >∨ P = ⊥

TVS is equivalent to the conjunction of XM and PE.

Fact 13.5.1 TVS←→ XM∧ PE.

Proof We show TVS → PE. Let P ←→ Q. We apply TVS to P and Q. If they are both

assigned ⊥ or >, we have P = Q. Otherwise we have > ←→ ⊥, which is contradictory.

The remaining implications TVS→ XM and XM∧PE→ TVS are also straightforward.�

There are interesting weaker formulations of excluded middle. We consider two

of them in exercises appearing below:

WXM := ∀PP. ¬P ∨¬¬P weak excluded middle

IXM := ∀PPQP. (P → Q)∨ (Q → P) implicational excluded middle

Altogether we have the following hierarchy: TVS⇒ XM⇒ IXM⇒ WXM.

Exercise 13.5.2 Prove TVS ←→ ∀XYZ :P. X = Y ∨ X = Z ∨ Y = Z . Note that the

equivalence characterizes TVS without using > and ⊥.

Exercise 13.5.3 Prove TVS ←→ ∀pP→P. p> → p⊥ → ∀X.pX. Note that the equiva-

lence characterizes TVS without using propositional equality.

Exercise 13.5.4 Prove (∀XT. X = >∨X = ⊥)→ ⊥.

Exercise 13.5.5 (Weak excluded middle)

a) Prove XM→ WXM.

b) Prove WXM←→ ∀PP. ¬¬P ∨¬¬¬P .

c) Prove WXM←→ ∀PPQP. ¬(P ∧Q)→ ¬P ∨¬Q.

Note that (c) says that WXM is equivalent to the de Morgan law for conjunction. We

remark that computational type theory proves neither WXM nor WXM→ XM.

Exercise 13.5.6 (Implicational excluded middle)

a) Prove XM→ IXM.

b) Prove IXM→ WXM.

c) Assuming that computational type theory does not prove WXM, argue that com-

putational type theory proves neither IXM nor XM nor TVS.

We remark that computational type theory does not prove WXM. Neither does com-

putational type theory prove any of the implications WXM → IXM, IXM → XM, and

XM→ TVS.

130

13.6 Notes

13.6 Notes

Proof systems not building in excluded middle are called intuitionistic proof systems,

and proof systems building in excluded middle are called classical proof systems.

The proof system coming with computational type theory is clearly an intuitionistic

system. What we have seen in this chapter is that an intuitionistic proof system pro-

vides for a fine grained analysis of excluded middle. This is in contrast to a classical

proof system that by construction does not support the study of excluded middle.

It should be very clear from this chapter that an intuitionistic system provides for

classical reasoning (i.e., reasoning with excluded middle) while a classical system

does not provide for intuitionistic reasoning (i.e., reasoning without excluded mid-

dle).

Classical and intuitionistic proof systems have been studied for more than a

century. That intuitionistic reasoning is not made explicit in current introductory

teaching of mathematics may have social reasons tracing back to early advocates of

intuitionistic reasoning who argued against the use of excluded middle.

131

14 Provability

A central notion of computational type theory and related systems is provability.

A type (or more specifically a proposition) is provable if there is a term that type

checks as a member of this type. Importantly, type checking is a decidable relation

between terms that can be machine checked. We say that provability is a verifiable

relation. Given the explanations in this text and the realization provided by the

proof assistant Coq, we are on solid ground when we construct proofs.

In contrast to provability, unprovability is not a verifiable relation. Thus the

proof assistant will, in general, not be able to certify that types are unprovable.

As it comes to unprovability, this text makes some strong assumptions that

cannot be verified with the methods the text develops. The most prominent such

assumption says that falsity is unprovable.

Recall that we call a type X disprovable if the type X → ⊥ is provable. If we trust

in the assumption that falsity is unprovable, every disprovable type is unprovable.

Thus disprovable types give us a class of types for which unprovability is verifiable

up to the assumption that falsity is unprovable.

Types that are neither provable nor disprovable are called independent types.

There are many independent types. In fact, the extensionality assumptions from

Chapter 12 and the different variants of excluded middle from Chapter 13 are all

claimed independent. These claims are backed up by model-theoretic studies in the

literature.

14.1 Provability Predicates

It will be helpful to assume an abstract provability predicate

provable : P→ P

With this trick provable (P) and ¬provable (P) are both propositions in compu-

tational type theory we can reason about. We define three standard notions for

propositions and the assumed provability predicate:

disprovable (P) := provable (¬P)
consistent (P) := ¬provable (¬P)

independent (P) := ¬provable (P)∧¬provable (¬P)

133

14 Provability

With these definitions we can easily prove the following implications:

independent (P)→ consistent (P)

consistent (P)→ ¬disprovable (P)

provable (P)→ ¬independent (P)

To show more, we make the following assumptions about the assumed provability

predicate:

PMP : ∀PQ. provable (P → Q)→ provable (P)→ provable (Q)

PI : ∀P. provable (P → P)
PK : ∀PQ. provable (Q)→ provable (P → Q)
PC : ∀PQZ. provable (P → Q)→ provable ((Q → Z)→ P → Z)

Since the provability predicate coming with computational type theory satisfies

these properties, we can expect that properties we can show for the assumed prov-

ability predicate also hold for the provability predicate coming with computational

type theory.

Fact 14.1.1 (Transport)

1. provable(P → Q) → ¬provableQ → ¬provable (P).

2. provable(P → Q) → consistent (P) → consistent (Q).

Proof Claim 1 follows with PMP. Claim 2 follows with PC and (1). �

From the transport properties it follows that a proposition is independent if it

can be sandwiched between a consistent and an unprovable proposition.

Fact 14.1.2 (Sandwich) A proposition Z is independent if there exists a consistent

proposition P and an unprovable proposition Q such that P → Z and Z → Q are

provable: consistent (P)→ ¬provableQ → (P → Z)→ (Z → Q)→ independent (Z).

Proof Follows with Fact 14.1.1. �

Exercise 14.1.3 Show that the functions λPP.P and λPP.> are provability predi-

cates satisfying PMP, PI, PK, and PC.

Exercise 14.1.4 Let P → Q be provable. Show that P and Q are both independent

if P is consistent and Q is unprovable.

Exercise 14.1.5 Assume that the provability predicate satisfies

PE : ∀PP. provable (⊥)→ provable (P)

in addition to PMP, PI, PK, and PC. Prove ¬provable (⊥)←→ ¬∀PP. provable (P).

134

14.2 Consistency

14.2 Consistency

Fact 14.2.1 (Consistency) The following propositions are equivalent:

1. ¬provable (⊥).
2. consistent (¬⊥).
3. ∃P. consistent (P).

4. ∀P. provable (P)→ consistent (P).

5. ∀P. disprovable (P)→ ¬provable (P).

Proof 1→ 2. We assume provable (¬¬⊥) and show provable (⊥). By PMP it suffices

to show provable(¬⊥), which holds by PI.

2→ 3. Trivial.

3 → 1. Suppose P is consistent. We assume provable⊥ and show provable (¬P).
Follows by PK.

1 → 4. We assume that ⊥ is unprovable, P is provable, and ¬P is provable. By

PMP we have provable⊥. Contradiction.

4 → 1. We assume that ⊥ is provable and derive a contradiction. By the primary

assumption it follows that ¬⊥ is unprovable. Contradiction since ¬⊥ is provable

by PI.

1→ 5. Follows with PMP.

5→ 1. Assume disprovable (⊥)→ ¬provable (⊥). It suffices to show

disprovable(¬⊥), which follows with PI. �

Exercise 14.2.2 We may consider more abstract provability predicates

provable : prop→ P

where prop is an assumed type of propositions with an assumed constant

impl : prop→ prop→ prop

Show that all results of this chapter hold for such abstract proof systems.

Exercise 14.2.3 (Hilbert style assumptions) The assumptions PI, PK, and PC can be

obtained from the simpler assumptions

PK′ : ∀PQ. provable (P → Q → P)
PS : ∀PQZ. provable ((P → Q → Z)→ (P → Q)→ P → Z)

that will look familiar to people acquainted with propositional Hilbert systems.

Prove PK, PI, and PC from the two assumptions above. PK and PI are easy. PC

is difficult if you don’t know the technique. You may follow the proof tree

S(S(KS)(S(KK)I))(KH). Hint: PI follows with the proof tree SKK.

The exercise was prompted by ideas of Jianlin Li in July 2020.

135

Part III

Numbers and Lists

137

15 Numbers

Numbers 0,1,2, . . . constitute the basic infinite data structure. Starting from the

inductive definition of numbers, we develop a computational theory of numbers

based on computational type theory. The main topic of this chapter is the order-

ing of numbers. In the next few chapters we will explore Euclidean division, least

witnesses, size recursion, and greatest common divisors. There is much beauty in

developing the theory of numbers from first principles. The art is building up the

right definitions and the right theorems in the right order (variation of a statement

by Kevin Buzzard).

15.1 Inductive Definition

Following the informal presentation in Chapter 1, we introduce the type of numbers

0,1,2 . . . with an inductive definition

N ::= 0 | S(N)

introducing three constructors:

N : T, 0 : N, S : N→ N

Based on the inductive type definition, we can define functions with equations us-

ing exhaustive case analysis and structural recursion. A basic inductive function

definition obtains an eliminator EN providing for inductive proofs on numbers:

EN : ∀pN→T. p 0→ (∀x. px → p(Sx))→ ∀x.px
EN paf 0 := a

EN paf (Sx) := fx(EN pafx)

A discussion of the eliminator appears in §6.2. Matches for numbers can be ob-

tained as applications of the eliminator where no use of the inductive hypothesis

is made. More directly, a specialized elimination function for matches omitting the

inductive hypothesis can be defined.

Fact 15.1.1 (Constructors)

1. Sx ≠ 0 (disjointness)

2. Sx = Sy → x = y (injectivity)

3. Sx ≠ x (progress)

139

15 Numbers

Proof The proofs of (1) and (2) are discussed in §5.2. Claim 3 follows by induction

on x using (1) and (2). �

Fact 15.1.2 (Discreteness) N is a discrete type: ∀xyN.D(x = y).

Proof Fact 10.4.1. �

Exercise 15.1.3 Show the constructor laws and discreteness using the eliminator

and without using matches.

Exercise 15.1.4 (Double induction) Prove the following double induction principle

for numbers (from Smullyan and Fitting [24]):

∀pN→N→T.

(∀x. px0)→
(∀xy. pxy → pyx → px(Sy))→
∀xy. pxy

There is a nice geometric intuition for the truth of the principle: See a pair (x,y) as

a point in the discrete plane spanned by N and convince yourself that the two rules

are enough to reach every point of the plane.

An interesting application of double induction appears in Exercise 15.6.14.

Hint: First do induction on y with x quantified. In the successor case, first apply

the second rule and then prove pxy by induction on x.

15.2 Addition

We accommodate addition of numbers with a recursively defined function:

+ : N→ N→ N

0+y := y
Sx +y := S(x +y)

The two most basic properties of addition are associativity and commutativity.

Fact 15.2.1 (x +y)+ z = x + (y + z) and x +y = y + x.

Proof Associativity follows by induction on x. Commutativity also follows by in-

duction on x, where the lemmas x + 0 = x and x + Sy = Sx + y are needed. Both

lemmas follow by induction on x. �

140

15.3 Multiplication

We will use associativity and commutativity of addition tacitly in proofs. If we

omit parentheses for convenience, they are inserted from the left: x +y + z �
(x +y)+ z. Quite often the symmetric versions x + 0 = x and x + Sy = S(x + y)
of the defining equations will be used.

Another important fact about numbers is injectivity, which comes in two flavors.

Fact 15.2.2 (Injectivity) x +y = x + z → y = z and x +y = x → y = 0.

Proof Both claims follow by induction on x. �

Exercise 15.2.3 Prove x ≠ x + Sy .

15.3 Multiplication

We accommodate addition of numbers with a recursively defined function:

· : N→ N→ N

0 ·y := 0

Sx ·y := y + x ·y

The definition is such that the equations

0 ·y = 0 1 ·y = y + 0 2 ·y = y + (y + 0)

hold by computational equality.

Proving the familiar properties of multiplication like associativity, commutativ-

ity, and distributivity is routine. In contrast to addition, multiplication will play

only a minor role in this text.

Exercise 15.3.1 Prove that multiplication is commutative and associative. Also

prove that multiplication distributes over addition: x · (y + z) = x ·y + x · z.

15.4 Subtraction

We define (truncating) subtraction of numbers as a total operation that yields 0

whenever the standard subtraction operation for integers yields a negative number:

− : N→ N→ N

0−y := 0

Sx − 0 := Sx

Sx − Sy := x −y

141

15 Numbers

Note that the recursion is on the first argument and that in the successor case there

is a case analysis on the second argument. Truncating subtraction plays a major

role in our theory of numbers since we shall use it to define the canonical order on

numbers.

Fact 15.4.1

1. x − 0 = x
2. (x +y)− x = y
3. x − (x +y) = 0

4. x − x = 0

Proof Claim 1 follows by case analysis on x. Claim 2 follows by induction on x
using (1) for the base case. Claim 3 follows by induction on x. Claim 4 follows with

(2) with y = 0. �

15.5 Order

We define the order relation on numbers using truncating subtraction:

x ≤ y := (x −y = 0)

While this definition is nonstandard, it is quite convenient for deriving the basic

properties of the order relation. We define the usual notational variants for the

order relation:

x < y := Sx ≤ y
x ≥ y := y ≤ x
x > y := y < x

Fact 15.5.1 The following equations hold by computational equality:

1. (Sx ≤ Sy) = (x ≤ y) (shift law)

2. 0 ≤ x
3. 0 < Sx

We define several certifying operators that for two numbers decide how they are

related by the order.

Fact 15.5.2 (Case analysis)

1. D(x ≤ y)
2. (x ≤ y)+ (y < x)
3. (x < y)+ (x = y)+ (y < x) (trichotomy)

4. x ≤ y → (x < y)+ (x = y)

142

15.6 More Order

Proof All four claims follow by induction on x with y quantified followed by dis-

crimination on y . Claim 1 may also be obtained as a consequence of Fact 15.1.2,

and Claim 3 may also be obtained as consequence of Claims 2 and 4. �

Fact 15.5.3 (Contraposition) ¬(y < x)→ x ≤ y .

Proof Follows with Fact 15.5.2 (2). �

Lemma 15.5.4 x ≤ y → x + (y − x) = y .

Proof By induction on x with y quantified. The base case is immediate with (1) of

Fact 15.4.1. In the successor case we proceed with case analysis on y . Case y = 0

is contradictory. For the successor case, we exploit the shift law. We assume x ≤ y
and show S(x + (y − x)) = Sy , which follows by the inductive hypothesis. �

Fact 15.5.5 (Existential Characterization) x ≤ y ←→ ∃k. x + k = y .

Proof Direction → follows with Lemma 15.5.4, and direction ← follows with

Fact 15.4.1 (3). �

15.6 More Order

Fact 15.6.1

1. x ≤ x +y
2. x ≤ Sx

3. x +y ≤ x → y = 0

4. x ≤ 0 → x = 0

5. x ≤ x (reflexivity)

6. x ≤ y → y ≤ z → x ≤ z (transitivity)

7. x ≤ y → y ≤ x → x = y (antisymmetry)

Proof Claim 1 follows with Fact 15.4.1 (3). Claim 2 follows from (1). Claim 3 fol-

lows with Fact 15.4.1 (2). Claim 4 follows by case analysis on x and constructor

disjointness.

Reflexivity follows with Fact 15.4.1 (4).

For transitivity, we assume x + a = y and y + b = z using Fact 15.5.5. Then

z = x + a+ b. Thus x ≤ z by (1).

For antisymmetry, we assume x + a = y and x + a ≤ x using Fact 15.5.5. By (3)

we have a = 0, and thus x = y . �

143

15 Numbers

Fact 15.6.2 (Strict transitivity)

1. x < y ≤ z → x < z
2. x ≤ y < z → x < z

Proof We show (1), (2) is similar. Using Fact 15.5.5, the assumptions give us

Sx + a = y and y + b = z. Thus it suffices to prove Sx ≤ Sx + a+ b, which follows

by Fact 15.6.1 (1). �

Fact 15.6.3

1. ¬(x < 0)

2. ¬(x +y < x) (strictness)

3. ¬(x < x) (strictness)

4. x ≤ y → x ≤ y + z
5. x ≤ y → x ≤ Sy

6. x < y → x ≤ y

Proof Claim 1 converts to Sx ≠ 0. For Claim 2 we assume Sx+y−x = 0 and obtain

the contradiction Sy = 0 with Fact 15.4.1 (2). Claim 3 follows from (2). For Claim 4

we assume x+a = y using Fact 15.5.5 and show x ≤ x+a+z using Fact 15.6.1 (1).

Claim 5 follows from (4). Claim 6 follows with discrimination on y and (5). �

Fact 15.6.4 (Equality by Contradiction) ¬(x < y)→ ¬(y < x)→ x = y .

Proof Follows by contraposition (Fact 15.5.3) and antisymmetry. �

Fact 15.6.5 x −y ≤ x

Proof Induction on x with y quantified. The base case follows by conversion. The

successor case is done with case analysis on y . If y = 0, the claim follows with

reflexivity. For the successor case y = Sy , we have to show Sx − Sy ≤ Sx. We have

Sx − Sy = x −y ≤ x ≤ Sx using shift, the inductive hypothesis, and Fact 15.6.1 (2).

The claim follows by transitivity. �

Fact 15.6.6 Bounded quantification preserves decidability:

1. (∀x.D(px))→D(∀x. x < k→ px).
2. (∀x.D(px))→D(∃x. x < k∧ px).

Proof By induction on k and Fact 15.5.2 (4). �

Exercise 15.6.7 (Tightness) Prove x ≤ y ≤ Sx → x = y ∨y = Sx.

Exercise 15.6.8 (Negation Facts) Formulate Facts 15.5.3 and 15.6.4 as equivalences

and prove them.

144

15.7 Complete Induction

Exercise 15.6.9 Prove x ≤ y ←→ x < y ∨ x = y .

Exercise 15.6.10 Prove y > 0 → y − Sx < y .

Exercise 15.6.11 Prove x +y ≤ x + z → y ≤ z.

Exercise 15.6.12 Define a function ∀xy. x ≤ y → Σk. x + k = y .

Exercise 15.6.13 Define a boolean decider for x ≤ y and prove its correctness.

Exercise 15.6.14 Use the double induction operator from Exercise 15.1.4 to prove

∀xy. (x ≤ y)+ (y < x). No further induction or lemma is necessary.

Exercise 15.6.15 Prove ¬∃xN∀y. y ≤ x → ∃z. z < y .

15.7 Complete Induction

Next we prove an induction principle known as complete induction, which im-

proves on structural induction by providing an inductive hypothesis for every

y < x, not just the predecessor of x.

Fact 15.7.1 (Complete Induction)

∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x.px.

Proof We assume p and the step function

F : ∀x. (∀y. y < x → py)→ px

and show ∀x.px. The trick is to prove the equivalent claim

∀nx. x < n→ px

by structural induction on the upper bound n. For n = 0, the claim is trivial. In

the successor case, we assume x < Sn and prove px. We apply the step function F ,

which gives us the assumption y < x and the claim py . By the inductive hypothesis

it suffices to show y < n, which follows by strict transitivity (Fact 15.6.2). �

Note that the definition of the function ∀nx. x < n → px needed for complete

induction operator employs computational falsity elimination for the base case.

Section 16.4 will give interesting examples for the use of complete induction.

Chapter 18 introduces a generalization of complete induction called size recursion

that has important applications in this text.

145

15 Numbers

15.8 Notes

Our definition of the order predicate deviates from Coq’s inductive definition. Coq

comes with a very helpful automation tactic lia for linear arithmetic that proves

almost all of the results in this chapter and that frees the user from knowing the

exact definitions and lemmas. All our further Coq developments will rely on lia.

The reader may find it interesting to compare the computational development of

the numbers given here and in the following chapters with Landau’s [19] classical

development from 1929.

Exercise 15.8.1 (Certifying deciders with lia)

Define deciders of the following types using lia and not using induction.

a) ∀xy. (x ≤ y)+ (y < x)
b) ∀xy. (x < y)+ (x = y)+ (y < x)
c) ∀xy. (x ≤ y)+¬(x ≤ y)
d) ∀xyN. (x = y)+ (x ≠ y)

Exercise 15.8.2 (Uniqueness with trichotomy)

Show the uniqueness of the predicate δ for Euclidean division using nia and not

using induction.

146

16 Euclidean Division

We study functions for Euclidean division. Besides a function computing by struc-

tural recursion, we consider an algorithm obtaining quotient and remainder with

repeated subtraction. The study of the repeated subtraction algorithm requires the

use of complete induction.

16.1 Certifying Version

The Euclidean division theorem says that for two numbers x and y there always

exist unique numbers a and b such that x = a · Sy + b and b ≤ y . We will con-

struct functions that given x and y compute a and b. We first define a relational

specification:

δxyab := x = a · Sy + b ∧ b ≤ y

Given δxyab, we say that a is the quotient and b is the remainder of x and Sy .

Considering Euclidean division for x and Sy instead of x and y eliminates the

infamous division-by-zero problem.

To compute a and b from x and y , we need an algorithm. We start with a naive

algorithm that recurses on x:

• If x = 0, then a = b = 0.

• If x = Sx′, recursion gives us a′ and b′ such that x′ = a′ · Sy + b′ and b′ ≤ y .

Now we distinguish two cases:

– If b′ = y , then a = Sa′ and b = 0.

– If b′ ≠ y , then a = a′ and b = Sb′.

We describe the algorithm with three so-called derivation rules for δ. The rules

are formulated as propositions formulating the correctness conditions for the al-

gorithm. There is a separate derivation rule for each case the algorithm considers.

Note how the rules account for recursion.

Fact 16.1.1 (Derivation rules)

The following rules (i.e., propositions) hold for all numbers x, y , a, b :

• δ1 : δ0y00

• δ2 : δxyab → b = y → δ(Sx)y(Sa)0
• δ3 : δxyab → b ≠ y → δ(Sx)ya(Sb)

147

16 Euclidean Division

Proof Straightforward. Rule δ3 follows with Fact 15.5.2 (4). �

The derivation rules have operational readings. Given x and y , one can de-

termine numbers a and b such that δxyab holds using the derivation rules and

recursion on x:

• If x = 0, then a = b = 0.

• If x = Sx′, δx′ya′b′, and b′ = y , then a = Sa′ and b = 0.

• If x = Sx′, δx′ya′b′, and b′ ≠ y , then a = a′ and b = Sb′.

If you were to reinvent the algorithm and its correctness proof, you might start

with the specification δ and decide on structural recursion on x and on the equality

test in the successor case. The derivation rules then appear as proof obligations for

the correctness proof.

We first construct a certifying division function.

Fact 16.1.2 (Σ-Totality) ∀xy.Σab. δxyab.

Proof By induction on x with y fixed. In the base case (x = 0) we choose a = b = 0

following δ1. In the successor case, we have x = a · Sy + b and b ≤ y by the

inductive hypothesis (i.e., by recursion) and need to show Sx = a′ · Sy + b′ and

b′ ≤ y . If b = y , we choose a′ = Sa and b′ = 0 following δ2. If b ≠ y , we choose

a′ = a and b′ = Sb following δ3. �

Corollary 16.1.3 (D and M)

There are functions DN→N→N and MN→N→N such that ∀xy. δxy(Dxy)(Mxy).

Proof Let F : ∀xy.Σab. δxyab. We define D and M as Dxy := π1(Fxy) and

Mxy := π1(π2(Fxy)). Now π2(π2(Fxy)) is a proof of δxy(Dxy)(Mxy) (up to

conversion). �

We have, for instance, D 100 3 = 25 and M 100 3 = 0 by computational equality.

16.2 Simply Typed Version

The algorithm underlying the proof of Fact 16.1.2 can be formulated explicitly with

a non-certifying function:

∆ : N→ N→ N× N

∆0y := (0,0)

∆(Sx)y := let (a, b) := ∆xy in if [b = y\ then (Sa,0) else (a, Sb)

Note the use of the upper-corner notation [b = y\, which acts as a placeholder for

an application of an equality decider (boolean or informative). The use of the upper-

corner notation is convenient since it saves us from naming the equality decider.

148

16.3 Uniqueness

Fact 16.2.1 (Correctness) ∀xy. δxy (π1(∆xy)) (π2(∆xy)).

Proof By induction on x with y fixed. The base case follows with δ1. In the

successor we assume ∆xy = (a, b). This gives us the inductive hypothesis

δxyab. We now consider the two cases b = y and b ≠ y and prove the claim

δ(Sx)y (π1(∆(Sx)y)) (π2(∆(Sx)y)) using δ2 and δ3. �

The proofs of Facts 16.1.2 and 16.2.1 are very similar. If you verify the proofs by

hand, you will find the proof of Fact 16.1.2 simpler since it doesn’t have to verify

that ∆ is doing the right thing.

16.3 Uniqueness

Next, we show the uniqueness of δ. We choose a detailed proof using induction.

Fact 16.3.1 (Uniqueness)

(b ≤ y)→ (b′ ≤ y)→ (a · Sy + b = a′ · Sy + b′)→ a = a′ ∧ b = b′.

Proof By induction on a with a′ quantified, followed by discrimination on a′.
The case a = a′ = 0 is straightforward.

Assume a = 0 and a′ = Sa2. Then b = Sy+a2 ·Sy+b′ and b ≤ y . Contradiction

by strictness (Fact 15.6.3 (2)).

The case a = Sa1 and a′ = 0 is symmetric.

Let both a and a′ be successors. Then a1 · Sy + b = a2 · Sy + b′ by injectivity

of S and injectivity of + (Fact 15.2.2). Thus a1 = a2 and b = b′ by the inductive

hypothesis. �

Corollary 16.3.2 (Uniqueness) δxyab → δxya′b′ → a = a′ ∧ b = b′.

The uniqueness of δ has important applications. To see one application, we give

two additional derivation rules for δ describing an algorithm that determines a
and b by subtracting Sy from x as long as x > y .

Fact 16.3.3 (Derivation rules) The following rules hold for all numbers x, y , a, b :

• δ4 : x ≤ y → δxy0x

• δ5 : x > y → δ(x − Sy)yab → δxy(Sa)b

Proof Rule δ4 is obvious. For rule δ5 we assume x > y , x − Sy = a · Sy + b, and

b ≤ y , and show x = Sy + (a · Sy + b). By the first assumption it suffices to show

x = Sy + (x − Sy), which holds by Lemma 15.5.4. �

149

16 Euclidean Division

Fact 16.3.4 For all numbers x and y the functions D and M from Corollary 16.1.3

satisfy the following equations:

Dxy =

0 if x ≤ y
S(D(x − Sy)y) if x > y

Mxy =

x if x ≤ y
M(x − Sy)y if x > y

Proof By Corollaries 16.1.3 and 16.3.2 it suffices to show

δxy (if [x ≤ y\ then 0 else S(D(x − Sy)y))

(if [x ≤ y\ then x else M(x − Sy)y)

We do case analysis on (x ≤ y) + (x > y). If x ≤ y , the claim reduces to δxy0x,

which follows with δ4. If x > y , the claim reduces to

δxy (S(D(x − Sy)y)) (M(x − Sy)y)

which with δ5 reduces to an instance of Corollary 16.1.3. �

Fact 16.3.4 is remarkable, both as it comes to the result and to the proof. It states

the important result that the functions D and M we have constructed with struc-

tural recursion on numbers satisfy procedural specifications employing repeated

subtraction. The proof shows a new pattern. It hinges on the uniqueness of the re-

lational specifications δ, the rules δ4 and δ5 explaining the role of subtraction, and

Corollary 16.1.3 specifying D and M in terms of δ (no further information about D
and M is needed).

Exercise 16.3.5 Show uniqueness of δ using trichotomy for a and a′. This way

arithmetical reasoning without induction suffices for the proof. There is an exten-

sion nia of lia that knows about multiplication and can handle the cases obtained

with trichotomy.

Exercise 16.3.6 Let F : ∀xy.Σab. δxyab and fxy := (π1(Fxy), π1(π2(Fxy)).

a) Prove that f satisfies the relational specification δxy(π1(fxy))(π2(fxy)).

b) Prove that f satisfies the procedural specification

fxy = if [x ≤ y\ then (0, x) else let (a, b) = f (x − Sy)y in (Sa,b).

Remark: Both proof are straightforward when done with a proof assistant. Checking

the details rigorously is annoyingly tedious if done by hand. The second proof best

follows the proof of Fact 16.3.4 using the uniqueness of δ and the derivation rules

δ4 and δ5. The proof may be started with a lemma π1a = π1b∧π2a = π2b → a = b
for pairs a, b to prepare the application of the uniqueness lemma. No induction is

needed. A closely related proof will appear with Fact 16.4.2.

150

16.4 Repeated Subtraction with Complete Induction

Exercise 16.3.7 Let evenn := ∃k. n = k · 2. Prove the following:

a) D (evenn).

b) evenn → ¬even (Sn).

c) ¬evenn → even (Sn).

Exercise 16.3.8 Prove x·SSz+1 ≠ y ·SSz+0 using uniqueness of Euclidean division

(Fact 16.3.1).

Exercise 16.3.9 We define divisibility and primality as follows:

k | x := ∃n. x = n · k
primex := x ≥ 2∧∀k. k | x → k = 1∨ k = x

Prove that both predicates are decidable. Hint: First prove

x > 0→ x = n · k→ n ≤ x
x > 0→ k | x → k ≤ x

and then exploit that bounded quantification preserves decidability (Fact 15.6.6).

16.4 Repeated Subtraction with Complete Induction

A common algorithm for Euclidean division is repeated subtraction: Subtract Sy
from x as often as it can be done without truncation; then the number of subtrac-

tions is the quotient, and the part of x remaining is the remainder of the division.

The procedural specification for a function realizing this algorithm looks as follows:

f : N→ N→ N

fxy = if [x ≤ y\ then (0, x) else let (a, b) = f (x − Sy)y in (Sa,b)

The recursion in the specification is not structural. However, the algorithm ter-

minates since each recursion step decreases x. Using complete induction, we can

obtain a certifying function for Euclidean division using the algorithm,.

Fact 16.4.1 (Σ-totality with complete induction) ∀xy.Σab. δxyab.

Proof By complete induction on x with y fixed. Following the repeated subtraction

algorithm, we consider two cases.

If x ≤ y , we choose a = 0 and b = x and observe that δxyab holds by δ4.

If x < y , we have x− Sy < x and complete induction gives us a and b such that

δ(x − Sy)yab. By δ5 we now have δxy(Sa)b. �

151

16 Euclidean Division

It turns out that a function f : N→ N→ N×N satisfies the relational specification

∀xy. δxy(π1(fxy))(π2(fxy))

if and only if it satisfies the procedural specification

∀xy. fxy = if [x ≤ y\ then (0, x) else let (a, b) = f (x − Sy)y in (Sa,b)

of repeated subtraction.

Fact 16.4.2 Let f satisfy the procedural specification. Then f satisfies the relational

specification.

Proof We show δxy(π1(fxy))(π2(fxy)) by complete induction on x. Following

the procedural specification, we consider two cases.

1. x ≤ y . Then fxy = (0, x) and the claim follows with δ4.

2. y < x. Then we have f(Sx − y)y = (a, b) and fxy = (Sa,b). The claim

δxy(Sa,b) follows with δ5 and the inductive hypothesis. �

Fact 16.4.3 Let f satisfy the relational specification. Then f satisfies the procedural

specification.

Proof We show

fxy = if [x ≤ y\ then (0, x) else let (a, b) = f (x − Sy)y in (Sa,b)

using the uniqueness of δ following the proof of Fact 16.3.4. We consider two cases.

1. x ≤ y . Then we have to show δxy0x, which follows by δ4.

2. y < x. Let (a, b) = f(x−Sy)y . Then we have to show δxy(Sa)b, which follows

by δ5 and δ(Sx −y)yab. �

Corollary 16.4.4 A function f : N→ N→ N× N satisfies the relational specification

∀xy. δxy(π1(fxy))(π2(fxy))

if and only if it satisfies the procedural specification

∀xy. fxy = if [x ≤ y\ then (0, x) else let (a, b) = f (x − Sy)y in (Sa,b)

Proof Facts 16.4.2 and 16.4.3 . �

To be understandable, our proof of Fact 16.4.3 uses informal language and omits

formal details. It takes considerable effort to verify the details of the proof by hand.

In contrast, the Coq formulation of the proof is both rigorous and concise.

152

16.5 Summary

Exercise 16.4.5 (Uniqueness) Show the uniqueness of the following procedural

specifications using complete induction.

a) fxy = if [x ≤ y\ then 0 else S(f (x − Sy)y)

b) fxy = if [x ≤ y\ then x else f (x − Sy)y

c) fxy = if [x ≤ y\ then (0, x) else let (a, b) = f (x − Sy)y in (Sa,b)

Exercise 16.4.6 Let f : N→ N→ N be a function satisfying

fx y := if [x ≤ y\ then x else f (x − Sy)y

Prove the following properties of f using complete induction.

a) ∀xy. fxy ≤ y
b) ∀xy. Σk. x = k · Sy + fxy

Exercise 16.4.7 (Euclidean quotient)

We consider γ xya := (a · Sy ≤ x < Sa · Sy).

a) Show that γ specifies the Euclidean quotient: γ xya←→ ∃b. δxyab.

b) Show that γ is unique: γxya→ γxya′ → a = a′.
c) Show that every function fN→N→N satisfies

(∀xy. γ xy(fxy)) ←→ ∀xy. fxy = if [x ≤ y\ then 0 else S(f (x − Sy)y)

d) Consider the function

f : N→ N→ N

f0yb := 0

f(Sx)yb := if [b = y\ then S(fxy0) else fxy(Sb)

Show γ xy(fxy0); that is, fxy0 is the Euclidean quotient of x and Sy . This

requires a lemma. Hint: Prove b ≤ y → γ (x + b)y (fxyb).

16.5 Summary

We studied two algorithms for Euclidean division, taking a relational specification

for Euclidean division as starting point. Both algorithms easily yield certifying func-

tions for Euclidean division. The naive algorithm employs structural recursion and

can be immediately realized as a function. This is not the case for the repeated-

subtraction algorithm. To obtain the certifying function, we use structural induc-

tion for the naive algorithm and complete induction for the repeated-subtraction

algorithm. In each case we obtain proof obligations for the different cases consid-

ered by the algorithm. The proof obligations can be shown as lemmas and may be

153

16 Euclidean Division

interpreted as derivations rules formulating the algorithms declaratively and with-

out explicit recursion.

An important result is the uniqueness of the declarative specification. Using

uniqueness, we can show that a function satisfies the relational specification if and

only if it satisfies the procedural specification for repeated subtraction. Using this

result, we see that the function realizing the naive algorithm satisfies the procedural

specification for repeated subtraction.

The proofs in this section often involve considerable formal detail. They are good

examples of proofs whose construction and analysis profits much from working

with a proof assistant. When done by hand, the amount of detail needed for rigorous

proofs can be overwhelming. So one is forced to do the proofs informally omitting

formal details, which is error-prone and requires considerable training to be reliable.

154

17 Least Witnesses

We will consider functions that given a witness of a decidable predicate pN→P on

numbers compute a least witness of p. We study simply typed and certifying ver-

sions of the functions. Moreover, we show that a satisfiable predicate on numbers

has a least witness if and only if the law of excluded middle holds.

17.1 Least Witness Predicate

In this chapter, p will denote a predicate N → P and n and k will denote numbers.

We say that n is a witness of p if pn is provable, and that p is satisfiable if ∃x.px
is provable. We define a least witness predicate as follows:

safepn := ∀k. pk→ k ≥ n
leastpn := pn∧ safepn

Fact 17.1.1

1. leastpn→ leastpn′ → n = n′ (uniqueness)

2. safep0

3. safepn→ ¬pn→ safep(Sn)

4. safepm → leastpn→m ≤ n

Proof Claim 1 follows with antisymmetry. Claim 2 is trivial. For Claim 3 we as-

sume pk and show k > n. By contraposition (Fact 15.5.3) we assume k ≤ n and

derive a contradiction. The first assumption and pk give us k ≥ n. Thus n = k by

antisymmetry, which makes pk contradict ¬pn. �

Exercise 17.1.2 (Euclidean Division) Prove the following equivalence:

(x = a · Sy + b ∧ b ≤ y) ←→ (least (λa. x < Sa · Sy)a ∧ b = x − a · Sy).

Exercise 17.1.3 (Subtraction) Prove that x −y is the least z such that x ≤ y + z :

x −y = z ←→ least (λz. x ≤ y + z)z.

Exercise 17.1.4 Prove safe p(Sn)←→ safe pn∧¬pn.

155

17 Least Witnesses

17.2 Step-Indexed Linear Search

The standard algorithm for computing least witnesses is linear search: One tests pk
for k = 0,1,2, . . . until the first k satisfying p is found. Linear search terminates if

and only if p has a witness. While linear search can be realized easily in a procedural

programming language, realizing linear search with a function in computational

type theory requires a modification. The standard trick is to realize linear search

with an extra argument called a step index bounding the number of search steps.

We assume a decidable predicate pN→P in the following and define a step-indexed

linear search function as follows:

L : N→ N→ N

L0k := k

L (Sn)k := if [pk\ then k else Ln(Sk)

Note that L recurses on the step index. Intuition tells us that Ln0 is the least witness

of p if n is a witness of p. To verify this guess, we prove a more general property

by induction on n.

Fact 17.2.1 (Correctness)

1. ∀nk. p(n+ k)→ safep k→ leastp (Lnk).

2. ∀n. pn→ leastp (Ln0).

Proof Claim 1 follows by induction on n with k quantified. In the successor case

a case analysis on pk+¬pk is done. In the negative case, the claim follows by the

inductive hypothesis instantiated with Sk.

Claim 2 follows from Claim 1. �

Note that the premises of the implication (1) of Fact 17.2.1 express invariants for

the step-indexed linear search procedure.

Exercise 17.2.2 Write certifying functions for step-indexed linear search:

a) ∀nk. p(n+ k)→ safepk→ sig(leastp).

b) sigp → sig(leastp).

Follow the design of L and the proof of Fact 17.2.1, but do not use the formal

development for L.

17.3 Direct Search

It turns out that we can construct a least witness function taking only one argument.

This becomes possible by returning either the least witness or the information that

the argument is safe. The idea is best expressed with a certifying function.

156

17.3 Direct Search

Lemma 17.3.1 ∀n. safepn+ sig(leastp).

Proof By induction on n. The base case is obvious by Fact 17.1.1 (2). In the suc-

cessor case we do case analysis on the inductive hypothesis. In the nontrivial case

we have safepn and do case analysis on pn. If we have pn, we have leastpn.

If we have ¬pn, we have safep(Sn) by Fact 17.1.1 (3). In both cases the claim

safep(Sn)+ sig(leastp) follows. �

Fact 17.3.2 (Least witness operator)

∀pN→P. (∀n.D(pn))→ sigp → sig(leastp).

Proof Assume pn. By Lemma 17.3.1 we have either the claim or obtain the claim

with pn and safepn. �

Corollary 17.3.3 ∀pN→P. (∀n.D(pn))→ exp → ex(leastp).

Proof Given that we have to construct a proof, we can assume pn. This gives us

sigp and thus we can obtain a least witness with Fact 17.3.2. �

Corollary 17.3.4 (Decidability)

∀pN→P. (∀n. D(pn))→ ∀n. D(leastpn).

Proof We show D(leastpn). If ¬pn, we have ¬leastpn. Otherwise we assume pn.

Thus leastpk for some k by Fact 17.3.2. If n = k, we are done. If n ≠ k, we assume

leastpn and obtain a contradiction with the uniqueness of leastp (Fact 17.1.1). �

We can define a simply typed direct search function as follows:

D : N→ O(N)
D 0 := �

D (Sn) := match Dn [◦x ⇒ ◦x | �⇒ if [pn\ then ◦n else �]

Fact 17.3.5 (Correctness)

1. ∀n. match Dn [◦x ⇒ leastpx | �⇒ safepn]

2. ∀n. pn → Σx. Dn = ◦x ∧ leastpx

Proof Claim (1) follows by induction on n following the proof of Lemma 17.3.1.

Claim (2) follows with claim (1). �

Exercise 17.3.6 Write a function W : N→ N such that ∀n. pn→ leastp (Wn) using

the function D and prove correctness of W .

157

17 Least Witnesses

Exercise 17.3.7 (Derivation rules) It is interesting to analyze direct search using

the relational specification

δ : N→ O(N)→ P

δn ◦x := leastpx

δn� := safepn

a) Convince yourself that ∀n. δn(Dn) is the correctness statement stated by

Fact 17.3.5 (1).

b) Convince yourself that ∀n. sig(δn) is propositionally equivalent to the type of

the certifying function asserted by Lemma 17.3.1.

c) Prove the following derivation rules for δ. Note that the derivations rules follow

the defining equations of D.

• δ1 : δ0�.

• δ2 : δn ◦x → δ(Sn) ◦x.

• δ3 : δn�→ pn→ δ(Sn) ◦n.

• δ4 : δn�→ ¬pn→ δ(Sn)�.

d) Prove ∀n. δn(Dn) by induction on n using the derivation rules.

e) Prove ∀n. sig(δn) by induction on n using the derivation rules.

17.4 Variations

A main goal of this chapter was to construct a function

sigp → sig(leastp)

for decidable predicates p. To do so, we need to do induction on numbers. So we

reformulate the claim to

∀n. pn→ sig(leastp)

so that we can do induction on n. We now notice that the induction does no go

through. So we modify the claim to

∀n. sig(leastp)+ safepn

which now can be shown by induction on n. The algorithm underlying the proof can

be formulated as a function D : N→ O(N) satisfying

∀n. match Dn [◦x ⇒ leastpx | �⇒ safepn]

158

17.4 Variations

It turns out that D can be simplified to a function

G : N→ N

G 0 := 0

G(Sn) := let k = Gn in if [pk\ then k else Sn

We try to show

∀n. leastp (Gn)∨ safepn

by induction on n and notice that information about Gn is missing in one of the

cases. We can fix the problem by strengthening the claim to

∀n. leastp (Gn)∨ (Gn = n∧ safepn)

for which induction on n goes through. We now have

∀n. pn→ leastp (Gn)

For this to follow from the disjunctive lemma, the presence of the equation Gn = n
is essential.

Interestingly, the step-indexed linear search function

L : N→ N→ N

L0k := k

L (Sn)k := if [pk\ then k else Ln(Sk)

can also be shown with a disjunctive lemma as used for D and G. For L we show

∀nk. safepk→ leastp (Lnk)∨ (Lnk = k+n∧ safep(k+n)

by induction on n. Note that the premise safepk serves as an invariant for L. Now

∀n. pn→ leastp (Ln0)

follows.

Exercise 17.4.1 Do the proofs outlined above.

a) ∀n. leastp (Gn)∨ (Gn = n∧ safepn)

b) ∀n. pn→ leastp (Gn)

c) ∀nk. safepk→ leastp (Lnk)∨ (Lnk = k+n∧ safep(k+n)
d) ∀n. pn→ leastp (Ln0).

159

17 Least Witnesses

Exercise 17.4.2 (Least witness operators)

A function fN→N is called a least witness operator for a predicate pN→P if

∀n. least p (fn)∨ (fn = n∧ safepn). Note that in Exercise 17.4.1 you show that G
and λn.Ln0 are least witness operators for decidable predicates p. Assume that f
is a least witness operator for p and prove the following:

a) pn→ leastp (fn)

b) pm →m ≤ n→ leastp(fn)

c) p(fn)→ leastp (fn)

d) leastpn→ fn = n
e) leastpn→ n ≤m → fm = n
f) fm ≤m → p(fm)→m ≤ n→ fm = fn

Exercise 17.4.3 (Agreement of least witness operators)

Assume that f and g are least witness operators for p. Prove the following:

a) pm →m ≤ n→ fn = gn
b) (∀n. fn ≤ n)→ (∀n. gn ≤ n)→ ∀n. fn = gn
c) Prove Gn ≤ n and k ≤ Lnk ≤ k+n by induction on n.

Exercise 17.4.4 (Relational specification of least witness operators)

One can give a relational specification of least witness operators in the way we

have seen it for division operators. This turns out to be a superior alternative to

the functional-relation specification of Exercise 17.4.2. Given a decidable predi-

cate pN→P, we define

δxy := (leastpy ∧y ≤ x)∨ (y = x ∧ safepx)

Prove the following:

a) ∀nxy. pn→ n ≤ x → δxy → leastpy soundness

b) ∀xyy ′. δxy → δxy ′ → y = y ′ uniqueness

c) ∀x Σy. δxy satisfiability

d) ∀x. δx(Gx) correctness of G

e) ∀x. δx(Lx0) correctness of L

For (e) the claim needs to be generalized to Lxy for the induction to go through.

17.5 Least Witnesses and Excluded Middle

If we want a propositional least witness operator using ∃ in place of Σ, logical de-

cidability of p suffices.

160

17.5 Least Witnesses and Excluded Middle

Lemma 17.5.1 ∀pN→P. (∀k.pk∨¬pk)→ ∀n. safepn∨ ex(leastp).

Proof Analogous to Lemma 17.3.1. �

Lemma 17.5.2 ∀pN→P. (∀k.pk∨¬pk)→ exp → ex(leastp).

Proof Follows with Lemma 17.5.1. �

We can now show that the law of excluded middle

XM := ∀PP. P ∨¬P

holds if and only if every satisfiable predicate on the numbers has a least witness.

Fact 17.5.3 XM ←→ (∀pN→P. exp → ex(leastp)).

Proof Direction → follows with Lemma 17.5.2. For direction ← we pick a propo-

sition P and prove P ∨ ¬P . We now obtain the least witness n of the satisfiable

predicate pn := match n [0⇒ P | S_⇒ >]. If n = 0, we have p0 and thus P . If

n = Sk, we assume P and obtain a contradiction since safep(Sk) but p0. �

Exercise 17.5.4 Prove that the following propositions are equivalent.

1. XM

2. ∀pn. safepn∨ ex(leastp)

3. ∀p. exp → ex(leastp).

161

18 Size Recursion and
Procedural Specifications

Size recursion generalizes structural recursion such that recursion is possible for

all smaller arguments, where smaller augments are determined by a numeric size

function. In contrast to structural recursion, where the arguments must come from

an inductive type, size recursion accommodates arguments from any type. Never-

theless, defining a size recursion operator using structural recursion on numbers is

straightforward.

Using size recursion and informative types, functions can be defined following

recursion schemes expressible with size recursion. Often it is convenient to accom-

modate the underlying recursion scheme with a specialized recursion operator in-

corporating the desired case analysis, and encapsulating the necessary termination

proof. As main examples we will consider Euclidean division and greatest common

divisors.

Size recursion provides us with a flexible induction principle for proofs. Proofs

by induction on the size of objects are frequently used in mathematical develop-

ments.

We will consider procedural specifications of functions and construct satisfying

functions using step-indexing. Step-indexing applies whenever the recursion of the

specification can be interpreted as size recursion.

18.1 Basic Size Recursion Operator

The basic intuition for defining a recursive procedure f says that fx can be com-

puted using recursive applications fy for every y smaller than x. Similarly, when

we prove px, we may assume a proof for py for every y smaller than x. Both ideas

can be formalized with a size recursion operator of the type

∀XT∀σX→N∀pX→T.
(∀x. (∀y. σy < σx → py)→ px)→
∀x.px

The requirement that y be smaller than x for recursive applications is formalized

with a size function σ and the premise σy < σx. From the type of the size recur-

163

18 Size Recursion and Procedural Specifications

sion operator we see that the operator obtains a target function ∀x.px from a step

function

∀x. (∀y. σy < σx → py)→ px

The step function says how for x a px is computed, where for every y smaller

than x a py is provided by a continuation function

∀y. σy < σx → py

Size recursion generalizes structural recursion on numbers:

∀pN→T. p0 → (∀x. px → p(Sx)) → ∀x.px

While structural recursion is confined to numbers and provides recursion only for

the predecessor of the argument, size recursion works on arbitrary types and pro-

vides recursion for every y smaller than x, not just the predecessor.

The special case of size recursion where X is N, p is a predicate, and σ is

the identity function is known as complete induction in mathematical reasoning

(Fact 15.7.1).

It turns out that a size recursion operator can be defined with structural recur-

sion on numbers, following the idea we have already seen for complete induction.

Given the step function, we can define an auxiliary function

∀nx. σx < n→ px

by structural recursion on the upper bound n. By using the auxiliary function with

the upper bound S(σx), we can then obtain the target function ∀x.px.

Lemma 18.1.1 Let X : T, σ : X → N, p : X → T, and

F : ∀x. (∀y. σy < σx → py)→ px

Then there is a function ∀nx. σx < n→ px.

Proof We define the function asserted by structural recursion on n:

R : ∀nx. σx < n→ px
R0xh := match [⊥\ [] h : σx < 0

R(Sn)xh := Fx(λyh′. Rny[σy < n\) h : σx < Sn, h′ : σy < σx �

Note that the definition of the function R in the proof involves computational

falsity elimination in the base case.

We can phrase the above proof also as an informal inductive proof leaving im-

plicit the operator R. While more verbose than the formal proof, the informal proof

seems easier to read for humans. Here we go:

164

18.1 Basic Size Recursion Operator

We prove ∀nx. σx < n → px by induction on n. If n = 0, we have

σx < 0, which is contradictory. For the inductive step, we have σx < Sn
and need to construct a value of px. We also have ∀x. σx < n → px by

the inductive hypothesis. Using the step function F , it suffices to construct

a continuation function ∀y. σy < σx → py . So we assume σy < σx and

prove py . Since σy < n by the assumptions σy < σx < Sn, the inductive

hypothesis yields py .

Theorem 18.1.2 (Size Recursion Operator)

∀XT ∀σX→N ∀pX→T.
(∀x. (∀y. σy < σx → py)→ px) →
∀x.px

Proof Straightforward with Lemma 18.1.1. �

Often it is helpful to define specialized size recursion operators. We will often

use a specialized size recursion operator for binary type functions.

Fact 18.1.3 (Binary size recursion operator)

∀XYT ∀σX→Y→N ∀pX→Y→T.
(∀xy. (∀x′y ′. σx′y ′ < σxy → px′y ′)→ pxy)→
∀xy. pxy

Proof Size recursion on X × Y using the type function λa. p(π1a)(π2a) and the

size function λa. σ(π1a)(π2a). �

The size recursion theorem does not expose the definition of the recursion op-

erator and we will not use the defining equations of the operator. When we use the

size recursion operator to construct a function f : ∀x.px, we will make sure that

the type function p gives us all the information we need for proofs about fx.

The accompanying Coq development gives a transparent definition of the size

recursion operator. This way we can actually compute with the functions defined

with the recursion operator, making it possible to prove concrete equations by com-

putational equality.

Exercise 18.1.4 Define operators for structural recursion on numbers

∀pN→T. p0→ (∀x. px → p(Sx))→ ∀x.px

and for complete recursion on numbers

∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x.px

using the size recursion operator.

165

18 Size Recursion and Procedural Specifications

Exercise 18.1.5 Let f be a function N→ N→ N satisfying the following equation:

fxy =

x if x ≤ y
f(x − Sy)y if x > y

Prove the following using size recursion:

a) ∀xy. fxy ≤ y
b) ∀xy Σk. x = k · Sy + fxy

18.2 Euclidean Division

Euclidean division counts how often Sy can be subtracted from x without trunca-

tion. We specify this operation with the predicate

δxyz := z · Sy ≤ x < Sz · Sy

and say that a function fN→N→N respects δ if ∀xy. δxy(fxy). In addition, we fix

a procedural specification of Euclidean division using the unfolding function

∆ : (N→ N→ N)→ N→ N→ N

∆fxy =

0 if x ≤ y
S(f (x − Sy)y) if x > y

We say that a function fN→N→N satisfies ∆ if ∀xy. fxy = ∆fxy .

Given the formal definitions, we would like to prove:

1. f respects δ if and only if f satisfies ∆.

2. There is a function respecting δ and satisfying ∆.

3. All functions respecting δ or satisfying ∆ agree.

Fact 18.2.1 All functions satisfying ∆ agree.

Proof Let ∀xy. fxy = ∆fxy and ∀xy. gxy = ∆gxy . We prove fxy = gxy by

size induction on x. By the assumptions it suffices to show ∆fxy = ∆gxy . Case

analysis on (x ≤ y)+(x > y). If x ≤ y , we have to show 0 = 0. If x > y , we have to

show S(f (x− Sy)y) = S(g(x− Sy)y), which follows by the inductive hypothesis.�

Fact 18.2.2 (Derivation rules) δ satisfies the following rules:

• δ1 : x ≤ y → δxy0

• δ2 : x > y → δ(x − Sy)yz → δxy(Sz)

Proof Straightforward. �

166

18.2 Euclidean Division

Fact 18.2.3 (Functionality) ∀xyzz′. δxyz → δxyz′ → z = z′.

Proof Straightforward. �

Corollary 18.2.4 All functions respecting δ agree.

For clarity we also identify a customized recursion operator.

Lemma 18.2.5 (Euclidean recursion operator)

∀yN∀pN→T.

(∀x. x ≤ y → px)→
(∀x. x > y → p(x − Sy)→ px)→
∀x. px

Proof By size recursion on x and case analysis on (x ≤ y)+ (x > y). �

It is now straightforward to construct a function respecting δ.

Fact 18.2.6 ∀xy Σz. δxyz.

Proof We construct this function using the Euclidean recursion operator, which

gives us two subgoals for x ≤ y and x > y . The first subgoal follows with δ1. The

second subgoal follows with δ2 and the inductive hypothesis. �

Using the Skolem equivalence, we now have a reducible function D respecting δ.

We can now prove equations like D 15 3 = 3 by computational equality. Given the

function Div from Fact 18.2.6, we can define a Euclidean division function

div : N→ N→ N

div x 0 := 0

div x (Sy) := π1(Div xy)

such that equations like div 133 12 = 11 hold by computational equality.

Fact 18.2.7 Every function satisfying ∆ respects δ.

Proof Let ∀xy. fxy = ∆fxy . We show δxy(fxy) by size recursion on x. By the

assumption it suffices to show δxy(∆fxy). Case analysis on (x ≤ y) + (x > y),
which yields the subgoals δxy0 and δxy(S(f (x−Sy))y). The first subgoal follows

with δ1. The second subgoal follows with δ2 and the inductive hypothesis. �

167

18 Size Recursion and Procedural Specifications

Fact 18.2.8 Every function respecting δ satisfies ∆.

Proof Let f respect δ. We show fxy = ∆fxy . By functionality of δ and the as-

sumption it suffices to show δxy(∆fxy). Case analysis on (x ≤ y)+ (x > y),
which yields the subgoals δxy0 and δxy(S(f (x − Sy))y), which follow by δ1

and δ2. �

Exercise 18.2.9 We specify a remainder function with a predicate

ρxyz := (z ≤ x ∧ ∃k. x = k · Sy + z)

a) Give a corresponding unfolding function R.

b) Establish the equivalence between ρ and R.

c) Construct a function respecting ρ using Euclidean recursion.

d) Show that all functions satisfying R agree.

Exercise 18.2.10

Prove ∀xyN ΣabN. (x = a · Sy + b)∧ (b ≤ y) using Euclidean recursion.

18.3 Greatest Common Divisors

Next we construct and verify a function computing greatest common divisors

(GCDs) following the scheme we have used for Euclidean division. This time we

work with an abstract relational specification to emphasize that only certain prop-

erties of the concrete relational specification are needed.

Definition 18.3.1 A gcd relation is a predicate γN→N→N→P satisfying the following

conditions for all numbers x, y , z:

• γ1 : γ0yy (zero rule)

• γ2 : γyxz → γxyz (symmetry rule)

• γ3 : x ≤ y → γx(y − x)z → γxyz (subtraction rule)

A functional gcd relation satisfies the additional condition

• γfun: γxyz → γxyz′ → z = z′

We say that a function fN→N→N respects a gcd relation γ if ∀xy. γxy(fxy).

A proposition γxyz may be read as saying that z is the GCD of x and y . We

refer to the conditions γ1, γ2, and γ3 as rules to highlight their computational in-

terpretation:

• The GCD of x and 0 is x.

• The GCD of x and y is the GCD of y and x.

• The GCD of x and y is the GCD of x and y − x if x ≤ y .

168

18.3 Greatest Common Divisors

Fact 18.3.2 All functions respecting a functional gcd relation agree.

Proof Straightforward. �

Definition 18.3.3

We fix a procedural specification of GCDs using the unfolding function

Γ : (N→ N→ N)→ N→ N→ N

Γ f0y := y

Γ f(Sx)0 := Sx

Γ f(Sx)(Sy) :=

f(Sx)(y − x) if x ≤ y
f(x −y)(Sy) if x > y

We say that a function fN→N→N satisfies Γ if ∀xy. fxy = Γfxy .

Given a functional gcd relation γ, we will prove:

1. f respects γ if and only if f satisfies Γ .

2. There is a function respecting γ and satisfying Γ .

3. All functions respecting γ or satisfying Γ agree.

Fact 18.3.4 All functions satisfying Γ agree.

Proof Let ∀xy. fxy = Γfxy and ∀xy. gxy = Γgxy . We prove fxy = gxy by

size induction on x+y . By the assumptions it suffices to show Γfxy = Γgxy . Since

the base cases follow by computational equality, it suffices to show Γf(Sx)(Sy) =
Γg(Sx)(Sy). Case analysis on (x ≤ y) + (x > y). If x ≤ y , we have to show

f(Sx)(y − x) = g(Sx)(y − x), which follows by the inductive hypothesis. The

other case is symmetric. �

Note that the proof explicates that the procedural specification “terminates”

since the sum x +y of the arguments x and y is decreased upon “recursion”.

For clarity we identify a customized recursion operator.

Lemma 18.3.5 (GCD recursion operator)

∀pN→N→T.

(∀y. p0y)→
(∀xy. pxy → pyx)→
(∀xy. x ≤ y → px(y − x)→ pxy)→
∀xy. pxy

169

18 Size Recursion and Procedural Specifications

Proof By binary size recursion on x + y considering four disjoint cases: x = 0,

y = 0, x ≤ y , and y < x. �

Fact 18.3.6 Let γ be a gcd relation. Then ∀xy Σz. γxyz.

Proof We construct the function using the gcd recursion operator, which gives us

three subgoals. The first subgoal follows with γ1. The second subgoal follows

with γ2. The third subgoal follows with γ3 and the inductive hypothesis. �

Using the Skolem equivalence, we now have a reducible function G respecting Γ .
We can now prove equations like G 49 63 = 7 by computational equality.

Fact 18.3.7 Every function satisfying Γ respects every gcd relation.

Proof Let ∀xy. fxy = Γfxy and let γ be a gcd relation. We show γxy(fxy)
using size recursion on x + y . By the assumption it suffices to show γxy(Γfxy).
We consider four disjoint cases: x = 0, y = 0, x ≤ y , and y < x. The base cases

follow by γ1 and γ2. The remaining cases follow by γ2 and γ3 and the inductive

hypothesis. �

Fact 18.3.8 Every function respecting a functional gcd relation satisfies Γ .

Proof Let γ be a functional gcd relation and let f respect γ. We show fxy = Γfxy .

By the functionality of γ and the assumption it suffices to show γxy(Γfxy). We

consider four disjoint cases: x = 0, y = 0, x ≤ y , and y < x. The base cases follow

with γ1 and γ2. The remaining cases follow with γ2 and γ3. �

Definition 18.3.9 (Concrete gcd relation) We define the divisors of a number and

the concrete gcd relation as follows:

n | x := ∃k. x = k ·n n divides x

γxyz := ∀n. n | z ←→ n | x ∧n | y

We will show that γ is a functional gcd relation. We start with the relevant facts

about divisibility.

Fact 18.3.10

1. n | 0 and x | x.

2. x ≤ y → n | x → (n | y ←→ n | y − x).
3. x > 0→ n | x → n ≤ x.

4. n > x → n | x → x = 0.

5. (∀n. n | x ←→ n | y)→ x ≤ y .

170

18.3 Greatest Common Divisors

Proof Claims 1–4 have straightforward proofs unfolding the definition of divisibil-

ity. For (5), we consider y = 0 and y > 0. For y = 0, we obtain x = 0 by (4) with

n := Sx and (1). For y > 0, we obtain x ≤ y by (3) and (1). �

Fact 18.3.11 The concrete gcd relation is a functional gcd relation.

Proof Condition γ1 follows with Fact 18.3.10 (1). Condition γ2 is obvious from the

definition. Condition γ3 follows with Fact 18.3.10 (2). The functionality of γ follows

with Fact 18.3.10 (5) and antisymmetry. �

Fact 18.3.12 gN→N→N satisfies Γ if and only if ∀xyn. n | gxy ←→ n | x ∧n | y .

Proof Facts 18.3.7, 18.3.11, and 18.3.8. �

Exercise 18.3.13 (GCDs with modulo operation)

Assume G and M are functions N→ N→ N satisfying the equations

G 0y = y
G (Sx)y = G(Myx) (Sx)

Mxy =

x if x ≤ y
M(x − Sy)y if x > y

You will show that G computes GCDs.

Let γ be a gcd relation. Prove the following claims.

a) Mxy ≤ y .

b) γ(Myx)(Sx)z → γ(Sx)yz.

c) G respects γ.

d) ∀xyn. n | Gxy ←→ n | x ∧ n | y .

e) A function satisfies Γ if and only if it satisfies the equations for G.

Hints: Claim (a) follows by size induction on x with y fixed. Claim (b) follows by

size induction on y with x fixed. Claim (c) follows by size induction on x with y
quantified using (b) and (a). Claim (d) follows from (c) and Fact18.3.11. Claim (e)

follows with (d) and Facts 18.3.12 and 18.3.11.

Exercise 18.3.14 Prove the following facts about functional gcd relations.

a) All functional gcd relations agree.

b) If f satisfies Γ , then λxyz. fxy = z is a functional gcd relation.

c) A functional gcd relation exists if and only if a function satisfying Γ exists.

Use Facts 18.3.6, 18.3.7, and 18.3.8. Do not use the concrete gcd relation (i.e.,

Fact 18.3.11). Note that the above facts give us two abstract characterizations of

GCDs: Either as a functional gcd relation or as a function satisfying the procedural

specification Γ .

171

18 Size Recursion and Procedural Specifications

18.4 Step-Indexed Function Construction

Using size recursion, we could show with routine proofs that the procedural specifi-

cations of Euclidean division and greatest common divisors have unique solutions.

Using size-recursion, we also could construct functions satisfying the procedural

specifications using complementary arithmetic specifications. In both cases the

functionality of the arithmetic specification was essential. We will now introduce

a technique called step indexing providing for the direct construction of functions

satisfying procedural specifications. Step indexing doesn’t require an arithmetic

specification and works whenever the termination of the procedural specification

can be argued with an arithmetic size function. Moreover, step indexing doesn’t

require size recursion.

Suppose we have a procedural specification whose termination can be argued

with an arithmetic size function. Then we can define an auxiliary function taking the

size (a number) as an additional argument called step index and arrange things such

that the recursion is structural recursion on the step index. We obtain the specified

function by using the auxiliary function with a sufficiently large step index.

We demonstrate the technique with the procedural specification of GCDs

(Definition 18.3.3). Here the step-indexed auxiliary function comes out as follows:

G 0xy := 0

G(Sn)xy := Γ (Gn)x y

The essential result about G is index independence : Gnxy = Gn′xy whenever the

step indices are large enough.

Lemma 18.4.1 (Index independence)

∀nn′xy. (n > x +y)→ (n′ > x +y)→ Gnxy = Gn′xy .

Proof By induction on n with n′, x, and y quantified. The base case has a

contradictory assumption. In the successor case, we destructure n′. The case

n′ = 0 has a contradictory assumption. If n = Sn1 and n′ = Sn′1, we have

Γ (Gn1)xy = Γ (Gn′1)xy . We destructure x. The base case holds by computational

equality. Next we destructure y , where the base case again holds by computational

equality. The claim now follows by case analysis on (x′ ≤ y ′)+ (x′ > y ′) using the

inductive hypothesis. �

Fact 18.4.2 λxy. G(S(x +y))xy satisfies Γ .

Proof Let g := λxy. G(S(x + y))xy . We show G(S(x + y))xy = Γgxy . For x = 0

and x = Sx′ ∧y = 0 the claim holds by computational equality. It remains to show

G(S(Sx′ + Sy ′))(Sx′)(Sy ′) = Γg(Sx′)(Sy ′). The claim now follows by case analysis

on (x′ ≤ y ′)+ (x′ > y ′) using index independence (Lemma 18.4.1). �

172

18.5 Summary

Exercise 18.4.3 (Euclidean division) Construct a function satisfying the procedu-

ral specification of Euclidean division in §18.2 using step indexing.

Exercise 18.4.4 (Fibonacci)

Recall the procedural specification of the Fibonacci function in Figure 1.5.

a) Show that all functions satisfying the procedural specification agree.

Hint: Use size induction.

b) Construct and verify a function satisfying the procedural specification using step

indexing.

Exercise 18.4.5 (GCDs with modulo operation)

Consider procedural specifications for functions M,G : N→ N→ N as follows:

Mxy =

x if x ≤ y
M(x − Sy)y if x > y

G 0y = y
G (Sx)y = G(Myx) (Sx)

a) Define the unfolding functions for M and G.

b) Show that the procedural specifications are unique using size recursion.

c) Construct and verify functions M and G satisfying the procedural specifications

using step indexing.

Exercise 18.4.6 Nonterminating procedural specifications may be unsatisfiable or

may have disagreeing solutions.

a) Give a function F (N→N)→N→N such that ∀fN→N. ¬∀x. fx = Ffx.

b) Give a function F (N→N)→N→N and functions fN→N and gN→N satisfying F such that

fx ≠ gx for all x.

c) Convince yourself that unsatisfiable procedural specifications are unique.

We conjecture that all terminating procedural specifications are satisfiable and

unique. Note that the notion of termination is informal.

18.5 Summary

In this chapter we studied procedural specifications and their relationship with re-

lational specifications. We considered procedural specifications whose termination

can be argued with an arithmetic size function. For the examples we considered, we

made the following observations:

• Functions satisfying procedural specifications can be constructed with step-

indexing.

• Index independence of step-indexed functions follows with structural induction

on the step index.

173

18 Size Recursion and Procedural Specifications

• Correctness of a step-indexed function is a straightforward consequence of index

independence.

• Uniqueness of procedural specifications follows with size recursion.

• That a procedural specification respects a relational specification can be shown

with size recursion and derivation rules valid for the relational specification.

Given a relational specification, we may construct a certifying function for the speci-

fication using size recursion. Analysis of such constructions identifies the following

building blocks:

• A procedural specification underlying the construction.

• Derivation rules mediating between the relational specification and the procedu-

ral specification.

• A specialized recursion operator obtaining the certifying function from the

derivation rules.

The relational specifications we considered where all functional. This has the

consequence that a function respects the relational specification if and only if it

satisfies the accompanying procedural specification. Moreover, the relational speci-

fication can be characterized as a functional relation satisfying the derivation rules

(see Exercise 18.3.14).

We may describe the situation with the slogan “Algorithm equals logic plus con-

trol” where the derivation rules are the “logic” and the recursion operator is the

“control”.

Comparing for our examples the procedural specification with the derivation

rules and the accompanying recursion operator, we notice that the procedural spec-

ification specifies algorithmic details that are hidden in the construction of the re-

cursion operator.

The DNF solver appearing in §29.4 is an interesting example for the use of a

specialized size recursion operator (DNF recursion §29.5) where the arguments are

lists rather than numbers.

It is common to say that a function f satisfying a procedural specification Φ is

a fixed point of Φ. In fact, if we assume function extensionality, f satisfies Φ if and

only if Φf = f (i.e., f is a fixed point of ϕ).

174

19 Lists

Finite sequences [x1 , . . . , xn] are omnipresent in mathematics and computer

science, appearing with different interpretations and notations, for instance, as

vectors, strings, or states of stacks and queues. In this chapter, we study inductive

list types providing a recursive representation for finite sequences whose elements

are taken from a base type. Besides numbers, lists are the most important recursive

data type in computational type theory. Lists have much in common with numbers,

given that recursion and induction are linear for both data structures. Lists also

have much in common with finite sets, given that both have a notion of member-

ship. In fact, our focus will be on the membership relation for lists.

We will see recursive predicates for membership and disjointness of lists, and

also for repeating and nonrepeating lists. We will study nonrepeating lists and

relate non-repetition to cardinality of lists.

19.1 Inductive Definition

A list represents a finite sequence [x1 , . . . , xn] of values. Formally, lists are ob-

tained with two constructors nil and cons:

[] , nil

[x] , cons x nil

[x ,y] , cons x (cons y nil)
[x ,y , z] , cons x (cons y (cons z nil))

The constructor nil provides the empty list. The constructor cons yields for a

value x and a list [x1 , . . . , xn] the list [x ,x1 , . . . , xn]. Given a list cons x A, we

call x the head and A the tail of the list. Given a list [x1 , . . . , xn], we call n the

length of the list, x1, . . . , xn the elements of the list, and the numbers 0, . . . , n − 1

the positions of the list. An element may appear at more than one position in a list.

For instance, [2 ,2 ,3] is a list of length 3 that has 2 elements, where the element 2

appears at positions 0 and 1.

175

19 Lists

Formally, lists are accommodated with an inductive type definition

L(X : T) : T ::= nil | cons (X,L(X))

introducing three constructors:

L : T→ T

nil : ∀XT. L(X)
cons : ∀XT. X → L(X)→ L(X)

Lists of type L(X) are called lists over X. The typing discipline enforces that all

elements of a list have the same type. For nil and cons, we don’t write the first

argument X and use the following notations:

[] := nil

x :: A := consxA

For cons, we omit parentheses as follows:

x :: y :: A � x :: (y :: A)

The inductive definition of lists provides for case analysis, recursion, and induc-

tion on lists, in a way that is similar to what we have seen for numbers. We define

the universal eliminator for lists as follows:

EL : ∀XT pL(X)→T. p []→ (∀xA. pA→ p(x :: A))→ ∀A.pA
ELXpe1e2 [] := e1

ELXpe1e2 (x :: A) := e2xA(ELXpe1e2A)

The eliminator provides for inductive proofs, recursive function definitions, and

structural case analysis.

Fact 19.1.1 (Constructor laws)

1. [] ≠ x :: A (disjointness)

2. x :: A = y :: B → x = y (injectivity)

3. x :: A = y :: B → A = B (injectivity)

4. x :: A ≠ A (progress)

Proof The proofs are similar to the corresponding proofs for numbers (Fact 15.1.1).

Claim (4) corresponds to Sn ≠ n and follows by induction on A with x quantified.�

Fact 19.1.2 (Discreteness) If X is a discrete type, then L(X) is a discrete type:

E(X)→ E(L(X)).

176

19.2 Basic Operations

Proof Let X be discrete and A, B be lists over X. We show D(A = B) by induction

over A with B quantified followed by destructuring of B using disjointness and

injectivity from Fact 19.1.1. In case both lists are nonempty with heads x and y , an

additional case analysis on x = y is needed. �

Exercise 19.1.3 Prove ∀XTAL(X). D(A = []).

Exercise 19.1.4 Prove ∀XTAL(X). (A = [])+ ΣxB. A = x :: B.

19.2 Basic Operations

We introduce three basic operations on lists, which yield the length of a list, con-

catenate two lists, and apply a function to every position of a list:

len [x1, . . . , xn] = n length

[x1, . . . , xm]++ [y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn] concatenation

f@ [x1, . . . , xn] = [f@x1, . . . , f@xn] map

Formally, we define the operations as recursive functions:

len : ∀XT. L(X)→ N

len [] := 0

len (x :: A) := S (len A)

++ : ∀XT. L(X)→ L(X)→ L(X)
[]++B := B

(x :: A)++B := x :: (A++B)

@ : ∀XYT. (X → Y)→ L(X)→ L(Y)
f@ [] := []

f@(x :: A) := fx :: (f@A)

Note that we accommodate X and Y as implicit arguments for readability.

Fact 19.2.1

1. A++(B++C) = (A++B)++C (associativity)

2. A++[] = A
3. len (A++B) = lenA+ lenB

4. len (f@A) = lenA

5. lenA = 0←→ A = []
Proof The equations follow by induction on A. The equivalence follows by case

analysis on A. �

177

19 Lists

19.3 Membership

Informally, we may characterize membership in lists with the equivalence

x ∈ [x1 , . . . , xn] ←→ x = x1 ∨ · · · ∨ x = xn ∨⊥

Formally, we define the membership predicate by structural recursion on lists:

(∈) : ∀XT. X → L(X)→ P

(x ∈ []) := ⊥
(x ∈ y :: A) := (x = y ∨ x ∈ A)

We treat the type argument X of the membership predicate as implicit argument. If

x ∈ A, we say that x is an element of A.

Fact 19.3.1 (Existential Characterization) x ∈ A ←→ ∃A1A2. A = A1++x :: A2.

Proof Direction → follows by induction on A. The nil case is contradictory. In

the cons case a case analysis on x ∈ a :: A′ closes the proof with the inductive

hypothesis.

Direction ← follows by induction on A1. �

Fact 19.3.2 ∀xaX∀AL(X). E(X)→ x ∈ a :: A→ (x = a)+ (x ∈ A).

Proof Straightforward. �

Fact 19.3.3 (Factorization) ∀xX AL(X). E(X)→ x ∈ A→ ΣA1A2. A = A1++x :: A2.

Proof By induction on A. The nil case is contradictory. In the cons case a case

analysis using Fact 19.3.2 closes the proof. �

Fact 19.3.4 (Decidable Membership) ∀xX∀AL(X). E(X)→D(x ∈ A).

Proof By induction on A. �

Recall that bounded quantification over numbers preserves decidability

(Fact 15.6.6). Similarly, quantification over the elements of a list preserves de-

cidability.

Fact 19.3.5 (Bounded Quantification) Let p : X → P and A : L(X). Then:

1. (∀x. D(px))→D(∀x. x ∈ A→ px).
2. (∀x. D(px))→D(∃x. x ∈ A∧ px).
3. (∀x. D(px))→ (Σx. x ∈ A∧ px)+ (∀x. x ∈ A→ ¬px).

178

19.4 List Inclusion and List Equivalence

Proof By induction on A. �

Fact 19.3.6 (Membership laws)

1. x ∈ A++B ←→ x ∈ A∨ x ∈ B.

2. x ∈ f@A ←→ ∃a. a ∈ A∧ x = fa.

Proof By induction on A. �

Exercise 19.3.7

Define a function δ : L(O(X))→ L(X) such that x ∈ δA←→ ◦x ∈ A.

Exercise 19.3.8 (Pigeonhole) Prove that a list of numbers whose sum is greater

than the length of the list must contain a number that is at least 2:

sumA > lenA → Σx. x ∈ A∧ x ≥ 2

First define the function sum.

Exercise 19.3.9 (Andrej’s Puzzle) Assume an increasing function fN→N (that is,

∀x. x < fx) and a list A of numbers satisfying ∀x. x ∈ A ←→ x ∈ f@A. Show

that A is empty.

Hint: First verify that A contains for every element a smaller element. It then

follows by complete induction that A cannot contain an element.

19.4 List Inclusion and List Equivalence

We may see a list as a representation of a finite set. List membership then corre-

sponds to set membership. The list representation of sets is not unique since the

same set may have different list representations. For instance, [1 ,2], [2 ,1], and

[1 ,1 ,2] are different lists all representing the set {1,2}. In contrast to sets, lists

are ordered structures providing for multiple occurrences of elements.

From the type-theoretic perspective, sets are informal objects that may or may

not have representations in type theory. This is in sharp contrast to set-based math-

ematics where sets are taken as basic formal objects. The reason sets don’t appear

natively in computational type theory is that sets in general are noncomputational

objects.

We will take lists over X as type-theoretic representations of finite sets over X.

With this interpretation of lists in mind, we define list inclusion and list equiva-

lence as follows:

A ⊆ B := ∀x. x ∈ A→ x ∈ B
A ≡ B := A ⊆ B ∧ B ⊆ A

Note that two lists are equivalent if and only if they represent the same set.

179

19 Lists

Fact 19.4.1 List inclusion A ⊆ B is reflexive and transitive. List equivalence A ≡ B
is reflexive, symmetric, and transitive.

Fact 19.4.2 We have the following properties for membership, inclusion, and equiv-

alence of lists.

x ∉ [] x ∈ [y]←→ x = y
[] ⊆ A A ⊆ []→ A = []
x ∈ y :: A→ x ≠ y → x ∈ A x ∉ y :: A→ x ≠ y ∧ x ∉ A
A ⊆ B → x ∈ A→ x ∈ B A ≡ B → x ∈ A←→ x ∈ B
A ⊆ B → x :: A ⊆ x :: B A ≡ B → x :: A ≡ x :: B

A ⊆ B → A ⊆ x :: B x :: A ⊆ B ←→ x ∈ B ∧A ⊆ B
x :: A ⊆ x :: B → x ∉ A→ A ⊆ B x :: A ⊆ [y]←→ x = y ∧A ⊆ [y]
x :: A ≡ x :: x :: A x :: y :: A ≡ y :: x :: A

x ∈ A→ A ≡ x :: A

x ∈ A++B ←→ x ∈ A∨ x ∈ B
A ⊆ A′ → B ⊆ B′ → A++B ⊆ A′++B′ A++B ⊆ C ←→ A ⊆ C ∧ B ⊆ C

Proof Except for the membership fact for concatenation, which already appeared

as Fact 19.3.6, all claims have straightforward proofs not using induction. �

Fact 19.4.3 (Deletion) x ∈ A→ ∃A′. A ≡ x :: A′ ∧ S(lenA′) = lenA.

Proof Follows with Fact 19.3.1. There is also a direct proof by induction on A. �

Fact 19.4.4 (Deletion)

∀xX ∀AL(X). E(X)→ x ∈ A→ ΣA′. A ≡ x :: A′ ∧ S(lenA′) = lenA.

Proof Follows with Fact 19.3.3. There is also a direct proof by induction on A using

Fact 19.3.2. �

Fact 19.4.5 Let A and B be lists over a discrete type. ThenD(A ⊆ B) andD(A ≡ B).

Proof Holds since membership is decidable (Fact 19.3.4) and bounded quantifica-

tion preserves decidability (Fact 19.3.5). �

19.5 Setoid Rewriting

It is possible to rewrite a claim or an assumption in a proof goal with a propositional

equivalence P ←→ P ′ or a list equivalence A ≡ A′, provided the subterm P or A to

180

19.6 Nonrepeating Lists

be rewritten occurs in a compatible position. This form of rewriting is known as

setoid rewriting. The following facts identify compatible positions by means of

compatibility laws.

Fact 19.5.1 (Compatibility laws for propositional equivalence)

Let P ←→ P ′ and Q ←→ Q′. Then:

P ∧Q ←→ P ′ ∧Q′ P ∨Q ←→ P ′ ∨Q′ (P → Q)←→ (P ′ → Q′)
¬P ←→ ¬P ′ (P ←→ Q)←→ (P ′ ←→ Q′)

Fact 19.5.2 (Compatibility laws for list equivalence)

Let A ≡ A′ and B ≡ B′. Then:

x ∈ A←→ x ∈ A′ A ⊆ B ←→ A′ ⊆ B′ A ≡ B ←→ A′ ≡ B′

x :: A ≡ x :: A′ A++B ≡ A′++B′ f@A ≡ f@A′

Coq’s setoid rewriting facility makes it possible to use the rewriting tactic for

rewriting with equivalences, provided the necessary compatibility laws and equiv-

alence relations have been registered with the facility. The compatibility laws for

propositional equivalence are preregistered.

Exercise 19.5.3 Which of the compatibility laws are needed to justify rewriting the

claim ¬(x ∈ y :: (f@A)++B) with the equivalence A ≡ A′ ?

19.6 Nonrepeating Lists

A list is repeating if it contains some element more than once. For instance, [1,2,1]
is repeating and [1,2,3] is nonrepeating. Formally, we define repeating lists over a

base type X with a recursive predicate:

rep : L(X)→ P

rep [] := ⊥
rep (x :: A) := x ∈ A∨ repA

Fact 19.6.1 (Characterization)

For every list A over a discrete type we have:

repA ←→ ∃xA1A2. A = A1++x :: A2 ∧ x ∈ A2.

Proof By induction on repA using Fact 19.3.1. �

We also define a recursive predicate for nonrepeating lists over a base type X:

nrep : L(X)→ P

nrep [] := >
nrep (x :: A) := x ∉ A∧ nrepA

181

19 Lists

Theorem 19.6.2 (Partition) Let A be a list over a discrete type. Then:

1. repA→ nrepA→ ⊥ (disjointness)

2. repA+ nrepA (exhaustiveness)

Proof Both claims follow by induction on A. Discreteness is only needed for the

second claim, which needs decidability of membership (Fact 19.3.4) for the cons

case. �

Corollary 19.6.3 Let A be a list over a discrete type. Then:

1. D(repA) and D(nrepA).

2. repA←→ ¬nrepA and nrepA←→ ¬repA.

Fact 19.6.4 (Equivalent nonrepeating list)

For every list over a discrete type one can obtain an equivalent nonrepeating list:

∀AΣB. B ≡ A∧ nrepB.

Proof By induction on A. For x :: A, let B be the list obtained for A with the

inductive hypothesis. If x ∈ A, B has the required properties for x :: A. If x ∉ A,

x :: B has the required properties for x :: A. �

The next fact formulates a key property concerning the cardinality of lists (num-

ber of different elements). It is carefully chosen so that it provides a building block

for further results (Corollary 19.6.6). Finding this fact took experimentation. To

get the taste of it, try to prove that equivalent nonrepeating lists have equal length

without looking at our development.

Fact 19.6.5 (Discriminating element)

Every nonrepeating list over a discrete type contains for every shorter list an ele-

ment not in the shorter list: ∀AB. nrepA→ lenB < lenA→ Σx. x ∈ A∧ x ∉ B.

Proof By induction on A with B quantified. The base case follows by computational

falsity elimination. For A = a :: A′ we do case analysis on (a ∈ B) + (a ∉ B). The

case a ∉ B is trivial. For a ∈ B, Fact 19.4.4 yields some B′ shorter than B such that

B ≡ a :: B′. The inductive hypothesis now yields some x ∈ A′ such that x ∉ B′. It

now suffices to show x ∉ B. We assume x ∈ B ≡ a :: B′ and derive a contradiction.

Since x ∉ B′, we have x = a, which is in contradiction with nrep (a :: A′). �

Corollary 19.6.6 Let A and B be lists over a discrete type X. Then:

1. nrepA→ A ⊆ B → lenA ≤ lenB.

2. nrepA→ nrepB → A ≡ B → lenA = lenB.

3. A ⊆ B → lenB < lenA → repA.

4. nrepA→ A ⊆ B → lenB ≤ lenA→ nrepB.

5. nrepA→ A ⊆ B → lenB ≤ lenA→ B ≡ A.

182

19.6 Nonrepeating Lists

Proof Interestingly, all claims follow without induction from Facts 19.6.5, 19.6.1,

and 19.6.3.

For (1), assume lenA > lenB and derive a contradiction with Fact 19.6.5.

Claims (2) and (3) follow from Claim (1), where for (3) we assume nrepA and

derive a contradiction (justified by Corollary 19.6.3).

For (4), we assume repB and derive a contradiction (justified by Corollary 19.6.3).

By Fact 19.6.1, we obtain a list B′ such that A ⊆ B′ and lenB′ < lenA. Contradiction

with (1).

For (5), it suffices to show B ⊆ A. We assume x ∈ B and show x ∈ A. Exploiting

the decidability of membership we assume x ∉ A and derive a contradiction. Using

Fact 19.6.5 for x :: A and B, we obtain z ∈ x :: A and z ∉ B, which is contradictory.�

We remark that Corollary 19.6.6 (3) may be understood as a pigeonhole lemma.

Exercise 19.6.7 Prove the following facts about map and nonrepeating lists:

a) injectivef → nrepA→ nrep (f@A).

b) nrep (f@A)→ x ∈ A→ x′ ∈ A→ fx = fx′ → x = x′.
c) nrep (f@A)→ nrepA.

Exercise 19.6.8 (Injectivity-surjectivity agreement) Let X be a discrete type and A
be a list containing all elements of X. Prove that a function X → X is injective if and

only if it is surjective.

This is an interesting exercise. It can be stated as soon as membership in lists

is defined. To solve it, however, one needs properties of length, map, element

removal, and nonrepeating lists. If one doesn’t know these notions, the exercise

makes an interesting project since one has to invent these notions. Our solution

uses Corollary 19.6.6 and Exercise 19.6.7.

We can sharpen the problem of the exercise by asking for a proof that a function

On(X)→ On(X) is injective if and only if it is surjective. There should be a proof

not using lists. See §11.4.

Exercise 19.6.9 (Factorization) Let A be a list over a discrete type.

Prove repA → ΣxA1A2A3. A = A1++x :: A2++x :: A3.

Exercise 19.6.10 (Partition) The proof of Corollary 19.6.3 is straightforward and

follows a general scheme. Let P and Q be propositions such that P → Q → ⊥
and P + Q. Prove decP and P ←→ ¬Q. Note that decQ and Q ←→ ¬P follow by

symmetry.

Exercise 19.6.11 (Even and Odd) Define recursive predicates even and odd on

numbers and show that they partition the numbers: evenn → oddn → ⊥ and

evenn+ oddn.

183

19 Lists

Exercise 19.6.12 Define a function seq : N→ N→ L(N) for which you can prove the

following:

a) seq 2 5 = [2,3,4,5,6]
b) seqn(Sk) = n :: seq (Sn)k

c) len (seqnk) = k
d) x ∈ seqnk ←→ n ≤ x < n+ k
e) nrep (seqnk)

Exercise 19.6.13 (List of numbers) Prove that every non-repeating list of numbers

of length Sn contains a number k ≥ n. Hint: Use seq 0n from Exercise 19.6.12 and

Corollary 19.6.6 (1). First prove ∀nA. (Σk ∈ A. k ≥ n)+∀k ∈ A. k < n.

Exercise 19.6.14 (List reversal)

Define a list reversal function rev : L(X)→ L(X) and prove the following:

a) rev(A++B) = revB++ revA

b) rev(revA) = A
c) x ∈ A←→ x ∈ revA

d) nrepA→ x ∉ A→ nrep(A++[x])
e) nrepA→ nrep(revA)

f) Reverse list induction: ∀pX→T. p[]→ (∀xA. p(A)→ p(A++[x]))→ ∀A.pA.

Hint: By (a) it suffices to prove ∀A. p(revA), which follows by induction on A.

Exercise 19.6.15 (Equivalent nonrepeating lists) Show that equivalent nonrepeat-

ing lists have equal length without assuming discreteness of the base type. Hint:

Show nrepA→ A ⊆ B → lenA ≤ lenB by induction on A with B quantified using the

deletion lemma 19.4.3.

19.7 Constructive Discrimination Lemma

Using XM, we can prove that every non-repeating list contains for every shorter list

an element that is not in the shorter list:

XM→ ∀X∀ABL(X). nrepA→ lenB < lenA→ ∃x. x ∈ A∧ x ∉ B

We speak of the classical discrimination lemma. We have already shown a computa-

tional version of the lemma (Fact 19.6.5)

∀X∀ABL(X). E(X)→ nrepA→ lenB < lenA→ ∃x. x ∈ A∧ x ∉ B

184

19.7 Constructive Discrimination Lemma

replacing XM with an equality decider for the base type X. In this section our main

interest is in proving the constructive discrimination lemma

∀X∀ABL(X). nrepA→ lenB < lenA→ ¬¬∃x. x ∈ A∧ x ∉ B

which assumes neither XM nor an equality decider. Note that the classical discrim-

ination lemma is a trivial consequence of the constructive discrimination lemma.

We may say that the constructive discrimination lemma is obtained from the classi-

cal discrimination lemma by eliminating the use of XM by weakening the existential

claim with a double negation. Elimination techniques for XM have useful applica-

tions.

We first prove the classical discrimination lemma following the proof of

Fact 19.6.5.

Lemma 19.7.1 (Classical discrimination)

XM→ ∀ABL(X). nrepA→ lenB < lenA→ ∃x. x ∈ A∧ x ∉ B.

Proof By induction on A with B quantified. The base case follows by computational

falsity elimination. For A = a :: A′, we do case analysis on (a ∈ B) ∨ (a ∉ B)
exploiting XM. The case a ∉ B is trivial. For a ∈ B, Fact 19.4.3 yields some B′ shorter

than B such that B ≡ a :: B′. The inductive hypothesis now yields some x ∈ A′ such

that x ∉ B′. It now suffices to show x ∉ B. We assume x ∈ B ≡ a :: B′ and derive a

contradiction. Since x ∉ B′, we have x = a, which contradicts nrep (a :: A′). �

We observe that there is only a single use of XM. When we prove the constructive

version with the double negated claim, we will exploit that XM is available for stable

claims (Fact 13.3.8 (1)). Moreover, we will use the rule formulated by Fact 13.3.8 (2)

to erase the double negation from the inductive hypothesis so that we can harvest

the witness.

Lemma 19.7.2 (Constructive discrimination)

∀ABL(X). nrepA→ lenB < lenA→ ¬¬∃x. x ∈ A∧ x ∉ B.

Proof By induction on A with B quantified. The base case follows by computational

falsity elimination. Otherwise, we have A = a :: A′. Since the claim is stable, we

can do case analysis on a ∈ B ∨ a ∉ B (Fact 13.3.8 (1)). If a ∉ B, we have found a

discriminating element and finish the proof with ∀P. P → ¬¬P . Otherwise, we have

a ∈ B. Fact 19.4.3 yields some B′ shorter than B such that B ≡ a :: B′. Using

Fact 13.3.8 (2), the inductive hypothesis now gives us x ∈ A′ such that x ∉ B′.
By ∀P. P → ¬¬P it now suffices to show x ∉ B, which follows as in the proof of

Fact 19.7.1. �

Exercise 19.7.3 Prove that the double negation of ∃ agrees with the double negation

of Σ : ¬¬exp ←→ ((sigp → ⊥)→ ⊥).

185

19 Lists

19.8 Element Removal

We assume a discrete type X and define a function A\x for element removal as

follows:

\ : L(X)→ X → L(X)
[]_ := []

(x :: A)\y := if [x = y\ then A\y else x :: (A\y)

Fact 19.8.1

1. x ∈ A\y ←→ x ∈ A∧ x ≠ y
2. len (A\x) ≤ lenA

3. x ∈ A→ len (A\x) < lenA.

4. x ∉ A→ A\x = A

Proof By induction on A. �

Exercise 19.8.2 Prove x ∈ A → A ≡ x :: (A \ x).

Exercise 19.8.3 Prove the following equations, which are useful in proofs:

1. (x :: A)\x = A\x
2. x ≠ y → (y :: A)\x = y :: (A\x)

19.9 Cardinality

The cardinality of a list is the number of different elements in the list. For instance,

[1,1,1] has cardinality 1 and [1,2,3,2] has cardinality 3. Formally, we may say

that the cardinality of a list is the length of an equivalent nonrepeating list. This

characterization is justified since equivalent nonrepeating lists have equal length

(Corollary 19.6.6 (3)), and every list is equivalent to a non-repeating list (Fact 19.6.4).

We assume that lists are taken over a discrete type X and define a cardinality

function as follows:

card : L(X)→ N

card [] := 0

card(x :: A) := if [x ∈ A\ then cardA else S(cardA)

Note that we write [x ∈ A\ for the application of the membership decider provided

by Fact 19.3.4. We prove that the cardinality function agrees with the cardinalities

provided by equivalent nonrepeating lists.

186

19.9 Cardinality

Fact 19.9.1 (Cardinality)

1. ∀AΣB. B ≡ A∧ nrepB ∧ lenB = cardA.

2. cardA = n ←→ ∃B. B ≡ A∧ nrepB ∧ lenB = n.

Proof Claim 1 follows by induction on A. Claim 2 follows with Claim 1 and Corol-

lary 19.6.6 (2). �

Corollary 19.9.2

1. cardA ≤ lenA

2. A ⊆ B → cardA ≤ cardB

3. A ≡ B → cardA = cardB.

4. repA ←→ cardA < lenA (pigeonhole)

5. nrepA ←→ cardA = lenA

6. x ∈ A ←→ cardA = S(card(A \ x))

Proof All facts follow without induction from Fact 19.9.1, Corollary 19.6.6, and

Corollary 19.6.3. �

Exercise 19.9.3 Given direct proofs of (1), (4) and (5) of Corollary 19.9.2 by induc-

tion on A. Use (1) for (4) and (5).

Exercise 19.9.4 (Cardinality predicate) We define a recursive cardinality predicate:

Card : L(X)→ X → P

Card []0 := >
Card [] (Sn) := ⊥

Card (x :: A)0 := ⊥
Card (x :: A) (Sn) := if [x ∈ A\ then CardA(Sn) else CardAn

Prove that the cardinality predicate agrees with the cardinality function:

∀An. CardAn←→ cardA = n.

Exercise 19.9.5 (Disjointness predicate) We define disjointness of lists as follows:

disjointAB := ¬∃x. x ∈ A∧ x ∈ B

Define a recursive predicate Disjoint : L(X)→ L(X)→ P in the style of the cardinal-

ity predicate and verify that it agrees with the above predicate disjoint.

187

19 Lists

19.10 Position-Element Mappings

The positions of a list [x1 , . . . , xn] are the numbers 0, . . . , n − 1. More formally, a

number n is a position of a list A if n < lenA. If a list is nonrepeating, we have a

bijective relation between the positions and the elements of the list. For instance,

the list [7,8,5] gives us the bijective relation

0 � 7, 1 � 8, 2 � 5

It turns out that for a discrete type X we can define two functions

pos : L(X)→ X → N

sub : X → L(X)→ N→ X

realizing the position-element bijection:

x ∈ A→ subyA(posAx) = x
nrepA→ n < lenA→ posA(subyAn) = n

The function pos uses 0 as escape value for positions, and the function sub uses

a given yX as escape value for elements of X. The name sub stands for subscript.

The functions pos and sub will be used in Chapter 33 for constructing injections

and bijections between finite types.

Here are the definitions of pos and sub we will use:

pos : L(X)→ X → N

pos []x := 0

pos (a :: A)x := if [a = x\ then 0 else S(posAx)

sub : X → L(X)→ N→ X
suby []n := y

suby (a :: A)0 := a

suby (a :: A) (Sn) := subyAn

Fact 19.10.1 Let A be a list over a discrete type. Then:

1. x ∈ A → subaA(posAx) = x
2. x ∈ A → posAx < lenA

3. n < lenA → subaAn ∈ A
4. nrepA→ n < lenA→ posA(subaAn) = n

Proof All claims follow by induction on A. For (3), the inductive hypothesis must

quantify n and the cons case needs case analysis on n. �

188

19.10 Position-Element Mappings

Exercise 19.10.2 Prove (∀XT. L(X)→ N→ X)→ ⊥.

Exercise 19.10.3 Let A and B be lists over a discrete type X. Prove the following:

a) x ∈ A→ posAx = pos (A++B)x
b) x ∈ A→ y ∈ A→ posAx = posAy → x = y

Exercise 19.10.4 One can realize pos and sub with option types

pos : L(X)→ X → O(N)
sub : L(X)→ N→ O(X)

and this way avoid the use of escape values. Define pos and sub with option types

for a discrete base type X and verify the following properties:

a) x ∈ A→ Σn. posAx = ◦n
b) n < lenA → Σx. subAn = ◦x
c) posAx = ◦n→ subAn = ◦x
d) nrepA→ subAn = ◦x → posAx = ◦n
e) subAn = ◦x → x ∈ A
f) posAx = ◦n → n < lenA

189

20 Case Study: Expression Compiler

We verify a compiler translating arithmetic expressions into code for a stack ma-

chine. We use a reversible compilation scheme and verify a decompiler reconstruct-

ing expressions from their codes. The example hits a sweet spot of computational

type theory: Inductive types provide a perfect representation for abstract syntax,

and structural recursion on the abstract syntax provides for the definitions of the

necessary functions (evaluation, compiler, decompiler). The correctness conditions

for the functions can be expressed with equations, and generalized versions of the

equations can be verified with structural induction.

This is the first time in our text we see an inductive type with binary recursion

and two inductive hypotheses. Moreover, we see a notational convenience for func-

tion definitions known as catch-all equations.

20.1 Expressions and Evaluation

We will consider arithmetic expressions obtained with constants, addition, and sub-

traction. Informally, we describe the abstract syntax of expressions with a scheme

known as BNF:

e : exp ::= x | e1 + e2 | e1 − e2 (x : N)

Following the BNF, we represent expressions with the inductive type

exp : T ::= con(N) | add(exp,exp) | sub(exp,exp)

To ease our presentation, we will write the formal expressions provided by the

inductive type exp using the notation suggested by the BNF. For instance:

e1 + e2 − e3 � sub(add e1e2)e3

We can now define an evaluation function computing the values of expressions:

E : exp→ N

E x := x

E (e1 + e2) := E e1 + E e2

E (e1 − e2) := E e1 − E e2

191

20 Case Study: Expression Compiler

Note that E is defined with binary structural recursion. Moreover, E is executable.

For instance, E(3+ 5− 2) reduces to 6, and the equation E(3+ 5− 2) = E(2+ 3+ 1)
follows by computational equality.

Exercise 20.1.1 Do the reduction E(3+ 5− 2) �∗ 6 step by step (at the equational

level).

Exercise 20.1.2 Prove some of the constructor laws for expressions. For instance,

show that con is injective and that add and sub are disjoint.

Exercise 20.1.3 Define an eliminator for expressions providing for structural in-

duction on expressions. As usual the eliminator has a clause for each of the three

constructors for expression. Since additions and subtractions have two subexpres-

sions, the respective clauses of the eliminator have two inductive hypotheses.

20.2 Code and Execution

We will compile expressions into lists of numbers. We refer to the list obtained for

an expression as the code of the expression. The compilation will be such that an

expression can be reconstructed from its code, and that execution of the code yields

the same value as evaluation of the expression.

Code is executed on a stack and yields a stack, where stacks are list of numbers.

We define an execution function RCA executing a code C on a stack A as follows:

R : L(N)→ L(N)→ L(N)
R [] A := A

R (0 :: C) (x1 :: x2 :: A) := R C (x1 + x2 :: A)

R (1 :: C) (x1 :: x2 :: A) := R C (x1 − x2 :: A)

R (SSx :: C) A := R C (x :: A)

R _ _ := []

Note that the function R is defined by recursion on the first argument (the code) and

by case analysis on the second argument (the stack). From the equations defining R
you can see that the first number of the code determines what is done:

• 0 : take two numbers from the stack and put their sum on the stack.

• 1 : take two numbers from the stack and put their difference on the stack.

• SSx : put x on the stack.

The first equation defining R returns the stack obtained so far if the code is ex-

hausted. The last equation defining R is a so-called catch-all equation: It applies

192

20.3 Compilation

whenever none of the preceding equations applies. Catch-all equations are a nota-

tional convenience that can be replaced by several equations providing the full case

analysis.

Note that the execution function is defined with tail recursion, which can be real-

ized with a loop at the machine level. This is in contrast to the evaluation function,

which is defined with binary recursion. Binary recursion needs a procedure stack

when implemented with loops at the machine level.

Exercise 20.2.1 Do the reduction R[5,7,1][] �∗ [2] step by step (at the equational

level).

20.3 Compilation

We will define a compilation function γ : exp → L(N) such that ∀e. R(γe)[] = [Ee].
That is, expressions are compiled to code that will yield the same value as evaluation

when executed on the empty stack.

We define the compilation function by structural recursion on expressions:

γ : exp→ L(N)
γx := [SSx]

γ(e1 + e2) := γe2++γe1++[0]
γ(e1 − e2) := γe2++γe1++[1]

We now would like to show the correctness of the compiler:

R (γe) [] = [Ee]

The first idea is to show the equation by induction on e. This, however, will fail

since the recursive calls of R leave us with nonempty stacks and partial codes not

obtainable by compilation. So we have to generalize both the possible stacks and the

possible codes. The generalization of codes can be expressed with concatenation.

Altogether we obtain an elegant correctness theorem telling us much more about

code execution than the correctness equation we started with. Formulated in words,

the correctness theorem says that executing the code γe++C on a stack A gives the

same result as executing the code C on the stack Ee :: A.

193

20 Case Study: Expression Compiler

Theorem 20.3.1 (Correctness) R (γe++C) A = R C (Ee :: A).

Proof By induction on e. The case for addition proceeds as follows:

R (γ(e1 + e2)++C) A
= R (γe2++γe1++[0]++C) A definition γ

= R (γe1++[0]++C) (Ee2 :: A) inductive hypothesis

= R ([0]++C) (Ee1 :: Ee2 :: A) inductive hypothesis

= R C ((Ee1 + Ee2) :: A) definition R

= R C (E(e1 + e2) :: A) definition E

The equational reasoning shown tacitly employs conversion and associativity for

concatenation ++. The details can be explored with the proof assistant. �

Corollary 20.3.2 R (γe) [] = [Ee].

Proof Theorem 20.3.1 with C = A = []. �

Exercise 20.3.3 Do the reduction γ(5−2) �∗ [4,7,1] step by step (at the equational

level).

Exercise 20.3.4 Explore the proof of the correctness theorem starting with the

proof script in the accompanying Coq development.

20.4 Decompilation

We now define a decompilation function that for all expressions recovers the expres-

sion from its code. This is possible since the compiler uses a reversible compilation

scheme, or saying it abstractly, the compilation function is injective. The decompi-

lation function closely follows the scheme used for code execution, where this time

a stack of expressions is employed:

δ : L(N)→ L(exp)→ L(exp)

δ [] A := A

δ (0 :: C) (e1 :: e2 :: A) := δ C (e1 + e2 :: A)

δ (1 :: C) (e1 :: e2 :: A) := δ C (e1 − e2 :: A)

δ (SSx :: C) A := δ C (x :: A)

δ _ _ := []

The correctness theorem for decompilation closely follows the correctness the-

orem for compilation.

194

20.5 Discussion

Theorem 20.4.1 (Correctness) δ (γe++C) B = δ C (e :: B).

Proof By induction on e. The case for addition proceeds as follows:

δ (γ(e1 + e2)++C) B
= δ (γe2++γe1++[0]++C) B definition γ

= δ (γe1++[0]++C) (e2 :: B) inductive hypothesis

= δ ([0]++C) (e1 :: e2 :: B) inductive hypothesis

= δ C ((e1 + e2) :: B) definition δ

The equational reasoning tacitly employs conversion and associativity for concate-

nation ++. �

Corollary 20.4.2 δ (γe) [] = [e].

20.5 Discussion

The semantics of the expressions and programs considered here is particularly sim-

ple since evaluation of expressions and execution of programs can be accounted for

by structural recursion.

We represented expressions as abstract syntactic objects using an inductive type.

Inductive types are the canonical representation of abstract syntactic objects. A

concrete syntax for expressions would represent expressions as strings. While con-

crete syntax is important for the practical realisation of programming systems, it

has no semantic relevance.

Early papers (late 1960’s) on verifying compilation of expressions are McCarthy

and Painter [22] and Burstall [6]. Burstall’s paper is also remarkable because it

seems to be the first exposition of structural recursion and structural induction.

Compilation of expressions appears as first example in Chlipala’s textbook [7],

where it is used to get the reader acquainted with Coq.

The type of expressions is the first inductive type in this text featuring binary

recursion. This has the consequence that the respective clauses in the induction

principle have two inductive hypotheses. We find it remarkable that the generaliza-

tion from linear recursion (induction) to binary recursion (induction) comes without

intellectual cost.

195

Part IV

Indexed Inductive Types

197

21 Numeral Types
as Indexed Inductive Types

This chapter is our first encounter with indexed inductive types. The value con-

structors of an indexed inductive type constructor can freely instantiate the so-

called index arguments of the type constructor, which provides for the definition

of fine-grained type families. As lead example we consider an indexed family of

numeral types N (n). A numeral type N (n) has n elements obtained with a zero

constructor∀n.N (Sn) and a successor constructor∀n.N (n)→N (Sn). Indexed

numeralsN (n) are in bijection with the recursive numerals On(⊥). The difference

between the two families is that indexed numerals are obtained with a single in-

ductive type definition while recursive numerals are obtained with recursion on

numbers and the inductive type definitions for option types and falsity.

Indexed inductive types come with the technical challenge that the format for

indexed discrimination is severely restricted. Thus, intuitively obvious discrimina-

tions must often be realized with elaborate encodings relying on nontrivial conver-

sions.

Indexed inductive types have interesting applications and provide expressivity

not available otherwise. This cannot be seen from the indexed numeral types we are

considering here. Indexed numerals are still a good starting example for indexed

inductive types since they provide a fine setting for explaining the new techniques.

21.1 Numeral Types

We define an indexed family of numeral typesN (n) such thatN (n) has exactly n
elements called numerals:

N : N→ T ::=
| Z : ∀n.N (Sn)
| U : ∀n.N (n)→N (Sn)

We may think of N (Sn) as a type containing numerals for the numbers 0, . . . , n.

For instance, the elements ofN (4) are the numerals

Z 3, U(Z 2), U(U(Z 1)), U(U(U(Z 0)))

199

21 Numeral Types as Indexed Inductive Types

representing the numbers 0, 1, 2, 3. We don’t write the first argument of U since

it is determined by the second argument. The constructor U takes the role of the

successor constructor for numbers, with the difference that each application of

U : ∀n. N (n) → N (Sn) raises the level of the numeral type. The constructor

Z : ∀n.N (Sn) gives us for every n the numeral for zero at level Sn. More generally,

Uk(Zn) gives us the numeral for k at level k+ Sn.

Things become interesting once we define functions that discriminate on nu-

merals. We start with the most general such function, the universal eliminator for

numerals. The universal eliminator constructs a function

∀n∀aN (n). pna

by discriminating on the numeral a. This leads to two cases, one for each value con-

structor. For Z, we need a value p(Sn)(Zn), and for U we need a value p(Sn)(Una).
In the case for U, we can use recursion on the component numeral a to obtain a

value pna. We formalize this reasoning with the type of the universal eliminator:

∀p∀n. N (n)→T.
(∀n. p(Sn)(Zn))→
(∀na. pna→ p(Sn)(Una))→
∀na. pna

The defining equations for the universal eliminator can now be written as follows:

E pe1e2 _ (Zn) := e1n : p(Sn)(Zn)

E pe1e2 _ (Una) := e2na(E pe1e2na) : p(Sn)(Una)

Note that the index argument n of E is specified with an underline in the patterns.

This meets a general requirement on patterns and accounts for the fact that index

arguments are determined by the discriminating argument (the index argument is

determined as Sn in both equations).

21.2 Index Condition and Predecessors

There is a substantial condition on the types of inductive functions discriminating

on indexed inductive types we call index condition. It says that the index arguments

of the discriminating type (the type of the discriminating argument) must be given

as unconstrained variables. You may check that this is the case for the type of the

universal eliminator for numerals given above (there the variable in index position

is n). We refer to variables appearing in index positions of discriminating types as

index variables.

200

21.2 Index Condition and Predecessors

The index condition is a severe restriction often disallowing intuitively natural

definitions. However, there are routine techniques to work around the index condi-

tion. We will demonstrate the issue with the definition of a predecessor function

P : ∀n.N (Sn)→ O(N (n))

satisfying the computational equalities

Pn(Una) ≈ ◦a

Pn(Zn) ≈ �

Clearly, the index condition disallows the intuitively appealing definition taking the

specifying equations as defining equations since this would discriminate on the

type N (Sn) where the index argument Sn is not a variable. To avoid the problem,

we define a more general predecessor function discriminating on an unconstrained

numeral type:

P ′ : ∀n.N (n)→ match n [0⇒ ⊥ | Sn′ ⇒ O(N (n′))]
P ′_ (Zn) := � : O(N (n))
P ′_ (Una) := ◦a : O(N (n))

We now obtain a predecessor function as specified as follows:

P : ∀n.N (Sn)→ O(N (n))
P na := P ′(Sn)a

Using P ′, we can also define a predecessor function

P̂ : ∀n.N (SSn)→N (Sn)

satisfying the computational equalities

P̂ n(U(Sn)a) ≈ a
P̂ n (Z(Sn)) ≈ Zn

Showing the constructor laws for numeral types is now routine using the prede-

cessor function P . Constructor disjointness

∀n∀aN (n). Zn ≠ Una

follows with lemma feq (Figure 5.1) and P , which reduce to claim to � ≠ ◦a, one of

the constructor laws for options. Injectivity of the value constructor U

∀n∀abN (n). Una = Unb → a = b

follows again with feq and P , which reduce to claim to ◦a = ◦b → a = b, the other

constructor law for options.

201

21 Numeral Types as Indexed Inductive Types

Exercise 21.2.1 Do all of the above constructions with the proof assistant not using

automation tactics. The most delicate construction is the proof of the injectivity

of U. Try to understand every detail.

Exercise 21.2.2 ProveN (0)→ ⊥. Hint: Use P ′.

Exercise 21.2.3 (Listing) Define a function ∀n. L(N (n)) that yields for every n a

nonrepeating list of length n containing all elements of N (n). Hint: Define the

listing function using the map function for lists. Use induction on n and the fact

that nonrepeating lists are mapped to nonrepeating lists if the element function is

injective (Exercise 19.6.7 (a)).

21.3 Inversion Operator

Intuition tells us that

∀n∀aN (Sn). (a = Zn)+ (Σa′. a = Una′) (21.1)

holds for numerals. To prove this fact, we define a more general function we call

inversion operator. The type of the inversion operator

inv : ∀n∀aN (n). match n returnN (n)→ T

[0⇒ λa.⊥
| Sn⇒ λa. (a = Zn)+ (Σa′. a = Una′)

]a

is such that we can discriminate on the numeral argument. If we instantiate the type

of the inversion operator with n = 0, we obtain N (0) → ⊥ up to conversion, and

if we instantiate the type with n = Sn, we obtain the type (21.1) up to conversion.

Since the numeral argument a of the inversion operator is unconstrained, we can

define the inversion operator by discrimination on a, which, after conversion, yields

the straightforward subgoals

(Zn = Zn)+ (Σa′. Zn = Una′)

(Una = Zn)+ (Σa′. Una = Una′)

The type of the inversion operator is written with what we call a reloading match.1

The reloading of the numeral argument is necessary so that the branches of the

match do type check.

1Chlipala [7] speaks of the convoy pattern.

202

21.4 Embedding Numerals into Numbers

The inversion operator described satisfies two computational equalities:

inv (Sn) (Zn) ≈ L Q

inv (Sn) (Ua) ≈ R (a,Q)

Using the inversion operator we can define an equality decider for numerals.

Fact 21.3.1 (Equality decider) ∀n∀abN (n). D(a = b).

Proof By induction on a (using the eliminator) with b quantified, followed by in-

version of b (using the inversion operator). The 4 cases follow with the constructor

laws. �

Exercise 21.3.2 Prove the following facts using the inversion operator:

a) N (0)→ ⊥
b) ∀n∀aN (Sn). (a = Zn)+ Σa′. a = Una′

c) ∀aN (1). a = Z0

d) ∀aN (2). (a = Z1)+ (a = U(Z0))

Check your proof with the proof assistant. Keep in mind that the index condition

disallows discriminations on constrained indexed types. Convince yourself that

the universal eliminator applies to the claims, but doesn’t lead to proofs since the

instantiations of the index argument are lost.

Exercise 21.3.3 Define the inversion operator in two ways: (1) with defining equa-

tions, and (2) using the universal eliminator. Convince yourself that the reloading

match cannot be avoided. Write the inversion operator I such that it satisfies the

following equations by computational equality (L and R are the constructors for

sums; Q is the constructor for identity proofs (arguments are omitted):

I(Sn)(Zn) = L Q

I(Sn)(Ua) = R (a,Q)

Use the inversion operator to define a predecessor function P satisfying the equa-

tions specified in §21.2 by computational equality.

21.4 Embedding Numerals into Numbers

We define a function mapping numerals to the numbers they represent:

N : ∀n.N (n)→ N

N _ (Zn) := 0

N _ (Una) := S(Nna)

203

21 Numeral Types as Indexed Inductive Types

We would like to show that Nn reaches exactly the numbers smaller than n. We

first show

∀n∀aN (n). Nna < n (21.2)

which follows by induction on a (using the universal eliminator for numerals).

Next we show that N is injective:

∀nab. Nna = Nnb → a = b (21.3)

This follows with a routine proof following the pattern used for the construction of

the equality decider: Induction on a with b quantified followed by inversion of b
using the inversion operator.

We now define a function inverting N :

B : N→ ∀n.N (Sn)
B 0n := Zn

B (Sk)0 := Z 0

B (Sk) (Sn) := U (Sn) (Bkn)

The idea is that Bkn yields the numeral for k inN (n). If k is too large (i.e., k > n),

Bkn yields the largest numeral inN (Sn).
We can now show two roundtrip properties:

∀n∀aN (Sn). B(N(Sn)a)n = a (21.4)

∀kn. k ≤ n→ N(Sn)(Bkn) = k (21.5)

Note that (21.4) yields the injectivity of N . Moreover, (21.5) together with (21.2)

yields the surjectivity of N(Sn) for {0, . . . , n}.
The second roundtrip property (21.5) follows by a straightforward induction

on k.

The first roundtrip property (21.4) needs more effort. It cannot be shown di-

rectly by induction on a since the index argument in the type of a is instantiated.

However, it can be shown by induction on n and inversion of a using the inversion

operator.

Exercise 21.4.1 (Lifting) Define a function L : ∀n.N (n)→N (Sn) lifting numerals

to the next level. For instance, L should satisfy L5 (U(U(Z 2))) ≈ U(U(Z 3)).

a) Prove N(Sn)(Lna) = Nna.

b) Prove that L is injective using the injectivity of N .

204

21.5 Recursive Numeral Types

21.5 Recursive Numeral Types

We define recursive numeral types as follows:

F : N→ T

F(0) := ⊥
F(Sn) := O(F(n))

We may think of recursive numerals F(n) as iterated option types On(⊥). In fact,

we have F(n) ≈ On(⊥) if On(⊥) is obtained with an iteration operator as in §1.9.

Recursive numeral types have been discussed in §11.4.

Intuitively, it is clear that indexed numeralsN (n) are in bijection with recursive

numerals F(n). The constructors Z and U for indexed numerals correspond to the

constructors � and ◦ for options. In fact, we have � : F(n) and ◦ : F(n) → F(Sn)
due to the conversion rule. As one would expect, the elimination operator and

the inversion operator for indexed numerals carry over to recursive numerals, with

obvious routine constructions on the recursive side. We don’t have a transport in

the other direction since recursive numerals are a derived type family without a

native elimination operation.

Exercise 21.5.1 Define and verify functions

f : ∀n.N (n)→ F(n)
g : ∀n. F(n)→N (n)

inverting each other.

Exercise 21.5.2 Prove the following types:

a) F(0)→ ⊥
b) ∀n∀aF(Sn). a ≠ Zn → Σa′. a = Una′

Note that the proofs are straightforward discrimination proofs.

Exercise 21.5.3 Define an operator for recursive numerals simulating the elimina-

tor for indexed numerals:

∀p∀n. F(n)→T.
(∀n. p(Sn)(�))→
(∀na. pna→ p(Sn)(◦a))→
∀na. pna

Hint: Recurse on n and then discriminate on a.

205

21 Numeral Types as Indexed Inductive Types

Exercise 21.5.4 Define an operator for recursive numerals simulating the inversion

operator for indexed numerals:

∀n∀aF(n). match n return F(n)→ T

[0⇒ λa.⊥
| Sn⇒ λa. (a = �)+ (Σa′. a = ◦a′)
]a

206

22 Inductive Derivation Systems

Inductive relations are relations defined with derivation rules such that an instance

of an inductive relation holds if it is derivable with the rules defining the relation.

Inductive relations are an important mathematical device for setting up proof sys-

tems for logical systems and formal execution rules for programming languages.

Inductive relations are also the basic tool for setting up type systems.

It turns out that inductive relations can be modeled elegantly with indexed in-

ductive type definitions, where the type constructor represents the relation and the

value constructors represent the derivation rules. We present inductive relations

and their formalization as indexed inductive types by discussing examples.

22.1 Binary Derivation System for Comparisons

Consider the following derivation rules for comparisons of numbers:

x <̇ Sx

x <̇y y <̇z

x <̇z

We may verbalize the rules as saying:

1. Every number is smaller than its successor.

2. If x is smaller than y and y is smaller than z, then x is smaller than z.

We may now ask the following questions:

• Soundness: Is x < y provable if x <̇y is derivable?

• Completeness: Is x <̇y derivable if x < y is provable?

The answer to both questions is yes. Soundness for all derivable comparisons fol-

lows from the fact that for each of the two rules the conclusion (comparison below

the line) is valid if the premises (comparisons above the line) are valid. To argue

completeness, we need a recursive procedure that for x < y constructs a deriva-

tion of x <̇y (recursion on y does the job).

Derivations of comparisons are obtained by combining rules. Here are two dif-

207

22 Inductive Derivation Systems

ferent derivations of the comparison 3 <̇6 :

3 <̇4

4 <̇5 5 <̇6

4 <̇6

3 <̇6

3 <̇4 4 <̇5

3 <̇5 5 <̇6

3 <̇6

Every line in the derivations represents the application of one of the two derivation

rules. Note that the leaves of the derivation tree are all justified by the first rule,

and that the inner nodes of the derivation tree are all justified by the second rule.

It turns out that derivation systems can be represented formally as indexed in-

ductive type families. For the derivation system for comparisons we employ a type

constructor

L : N→ N→ T

to model the comparisons and two value constructors

L1 : ∀x. Lx(Sx)
L2 : ∀xyz. Lxy → Lyz → Lxz

to model the derivation rules. Modeling derivation systems as indexed inductive

type families is a wonderful thing since it clarifies the many things left open by the

informal presentation and also yields a powerful formal framework for derivation

systems in general. Note that derivations now appear as terms describing values of

derivation types Lxy . Here are examples:

L1 4 : L 4 5

L2 4 5 6 (L1 4), (L1 5)) : L 4 6

L2 3 4 6 (L1 3) (L2 4 5 6 (L1 4), (L1 5))) : L 3 6

When we look at the types of the value constructors L1 and L2, we see that the

second argument of L is an index that is instantiated in the target type of L1. On

the other hand, the first argument of L is a parameter since it not instantiated in

the target types of L1 and L2. We express the fact that the first argument of L is a

parameter as usual in the declaration of the inductive type constructor L:

L (x : N) : N→ T :=
| L1 : Lx(Sx)

| L2 : ∀yz. Lxy → Lyz → Lxz

Recall that the parameter-index distinction matters since indices must not be in-

stantiated in the types of discriminations.

208

22.1 Binary Derivation System for Comparisons

Note that the first argument of L is instantiated in the fourth argument type of L2.

We acknowledge this fact by saying that the first argument of L is a nonuniform

parameter. So far we have only seen uniform parameters, which are instantiated

neither in the argument types nor the target types of value constructors. The dif-

ference between the two kinds of parameters shows in the heads and clauses of

eliminators, where nonuniform parameters are quantified locally like indices. In

contrast, uniform parameters are quantified only once in the prefix of the elimina-

tor.

We remark that the proof assistant Coq realizes the parameter-index distinction

by declaration, making it possible to declare parameters as indices (but not vice

versa).

We can now do formal proofs concerning the derivation system L. We first prove

completeness:

∀xy. x < y → Lxy (22.1)

The proof succeeds by induction on y with x fixed. The base case follows by com-

putational falsity elimination. For the successor case, we assume x < Sy and prove

Lx(Sy). If x = y , we obtain Lx(Sy) with L1. If x ≠ y , we have x < y . Hence we

have Lxy by the inductive hypothesis. By L1 we have Ly(Sy). The claim Lx(Sy)
follows with L2.

For the soundness proof we need induction on derivations. Formally, we pro-

vide this induction with the universal eliminator for L, which has the type

∀p∀xy. Lxy→T.

(∀x. px(Sx)(L1x))→
(∀xzyab. pxya→ pyzb → pxz(L2 xyzab))→
∀xya. pxya

The defining equations of the eliminator discriminate on a and are obvious. Note

that the type function p takes the nonuniform parameter x as an argument. This

is necessary so that the second inductive hypothesis of the second clause of the

eliminator can be provided.

We now prove soundness

∀xy. Lxy → x < y (22.2)

by induction on the derivation of Lxy . This give us the proof obligations

x < Sx

x < y → y < z → x < z

209

22 Inductive Derivation Systems

which are both obvious. Note that the obligations are obtained from the derivations

rules by replacing <̇ with < . Informally, we can do the soundness proof by just

showing that each of the two derivation rules is sound for <. This applies in general.

We can define an inversion function for L as follows:

inv : ∀xy. Lxy → (y = Sx)+ Σz. Lxz × Lzy

invx(Sx)(L1x) ≈ L Q

invxz(L2xyzab) ≈ R (y, (a, b))

With this inversion function it is easy to prove constructor disjointness:

L1x = L2xy(Sx)ab → ⊥

We can also prove injectivity of L2

∀xyz∀aba′b′. L2xzyab = L2xzya′b′ → (a, b) = (a′, b′)

if we assume dependent pair injectivity for numbers:

∀pN→T∀x∀abpx. (x,a)p = (x, b)p → a = b

Dependent pair injectivity for numbers will be shown in §23.3 once we have intro-

duced inductive equality.

Exercise 22.1.1 Prove that there are two different derivations of L 3 6 (i.e., values

of the type L 3 6). Hint: Use a function ∀xy. Lxy → N returning the length of the

leftmost path of a derivation tree.

Exercise 22.1.2 Do the following with the proof assistant:

a) Define the inversion function specified above and check that it satisfies the com-

putational equalities specified.

b) Prove L1x = L2xy(Sx)ab → ⊥.

c) Prove injectivity of L2 assuming dependent pair injectivity for numbers. You find

a detailed discussion of this proof in §23.5.

22.2 Linear Derivation System for Comparisons

We have seen a sound and complete derivation system for comparisons. There is

much freedom in how we can choose the derivation rules for such a system. In prac-

tice, one only includes defining derivation rules that are needed for completeness,

since every defining rule adds a clause to the eliminator for the system (and hence

to each inductive proof on derivations).

210

22.2 Linear Derivation System for Comparisons

In this section, we consider another derivation systems for comparisons, which

is sound, complete, and derivation unique. Derivation uniqueness means there is at

most one derivation per comparison.

This time we choose the following derivation rules:

0 <̇ Sy

x <̇y

Sx <̇ Sy

Our intuition is that the base rule fixes the distance between the two numbers plac-

ing the left number at 0. The step rule then shifts the pair to the right. Soundness,

completeness, and derivation uniqueness are straightforward with this intuition.

Note that the new system is linear (that is, has at most one premise per rule).

Formally, we define the derivation system described above as follows:

L : N→ N→ T :=
| L1 : ∀y. L 0(Sy)

| L2 : ∀xy. Lxy → L (Sx)(Sy)

Clearly, both arguments of L must be accommodated as indices. The definition

yields a universal eliminator of the type

∀p∀xy. Lxy→T.

(∀y. p0(Sy)(L1y))→
(∀xya. pxya→ p(Sx)(Sy)(L2 xya))→
∀xya. pxya

Soundness of the derivation system

∀xy. Lxy → x < y

follows as before by induction on the derivation of Lxy , requiring soundness of

each of the two rules. Completeness of the system

∀xy. x < y → Lxy

is more interesting. This time we do an induction on x with y quantified, which

after discrimination on y yields the obligations

L 0(Sy)

Sx < Sy → L (Sx)(Sy)

The first obligation follows with L1, and the second obligation follows with L2 and

the inductive hypothesis.

211

22 Inductive Derivation Systems

For derivation uniqueness, we use an inversion operator

inv : ∀xy∀aLxy . match x,y return Lxy → T

| 0, Sy ⇒ λa. a = L1y

| Sx, Sy ⇒ λa. Σa′. a = L2xya′

| _, _ ⇒ λa.⊥
]a

inv 0 (Sy)(L1y) ≈ Q

inv (Sx) (Sy)(L2xya) ≈ (a,Q)

which can be defined by discrimination on the derivation a. Derivation uniqueness

∀xy∀abLxy . a = b

now follows by induction on a with b quantified followed by inversion of b.

Exercise 22.2.1 Elaborate the above definitions and proofs using a proof assistant.

Make sure you understand every detail, especially as it comes to the inductive

proofs. Define the inversion operator without using a smart match for x,y . Prac-

tice to come up with the types of the universal eliminator and the inversion operator

without using notes.

Exercise 22.2.2 Change the above development such that the types Lxy appear as

propositions. Note the changes needed in the types of the universal eliminator and

the inversion operator.

Exercise 22.2.3 Prove the following propositions using the inversion operator. Do

not use soundness.

a) Lx0→ ⊥
b) Lxx → ⊥
Hint: (b) follows by induction on x.

Exercise 22.2.4 Prove that the constructor L2 is injective in its third argument.

Hint: Use derivation uniqueness.

Exercise 22.2.5 Given an equality decider for the derivation types Lxy . Hint: Use

derivation uniqueness.

Exercise 22.2.6 Here is another derivation unique derivation system for compar-

isons:

x <̇ Sx

x <̇y

x <̇ Sy

This time the base rule fixes the left number and the step rule increases the right

number.

212

22.3 Derivation Systems for GCDs

a) Formalize the system with an indexed inductive type family L. Accommodate the

first argument as a uniform parameter.

b) Show completeness of the system. Hint: Induction on y suffices.

c) Define the universal eliminator for L using the prefix ∀x∀p∀y. Lxy→T. Note

that there is no need that the type function p takes the uniform parameter x as

argument.

d) Show soundness for the system using the universal eliminator.

e) Try to formulate an inversion operator for L and note that there is a typing

conflict for the first rule. The conflict comes from the non-linearity Lx(Sx) in

the type of L1. We will resolve the conflict with a type cast in §23.4 in Chapter 23

on inductive equality. Using an inversion operator with a type cast we will prove

derivation uniqueness in §23.4.

Exercise 22.2.7 (Even numbers) Formalize the derivation system

E(0)

E(n)

E(SSn)

with an indexed inductive type family E N→T.

a) Prove E(2 · k).
b) Define a universal eliminator for E.

c) Prove E(n)→ Σk. n = 2 · k.

d) Prove E(n)a ∃k. n = 2 · k.

e) Define an inversion operator for E providing cases for 0, 1, and n ≥ 2.

f) Prove E(1)→ ⊥.

g) Prove E(SSn)→ E(n).

h) Prove E(Sn)→ E(n)→ ⊥.

i) Prove derivation uniqueness for E.

j) Give an equality decider for the derivation types E(n).

22.3 Derivation Systems for GCDs

Recall that a gcd relation (Definition 18.3.1) is a predicate pN→N→N→P satisfying the

following conditions for all numbers x, y , z:

1. p0yy zero rule

2. pxyz → pyxz symmetry rule

3. x ≤ y → px(y − x)z → pxyz subtraction rule

213

22 Inductive Derivation Systems

We will prove the following results for gcd relations not using the results previously

shown for gcd relations:

1. There is an inductively defined gcd relation G.

2. G is contained in every gcd relation.

3. There is a function respecting G (and hence every gcd relation).

4. All functional gcd relations agree with G.

5. G is functional.

We define the indexed inductive predicate G : N → N → N → P with three deriva-

tion rules mimicking the conditions for gcd relations:

G1
G 0yy

G2

Gxyz

Gyxz
G3

x ≤ y Gx(y − x)z
Gxyz

The rules yield an indexed type family with three indices.1 We have defined G as a

predicate rather than a type function so that G directly qualifies as a gcd relation.

It is also be possible to define G as a type function and show that its truncation is a

gcd predicate.

First we show that G is the least gcd relation (up to equivalence).

Fact 22.3.1 (Containment) G is a gcd relation contained in every gcd relation.

Proof The rules defining G agree with the conditions for gcd predicates. Hence G

is a gcd predicate. To show that G is a least gcd predicate, we assume a gcd predi-

cate p and prove ∀xyz. Gxyz → pxyz by induction on the derivation Gxyz. The

proof obligations generated by the induction are the conditions for gcd relations in-

stantiated for p. �

Next we show that there is a function respecting G.

Fact 22.3.2 (Totality) ∀xy Σz. Gxyz.

Proof By size recursion on x + y . For x = 0 or y = 0 the claim follows with G1

and G2. Otherwise, we have x ≤ y without loss of generality (because of G2). The

inductive hypothesis yields z such that Gx(y − x)z. The claim follows with G3. �

Corollary 22.3.3 (Agreement) G agrees with every functional gcd relation.

Proof Follows with Facts 22.3.1 and 22.3.2. �

1There is the possibility to declare the second or third argument of G as a nonuniform parameter,
but we prefer the variant with three indices.

214

22.3 Derivation Systems for GCDs

It remains to show that G is functional. The functionality of G can be obtained

straightforwardly from the existence of some functional gcd relation. We give two

constructions of functional gcd relations in Chapter 18 (concrete gcd relation and

step indexing). We will not use these results here and prove that G is functional

just relying on methods for indexed inductive families. Our proof is based on a

deterministic variant G′ of G defined with the following rules:

G′1
G′ 0yy

G′2
G′ (Sx)0(Sx)

G′3
x ≤ y G′ (Sx)(y − x)z

G′ (Sx)(Sy)z
G′4

y < x G′ (x −y)(Sy)z
G′ (Sx)(Sy)z

We will show that G′ is a functional gcd relation. We may see G′ as a relational

reformulation of the procedural specification of GCDs (Definition 18.3.3).

Fact 22.3.4 (Symmetry) ∀xyz. G′ xyz → G′yxz.

Proof By induction on the derivation of G′ xyz. The interesting case is G′3. We

distinguish between x < y and x = y . Case x < y follows with G′4 and the

inductive hypothesis. For x = y we have to show G′(Sx)(x − x)z → G′(Sx)(Sx)z,

which follows by G′3. �

Fact 22.3.5 G′ is a gcd relation.

Proof The first condition is the first rule fo G′. The second condition is Fact 22.3.4.

The third condition follows by case analysis on x and y and the third rule for G′. �

To show functionality of G′, we shall use an inversion operator with the type:

∀xyz∀aG′xyz. match x,y

[0, y ⇒ z = y
| Sx, 0⇒ z = Sx

| Sx, Sy ⇒ if [x ≤ y\ then G′ (Sx)(y − x)z else G′ (x −y)(Sy)z
]

Defining such an operator is routine.

Fact 22.3.6 G′ is functional.

Proof We show∀xyzz′. G′ xyz → G′ xyz′ → z = z′ by induction on the derivation

of G′ xyz and inversion of G′ xyz′. All four obligations are straightforward. �

215

22 Inductive Derivation Systems

Corollary 22.3.7 G and G′ agree. Hence G′ is functional.

Proof Follows with Corollary 22.3.3 and Facts 22.3.5 and 22.3.6. �

Exercise 22.3.8 Prove Gxxx and G 1y 1.

Exercise 22.3.9 (Inductive method for procedural specifications)

The development of this section suggests a method for constructing functions sat-

isfying procedural specifications using indexed inductive types:

1. Translate the procedural specification Γ into an indexed inductive predicate γ.

2. Construct a function g respecting γ using size recursion.

3. Show that γ is functional by induction on and inversion of derivations.

4. Show g satisfies Γ .

Execute the method for the procedural specification of a GCD function given by

Definition 18.3.3. Hint: The proof for (4) is similar to the proof of Fact 18.3.8.

22.4 Regular Expressions

Regular expressions are patterns for strings used in text search. There is a relation

A ` s saying that a string A satisfies a regular expression s. One also speaks of a

regular expression matching a string. We are considering regular expressions here

since the satisfaction relation A ` s has an elegant definition with derivation rules.

We represent strings as lists of numbers, and regular expressions with an induc-

tive type realizing the BNF

s, t : exp ::= x | 0 | 1 | s + t | s · t | s∗ (x : N)

We model the satisfaction relation A ` s with an indexed inductive type family

` : L(N)→ exp→ T

providing value constructors for the following rules:

[x] ` x [] ` 1

A ` s
A ` s + t

A ` t
A ` s + t

A ` s B ` t
A++B ` s · t [] ` s∗

A ` s B ` s∗

A++B ` s∗

Note that both arguments of ` are indices. Concrete instances of the satisfaction

relation, for instance,

[1,2,2] ` 1 · 2∗

216

22.4 Regular Expressions

can be shown with just constructor applications. Inclusion and equivalence of

regular expressions are defined as follows:

s ⊆ t := ∀A. A ` s → A ` t
s ≡ t := ∀A. A ` s a A ` t

An easy to show inclusion is

s ⊆ s∗ (22.3)

(only constructor applications and rewriting with A++[] = A are needed). More

challenging is the inclusion

s∗ · s∗ ⊆ s∗ (22.4)

We need an inversion function

A ` s · t → ΣA1A2. (A = A1++A2) × (A1 ` s) × (A2 ` t) (22.5)

and a lemma

A ` s∗ → B ` s∗ → A++B ` s∗ (22.6)

The inversion function can be obtained as an instance of a more general inversion

operator

∀As. A ` s → match s

[x ⇒ A = [x]
| 0⇒ ⊥
| 1⇒ A = []
| u+ v ⇒ (A ` u)+ (A ` v)
| u · v ⇒ ΣA1A2. (A = A1++A2) × (A1 ` u) × (A2 ` v)
| u∗ ⇒ (A = [])+ ΣA1A2. (A = A1++A2) × (A1 ` u) × (A2 ` u∗)
]

which can be defined by discrimination on A ` s. Note that the index s determines

a single rule except for s∗.

We now come to the proof of lemma (22.6). The proof is by induction on the

derivation A ` s∗ with B fixed. There are two cases. If A = [], the claim is trivial.

Otherwise A = A1++A2, A1 ` s, and A2 ` s∗. Since A2 ` s∗ is obtained by a sub-

derivation, the inductive hypothesis gives us A2++B ` s∗. Hence A1++A2++B ` s∗
by the second rule for s∗.

The above induction is informal. It can be made formal with an universal elimi-

nator for A ` s and a reformulation of the claim as follows:

∀As. A ` s → match s [s∗ ⇒ B ` s∗ → A++B ` s∗ | _⇒ >]

217

22 Inductive Derivation Systems

The reformulation provides an unconstrained inductive premises A ` s so that

no information is lost by the application of the universal eliminator. Defining the

universal eliminator with a type function ∀As. A ` s → T is routine. We remark

that a weaker eliminator with a type function L(N)→ exp→ T suffices.

We now have (22.4). A straightforward consequence is

s∗ · s∗ ≡ s∗

A less obvious consequence is the equivalence

(s∗)∗ ≡ s∗ (22.7)

saying that the star operation is idempotent. Given (22.3), it suffices to show

A ` (s∗)∗ → A ` s∗ (22.8)

The proof is by induction on A ` (s∗)∗. If A = [], the claim is obvious. Other-

wise, we assume A1 ` s∗ and A2 ` (s∗)∗, and show A1++A2 ` s∗. The inductive

hypothesis gives us A2 ` s∗, which gives us the claim using (22.6).

The above proof is informal since the inductive premise A ` (s∗)∗ is index

constrained. A formal proof succeeds with the reformulation

∀As. A ` s → match s [(s∗)∗ ⇒ A ` s∗ | _⇒ >]

Exercise 22.4.1 (Certifying solver)

Define a certifying solver ∀s. (ΣA. A ` s)+ (∀A. A ` s → ⊥).

Exercise 22.4.2 (Restrictive star rule) The second derivation rule for star expres-

sions can be replaced with the more restrictive rule

x :: A ` s B ` s∗

x :: A++B ` s∗

Define an inductive family A ˙̀ s adopting the more restrictive rule and show that

it is intertranslatable with A ` s : ∀As. A ˙̀ s a A ` s.

Exercise 22.4.3 After reading this section, do the following with a proof assistant.

a) Define a universal eliminator for A ` s.
b) Define an inversion operator for A ` s.
c) Prove s∗ · s∗ ≡ s∗.

d) Prove (s∗)∗ ≡ s∗.

218

22.5 Decidability of Regular Expression Matching

Exercise 22.4.4 (Denotational semantics) The informal semantics for regular ex-

pressions described in textbooks can be formalized as a recursive function on reg-

ular expressions that assigns languages to regular expressions. We represent lan-

guages as type functions L(N)→ T and capture the semantics with a function

R : exp→ L(N)→ T

defined as follows:

RxA := (A = [x])
R0A := ⊥
R1A := (A = [])

R (s + t)A := RsA+RtA
R (s · t)A := ΣA1A2. (A = A1++A2)×RsA1 ×RtA2

R (s∗)A := Σn. P (Rs)nA

Pϕ 0A := (A = [])
Pϕ(Sn)A := ΣA1A2. (A = A1++A2)×ϕA1 ×PϕnA

a) Prove R sA a A ` s.
b) We have represented languages as type functions L(N) → T. A representation

as predicates L(N)→ P would be more faithful to the literature. Rewrite the

definitions of ` and R accordingly and show their equivalence.

22.5 Decidability of Regular Expression Matching

We will now construct a decider for A ` s. The decidability of A ` s is not obvious.

We will formalize a decision procedure based on Brzozowski derivatives [5].

A function D : N→ exp→ exp is a derivation function if

∀xAs. x :: A ` sa A ` Dxs

In words we may say that a string x :: A satisfies a regular expression s if and only

if A satisfies the derivative Dxs. If we have a decider ∀s.D([] ` s) and in addition

a derivation function, we have a decider for A ` s.

Fact 22.5.1 ∀s. D([] ` s).

Proof By induction on s. For 1 and s∗ we have a positive answer, and for x and 0

we have a negative answer using the inversion function. For s + t and s · t we rely

on the inductive hypotheses for the constituents. �

219

22 Inductive Derivation Systems

Fact 22.5.2 ∀As. D(A ` s) provided we have a derivation function.

Proof By recursion on A using Fact 22.5.1 in the base case and the derivation func-

tion in the cons case. �

We define a derivation function D as follows:

D : N→ exp→ exp

Dxy := if [x = y\ then 1 else 0

Dx 0 := 0

Dx 1 := 0

Dx (s + t) := Dxs +Dxt
Dx (s · t) := if [[] ` s\ then Dxs · t +Dxt else Dxs · t
Dx (s∗) := Dxs · s∗

It remains to show thatD is a derivation function. For this proof we need a strength-

ened inversion lemma for star expressions.

Lemma 22.5.3 (Eager star inversion)

∀xAs. x :: A ` s∗ → ΣA1A2. A = A1++A2 × x :: A1 ` s × A2 ` s∗.

Proof By induction on the derivation of x :: A ` s∗. Only the second rule for star

expressions applies. Hence we have x :: A = A1++A2 and subderivations A1 ` s
and A2 ` s∗. If A1 = [], we have A2 = x :: A and the claim follows by the inductive

hypothesis. Otherwise, we have A1 := x :: A′1, which gives us the claim.

The formal proof follows this outline but works on a reformulation of the claim

providing an unconstrained inductive premise. �

Theorem 22.5.4 (Derivation) ∀xAs. x :: A ` sa A ` Dxs.

Proof By induction on s. All cases but the direction ⇒ for s∗ follow with the inver-

sion operator and case analysis. The direction ⇒ for s∗ follows with the eager star

inversion lemma 22.5.3. �

Corollary 22.5.5 ∀As. D(A ` s).

Proof Follows with Fact 22.5.2 and Theorem 22.5.4. �

220

22.6 Post Correspondence Problem

22.6 Post Correspondence Problem

Many problems in computer science have elegant specifications using inductive rela-

tions. As an example we consider the Post correspondence problem (PCP), a promi-

nent undecidable problem providing a base for undecidability proofs. The problem

involves cards with an upper and a lower string. Given a list C of cards, one has to

decide whether there is a nonempty list D ⊆ C such that the concatenation of all

upper strings equals the concatenation of all lower strings. For instance, assuming

the binary alphabet {a,b}, the list

C = [a/ε, b/a, ε/bb]

has the solution

D = [ε/bb, b/a, b/a, a/ε, a/ε]

On the other hand,

C′ = [a/ε, b/a]

has no solution.

We formalize PCP over the binary alphabet B with an inductive predicate

post : L(L(B)×L(B))→ L(B)→ L(B)→ P

defined with the rules

(A, B) ∈ C
post C AB

(A,B) ∈ C post C A′ B′

post C (A++A′) (B++B′)

Note that postCAB is derivable if there is a nonempty list D ⊆ C of cards such that

the concatenation of the upper strings of D is A and the concatenation of the lower

strings of D is B. Undecidability of PCP over a binary alphabet now means that there

is no computable function

∀C. D(∃A. postCAA) (22.9)

Since Coq’s type theory can only define computable functions, we can conclude that

no function of type (22.9) is definable.

221

23 Inductive Equality

Inductive equality extends Leibniz equality with eliminators discriminating on iden-

tity proofs. The definitions are such that inductive identities appear as computa-

tional propositions enabling reducible casts between computational types.

There is an important equivalence between uniqueness of identity proofs (UIP)

and injectivity of dependent pairs (DPI) (i.e., injectivity of the second projection). As

it turns out, UIP holds for discrete types (Hedberg’s theorem) but is unprovable in

computational type theory in general

Hedberg’s theorem is of practical importance since it yields injectivity of depen-

dent pairs and reducibility of identity casts for discrete types, two features that are

essential for inversion lemmas for indexed inductive types.

The proofs in this chapter are of surprising beauty. They are obtained with de-

pendently typed algebraic reasoning about identity proofs and often require tricky

generalizations.

23.1 Basic Definitions

We define inductive equality as an inductive predicate with two parameters and one

index:

eq (X : T, x : X) : X → P ::=
| Q : eq X x x

We treat the argument X of the constructors eq and Q as implicit argument and

write s = t for eq st. Moreover, we call propositions s = t identities, and refer to

proofs of identities s = t as paths from s to t.
Note that identities s = t are computational propositions. This provides for

expressivity we cannot obtain with Leibniz equality. We define two eliminators for

identities

C : ∀XT∀xX ∀pX→T∀y. x = y → px → py
CXxp _ (Q_)a := a : px

J : ∀XT∀xX ∀p∀y. x=y→T. px(Qx)→ ∀ye. pye
J Xxpa _ (Q_) := a : px(Qx)

223

23 Inductive Equality

called cast operator and full eliminator. For C we treat the first four arguments as

implicit arguments, and for J the first two arguments.

We call applications of the cast operator casts. A cast Cpea with ex=y changes

the type of a from px to py for every admissible type function p. We have

C(Qx)a ≈ a

and say that trivial casts C(Qx)a can be discharged. We also have

∀pX→T∀ex=y∀apx. Cpea ≈ J(λy_.py)aye

which says that the cast eliminator can be expressed with the full eliminator.

Inductive quality as defined here is stronger than the Leibniz equality considered

in Chapter 5. The constructors of the inductive definition give us the constants eq

and Q, and with the cast operator we can easily define the constant for the rewrit-

ing law. Inductive equality comes with two essential generalizations over Leibniz

equality: Rewriting can now take place at the universe T using the cast operator,

and both the cast operator and the full eliminator come with computation rules.

We will make essential use of both features in this chapter.

We remark that equality in Coq is defined as inductive equality and that the full

eliminator J corresponds exactly to Coq’s matches for identities.

The laws for propositional equality can be seen as operators on paths. It turns

out that that these operators have elegant algebraic definitions using casts:

σ : x = y → y = x
σe := C(λy.y=x) e (Qx)

τ : x = y → y = z → x = z
τe := C(λy.y=z→x=z) e (λe.e)

ϕ : x = y → fx = fy
ϕe := C(λy.fx=fy) e (Q(fx))

It also turns out that these operators satisfy familiar looking algebraic laws.

Exercise 23.1.1 Prove the following algebraic laws for casts and identities ex=y .

a) Ce(Qx) = e
b) Cee = Qy

In each case, determine a suitable type function for the cast.

224

23.2 Uniqueness of Identity Proofs

Exercise 23.1.2 (Groupoid operations on paths)

Prove the following algebraic laws for σ and τ :

a) σ(σe) = e
b) τe1(τe2e3) = τ(τe1e2)e3

c) τe(σe) = Qx

Note that σ and τ give identity proofs a group-like structure: τ is an associative

operation and σ obtains inverse elements.

Exercise 23.1.3 Show that J is more general that C by defining C with J .

Exercise 23.1.4 Prove (t = f)→ ∀XT. X not using falsity elimination.

Exercise 23.1.5 (Impredicative characterization)

Prove x = y ←→ ∀pX→P. px → py for inductive identities. Note that the equiva-

lence says that inductive identities agree with Leibniz identities (§5.5).

23.2 Uniqueness of Identity Proofs

We will now show that the following properties of types are equivalent:

UIP(X) := ∀xyX ∀ee′x=y . e = e′ uniqueness of identity proofs

UIP′(X) := ∀xX ∀ex=x. e = Qx u. of trivial identiy proofs

K(X) := ∀x∀px=x→P. p(Qx)→ ∀e.pe Streicher’s K

CD(X) := ∀pX→T∀x∀apx∀ex=x. Cea = a cast discharge

DPI(X) := ∀pX→T∀xuv. (x,u)p = (x,v)p → u = v dependent pair injectivity

The flagship property is UIP (uniqueness of identity proofs), saying that identities

have at most one proof. What is fascinating is that UIP is equivalent to DPI (de-

pendent pair injectivity), saying that the second projection for dependent pairs is

injective. While UIP is all about identity proofs, DPI doesn’t even mention identity

proofs. There is a famous result by Hofmann and Streicher [16] saying that compu-

tational type theory does not prove UIP. Given the equivalence with DPI, this result

is quite surprising. On the other hand, there is Hedberg’s theorem [14] (§23.3)

saying that UIP holds for all discrete types. We remark that UIP is an immediate

consequence of proof irrelevance.

We now show the above equivalence by proving enough implications. The proofs

are interesting in that they need clever generalization steps to harvest the power of

the identity eliminators J and C. Finding the right generalizations requires insight

and practice.1

1We acknowledge the help of Gaëtan Gilbert, (Coq Club, November 13, 2020).

225

23 Inductive Equality

Fact 23.2.1 UIP(X)→ UIP′(X).

Proof Instantiate UIP(X) with y := x and e′ := Qx. �

Fact 23.2.2 UIP′(X)→ K(X).

Proof Instantiate UIP′(X) with e from K(X) and rewrite. �

Fact 23.2.3 K(X)→ CD(X).

Proof Apply K(X) to ∀ex=x. Cea = a. �

Fact 23.2.4 CD(X)→ DPI(X).

Proof Assume CD(X) and pX→T. We obtain the claim with backward reasoning:

∀xuv. (x,u)p = (x,v)p → u = v by instantiation

∀absigp. a = b → ∀eπ1a=π1b. Ce(π2a) = π2b by elimination on a = b
∀asigp∀eπ1a=π1a. Ce(π2a) = π2a by CD �

Fact 23.2.5 DPI(X)→ UIP′(X).

Proof Assume DPI(X). We obtain the claim with backward reasoning:

∀ex=x. e = Qx by DPI

∀ex=x. (x, e)eqx = (x,Qx)eqx by instantiation

∀ex=y . (y, e)eqx = (x,Qx)eqx by J �

Fact 23.2.6 UIP′(X)→ UIP(X).

Proof Assume UIP′(X). We obtain the claim with backward reasoning:

∀e′ex=y . e = e′ by J on e′

∀ex=x. e = Qx by UIP′ �

Theorem 23.2.7 UIP(X), UIP′(X), K(X), CD(X), and DPI(X) are equivalent.

Proof Immediate by the preceding facts. �

Exercise 23.2.8 Verify the above proofs with a proof assistant to appreciate the

subtleties.

Exercise 23.2.9 Give direct proofs for the following implications: UIP(X) → K(X),
K(X)→ UIP′(X), and CD(X)→ UIP′(X).

Exercise 23.2.10 Prove that dependent pair types are discrete if their component

types are discrete: ∀X∀pX→T. E(X)→ (∀x. E(pX))→ E(sigp).

226

23.3 Hedberg’s Theorem

23.3 Hedberg’s Theorem

We will now prove Hedberg’s theorem [14]. Hedberg’s theorem says that all discrete

types satisfy UIP. Hedberg’s theorem is important in practice since it says that the

second projection for dependent pair types is injective if the first components are

numbers.

The proof of Hedberg’s theorem consists of two lemmas, which are connected

with a clever abstraction we call Hedberg functions. In algebraic speak one may see

a Hedberg function a polymorphic constant endo-function on paths.

Definition 23.3.1 A function f : ∀xyX . x = y → x = y is a Hedberg function

for X if ∀xyX ∀ee′x=y . f e = fe′.

Lemma 23.3.2 (Hedberg) Every type that has a Hedberg function satisfies UIP.

Proof Let f : ∀xyX . x = y → x = y be a Hedberg function for X. We treat x, y as

implicit arguments and prove the equation

∀xy∀ex=y . τ(fe)(σ(f(Qy))) = e

We first destructure e, which reduces the claim to

τ(f(Qx))(σ(f(Qx))) = Qx

which is an instance of equation (c) shown in Exercise 23.1.2.

Now let e, e′ : x = y . We show e = e′. Using the above equation twice, we have

e = τ(fe)(σ(f(Qy))) = τ(fe′)(σ(f(Qy))) = e′

since fe = fe′ since f is a Hedberg function. �

Lemma 23.3.3 Every discrete type has a Hedberg function.

Proof Let d be an equality decider for X. We define a Hedberg function for X as

follows:

fxye := if dxy is L ê then ê else e

We need to show fxye = fxye′. If dxy = L ê, both sides are ê. Otherwise, we

have e : x = y and x ≠ y , which is contradictory. �

Theorem 23.3.4 (Hedberg) Every discrete type satisfies UIP.

Proof Lemma 23.3.3 and Lemma 23.3.2. �

227

23 Inductive Equality

Corollary 23.3.5 Every discrete type satisfies DPI.

Proof Theorems 23.3.4 and 23.2.7. �

Exercise 23.3.6 Prove Hedberg’s theorem with the weaker assumption that equality

on X is propositionally decidable: ∀xyX . x = y ∨ x ≠ y .

Exercise 23.3.7 Construct a Hedberg function for X assuming FE and stability of

equality on X: ∀xyX . ¬¬(x = y)→ x = y .

Exercise 23.3.8 Assume FE and show that N→ B satisfies UIP.

Hint: Use Exercises 23.3.7 and 13.3.12.

23.4 Inversion with Casts

Sometimes a full inversion operator for an indexed inductive type family can only

be expressed with a cast. As example we consider derivation types for comparisons

x < y defined as follows:

L (x : N) : N→ T ::=
| L1 : Lx(Sx)

| L2 : ∀y. Lxy → Lx(Sy)

The type of the inversion operator for L can be expressed as

∀xy∀aLxy . match y return Lxy → T

[0⇒ λa.⊥
| Sy ′ ⇒ λaLx(Sy′). (Σey

′=x. Cea = L1x)+ (Σa′. a = L2xy ′a′)

]a

The formulation of the type follows the pattern we have seen before, except that

there is a cast in the branch for L1:

Σey
′=x. Cea = L1x

The cast is necessary since a has the type Lx(Sy ′) while L1x has the type Lx(Sx).
A formulation without a cast seems impossible. The defining equations for the

inversion operator discriminate on a, as usual, which yields the obligations

Σex=x. Ce(L1x) = L1x

Σa′. L2xy ′a = L2xy ′a′

228

23.5 Constructor Injectivity with DPI

The first obligation follows with cast discharge and UIP for numbers. The second

obligation is trivial.

We need the inversion operator to show derivation uniqueness of L. As it turns

our, we need an additional fact about L:

Lxx → ⊥ (23.1)

This fact follows from a more semantic fact

Lxy → x < y (23.2)

which follows by induction on Lxy . We don’t have a direct proof of (23.1).

We now prove derivation uniqueness

∀xy∀abLxy . a = b

for L following the usual scheme (induction on a with b quantified followed by

inversion of b). This gives four cases, where the contradictory cases follow with

(23.1). The two remaining cases

∀bLx(Sx)∀ex=x. Ceb = b
L2 xya′ = L2 xyb′

follow with UIP for numbers and the inductive hypothesis, respectively.

We can also define an index inversion operator for L

∀xy∀aLxy . matchy [0⇒ ⊥ | Sy ′ ⇒ x ≠ y ′ → Lxy ′]

by discriminating on a.

Exercise 23.4.1 The proof sketches described above involve sophisticated type

checking and considerable technical detail, more than can be certified reliably on

paper. Use the proof assistant to verify the above proof sketches.

23.5 Constructor Injectivity with DPI

We present another inversion fact that can only be verified with UIP for numbers.

This time we need DPI for numbers. We consider the indexed type family

K (x : N) : N→ T ::=
| K1 : Kx(Sx)

| K2 : ∀zy. Kxz → Kzy → Kxy

229

23 Inductive Equality

which provides a derivation system for arithmetic comparisons x < y taking tran-

sitivity as a rule. Obviously, K is not derivation unique. We would like to show that

the value constructor K2 is injective:

∀aKxz∀bKzy . K2xzyab = K2xzya′b′ → (a, b) = (a′, b′) (23.3)

We will do this with a customized index inversion operator

Kinv : ∀xy. Kxy → (y = Sx)+ (Σz. Kxz × Kzy)

satisfying

Kinv xy(K2xzyab) ≈ R (z, (a, b))

(R is one of the two value constructors for sums). Defining the inversion operator

Kinv is routine. We now prove (23.3) by applying Kinv using feq to both sides of the

assumed equation of (23.3), which yields

R (z, (a, b)) = R (z, (a′, b′))

Now the injectivity of the sum constructor R (a routine proof) yields

(z, (a, b)) = (z, (a′, b′))

which yields (a, b) = (a′, b′) with DPI for numbers.

The proof will also go through with a simplified inversion operator Kinv where

in the sum type is replaced with the option type O(Σz. Kxz × Kzy). However, the

use of a dependent pair type seems unavoidable, suggesting that injectivity of K2

cannot be shown without DPI.

Exercise 23.5.1 Prove injectivity of the constructors for sum using feq.

Exercise 23.5.2 Prove injectivity of K2 using a customized inversion operator em-

ploying an option type rather than a sum type.

Exercise 23.5.3 Prove injectivity of K2 with the dependent elimination tactic of

Coq’s Equations package.

Exercise 23.5.4 Define the full inversion operator for K.

Exercise 23.5.5 Prove Kxy a x < y .

Exercise 23.5.6 Prove that there is no function ∀xy. Kxy → Σz. Kxz × Kzy .

230

23.6 Inductive Equality at Type

23.6 Inductive Equality at Type

We define an inductive equality type at the level of general types

id (X : T, x : X) : X → T ::=
| I : id X x x

and ask how propositional inductive equality and computational inductive equal-

ity are related. In turns out that we can go back and forth between proofs of propo-

sitional identities x = y and derivations of general identities idxy , and that UIP

at one level implies UIP at the other level. We learn from this example that as-

sumptions concerning only the propositional level (i.e., UIP) may leak out to the

computational level and render nonpropositional types inhabited that seem to be

unconnected to the propositional level.

First, we observe that we can define transfer functions

↑ : ∀X∀xyX ∀ex=y . idxy

↓ : ∀X∀xyX ∀aidxy . x = y

such that ↑(Qx) ≈ Ix and ↓(Ix) ≈ Qx for all x, and ↓(↑ e) = e and ↑(↓a) = a for

all e and a. We can also define a function

ϕ : ∀XY ∀fX→Y∀xx′X . idxx′ → id (fx)(fx′)

Fact 23.6.1 UIPX → ∀xyX ∀abidxy . idab.

Proof We assume UIPX and x,y : X and a,b : idxy . We show idab. It suffices to

show

id (↑(↓a))(↑(↓b))

By ϕ it suffices to show id (↓a)(↓b). By ↑ it suffices to show ↓a = ↓b, which holds

by the assumption UIPX. �

Exercise 23.6.2 Prove the converse direction of Fact 23.6.1.

Exercise 23.6.3 Prove Hedberg’s theorem for general inductive equality. Do not

make use of propositional types.

Exercise 23.6.4 Formulate the various UIP characterizations for general inductive

equality and prove their equivalence. Make sure that you don’t use propositional

types. Note that the proofs from the propositional level carry over to the general

level.

231

23 Inductive Equality

23.7 Notes

The dependently typed algebra of identity proofs identified by Hofmann and

Streicher [16] plays an important role in homotopy type theory [26], a recent branch

of type theory where identities are accommodated as nonpropositional types and

UIP is inconsistent with the so-called univalence assumption. Our proof of Hed-

berg’s theorem follows the presentation of Kraus et al. [18]. That basic type theory

cannot prove UIP was discovered by Hofmann and Streicher [16] in 1994 based on

a so-called groupoid interpretation.

232

24 Vectors

Vector types refine list types with an index recording the length of lists. Working

with vector types is smooth in some cases and problematic in other cases. The

problems stem from the fact that type checking relies on conversion rather than

propositional equality.

24.1 Basic Definitions

The elements of a vector type Vn(X) may be though of as lists of length n over a

base type X. The definition of the family of vector types Vn(X) accommodates X
as a parameter and n as an index:

V (X : T) : N→ T ::=
| Nil : V0(X)

| Cons : ∀n. X → Vn(X)→ VSn(X)

We write vector types V X n as Vn(X) to agree with the usual notation. The formal

definition takes X before n since type constructors must take parameters before

indices (a convention we adopt from Coq). For concrete vectors, we shall use the

notation for lists. For instance, we write

[x,y, z] � ConsX 2x (ConsX 1y (ConsX 0z (NilX))) : V3(X)

We shall treat X as an implicit argument of Nil and Cons. Defining a universal

eliminator for vectors

∀XT∀p∀n. Vn(X)→T.
p 0 Nil→
(∀nxv. pnv → p(Sn)(Consxv))→
∀nv. pnv

is routine (recursion on the vector v). We will use the universal eliminator for

inductive proofs.

233

24 Vectors

We also define an inversion operator for vectors

∀X∀n∀vVn(X).
match n return Vn(X)→ T

[0⇒ λv. v = Nil

| Sn′ ⇒ λv. Σxv′. v = Consn′ x v′

]v

by discrimination on v . We have explained the need for the reloading match before.

The inversion operator will be essential for defining operations discriminating on

nonempty vectors VSn(X).

24.2 Operations

We now define head and tail operation for vectors. In contrast to lists, the oper-

ations for vectors can exclude empty vectors through the index argument of their

types. Moreover, head and tail can be obtained as instances of the inversion opera-

tor I:

hd : ∀n. VSn(X)→ X
hd nv := π1(I(Sn)v)

tl : ∀n. VSn(X)→ Vn(X)
tl nv := π1(π2(I(Sn)v))

Note that hd and tl cannot be defined directly by discrimination on their vector ar-

gument since the index argument of the discriminating type is not an unconstrained

variable. So to define hd and tl one must first come up with a generalized operation

discriminating on an unconstrained vector type.

The problem reoccurs when we try to prove the η-law for vectors:

∀n∀vVSn(X). v = Cons (hdv)(tlv)

A direct discrimination of the vector argument is forbidden, and an application of

the universal eliminator will not help. On the other hand, instantiating the inversion

operator with v yields Σxv′. v = Consn′ x v′, which yields the claim by destruc-

turing, rewriting, and conversion.

Now that we have hd and tl, showing injectivity of Cons

Cons nxv = Cons nx′v′ → x = x′ ∧ v = v′

234

24.2 Operations

using feq is routine. With injectivity it is then routine to construct an equality

decider for vectors:

∀n∀v1v
Vn(X)
2 . D(v1 = v2)

The proof is as usual by recursion on v1 (with v2 quantified) followed by inversion

of v2 (using the inversion operator for vectors). Injectivity of Cons is needed for the

negative cases obtained with the inductive hypothesis.

There is also an elegant definition of an operation that yields the last element of

a vector:

last : ∀n. VSn(X)→ X
last 0 := hd 0 : VS0(X)→ X

last (Sn) := λv. lastn(tl (Sn)v) : VSSn(X)→ X

Note that last recurses on n rather than on the vector v , making a direct definition

possible.

Another interesting operation on vectors is

sub : ∀n.N (n)→ Vn(X)→ X
sub _ (Zn) := hdn : VSn(X)→ X

sub _ (Una) := λv. subna(tlna) : VSn(X)→ X

As with lists, subnav yields the element the vector v carries at position a. If Z

is interpreted as zero and U as successor operation, the positions are numbered

from left to right starting with zero. The interesting fact here is that the numeral

typeN (n) contains exactly one numeral for every position of a vector Vn(X).

Exercise 24.2.1 Verify the above definitions and proofs using the proof assistant.

In each case convince yourself that the inversion operator cannot be replaced by a

direct discrimination.

Exercise 24.2.2 (Generalized head and tail) There is a direct realization of a gen-

eralized head operation incorporating ideas from the inversion operator:

hd : ∀n∀vVn(X). match n [0⇒ > | Sn′ ⇒ X]
hd _ Nil := I : >

hd _ (Consnxv) := x : X

Define a generalized tail operation using this idea.

235

24 Vectors

Exercise 24.2.3 (Reversal) Define functions trunc, snoc, and rev as follows:

a) truncnv yields the vector obtained by removing the last position of v : VSn(X).

b) snocnvx yields the vector obtained by appending x at the end of v : Vn(X).
c) revnv yields the vector obtained by reversing v : Vn(X).
Prove the following equations for your definitions (index arguments are omitted):

a) last (snocvx) = x.

b) v = snoc (truncv) (lastv).

c) rev (snocvx) = Consx (revv).

d) rev (revv) = v .

Hints: Equation (b) follows by induction on the index variable n and inversion of v ,

the others equations follow by induction on v .

Exercise 24.2.4 (Associativity) Define a concatenation operation

++ : ∀Xmn. Vm(X)→ Vn(X)→ Vm+n(X)

for vectors. Convince yourself that the statement for associativity of concatenation

(v1++v2)++v3 = v1++(v2++v3)

does not type check (first add the implicit arguments and implicit types). Also

check that the type checking problem would go away if the terms (n1 + n2) + n3

and n1 + (n2 +n3) were convertible.

Exercise 24.2.5 Define a map function for vectors and prove its basic properties.

24.3 Converting between Vectors and Lists

We define a function that converts vectors into lists:

L : ∀n. Vn(X)→ L(X)
L _ Nil := []

L _ (Consnxv) := x :: Lnv

With a straightforward induction on vectors we show that L converts vectors of

length n into lists of length n:

∀nv. len (Lnv) = n (24.1)

We can also show that L is injective:

∀n∀v1v
Vn(X)
2 . Lnv1 = Lnv2 → v1 = v2 (24.2)

236

24.3 Converting between Vectors and Lists

The proof is by induction on v1 and inversion of v2 and exploits the injectivity of

the constructor cons for lists.

Next we show that L is surjective in the sense that every list of length n can be

obtained from a vector of length n:

∀AL(X) ΣvVlenA(X). L(lenA)v = A (24.3)

We construct the function (24.3) by induction on A. Function (24.3) gives us a

function

V : L(X)→ VlenA(X)

such that

∀AL(X). L (lenA) (V(A)) = A

So far, so good. We now run into the problem that the statement

∀n∀vVn(X). V(Lnv) = v (24.4)

does not type check since the typesVlen(Lnv)(X) andVn(X) are not convertible. The

problem may be resolved with a type cast transferring from Vlen(Lnv)(X) to Vn(X)
based on the equation (24.1). The type checking problem goes away for concrete

equations since conversion is strong enough if there are no variables. For instance,

the concrete equation

L3 (V[1,2,3]) = [1,2,3] (24.5)

type checks (since len(L3(V[1,2,3])) ≈ 3) and holds by computational equality.

Exercise 24.3.1 Check the above claims with the proof assistant.

237

Part V

Higher Order Recursion

239

25 Existential Witness Operators

In this chapter, we will define an existential witness operator that for decidable

predicates on numbers obtains a satisfying number from a given satisfiability proof:

W : ∀pN→P. (∀n. D(pn))→ (∃n. pn)→ (Σn. pn)

The interesting point about an existential witness operator is the fact that from a

propositional satisfiability proof it obtains a witness that can be used computation-

ally. Existential witness operators are required for various computational construc-

tions.

Given that the elimination restriction disallows computational access to the wit-

ness of an existential proof, the definition of a witness operator is not obvious. In

fact, our definition will rely on higher-order structural recursion, a feature of in-

ductive definitions we have not used before. The key idea is the use linear search

types

T(n : N) : P ::= C (¬pn→ T(Sn))

featuring a recursion through the right-hand side of a function type. Derivations

of a linear search type Tn thus carry a continuation function ϕ : ¬pn → T(Sn)
providing a structurally smaller derivation ϕh : T(Sn) for every proof h : ¬pn. By

recursing on a derivation of T0 we will be able to define a function performing a lin-

ear search n = 0,1,2, . . . until pn holds. Since T0 is a computational proposition,

we can construct a derivation of T0 in propositional mode using the witness from

the proof of ∃n.pn.

25.1 Linear Search Types

Recall from §4.3 that a computational proposition is an inductive proposition ex-

empted from the elimination restriction. Proofs of computational propositions can

be decomposed in computation mode although they have been constructed in proof

mode. Recursive computational propositions thus provide for computational recur-

sion.

We fix a predicate p : N→ P and define linear search types as follows:

T(n : N) : P ::= C (¬pn→ T(Sn))

241

25 Existential Witness Operators

The argument of the single proof constructor C is a function

ϕ : ¬pn→ T(Sn)

counting as a proof since linear search types are declared as propositions. We will

refer to ϕ as the continuation function of a derivation. The important point now

is the fact that the continuation function of a derivation of type Tn yields a struc-

turally smaller derivation ϕh : T(Sn) for every proof h : ¬pn. Since the recursion

passes through the right constituent of a function type we speak of a higher-order

recursion. It is the flexibility coming with higher-order recursion that makes the

definition of a witness operator possible. We remark that Coq’s type theory admits

recursion only through the right-hand side of function types, a restriction known as

strict positivity condition.

We also remark that the parameter n of T is nonuniform. While T can be de-

fined with the parameter p abstracted out (e.g., as a section variable in Coq), the

parameter n cannot be abstracted out since the application T(Sn) appears in the

argument type of the proof constructor.

Exercise 25.1.1 (Strict positivity) Assume that the inductive type definition

B : T ::= C(B → ⊥) is admitted although it violates the strict positivity condition.

Give a proof of falsity. Hint: Assume the definition gives you the constants

B : T

C : (B → ⊥)→ B
M : ∀Z. B → ((B → ⊥)→ Z)→ Z

First define a function f : B → ⊥ using the matching constant M .

Exercise 25.1.2 Higher-order recursion offers yet another possibility for defining

an empty type:

A : P ::= C(> → A)

Define a function A→ ⊥.

25.2 Definition of Existential Witness Operator

We now assume that p is a decidable predicate on numbers. We will define an

existential witness operator

W : (∃n.pn)→ Σn. pn

242

25.2 Definition of Existential Witness Operator

using two functions

W ′ : ∀n. Tn→ Σn. pn
V : ∀n. pn→ T0

The idea is to first obtain a derivation d : T0 using V and the witness of the proof

of ∃n.pn, and then obtain a computational witness using W ′ and the derivation

d : T0.

We define W ′ by recursion on Tn:

W ′ : ∀n. Tn→ Σk.pk

W ′n(Cϕ) :=

Enh if h : pn

W ′ (Sn) (ϕh) if h : ¬pn

Note that the defining equation of W ′ makes use of the higher-order recursion com-

ing with Tn. The recursion is admissible since every derivation ϕh counts as struc-

turally smaller than the derivation Cϕ. Coq’s type theory is designed such that

higher-order structural recursion always terminates.

It remains to define a function V : ∀n. pn → T0. Given the definition of T , we

have

∀n. pn→ Tn (25.1)

∀n. T(Sn)→ Tn (25.2)

Using recursion on n, function (25.2) yields a function

∀n. Tn→ T0 (25.3)

Using function (25.1), we have a function V : ∀n. pn→ T0 as required.

Theorem 25.2.1 (Existential witness operator)

There is a function W : ∀pN→P. (∀n. D(pn))→ (∃n. pn)→ (Σn. pn).

Proof Using V we obtain a derivation d : T0 from the witness of the proof of ∃n.pn.

There is no problem with the elimination restriction since T0 is a proposition. Now

W ′ yields a computational witness for p. �

Exercise 25.2.2 Point out where in the defining equation of W ′ it is exploited that

linear search types are computational (i.e., no elimination restriction).

Exercise 25.2.3 Define W ′ with fix and match. Note that fix must be given a lead-

ing argument n so that the recursive function can receive the type∀n. Tn→ Σk. pk
accommodating the recursive application for Sn.

243

25 Existential Witness Operators

25.3 More Existential Witness Operators

Fact 25.3.1 (Existential least witness operator)

There is a function ∀pN→P. (∀n. D(pn))→ (∃n. pn)→ (Σn. leastpn).

Proof There are two ways to construct the operator using W . Either we use

Fact 17.3.2 that gives us a least witness for a witness, or Fact 17.3.4 and Corol-

lary 17.3.3 that tell us that leastp is a decidable and satisfiable predicate. �

Corollary 25.3.2 (Binary existential witness operator)

There is a function ∀pN→N→P. (∀xy.D(pxy))→ (∃xy.pxy)→ (Σxy.pxy).

Proof Follows withW and the paring bijection from Chapter 7. The trick is to useW
with λn. p(π1(Dn))(π2(Dn)). �

Corollary 25.3.3 (Disjunctive existential witness operator)

Let p and q be decidable predicates on numbers.

Then there is a function (∃n.pn)∨ (∃n.qn)→ (Σn.pn)+ (Σn.qn).

Proof Use W with the predicate λn.pn∨ qn. �

The following fact was discovered by Andrej Dudenhefner in March 2020.

Fact 25.3.4 (Discreteness via step-indexed equality decider)

Let fX→X→N→B be a function such that ∀xy. x = y ←→ ∃n. fxyn = t.

Then X has an equality decider.

Proof We proveD(x = y) for fixed x,y : X. Using the witness operator we obtain n
such that fxxn = t. If fxyn = t, we have x = y . If fxyn = f, we have x ≠ y . �

Exercise 25.3.5 (Infinite path)

Let p : N→ N→ P be a decidable predicate that is total: ∀x∃y. pxy .

a) Define a function f : N→ N such that ∀x. px(fx).
b) Given x, define a function f : N → N such that f0 = x and ∀n. p(fn)(f(Sn)).

We may say that f describes an infinite path starting from x in the graph de-

scribed by the edge predicate p.

Exercise 25.3.6 Let f : N→ B. Prove the following:

a) (∃n. fn = t)a (Σn. fn = t).

b) (∃n. fn = f)a (Σn. fn = f).

Exercise 25.3.7 Let p be a decidable predicate on numbers. Define a function

∀n. Tn→ Σk. k ≥ n∧ pk.

Exercise 25.3.8 Construct a witness operator (∃x. px) → (Σx. px) for decidable

predicates p on booleans. Exploit that there are only two a priori known candidates

for a witness. Note that a computational elimination on ⊥ is needed.

244

25.4 Eliminator and Existential Characterization

25.4 Eliminator and Existential Characterization

We define an eliminator for linear search types:

ET : ∀qN→T. (∀n. (¬pn→ q(Sn))→ qn)→ ∀n. Tn→ qn
ET q fn(Cϕ) := fn(λh. ET q f(Sn)(ϕh))

The eliminator provides for inductive proofs on derivations of T . That the inductive

hypothesis q(Sn) in the type of f is guarded by ¬pn ensures that it can be obtained

with recursion through ϕ.

We remark that when translating the equational definition of ET to a compu-

tational definition with fix and match, the recursive abstraction with fix must

be given a leading argument n so that the recursive function can receive the type

∀n. Tn→ pn, which is needed for the recursive application, which is for Sn rather

than n.

Exercise 25.4.1 Define W ′ with the eliminator ET for T .

Exercise 25.4.2 (Existential characterization) Prove the following facts about lin-

ear search types.

a) pn→ Tn.

b) T(Sn)→ Tn.

c) T(k+n)→ Tn.

d) Tn→ T0.

e) pn→ T0.

f) Tn ←→ ∃k. k ≥ n∧ pk.

Hints: Direction→ of (f) follows with induction on T using the eliminator ET . Part (c)

follows with induction on k. The rest follows without inductions, mostly using

previously shown claims.

Exercise 25.4.3 The eliminator we have defined for T is not the strongest one. One

can define a stronger eliminator where the target type depends on both n and a

derivation d : Tn. This eliminator makes it possible to prove properties of a linear

search function ∀n. Tn→ N with a noninformative target type.

25.5 Notes

With linear search types we have seen computational propositions that go far be-

yond the inductive definitions we have seen so far. The proof constructor of linear

search types employs higher-order structural recursion through the right-hand side

245

25 Existential Witness Operators

of a function type. Higher-order structural recursion greatly extends the power of

structural recursion. Higher-order structural recursion means that an argument of

a recursive constructor is a function that yields a structurally smaller value for ev-

ery argument. That higher-order structural recursions always terminates is a basic

design feature of Coq’s type theory.

246

26 Well-Founded Recursion

Well-founded recursion is provided with an operator

wf(R)→ ∀pX→T. (∀x. (∀y. Ryx → py)→ px)→ ∀x.px

generalizing arithmetic size recursion such that recursion can descend along any

well-founded relation. In addition, the well-founded recursion operator comes with

an unfolding equation making it possible to prove for the target function the equa-

tions used for the definition of the step function. Well-foundedness of relations is

defined constructively with recursion types

AR(x : X) : P ::= C (∀y. Ryx →ARy)

obtaining well-founded recursion from the higher-order recursion coming with in-

ductive types. Being defined as computational propositions, recursion types medi-

ate between proofs and computational recursion.

The way computational type theory accommodates definitions and proofs by

general well-founded recursion is one of the highlights of computational type

theory.

26.1 Recursion Types

We assume a binary relation RX→X→P and pronounce the Ryx as y below x. We

define the recursion types for R as follows:

AR(x : X) : P ::= C (∀y. Ryx →ARy)

and call the elements of recursion types recursion certificates. Note that recur-

sion types are computational propositions. A recursion certificate of type AR(x)
justifies all recursions starting from x and descending on the relation R. That a

recursion on a certificate of type AR(x) terminates is ensured by the built-in ter-

mination property of computational type theory. Note that recursion types realize

higher-order recursion.

We will harvest the recursion provided by recursion certificates with a recursion

operator

W ′ : ∀pX→T. (∀x. (∀y. Ryx → py)→ px)→ ∀x.ARx → px
W ′pFx(Cϕ) := Fx(λyr . W ′pFy(ϕyr))

247

26 Well-Founded Recursion

Computationally, W ′ may be seen as an operator that obtains a function

∀x.ARx → px

from a step function

∀x. (∀y. Ryx → py)→ px

The step function describes a function ∀x.px obtained with a continuation func-

tion

∀y. Ryx → py

providing recursion for all y below x. We also speak of recursion guarded by R.

We define well-founded relations as follows:

wf(RX→X→P) := ∀x.AR(x)

Note that a proof of a proposition wf(R) is a function that yields a recursion cer-

tificateAR(x) for every x of the base type of R. For well-founded relations, we can

specialize the recursion operator W ′ as follows:

W : wf(R)→ ∀pX→T. (∀x. (∀y. Ryx → py)→ px)→ ∀x.px
WhpFx := W ′pFx(hx)

We will refer to W ′ and W as well-founded recursion operators. Moreover, we will

speak of well-founded induction if a proof is obtained with an application of W ′

or W .

It will become clear thatW generalizes the size recursion operator. For one thing

we will show that the order predicate <N→N→N is a well-founded relation. Moreover,

we will show that well-founded relations can elegantly absorbe size functions.

The inductive predicates AR are often called accessibility predicates. They in-

ductively identify the accessible values of a relation as those values x for which all

values y below (i.e., Ryx) are accessible. To start with, all terminal values of R are

accessible in R. We have the equivalence

AR(x) ←→ (∀y. Ryx →AR(y))

Note that the equivalence is much weaker than the inductive definition in that it

doesn’t provide recursion and in that it doesn’t force an inductive interpretation of

the predicateAR (e.g., the full predicate would satisfy the equivalence).

We speak of recursion typesAR(x) rather than accessibility propositionsAR(x)
to emphasize that the propositional typesAR(x) support computational recursion.

248

26.2 Well-founded Relations

Fact 26.1.1 (Extensionality) Let R and R′ be relations X → X → P.

Then (∀xy. R′xy → Rxy)→ ∀x.AR(x)→AR′(x).

Proof By well-founded induction with W ′. �

Exercise 26.1.2 ProveAR(x)←→ (∀y. Ryx →AR(y)) from first principles. Make

sure you understand both directions of the proof.

Exercise 26.1.3 ProveAR(x)→ ¬Rxx.

Hint: Use well-founded induction with W ′.

Exercise 26.1.4 Prove Rxy → Ryx → ¬AR(x).

Exercise 26.1.5 Show that well-founded relations disallow infinite descend:

AR(x)→ px → ¬∀x. px → ∃y. py ∧ Ryx.

Exercise 26.1.6 Assume we strengthen the elimination restriction of the under-

lying type theory such that recursion types are the only propositional types al-

lowing for computational elimination. We can still prove a lemma providing us

with computational elimination for falsity. Show that for every type A the relation

R : A→ A→ P := λab.> satisfiesAR(a)→ ∀XT. X and ⊥ ←→ARa for every aA.

26.2 Well-founded Relations

Fact 26.2.1 The order relation on numbers is well-founded.

Proof We prove the more general claim ∀nx. x < n →A<(x) by induction on the

upper bound n. For n = 0 the premise x < n is contradictory. For the successor

case we assume x < Sn and prove A<(x). By the single constructor for A we

assume y < x and proveA<(x). Follows by the inductive hypothesis since y < n.�

Given two relations RX→X→P and SY→Y→P, we define the lexical product R × S as

a binary relation X × Y → X × Y → P :

R × S := λ(x′, y ′) (x,y)X×Y .Rx′x ∨ x′ = x ∧ Sy ′y

Fact 26.2.2 (Lexical products) wf(R)→ wf(S)→ wf(S × R).

Proof We prove ∀xy.AR×S(x,y) by nested well-founded induction on first x in R
and then y in S. By the constructor forAR×S(x,y)we assume Rx′x∨x′ = x∧Sy ′y
and prove AR×S(x′, y ′). If Rx′x, the claim follows by the inductive hypothesis

for x. If x′ = x ∧ Sy ′y , the claim is AR×S(x,y ′) and follows by the inductive

hypothesis for y . �

249

26 Well-Founded Recursion

The above proof is completely straightforward when carried out formally with

the well-founded recursion operator W .

Another important construction for binary relations are retracts. Here one has

a relation RY→Y→P and uses a function σX→Y to obtain a relation Rσ on X:

Rσ := λx′x. R(σx′)(σx)

We will show that retracts of well-founded relations are well-founded. It will also

turn out that well-founded recursion on a retract Rσ is exactly well-founded size

recursion on R with the size function σ .

Fact 26.2.3 (Retracts) wf(R)→ wf(Rσ).

Proof Let RY→Y→P and σX→Y . We assume wf(R). It suffices to show

∀yx.σx = y →ARσ (x)

We show the lemma by well-founded induction on y and R. We assume σx = y
and showARσ (x). Using the constructor forARσ (x), we assume R(σx′)(σx) and

showARσ (x′). Follows with the inductive hypothesis for σx′. �

Corollary 26.2.4 (Well-founded size recursion)

Let RY→Y→P be well-founded and σX→Y . Then:

∀pX→T. (∀x. (∀x′. R(σx′)(σx)→ px′)→ px)→ ∀x.px.

We now obtain the arithmetic size recursion operator from §18.1 as a special

case of the well-founded size recursion operator.

Corollary 26.2.5 (Arithmetic size recursion)

∀σX→N∀pX→T. (∀x. (∀x′.σx′ < σx → px′)→ px)→ ∀x.px.

Proof Follows with Corollary 26.2.4 and Fact 26.2.1. �

There is a story here. We came up with retracts to have an elegant construction

of the wellfounded size recursion operator appearing in Corollary 26.2.4. Note that

conversion plays an important role in type checking the construction. The proof

that retracts of well-founded relations are well-founded (Fact 26.2.3) is interesting in

that it first sets up an intermediate that can be shown with well-founded recursion.

The equational premise σx = y of the intermediate claim is needed so that the

well-founded recursion is fully informed. Similar constructions will appear once we

look at inversion operators for indexed inductive types.

Exercise 26.2.6 Prove R ⊆ R′ → wf(R′) → wf(R) for all relations R,R′ : X → X → P.

Tip: Use extensionality (Fact 26.1.1).

Exercise 26.2.7 Give two proofs for wf(λxy. Sx = y) : A direct proof by structural

induction on numbers, and a proof exploiting that λxy. Sx = y is a sub-relation of

the order relation on numbers.

250

26.3 Unfolding Equation

26.3 Unfolding Equation

Assuming FE, we can prove the equation

WFx = Fx(λyr . WFy)

for the well-founded recursion operator W . We will refer to this equation as un-

folding equation. The equation makes it possible to prove that the function WF
satisfies the equations underlying the definition of the guarded step function F .

This is a major improvement over arithmetic size recursion where no such tool is

available. For instance, the unfolding equation gives us the equation

Dxy =

0 if x ≤ y
S(D(x − Sy)y) if x > y

for an Euclidean division function D defined with well-founded recursion on <N :

Dxy := W(Fy)x

F : N→ ∀x. (∀x′. x′ < x → N)→ N

Fyxh :=

0 if x ≤ y
S(h(x − Sy)[x − Sy < x\) if x > y

Note that the second argument y is treated as a parameter. Also note that the

equation for D is obtained from the unfolding equation for W by computational

equality.

We now prove the unfolding equation using FE. We first show the remarkable

fact that under FE all recursion certificates are equal.

Lemma 26.3.1 (Uniqueness of recursion types)

Under FE, all recursion types are unique: FE→ ∀x∀abAR(x). a = b.

Proof We prove

∀x∀aAR(x)∀bcAR(x). b = c
using W ′. This gives us the claim ∀bcAR(x). b = c and the inductive hypothesis

∀x′. Rx′x → ∀bcAR(x′). b = c

We destructure b and c, which gives us the claim

Cϕ = Cϕ′

for ϕ,ϕ′ : ∀x′. Rx′x →AR(x′). By FE it suffices to show

ϕx′r =ϕ′x′r

for rRx′x . Holds by the inductive hypothesis. �

251

26 Well-Founded Recursion

Fact 26.3.2 (Unfolding equation)

Let RX→X→P, pX→T, and F∀x. (∀x′. Rx′x→px′)→px .

Then FE→ wf(R)→ ∀x. WFx = Fx(λx′r . WFx′).

Proof We prove WFx = Fx(λx′r . WFx′). We have

WFx = W ′Fxa = W ′Fx(Cϕ) = Fx(λx′r . W ′Fx′(ϕx′r))

for some a and ϕ. Using FE, it now suffices to prove the equation

W ′Fx′(ϕx′r) = W ′Fx′b

for some b. Holds by Lemma 26.3.1. �

For functions f∀x.px and F∀x. (∀x′. Rx′x→px′)→px we define

f î F := ∀x. fx = Fx(λyr .fy)

and say that f satisfies F . Given this notation, we may write

FE→ wf(R)→ WF î F

for Fact 26.3.2. We now prove that all functions satisfying a step function agree if

FE is assumed and R is well-founded.

Fact 26.3.3 (Uniqueness)

Let RX→X→P, pX→T, and F∀x. (∀x′. Rx′x→px′)→px .

Then FE→ wf(R)→ (f î F)→ (f ′ î F)→ ∀x. fx = f ′x.

Proof We prove∀x. fx = f ′x usingW with R. Using the assumptions for f and f ′,
we reduce the claim to Fx(λx′r .fx′) = Fx(λx′r .f ′x′). Using FE, we reduce that

claim to Rx′x → fx′ = f ′x′, an instance of the inductive hypothesis. �

Exercise 26.3.4 Note that the proof of Lemma 26.3.1 doubles the quantification

of a. Verify that this is justified by the general law (∀a.∀a.pa)→ ∀a.pa.

26.4 Example: GCDs

Our second example for the use of well-founded recursion and the unfolding equa-

tion is the construction of a function computing GCDs (§18.3). We start with the

procedural specification in Figure 26.1. We will construct a function gN→N→N satis-

fying the specification using W on the retract of <N for the size function

σ : N× N→ N

σ(x,y) := x +y

252

26.4 Example: GCDs

g : N→ N→ N

g 0y = y

g (Sx)0 = Sx

g (Sx) (Sy) =

g (Sx) (y − x) if x ≤ y
g (x −y) (Sy) if x > y

guard conditions

x ≤ y → Sx + (y − x) < Sx + Sy

x > y → (x −y)+ Sy < Sx + Sy

Figure 26.1: Recursive specification of a gcd function

The figure gives the guard conditions for the recursive calls adding the precondi-

tions established by the conditional in the third specifying equation.

Given the specification in Figure 26.1, the formal definition of the guarded step

function is straightforward:

F : ∀cN×N. (∀c′. σc′ < σc → N)→ N

F (0, y) _ := y

F (Sx,0) _ := Sx

F (Sx, Sy)h :=

h(Sx, y − x) [Sx + (y − x) < Sx + Sy\ if x ≤ y
h(x −y, Sy) [(x −y)+ Sy < Sx + Sy\ if x > y

We now define the desired function

g : N→ N→ N

gxy := WHF(x,y)

using the recursion operator W and the function

H : ∀cN×N.A(<N)σ (c)

obtained with the functions for recursion certificates for numbers (Fact 26.2.1) and

retracts (Fact 26.2.3). Each of the three specifying equations in Figure 26.1 can now

be obtained as an instance of the unfolding equation (Fact 26.3.2).

In summary, we note that the construction of a function computing GCDs with a

well-founded recursion operator is routine given the standard constructions for re-

tracts and the order on numbers. Proving that the specifying equations are satisfied

is straightforward using the unfolding equation and FE.

253

26 Well-Founded Recursion

That the example can be done so nicely with the general retract construction is

due to the fact that type checking is modulo computational equality. For instance,

the given type of the step function F is computationally equal to

∀cN×N. (∀c′. (<N)σ c′c → N)→ N

Checking the conversions underlying our presentation is tedious if done by hand

but completely automatic in Coq.

Exercise 26.4.1 Construct a function fN→N→N satisfying the Ackermann equations

(§1.10) using well-founded recursion for the lexical product <N ×<N.

26.5 Unfolding Equation without FE

We have seen a proof of the unfolding equation assuming FE. Alternatively, one

can prove the unfolding equation assuming that the step function has a particular

extensionality property. For concrete step function one can usually prove that they

have this extensionality without using assumptions.

We assume a relation RX→X→P, a type function pX→T, and a step function

F : ∀x. (∀x′. Rx′x → px′)→ px

We define extensionality of F as follows:

ext(F) := ∀xhh′. (∀yr. hyr = h′yr)→ Fxh = Fxh′

The property says that Fxh remains the same if h is replaced with a function agree-

ing with h. We have FE→ ext(F). Thus all proofs assuming ext(F) yields proofs for

the stronger assumption FE.

Fact 26.5.1 ext(F)→ ∀xaa′. W ′Fxa = W ′Fxa′.

Proof We assume ext(F) and show ∀x∀aAR(x).∀aa′. W ′Fxa = W ′Fxa′ using W ′.
This give us the inductive hypothesis

∀y∀rRyx∀aa′. W ′Fya = W ′Fya′

By destructuring we obtain the claim W ′Fx(Cϕ) = W ′Fx(Cϕ′) for two functions

ϕ,ϕ′ : ∀y.Ryx →AR(y). By reducing W ′ we obtain the claim

Fx(λyr . W ′Fy(ϕyr)) = Fx(λyr . W ′Fy(ϕ′yr))

By the extensionality of F we now obtain the claim

W ′Fy(ϕyr) = W ′Fy(ϕ′yr)

for rRyx , which is an instance of the inductive hypothesis. �

254

26.6 Witness Operator

Fact 26.5.2 (Unfolding equation)

Let R be well-founded. Then ext(F)→ ∀x. WFx = Fx(λyr . WFy).

Proof We assume ext(F) and prove WFx = Fx(λyr . WFy). We have WFx =
W ′Fx(Cϕ) = Fx(λyr . W ′Fy(ϕyr)). Extensionality of F ′ now gives us the claim

W ′Fy(ϕyr) = W ′Fy(ϕ′yr), which follows by Fact 26.5.1. �

Exercise 26.5.3 From the definition of extensionality for step function it seams

clear that ordinary step functions are extensional. To prove that an ordinary step

function is extensional, no induction is needed. It suffices to walk through the

matches and confront the recursive calls.

a) Prove that the step function for Euclidean division is extensional (§26.3).

b) Prove that the step function for GCDs is extensional (§26.4).

c) Prove that the step function for the Ackermann equations is extensional (Exer-

cise 26.4.1).

Exercise 26.5.4 Show that all functions satisfying an extensional step function for

a well-founded relation agree.

26.6 Witness Operator

There is an elegant and instructive construction of an existential witness operator

(Chapter 25) using recursion types. We assume a decidable predicate pN→P and

define a relation

Rxy := x = Sy ∧¬py

on numbers. We would expect that p is satisfiable if and only if AR is satisfiable.

And given a certificateAR(x), we can compute a witness of p doing a linear search

starting from x using well-founded recursion.

Lemma 26.6.1 p(x +y)→AR(y).

Proof Induction on x with y quantified. The base case follows by falsity elimina-

tion. For the successor case, we assume H : p(Sx +y) and proveAR(y). Using the

constructor forAR, we assume ¬py and proveAR(Sy). By the inductive hypothe-

sis it suffices to show p(x + Sy). Holds by H. �

Lemma 26.6.2 AR(x)→ sig(p).

Proof By well-founded induction with W ′. Using the decider for p, we have two

cases. If px, we have sig(p). If ¬px, we have R(Sx)x and thus the claim holds by

the inductive hypothesis. �

255

26 Well-Founded Recursion

Fact 26.6.3 (Existential witness operator)

∀pN→P. (∀x. D(px))→ ex(p)→ sig(p).

Proof We assume a decidable and satisfiable predicate pN→P and define R as above.

By Lemma 26.6.2 it suffices to show AR(0). We can now obtain a witness x for p.

The claim follows with Lemma 26.6.2. �

We may see the construction of an existential witness operator in Chapter 25 as

a specialization of the construction shown here where the general recursion types

used here are replaced with special purpose linear search types.

Exercise 26.6.4 ProveAR(n)←→ T(n).

Exercise 26.6.5 Prove thatAR yields the elimination lemma for linear search types:

∀qN→T. (∀n. (¬pn→ q(Sn))→ qn)→ ∀n.AR(n)→ qn

Do the proof without using linear search types.

26.7 Equations Package and Extraction

The results presented so far are such that, given a recursive specification of a func-

tion, we can obtain a function satisfying the specification, provided we can supply a

well-founded relation and proofs for the resulting guard conditions (see Figure 26.1

for an example). Moreover, if we don’t accept FE as an assumption, we need to prove

that the specified step function is extensional as defined in §26.5.

The proof assistant Coq comes with a tool named Equations package making it

possible to write recursive specifications and associate them with well-founded re-

lations. The tool then automatically generates the resulting proof obligations. Once

the user has provided the requested proofs for the specification, a function is de-

fined and proofs are generated that the function satisfies the specifying equations.

This uses the well-founded recursion operator and the generic proofs of the unfold-

ing equation we have seen. One useful feature of Equations is the fact that one can

specify functions with several arguments and with size recursion. Equations then

does the necessary pairing and the retract construction, relieving the user from

tedious coding.

Taken together, we can now define recursive functions where the termination

conditions are much relaxed compared to strict structural recursion. In contrast

to functions specified with strict structural recursion, the specifying equations are

satisfied as propositional equations rather than as computational equations. Nev-

ertheless, if we apply functions defined with well-founded recursion to concrete

256

26.8 Padding and Simplification

and fully specified arguments, reduction is possible and we get the accompanying

computational equalities (e.g., gcd 21 56 ≈ 7).

This is a good place to mention Coq’s extraction tool. Given a function speci-

fied in computational type theory, one would expect that one can extract related

programs for functional programming languages. In Coq, such an extraction tool

is available for all function definitions, and works particularly well for functions

defined with Equations. The vision here is that one specifies and verifies functions

in computational type theory and then extracts programs that are correct by con-

struction. A flagship project using extraction is CompCert (compcert.org) where a

verified compiler for a subset of the C programming language has been developed.

26.8 Padding and Simplification

Given a certificate a :AR(x), we can obtain a computationally equal certificate

b :AR(x) that exhibits any number of applications of the constructor for certifi-

cates:

a ≈ Cx(λyr. a′)
a ≈ Cx(λyr.Cy(λy ′r ′. a′′))

We formulate the idea with two functions

D : ∀x.AR(x)→ ∀y. Ryx →AR(y)

Dxa := match a [C ϕ ⇒ϕ]

P : N→ ∀x.AR(x)→AR(x)

P 0xa := a

P (Sn)a := Cx(λyr. Pny(Dxayr))

and refer to P as padding function. We have, for instance,

P(1+n)xa ≈ Cx(λy1r1. Pny1(Dxay1r1))

P(2+n)xa ≈ Cx(λy1r1. Cy1(λy2r2. Pny2(Dy1(Dxay1r1)y2r2)))

The construction appears tricky and fragile on paper. When carried out with a proof

assistant, the construction is fairly straightforward: Type checking helps with the

definitions of D and P , and simplification automatically obtains the right hand sides

of the two examples from the left hand sides.

When we simplify a term P(k + n)xa where k is a concrete number and n, x,

and a are variables, we obtain a term that needs at least 2k additional variables to be

257

26 Well-Founded Recursion

written down. Thus the example tells us that simplification may have to introduce

an unbounded number of fresh variables.

The possibility for padding functions seems to be a unique feature of higher-

order recursion.

Exercise 26.8.1 Write a padding function for linear search types (§25.1)

26.9 Classical Well-foundedness

Well-founded relations and well-founded induction are basic notions in set-theoretic

foundations. The standard definition of well-foundedness in set-theoretic founda-

tions asserts that all non-empty sets have minimal elements. The set-theoretic def-

inition is rather different the computational definition based on recursion types.

We will show that the two definitions are equivalent under XM, where sets will be

expressed as unary predicates.

A meeting point of the computational and the set-theoretic world is well-founded

induction. In both worlds a relation is well-founded if and only if it supports well-

founded induction.

Fact 26.9.1 (Characterization by well-founded induction)

∀RX→X→P. wf(R) ←→ ∀pX→P. (∀x. (∀y. Ryx → py)→ px)→ ∀x.px.

Proof Direction → follows with W . For the other direction, we instantiate p
withAR. It remains to show ∀x. (∀y. Ryx →ARy) →ARx, which is an instance

of the type of the constructor forAR. �

The characterization of well-foundedness with the principle of well-founded in-

duction is very interesting since no inductive types and only a predicate pX→P is

used. Thus the computational aspects of well-founded recursion are invisible. They

are added by the presence of the inductive predicate AR admitting computational

elimination.

Next we establish a positive characterization of the non-well-founded elements

of a relation. We define progressive predicates and progressive elements for a

relation RX→X→P as follows:

proR(pX→P) := ∀x. px → ∃y. py ∧ Ryx
proR(xX) := ∃p. px ∧ proR(p)

Intuitively, progressive elements for a relation R are elements that have an infinite

descent in R. Progressive predicates are defined such that every witness has an

infinite descent in R. Progressive predicates generalize the frequently used notion

of infinite descending chains.

258

26.9 Classical Well-foundedness

Fact 26.9.2 (Disjointness) ∀x.AR(x)→ proR(x)→ ⊥.

Proof By well-founded induction with W ′. We assume a progressive predicate p
with px and derive a contradiction. By destructuring we obtain y such that py and

Ryx. Thus proR(y). The inductive hypothesis now gives us a contradiction. �

Fact 26.9.3 (Exhaustiveness) XM→ ∀x.AR(x)∨ proR(x).

Proof Using XM, we assume ¬AR(x) and show proR(x). It suffices to show

proR(λz.¬AR(z)). We assume ¬AR(z) and prove ∃y. ¬AR(y) ∧ Ryz. Using XM,

we assume H : ¬∃y. ¬AR(y)∧Ryz and derive a contradiction. It suffices to prove

AR(z). We assume Rz′z and proveAR(z′). Follows with H and XM. �

Fact 26.9.4 (Characterization by absence of progressive elements)

XM→ (wf(R) ←→ ¬∃x. proR(x)).

Proof For direction → we assume wf(R) and proR(x) and derive a contradiction.

We haveAR(x). Contradiction by Fact 26.9.2.

For direction ← we assume ¬∃x. proR(x) and prove AR(x). By Fact 26.9.3 we

assume proR(x) and have a contradiction with the assumption. �

We define the minimal elements in RX→X→P and pX→P as follows:

minR,p(x) := px ∧∀y. py → ¬Ryx

Using XM, we show that a predicate is progressive if and only if it has no minimal

element.

Fact 26.9.5 XM→ (proR(p)←→ ¬∃x. minR,p(x)).

Proof For direction →, we derive a contradiction from the assumptions proR(p),
px, and ∀y. py → ¬Ryx. Straightforward.

For direction ←, using XM, we derive a contradiction from the assumptions

¬∃x. minR,p(x), px, and H : ¬∃y. py ∧ Ryx. We show minR,p(x). We assume

py and Ryx and derive a contradiction. Straightforward with H. �

Next we show that R has no progressive element if and only if every satisfiable

predicate has a minimal witness.

Fact 26.9.6 XM→ (¬(∃x. proR(x)) ←→ ∀p. (∃x.px)→ ∃x. minR,p(x)).

Proof For direction →, we use XM and derive a contradiction from the assumptions

¬∃x. proR(x), px, and ¬∃x. minR,p(x). With Fact 26.9.5 we have proR(p). Contra-

diction with ¬∃x. proR(x).
For direction ←, we assume px and proR(p) and derive a contradiction.

Fact 26.9.5 gives us ¬∃x. minR,p(x). Contradiction with the primary assumption. �

259

26 Well-Founded Recursion

We now have that a relation R is well-founded if and only if every satisfiable

predicate has a minimal witness in R.

Fact 26.9.7 (Characterization by existence of minimal elements)

XM→ (wf(R) ←→ ∀pX→P. (∃x.px)→ ∃x. minR,p(x).

Proof Facts 26.9.4 and 26.9.6. �

The above proofs gives us ample opportunity to contemplate about the role of

XM in proofs. An interesting example is Fact 26.9.3, where XM is used to show that

an element is either well-founded or progressive.

26.10 Transitive Closure

The transitive closure R+ of a relation RX→X→P is the minimal transitive relation

containing R. There are different possibilities for defining R+. We choose an induc-

tive definition based on two rules:

Rxy

R+xy

R+xy ′ Ry ′y

R+xy

We work with this format since it facilitates proving that taking the transitive clo-

sure of a well-founded relation yields a well-founded relation. Note that the induc-

tive predicate behind R+ has four parameters X,R,x,y , where X,R,x are uniform

and y is non-uniform.

Fact 26.10.1 Let RX→X→P. Then wf(R)→ wf(R+).

Proof We assume wf(R) and prove ∀y. AR+(y) by well-founded induction on y
and R. This gives us the induction hypothesis and the claim AR+(y). Using the

constructor for recursion types we assume R+xy and show AR+(x). If R+xy is

obtained from Rxy , the claim follows with the inductive hypothesis. Otherwise we

have R+xy ′ and Ry ′y . The inductive hypothesis gives us AR+(y ′). Thus AR+(x)
since R+xy ′. �

Exercise 26.10.2 Prove that R+ is transitive.

Hint: Assume R+xy and prove ∀z. R+yz → R+xz by induction on R+yz. First

formulate and prove the necessary induction principle for R+.

260

26.11 Notes

26.11 Notes

The inductive definition of the well-founded points of a relation appears in Aczel [1]

in a set-theoretic setting. Nordström [23] adapts Aczel’s definition to a constructive

type theory without propositions and advocates functions recursing on recursion

types. Balaa and Bertot [3] define a well-founded recursion operator in Coq and

prove that it satisfies the unfolding equation. They suggest that Coq should support

the construction of functions with a tool taking care of the tedious routine proofs

coming with well-founded recursion, anticipating Coq’s current Equations package.

261

27 Aczel Trees and Hierarchy Theorems

Aczel trees are wellfounded trees where each node comes with a type and a function

fixing the subtree branching. Aczel trees were conceived by Peter Aczel [2] as a

representation of set-like structures in type theory. Aczel trees are accommodated

with inductive type definitions featuring a single value constructor and higher-order

recursion.

We discuss the dominance condition, a restriction on inductive type definitions

ensuring predicativity of nonpropositional universes. Using Aczel trees, we will

show an important foundational result: No universe embeds into one of its types.

From this hierarchy result we obtain that proof irrelevance is a consequence of

excluded middle, and that omitting the elimination restriction in the presence of

the impredicative universe of propositions results in inconsistency.

27.1 Inductive Types for Aczel Trees

We define an inductive type providing Aczel trees:

T : T ::= T (X : T, X → T)

There is an important constraint on the universe levels of the two occurrences of T
we will discuss later. We see a tree TXf as a tree taking all trees fx as (immediate)

subtrees, where the edges to the subtrees are labelled with the values of X. We

clarify the idea behind Aczel trees with some examples. The term

T⊥ (λa.match a [])

describes an atomic tree not having subtrees. Given two trees t1 and t2, the term

T B (λb.match b [t⇒ t1 | f⇒ t2])

describes a tree having exactly t1 and t2 as subtrees where the boolean values are

used as labels. The term

T N (λ_. T⊥ (λh.match h [])

describes an infinitely branching tree that has a subtree for every number. All

subtrees of the infinitely branching tree are equal (to the atomic tree).

263

27 Aczel Trees and Hierarchy Theorems

Consider the term

TT (λs.s)

which seems to describe a universal tree having every tree as subtree. It turns out

that the term for the universal tree does not type check since there is a universe

level conflict. First we note that Coq’s type theory admits the definition

T : Ti ::= T (X : Tj , X → T)

only if i > j. This reflects a restriction on inductive definitions we have not dis-

cussed before. We speak of the dominance condition. In its general form, the

dominance condition says that the type of every value constructor (without the pa-

rameter prefix) must be a member of the universe specified for the type constructor.

The dominance condition admits the above definition for i > j since then Tj : Ti,
X : Ti, and T : Ti and hence

(∀XTj . (X → T)→ T) : Ti

using the universe rules from §4.2. For the reader’s convenience we repeat the rules

for universes

T1 : T2 : T3 : · · ·
P ⊆ T1 ⊆ T2 ⊆ T3 ⊆ · · ·
P : T2

and function types

` u : U x : u ` v : U

` ∀xu.v : U

` u : U x :u ` v : P

` ∀xu. v : P

here. The variable U ranges over the computational universes Ti. The first rule

says that every computational universe is closed under taking function types. The

second rule says that the universe P enjoys a stronger closure property known as

impredicativity.

Note that the term for the universal tree TT (λs.s) does not type check since we

do not have T : Tj for i > j.

Exercise 27.1.1 The dominance condition for inductive type definitions requires

that the types of the value constructors are in the target universe of the type con-

structor, where the types of the value constructor are considered without the pa-

rameter prefix. That the parameter prefix is not taken into account ensures that

264

27.2 Propositional Aczel Trees

the universes Ti are closed under the type constructors for pairs, options, and lists.

Verify the following typings for lists:

L(X : Ti) : Ti ::= nil | cons (X,L(X))
L : Ti → Ti : Ti+1

nil : L(X) : Ti (X : Ti)

cons : X → L(X)→ L(X) : Ti (X : Ti)

nil : ∀XTi . L(X) : Ti+1

cons : ∀XTi . X → L(X)→ L(X) : Ti+1

Write down an analogous table for pairs and options.

27.2 Propositional Aczel Trees

We now note that the definition

Tp : P ::= Tp (X : P, X → Tp)

of the type of propositional Aczel trees satisfies the dominance condition since the

type of the constructor Tp is in P by the impredicativity of the universe P:

(∀XU . (X → Tp)→ Tp) : P

Moreover, the term for the universal tree

up := TpTp (λs.s)

does type check for propositional Aczel trees. So there is a universal propositional

Aczel tree.

The universal propositional Aczel tree up is paradoxical in that it conflicts with

our intuition that all values of an inductive type are wellfounded. A value of an

inductive type is wellfounded if descending to a subvalue through a recursion in the

type definition always terminates. Given that reduction of recursive functions is as-

sumed to be terminating, one would expect that values of inductive types are well-

founded. However, the universal propositional Aczel tree TpTp (λs.s) is certainly

not wellfounded. So we have to adopt the view that because of the impredicativity

of the universe P certain recursive propositional types do admit non-wellfounded

values. This does not cause harm since the elimination restriction reliably prevents

recursion on non-wellfounded values.

We remark that there are recursive propositional types providing for functional

recursion. A good example are the linear search types for the existential witness

operator (§25.1). It seems that the values of computational propositions are always

wellfounded.

265

27 Aczel Trees and Hierarchy Theorems

27.3 Subtree Predicate and Wellfoundedness

We will consider computational Aczel trees at the lowest universe level

T : T2 ::= T (X : T1, X → T)

and propositional Aczel trees

Tp : P ::= Tp (X : P, X → Tp)

as defined before. We reserve the letters s and t for Aczel trees.

To better understand the situation, we define a subtree predicate for computa-

tional Aczel trees:

∈ : T → T → P

s ∈ TXf := ∃x. fx = s

Remarkably, the elimination restriction prevents us from defining an analogous sub-

tree predicate for propositional Aczel trees (since the return type is not a proposi-

tion but the universe P).

For computational Aczel trees we can prove ∀s. s ∉ s, which disproves the exis-

tence of a universal tree. We will prove ∀s. s ∉ s by induction on s.

Definition 27.3.1 (Eliminator for computational Aczel trees)

ET : ∀pT→T. (∀Xf . (∀x. p(fx))→ p(TXf))→ ∀s. ps
ET p F (TXf) := FXf(λx. ET p F (fx))

Fact 27.3.2 (Irreflexivity) ∀sT . s ∉ s.

Proof By induction on s (using ET) it suffice to show TXf ∉ TXf given the induc-

tive hypothesis ∀x. fx ∉ fx. It suffices to show for every xX that fx = TXf is

contradictory. Since fx = TXf implies fx ∈ fx, we have a contradiction with the

inductive hypothesis. �

For propositional Aczel trees we can prove that a subtree predicate RTp→Tp→P

such that

R s (TpXf)←→ ∃x. fx = s

does not exist. This explains why the existence of the universal propositional Aczel

tree does not lead to a proof of falsity.

Definition 27.3.3 (Eliminator for propositional Aczel trees)

ETp : ∀pTp→P. (∀Xf . (∀x. p(fx))→ p(TpXf))→ ∀s. ps
ETp p F (TpXf) := FXf(λx. ETp p F (fx))

266

27.4 Propositional Hierarchy Theorem

Fact 27.3.4 ¬∃RTp→Tp→P. ∀sXf . Rs(TpXf)←→ ∃x. fx = s.

Proof Let RTp→Tp→P be such that ∀sXf . Rs(TpXf) ←→ ∃x. fx = s. We derive a

contradiction. Since the universal propositional Aczel tree up := TpTp (λs.s) satis-

fies Ruu, it suffices to prove ∀s.¬Rss. We can do this by induction on s (using ETp)

following the proof for computational Aczel trees (Fact 27.3.2). �

We summarize the situation as follows. Given a type

T : U ::= T(X : V, X → T)

of Aczel trees, if we can define a subtree predicate ∈ : T → T → P such that

s ∈ TXf ←→ ∃x. fx = s

we cannot define a universal tree u ∈ u. This works out such that for propositional

Aczel trees we cannot define a subtree predicate (because of the elimination restric-

tion) and for computational Aczel trees we cannot define a universal tree (because

of the dominance restriction).

Exercise 27.3.5 Suppose you are allowed exactly one violation of the elimination

restriction. Give a proof of falsity.

27.4 Propositional Hierarchy Theorem

A fundamental result about Coq’s type theory says that the universe P of proposi-

tions cannot be embedded into a proposition, even if equivalent propositions may

be identified. This important result was first shown by Thierry Coquand [9] in 1989

for a subsystem of Coq’s type theory. We will prove the result for Coq’s type theory

by showing that an embedding as specified provides for the definition of a subtree

predicate for propositional Aczel trees.

Theorem 27.4.1 (Coquand) There is no proposition AP such that there exist func-

tions EP→A and DA→P such that ∀PP. D(E(P))←→ P .

Proof Let AP, EP→A, DA→P be given such that ∀PP. D(E(P)) ←→ P . By Fact 27.3.4

is suffices to show that

Rst := D (match t [TpXf ⇒ E(∃x. fx = s)])

satisfies ∀sXf . Rs(TpXf) ←→ ∃x. fx = s, which is straightforward. Note that the

match in the definition of R observes the elimination restriction since the proposi-

tion ∃x. fx = s is encoded with E into a proof of the proposition A. �

Exercise 27.4.2 Show ¬∃AP ∃EP→A ∃DA→P∀PP. D(E(P)) = P .

Exercise 27.4.3 Show ∀PP. P ≠ P.

267

27 Aczel Trees and Hierarchy Theorems

27.5 Excluded Middle Implies Proof Irrelevance

With Coquand’s theorem we can show that the law of excluded middle implies proof

irrelevance (see §4.3 for definitions). The key idea is that given a proposition with

two different proofs we can define an embedding as excluded by Coquand’s theo-

rem. For the proof to go through we need the full elimination lemma for disjunc-

tions (see Exercise 27.5.2).

Theorem 27.5.1 Excluded middle implies proof irrelevance.

Proof Let d∀X :P. X∨¬X and let a and b be proofs of a proposition A. We show a = b.

Using excluded middle, we assume a ≠ b and derive a contradiction with Coquand’s

theorem. To do so, we define an encoding EP→A and a decoding DA→P as follows:

E(X) := if dX then a else b

D(c) := (a = c)

It remains to show D(E(X))←→ X for all propositions X. By computational equality

it suffices to show

(a = if dX then a else b)←→ X

By case analysis on dX : X ∨ ¬X using the full elimination lemma for disjunctions

(Exercise 27.5.2) we obtain two proof obligations

X → (a = a←→ X)
¬X → (a = b ←→ X)

which both follow by propositional reasoning (recall the assumption a ≠ b). �

Exercise 27.5.2 Prove the full elimination lemma for disjunctions

∀XYP∀pX∨Y→P. (∀xX . p(Lx))→ (∀yY . p(Ry))→ ∀a.pa

which is needed for the proof of Theorem 27.5.1.

27.6 Hierarchy Theorem for Computational Universes

We will now show that no computational universe embeds into one of its types. Note

that by Coquand’s theorem we already know that the universe P does not embed

into one of its types.

We define a general embedding predicate ET→T→P for types:

EXY := ∃EX→Y ∃DY→X ∀x. D(Ex) = x

268

27.6 Hierarchy Theorem for Computational Universes

Fact 27.6.1 Every type embeds into itself: ∀XT : EXX.

Fact 27.6.2 ∀XYT : ¬EXY → X ≠ Y .

Fact 27.6.3 P embeds into no proposition: ∀PP. ¬EPP .

Proof Follows with Coquand’s theorem 27.4.1. �

We now fix a computational universe U and work towards a proof of

∀AU . ¬EUA. We assume a type AU and an embedding EUA with functions EU→A

and DA→U satisfying D(EX) = X for all types XU . We will define a customized type

T : U of Aczel trees for which we can define a subtree predicate and a universal

tree. It then suffices to show irreflexivity of the subtree predicate to close the proof.

We define a type of customized Aczel trees:

T : U ::= T (a : A, Da→ T)

and a subtree predicate:

∈ : T → T → P

s ∈ Taf := ∃x. fx = s

Fact 27.6.4 (Irreflexivity) ∀sT . s ∉ s.

Proof Analogous to the proof of Fact 27.3.2. �

Recall that we have to construct a contradiction. We embark on a little de-

tour before we construct a universal tree. By Fact 27.6.1 and the assumption we

have ET (D(ET)). Thus there are functions F T→D(ET) and GD(ET)→T such that

∀sT . G(Fs) = s. We define

u := T(ET)G

By Fact 27.6.1 it suffices to show u ∈ u. By definition of the membership predicate

it suffices to show

∃x. Gx = u

which holds with the witness x := Fu. We now have the hierarchy theorem for

computational universes.

Theorem 27.6.5 (Hierachy) ∀XU . ¬EUX.

Exercise 27.6.6 Show ∀XU . X ≠ U for all universes U .

Exercise 27.6.7 Let i ≠ j. Show Ti ≠ Tj .

Exercise 27.6.8 Assume the inductive type definition A : T1 ::= C(T1) is admitted

although it violates the dominance condition. Give a proof of falsity.

269

27 Aczel Trees and Hierarchy Theorems

Acknowledgements

Thorsten Altenkirch suggested Aczel trees as a means for obtaining negative results

in January 2016 at the POPL conference in St. Petersburg, Florida. Steven Schäfer

came up with an elegant proof of Coquand’s theorem using Aczel trees in June 2018

at the Types conference in Braga, Portugal.

270

Part VI

Case Studies

271

28 Propositional Deduction

In this chapter we study propositional deduction systems. Propositional deduction

systems can be elegantly formalized with indexed inductive type families. The chap-

ter is designed such that it can serve as an introduction to propositional deduction

systems and to indexed inductive type definitions at the same time. No previous

knowledge of indexed inductive type definitions is assumed.

We present ND systems and Hilbert systems for intuitionistic provability and for

classical provability. We show the equivalence of the respective systems and that

classical provability reduces to intuitionistic provability (Glivenko’s theorem). We

consider a three-valued Heyting interpretation and the two-valued boolean inter-

pretation and show that certain formulas are unprovable in the systems (e.g., the

double negation law in intuitionistic systems).

We characterize classical provability with a refutation system (tableau system)

based on boolean formula decomposition. The refutation system provides the basis

for a certifying solver, from wich we obtain that classical provability is decidable

and agrees with boolean entailment. We construct the certifying solver using size

recursion.

The chapter can serve as an introduction to deduction systems in general,

preparing the study of deduction systems for programming languages (e.g., type

systems, operational semantics).

28.1 ND Systems

We start with an informal explanation of natural deduction systems. Natural deduc-

tion systems (ND systems) come with a class of formulas and a system of deduction

rules for building derivations of pairs (A, s) consisting of a list of formulas A (the

context) and a single formula s (the conclusion). The formulas in A play the role of

assumptions. That a pair (A, s) is derivable with the rules of the system is under-

stood as saying that s is provable with the assumptions in A and the rules of the

system. Given a concrete class of formulas, we can have different sets of rules and

compare their deductive power. Given a concrete deduction system, we may ask the

following questions:

• Consistency: Are there formulas we cannot derive?

273

28 Propositional Deduction

• Weakening property: Given a derivation of (A, s) and a list B such that A ⊆ B,

can we always obtain a derivation of (B, s)?

• Cut property: Given derivations of (A, s) and (s :: A, t), can we always obtain a

derivation of (A, t)?

• Decidability: Is it decidable whether a pair (A, s) is derivable?

All but the last property formulate basic integrity conditions for natural deduction

systems.

We will consider the following type of formulas:

s, t,u, v : For := x | ⊥ | s → t | s ∧ t | s ∨ t (x : N)

Formulas of the kind x are called atomic formulas. Atomic formulas represent

atomic propositions whose meaning is left open. For the other kinds of formulas the

symbols used give away the intended meaning. Formally, the type For of formulas

is accommodated as an inductive type that has a value constructor for each kind of

formula (5 altogether).1 We will use the familiar notation

¬s := s → ⊥

to express negated formulas.

Exercise 28.1.1 (Formulas)

a) Show some of the constructor laws for the type of formulas.

b) Define an eliminator providing for structural induction on formulas.

c) Define an equality decider for formulas.

28.2 Intuitionistic ND System

The deduction rules of the intuitionistic ND system we will consider are given in

Figure 28.1 using several notational gadgets:

• Turnstile notation A ` s for pairs (A, s).

• Comma notation A, s for lists s :: A.

• Ruler notation for deduction rules. For instance,

A ` s → t A ` s
A ` t

describes a rule (known as modus ponens) that obtains a derivation of (A, t)
from two derivations of (A, s → t) and (A, s). We say that the rule has two

premises and one conclusion.

274

28.2 Intuitionistic ND System

A
s ∈ A
A ` s

E⊥
A ` ⊥
A ` s

I→
A, s ` t
A ` s → t

E→
A ` s → t A ` s

A ` t

I∧
A ` s A ` t
A ` s ∧ t

E∧
A ` s ∧ t A, s, t ` u

A ` u

I1∨
A ` s
A ` s ∨ t

I2∨
A ` t
A ` s ∨ t

E∨
A ` s ∨ t A, s ` u A, t ` u

A ` u

Figure 28.1: Deduction rules of the intuitinistic ND system

All rules in Figure 28.1 express proof rules you are familiar with from mathematical

reasoning and the logical reasoning you have seen in this text. In fact, the system

of rules in Figure 28.1 can derive exactly those pairs (A, s) that are known to be

intuitionistically deducible (given the formulas we consider). Since reasoning in

type theory is intuitionistic, Coq can prove a goal (A, s) if and only if the rules in

Figure 28.1 can derive the pair (A, s) (where atomic formulas are accommodated as

propositional variables in type theory). We will exploit this coincidence when we

construct derivations using the rules in Figure 28.1.

The rules in Figure 28.1 with a logical constant (i.e., ⊥, →, ∧, ∨) in the conclusion

are called introduction rules, and the rules with a logical constant in the leftmost

premise are called elimination rules. The first rule in Figure 28.1 is known as

assumption rule. Note that every rule but the assumption rule is an introduction or

an elimination rule for some logical constant. Also note that there is no introduction

rule for⊥, and that there are two introduction rules for∨. The elimination rule for⊥
is also known as explosion rule.

Note that no deduction rule contains more than one logical constant. This re-

sults in an important modularity property. If we want to omit a logical constant, for

instance ∧, we just omit all rules containing this constant. Note that every system

with ⊥ and→ can express negation. When trying to understand the structural prop-

erties of the system, it is usually a good idea to just consider ⊥ and→. Note that the

assumption rule cannot be omitted since it is the only rule not taking a derivation

as premise.

Here are common conveniences for the turnstile notation we will use in the fol-

1The use of abstract syntax is discussed more carefully in Chapter 20.

275

28 Propositional Deduction

lowing:

s ` u � [s] ` u
s, t ` u � [s, t] ` u
` u � [] ` u

Example 28.2.1 Below is a derivation for s ` ¬¬s depicted as a derivation tree:

s,¬s ` ¬s
A

s,¬s ` s
A

s,¬s ` ⊥
E→

s ` ¬¬s
I→

The labels A, E→, and I→ at the right of the lines are the names for the rules used

(assumption, elimination, and introduction).

Constructing ND derivations

Generations of students have been trained to construct ND derivations. In fact,

constructing derivations in the intuitionistic ND system is pleasant if one follows

the following recipe:

1. Construct a proof diagram as if the formulas were propositions.

2. Translate the proof diagram into a derivation (using the proof assistant).

Step 1 is the more difficult one, but you already well-trained as it comes to con-

structing intuitionistic proof diagrams. Once the proof assistant is used, construct-

ing derivations becomes fun. Using the proof assistant becomes possible once the

relevant ND system is realized as an inductive type.

The proof assistant comes with a decision procedure for intuitionistically prov-

able quantifier-free propositions. If in doubt whether a certain derivation can be

constructed in the intuitionistic ND system, the decision procedure of the proof

assistant can readily decide the question.

Exercise 28.2.2 Give derivation trees for A ` (s → s) and ¬¬⊥ ` ⊥.

Exercise 28.2.3 If you are eager to construct more derivations, Exercise 28.3.3 will

provide you with interesting examples.

28.3 Formalisation with Indexed Inductive Type Family

It turns out that propositional deduction systems like the one in Figure 28.2 can be

formalized elegantly and directly with inductive type definitions accommodating

deduction rules as value constructors of derivation types A ` s.

276

28.3 Formalisation with Indexed Inductive Type Family

s ∈ A → A ` s A

A ` ⊥ → A ` s E⊥

A, s ` t → A ` (s → t) I→

A ` (s → t) → A ` s → A ` t E→

A ` s → A ` t → A ` (s ∧ t) I∧

A ` (s ∧ t) → A, s, t ` u → A ` u E∧

A ` s → A ` (s ∨ t) I1∨

A ` t → A ` (s ∨ t) I2∨

A ` (s ∨ t) → A, s ` u → A, t ` u → A ` u E∨

Prefixes for A, s, t, u omitted, constructor names given at the right

Figure 28.2: Value constructors for derivation types A ` s

Let us explain this fundamental idea. We may see the deduction rules in Fig-

ure 28.1 as functions that given derivations for the pairs in the premises yield a

derivation for the pair in the conclusion. The introduction rule for conjunctions,

for instance, may be seen as a function that given derivations for (A, s) and (A, t)
yields a derivation for (A, s ∧ t). We now go one step further and formalize the

deduction rules as the value constructors of an inductive type constructor

` : L(For)→ For→ T

This way the values of an inductive type A ` s represent the derivations of the pair

(A, s) we can obtain with the deduction rules. To emphasize this point, we call the

types A ` s derivation types.

The value constructors for the derivation types A ` s of the intuitionistic ND

system appear in Figure 28.2. Note that the types of the constructors follow exactly

the patterns of the deduction rules in Figure 28.1.

When we look at the target types of the constructors in Figure 28.2, it becomes

clear that the argument s of the type constructor A ` s is not a parameter since

it is instantiated by the constructors for the introduction rules (I→, I∧, I1∨, I2∨). Such

nonparametric arguments of type constructors are called indices. In contrast, the

argument A of the type constructor A ` s is a parameter since it is not instanti-

ated in the target types of the constructors. More precisely, the argument A is a

nonuniform parameter of the type constructor A ` s since it is instantiated in some

argument types of some of the constructors (I→, E∧, and E∨).

We call inductive type definitions where the type constructor has indices indexed

inductive definitions. Indexed inductive definitions can also introduce indexed

277

28 Propositional Deduction

inductive predicates. In fact, we alternatively could introduce ` as an indexed

inductive predicate and this way demote derivations from computational objects to

proofs.

The suggestive BNF-style notation we have used so far to write inductive type

definitions does not generalize to indexed inductive type definitions. So we will

use an explicit format giving the type constructor together with the list of value

constructors. Often, the format used in Figure 28.2 will be convenient.

Fact 28.3.1 (Double negation)

1. ¬¬⊥ ` ⊥
2. s ` ¬¬s
3. (A ` ¬¬⊥) a (A ` ⊥)

Proof See Example 28.2.1 and the remarks there after. �

In §28.9 we will show that ¬¬s ` s is not derivable for some formulas s. In

particular, ¬¬s ` s is not derivable if s is a variable. However, as the above proof

shows, ¬¬s ` s is derivable for s = ⊥. This fact will play an important role.

Fact 28.3.2 (Cut) A ` s → A, s ` t → A ` t.

Proof We assume A ` s and A, s ` t and derive A ` t. By I→ we have A ` (s → t).
Thus A ` t by E→. �

The cut lemma gives us a function that given a derivation A ` s and a derivation

A, s ` t yields a derivation A ` t. Informally, the cut lemma says that once we have

derived s from A, we can use s like an assumption.

Exercise 28.3.3 Construct derivations as follows:

a) A ` ¬¬⊥ → ⊥
b) A ` s → ¬¬s
c) A ` (¬s → ¬¬⊥)→ ¬¬s
d) A ` (s → ¬¬t)→ ¬¬(s → t)
e) A ` ¬¬(s → t)→ ¬¬s → ¬¬t
f) A ` ¬¬¬s → ¬s
g) A ` ¬s → ¬¬¬s
Exercise 28.3.4 Establish the following functions:

a) A ` (s1 → s2 → t) → A ` s1 → A ` s2 → A ` t
b) ¬¬s ∈ A → A, s ` ⊥ → A ` ⊥
c) A, s,¬t ` ⊥ → A ` ¬¬(s → t)
Hint: (c) is routine if you first show A ` (¬t → ¬s)→ ¬¬(s → t).
Exercise 28.3.5 Prove the implicative facts (1)–(6) appearing in Exercise 28.12.5.

278

28.4 The Eliminator

28.4 The Eliminator

For more interesting proofs it will be necessary to do inductions on derivations.

As it was the case for non-indexed inductive types, we can define an eliminator

providing for the necessary inductions. The definition of the eliminator is shown in

Figure 28.3. While the definition of the eliminator is frighteningly long, it is regular

and modular: Every deduction rule (i.e., value constructor) is accounted for with a

separate type clause and a separate defining equation. To understand the definition

of the eliminator, it suffices that you pick one of the deduction rules and look at the

type clause and the defining equation for the respective value constructor.

The eliminator formalizes the idea of induction on derivations, which informally

is easy to master. With a proof assistant, the eliminator can be derived automatically

from the inductive type definition, and its application can be supported such that

the user is presented the proof obligations for the constructors once the induction

is initiated.

As it comes to the patterns (i.e., the left-hand sides) of the defining equations,

there is a new feature coming with indexed inductive types. Recall that patterns

must be linear, that is, no variable must occur twice, and no constituent must be

referred to by more than one variable. With parameters, this requirement was easily

satisfied by not furnishing constructors in patterns with their parameter arguments.

If the type constructor we do the case analysis on has indices, there is the additional

complication that the value constructors for this type constructor may instantiate

the index arguments. Thus there is a conflict with the preceding arguments of the

defined function providing abstract arguments for the indices. Again, there is a sim-

ple general solution: The conflicting preceding arguments of the defined function

are written with the underline symbol ’_’ and thus don’t introduce variables, and

the necessary instantiation of the function type is postponed until the instantiating

constructor is reached. In the definition shown in Figure 28.3, the critical argument

of E` that needs to be written as ’_’ in the defining equations is s in the head type

∀As. A ` s → pAs of E`.

28.5 Induction on Derivations

We are now ready to prove interesting properties of the intuitionistic ND system

using induction on derivations. We will carry out the inductions informally and

leave it to reader to check (with Coq) that the informal proofs translate into formal

proofs applying the eliminator E`.

We start by defining a function translating derivations A ` s into derivations

B ` s provided B contains every formula in A.

279

28 Propositional Deduction

E` : ∀pL(For)→For→T.

(∀As. s ∈ A→ pAs)→
(∀As. pA⊥ → pAs)→
(∀Ast. p(s :: A)t → pA(s → t))→
(∀Ast. pA(s → t)→ pAs → pAt)→
(∀Ast. pAs → pAt → pA(s ∧ t))→
(∀Astu. pA(s ∧ t)→ p(s :: t :: A)u→ pAu)→
(∀Ast. pAs → pA(s ∨ t))→
(∀Ast. pAt → pA(s ∨ t))→
(∀Astu. pA(s ∨ t)→ p(s :: A)u→ p(t :: A)u→ pAu)→
∀As. A ` s → pAs

E` pe1 . . . e9A _ (A sh) := e1Ash

(E⊥ sd) := e2As(E` . . . A⊥d)
(I→ std) := e3Ast(E` . . . (s :: A)td)

(E→ std1d2) := e4Ast(E` . . . A(s → t)d1)(E` . . . Asd2)

(I∧ std1d2) := e5Ast(E` . . . Asd1)(E` . . . Atd2)

(E∧ stud1d2) := e6Astu(E` . . . A(s ∧ t)d1)(E` . . . (s :: t :: A)ud2)

(I1∨ std) := e7Ast(E` . . . Asd)

(I2∨ std) := e8Ast(E` . . . Atd)

(E∨ stud1d2d3) := e9Astu(E` . . . A(s ∨ t)d1)

(E` . . . (s :: A)ud2)

(E` . . . (t :: A)ud3)

Figure 28.3: Eliminator for A ` s

280

28.5 Induction on Derivations

Fact 28.5.1 (Weakening) A ` s → A ⊆ B → B ` s.

Proof By induction on A ` s with B quantified. All proof obligations are straight-

forward. We consider the constructor I→. We have A ⊆ B and a derivation A, s ` t,
and we need a derivation B ` (s → t). Since A, s ⊆ B, s, the inductive hypothesis

gives us a derivation B, s ` t. Thus I→ gives us a derivation B ` (s → t). �

Next we show that premises of top level implications are interchangeable with

assumptions.

Fact 28.5.2 (Implication) A ` (s → t) a A, s ` t.

Proof Direction ⇐ holds by I→. For direction ⇒ we assume A ` (s → t) and obtain

A, s ` (s → t) with weakening. Now A and E→ yield A, s ` t. �

As a consequence, we can represent all assumptions of a derivation A ` s as

premises of implications at the right-hand side. To this purpose, we define a rever-

sion function A · s with [] · t := t and (s :: A) · t := A · (s → t). For instance, we have

[s1, s2, s3] · t = (s3 → s2 → s1 → t). To ease our notation, we will write ` s for [] ` s.

Fact 28.5.3 (Reversion) A ` sa ` A · s.

Proof By induction on A with s quantified using the implication lemma. �

A formula is ground if it contains no variable. We assume a recursively defined

predicate ground s for groundness.

Fact 28.5.4 (Ground Prover) ∀s. ground s → (` s)+ (` ¬s).

Proof By induction on s using weakening. �

Exercise 28.5.5 Prove ∀s. ground s → ` (s ∨¬s).

Exercise 28.5.6 Prove ∀As. ground s → A, s ` t → A,¬s ` t → A ` t.

Exercise 28.5.7 Prove the deduction laws for conjunctions and disjunctions:

a) A ` (s ∧ t) a A ` s × A ` t
b) A ` (s ∨ t) a ∀u. A, s ` u → A, t ` u → A ` u

Exercise 28.5.8 Construct derivations for the following judgments:

a) ` (t → ¬s)→ ¬(s ∧ t)
b) ` ¬¬s → ¬¬t → ¬¬(s ∧ t)
c) ` ¬s → ¬t → ¬(s ∨ t)
d) ` (¬t → ¬¬s)→ ¬¬(s ∨ t)
e) ` ¬¬s → ¬t → ¬(s → t)
f) ` (¬t → ¬s)→ ¬¬(s → t)

281

28 Propositional Deduction

Exercise 28.5.9 (Order-preserving reversion)

We define a reversion function A · s preserving the order of assumptions:

[] · s := s

(t :: A) · s := t → (A · s)

Prove A ` sa ` A · s.
Hint: Prove the generalization ∀B. B++A ` sa B ` A · s by induction on A.

28.6 Classical ND System

The classical ND system is obtained from the intuitionistic ND system by replacing

the explosion rule

A ` ⊥
A ` s

with the proof by contradiction rule:

A,¬s ` ⊥
A ` s

Formally, we accommodate the classical ND system with a separate derivation type

constructor
˙̀ : L(For)→ For→ T

with separate value constructors. Classical ND can prove the double negation law.

Fact 28.6.1 (Double Negation) A ˙̀(¬¬s → s).

Proof Straightforward using the contradiction rule. �

Fact 28.6.2 (Cut) A ˙̀ s → A, s ˙̀ t → A ˙̀ t.

Proof Same as for the intuitionistic system. �

Fact 28.6.3 (Weakening) A ˙̀ s → A ⊆ B → B ˙̀ s.

Proof By induction on A ˙̀ s with B quantified. Same proof as for intuitionistic ND,

except that now the proof obligation (∀B. A,¬s ⊆ B → B ˙̀ ⊥) → A ⊆ B → B ˙̀ s
for the contradiction rule must be checked. Straightforward with the contradiction

rule. �

282

28.6 Classical ND System

The classical system can prove the explosion rule. Thus every intuitionistic

derivation A ` s can be translated into a classical derivation A ˙̀ s.

Fact 28.6.4 (Explosion) A ˙̀ ⊥ → A ˙̀ s.

Proof By contradiction and weakening. �

Fact 28.6.5 (Translation) A ` s → A ˙̀ s.

Proof By induction on A ` s using the explosion lemma for the explosion rule. �

Fact 28.6.6 (Implication) A, s ˙̀ t a A ˙̀(s → t).

Proof Same proof as for the intuitionistic system. �

Fact 28.6.7 (Reversion) A ˙̀ sa ` A · s.

Proof Same proof as for the intuitionistic system. �

Because of the contradiction rule the classical system has the distinguished prop-

erty that every proof problem can be turned into a refutation problem.

Fact 28.6.8 (Refutation) A ˙̀ s a A,¬s ˙̀ ⊥.

Proof Direction ⇒ follows with weakening. Direction ⇐ follows with the contradic-

tion rule. �

While the refutation lemma tells us that classical ND can represent all infor-

mation in the context, the implication lemmas tell us that both intuitionistic and

classical ND can represent all information in the claim.

Exercise 28.6.9 Show (A ` s → t → u) ⇐⇒ (A ` t → s → u).

Exercise 28.6.10 Show ˙̀ s ∨¬s and ˙̀((s → t)→ s)→ s.

Exercise 28.6.11 Prove the deduction laws for conjunctions and disjunctions:

a) A ˙̀(s ∧ t) a A ˙̀ s × A ˙̀ t

b) A ˙̀(s ∨ t) a ∀u. A, s ˙̀ u → A, t ˙̀ u → A ˙̀ u

Exercise 28.6.12 Show that classical ND can express conjunction and disjunction

with implication and falsity. To do so, define a translation function fst not using

conjunction and prove ˙̀(s ∧ t → fst) and ˙̀(f st → s ∧ t). Do the same for disjunc-

tion.

283

28 Propositional Deduction

28.7 Glivenko’s Theorem

It turns out that a formula is classically provable if and only if its double negation

is intuitionistically provable. Thus a classical provability problem can be reduced

to an intuitionistic provability problem.

Lemma 28.7.1 A ˙̀ s → A ` ¬¬s.

Proof By induction on A ˙̀ s. This yields the following proof obligations (the obli-

gations for conjunctions and disjunctions are omitted).

• s ∈ A → A ` ¬¬s
• A,¬s ` ¬¬⊥ → A ` ¬¬s.
• A, s ` ¬¬t → A ` ¬¬(s → t)
• A ` ¬¬(s → t) → A ` ¬¬s → A ` ¬¬t
Using rule E→ of the intuitionistic system, the obligations can be strengthened to:

• ` s → ¬¬s
• ` (¬s → ¬¬⊥)→ ¬¬s
• ` (s → ¬¬t)→ ¬¬(s → t)
• ` ¬¬(s → t)→ ¬¬s → ¬¬t.
The proofs of the strengthened obligations are routine (Exercise 28.3.3). �

Theorem 28.7.2 (Glivenko) A ˙̀ s a A ` ¬¬s.

Proof Direction ⇒ follows with Lemma 28.7.1. Direction ⇐ follows with translation

(28.6.5) and double negation (28.6.1). �

Corollary 28.7.3 (Agreement on negated formulas) A ˙̀ ¬s a A ` ¬s.

Corollary 28.7.4 (Refutation agreement)

Intuitionistic and classical refutation agree: A ` ⊥a A ˙̀ ⊥.

Proof Glivenko’s theorem and the bottom law 28.3.1. �

Corollary 28.7.5 (Equiconsistency)

Intuitionistic ND is consistent if and only if classical ND is consistent:

((`⊥)→ ⊥) ⇐⇒ ((˙̀⊥)→ ⊥).

Proof Immediate consequence of Corollary 28.7.4. �

Exercise 28.7.6 We call a formula s stable if ¬¬s ` s. Prove the following:

a) ⊥ is stable.

b) If t is stable, then s → t is stable.

c) If s is stable, then A ˙̀ s a A ` s.

284

28.8 Intuitionistic Hilbert System

28.8 Intuitionistic Hilbert System

Hilbert systems are deduction systems predating ND systems. They are simpler

than ND systems in that they come without assumption management. While it is

virtually impossible for humans to write proofs in Hilbert systems, one can con-

struct compilers translating derivations in ND systems into derivations in Hilbert

systems.

To ease our presentation, we restrict ourselves in this section to formulas not

containing conjunctions and disjunctions. Since implications are the primary con-

nective in Hilbert systems and conjunctions and disjunctions appear as extensions,

adding conjunctions and disjunctions will be an easy exercise.

We consider an intuitionistic Hilbert system formalized with an inductive type

constructorH : For→ T and the derivation rules

HMP

H (s → t) H (s)
H (t)

HK H (s → t → s)

HS H ((s → t → u)→ (s → t)→ s → u)
H⊥ H (⊥ → s)

There are a single two-premise rule called modus ponens and three premise-free

rules called axiomatic rules. So all the action comes with modus ponens, which

puts implication into the primary position. Note that the single argument of the

type constructor H comes out as an index. We will prove that H derives exactly

the formulas intuitionistic ND derives in the empty context (that is,H sa `s). One

direction of the proof is straightforward.

Fact 28.8.1 (Soundness for ND) H (s)→ ([] ` s).

Proof By induction on the derivation of H (s). The modus ponens rule can be

simulated with E→, and the conclusions of the axiomatic rules are all easily derivable

in the intuitionistic system. �

The other direction of the equivalence proof (completeness for ND) is challenging

since it has to internalize the assumption management of the ND system. We will

see that this can be done with the axiomatic rules HK and HS. We remark that

the conclusions of HK and HS may be seen as types for the functions λxy.x and

λfgx.(fx)(gx).
The completeness proof uses the generalized Hilbert system ð shown in Fig-

ure 28.4 as an intermediate system. Similar to the ND system, the generalized

Hilbert system maintains a context, but this time no rule modifies the context. The

assumption rule HðA is the only rule reading the context. The context can thus be

accommodated as a uniform parameter of the type constructor ð.

285

28 Propositional Deduction

HðA
s ∈ A
A ð s

HðMP

A ð s → t A ð s
A ð t

HðK A ð s → t → s

HðS A ð (s → t → u)→ (s → t)→ s → u
Hð⊥ A ð ⊥ → s

Figure 28.4: Generalized Hilbert system ð : L(For)→ For→ T

Fact 28.8.2 (Agreement) H (s)←→ [] ð s.

Proof Both directions are straightforward inductions. �

It remains to construct a function translating ND derivations A ` s into Hilbert

derivations A ð s. For this we use a simulation function for every rule of the ND

system (Figure 28.1). The simulation functions are obvious for all rules of the ND

system but for I→.

Fact 28.8.3 (Basic simulation functions)

1. ∀As. s ∈ A→ A ð s.
2. ∀Ast. (A ð s → t)→ (A ð s)→ (A ð t).
3. ∀As. (A ð ⊥)→ (A ð s).

Proof Functions (1) and (2) are exactly HðA and HðMP. Function (3) can be obtained

with Hð⊥ and HðMP. �

The translation function for I→ needs several auxiliary functions.

Fact 28.8.4 (Operational versions of K and S)

1. ∀Asu. (A ð u)→ (A ð s → u).
2. ∀Astu. (A ð s → t → u)→ (A ð s → t)→ (A ð s → u).

Proof (1) follows with HðK and HðMP. (2) follows with HðS and HðMP. �

Fact 28.8.5 (Identity) ∀As. A ð s → s.

Proof Follows with the operational version of S (with s := s, t := s → s, and u := s)
using HðK for both premises. �

The next fact is the heart of the translation of ND derivations into Hilbert deriva-

tions. It is well-known in the literature under the name deduction theorem.

286

28.9 Heyting Interpretation

Fact 28.8.6 (Simulation function for I→) ∀Ast. (A, s ð t)→ (A ð s → t).

Proof By induction on the derivation A, s ð t (the context argument of ð is a uni-

form parameter).

• HðA . If s = t, the claim follows with Fact 28.8.5. If t ∈ A, the claim follows with HðA
and the operational version of K (Fact 28.8.4(1)). The case distinction is possible

since equality of formulas is decidable.

• HðMP. Follows with the operational version of S (Fact 28.8.4(2)) and the inductive

hypotheses.

• HðK , HðS , Hð⊥. The axiomatic cases follow with the operational version of K

(Fact 28.8.4(1)) and HðK , HðS , Hð⊥, rspectively. �

Fact 28.8.7 (Completeness for ND) (A ` s)→ (A ð s).

Proof By induction on the derivation of A ` s using Facts 28.8.3 and 28.8.6. �

Theorem 28.8.8 (Agreement) H (s)a `s.

Proof Follows with Facts 28.8.1, 28.8.7, and 28.8.2. �

Exercise 28.8.9 Show (A ð s)a (A ` s).

Exercise 28.8.10 Extend the development of this section to formulas with conjunc-

tions and disjunctions. Add axiomatic rules for the following formulas:

1. s → t → s ∧ t
2. s ∧ t → (s → t → u)→ u
3. s → s ∨ t
4. t → s ∨ t
5. s ∨ t → (s → u)→ (t → u)→ u
Note that the axiomatic rules for conjunctions and disjunctions formulate the

essence the ND rules for conjunctions and disjunctions.

Exercise 28.8.11 Define a classical Hilbert system and show its equivalence with

the classical ND system. Do this by replacing the axiomatic rule for ⊥ with an

axiomatic rule providing the double negation law ¬¬s → s.

28.9 Heyting Interpretation

The proof techniques we have seen so far do not suffice to show negative results

about the intuitionistic ND system. By a negative result we mean a proof saying that

287

28 Propositional Deduction

a certain derivation type is empty, for instance,

6` ⊥ 6` x 6` (¬¬x → x)

(we write 6` s for the proposition ([] ` s) → ⊥). Speaking informally, the above

propositions say that falsity, atomic formulas, and the double negation law for

atomic formulas are not intuitionistically derivable.

A powerful technique for showing negative results is evaluation of formulas into

a finite and ordered domain of so-called truth values. Things are arranged such that

all derivable formulas evaluate under all assignments to the largest truth value.2 A

formula can then be established as underivable by presenting an assignment under

which the formula evaluates to a different truth value.

Evaluation into the boolean domain 0 < 1 is well-known and suffices to disprove

` ⊥ and ` x. To disprove ` (¬¬x → x), we need to switch to a three-valued

domain 0 < 1 < 2. Using the order of the truth values, we interpret conjunction

as minimum and disjunction as maximum. Falsity is interpreted as the least truth

value (i.e., 0). Implication of truth values is interpreted as a comparison that in the

positive case yields the greatest truth value 2 and in the negative case yields the

second argument:

imp ab := if a ≤ b then 2 else b

Note that the given order-theoretic interpretations of the logical constants agree

with the familiar boolean interpretations for the two-valued domain 0 < 1. The

order-theoretic evaluation of formulas originated around 1930 with the work of

Arend Heyting.

We represent our domain of truth values 0 < 1 < 2 with an inductive type V and

the order of truth values with a boolean function a ≤ b. As a matter of convenience,

we write the numbers 0, 1, 2 for the value constructors of V. An assignment is a

function α : N→ V. We define evaluation of formulas Eαs as follows:

E : (N→ V)→ For→ V

Eαx := αx

Eα⊥ := 0

Eα(s → t) := if Eαs ≤ Eαt then 2 else Eαt
Eα(s ∧ t) := if Eαs ≤ Eαt then Eαs else Eαt
Eα(s ∨ t) := if Eαs ≤ Eαt then Eαt else Eαs

Note that conjunction is interpreted as minimum, disjunction is interpreted as max-

imum, and implications is interpreted as described above.

2An assignment assigns a truth value to every atomic formula.

288

28.9 Heyting Interpretation

We will show that all formulas derivable in the Hilbert systemH defined in §28.8

evaluate under all assignments to the largest truth value 2:

∀αs. H (s)→ Eαs = 2

For the proof we fix an assignment α and say that a formula s is true if Eαs = 2.

Next we verify that the conclusions of all axiomatic rules (see §28.8) are true, which

follows by case analysis on the truth values Eαs, Eαt, and Eαu. It remains to show

that modus ponens derives true formulas from true formulas, which again follows

by case analysis on the truth values Eαs and Eαt.

Fact 28.9.1 (Soundness) ∀αs. H (s)→ Eαs = 2.

Proof By induction on the derivationH (s). The cases for the axiomatic rules follow

by case analysis on the truth values Eαs, Eαt, and Eαu. The case for modus

ponens follows by the inductive hypotheses and case analysis on the truth values

Eαs and Eαt. �

Corollary 28.9.2 (Soundness) ` s → Eαs = 2.

Proof Fact 28.9.1 and Theorem 28.8.8. �

With our definitions we have the computational equalities

E(λ_.1)⊥ = 0

E(λ_.1)x = 1

E(λ_.1)(¬x) = 0

E(λ_.1)(¬¬x) = 2

E(λ_.1)(¬¬x → x) = 1

Thus, with soundness, we can now disprove ` ⊥, ` x, and ` (¬¬x → x).
A formula s is independent in ` if one can prove both (` s)→ ⊥ and

(` ¬s)→ ⊥.

Corollary 28.9.3 (Independence) x, ¬¬x → x and x ∨¬x are independent in `.

Proof Follows with Corollary 28.9.2 and the assignment λ_.1. �

Corollary 28.9.4 (Consistency) 6` ⊥ and 6˙̀ ⊥.

Proof Intuitionistic consistency follows with Corollary 28.9.2 and the assignment

λ_.1. Classic consistency follows with equiconsistency (Corollary 28.7.5). �

289

28 Propositional Deduction

Exercise 28.9.5 Show that x, ¬x, and (x → y)→ x)→ x are independent in `.

Exercise 28.9.6 Show ¬∀s. ((` (¬¬s → s))→ ⊥).

Exercise 28.9.7 Show that classical ND is not sound for the Heyting interpretation:

¬(∀αs. ˙̀s → Eαs = 2).

Exercise 28.9.8 Disprove ˙̀ x and ˙̀ ¬x.

Exercise 28.9.9 Disprove ˙̀(s ∨ t)a ˙̀s ∨A ˙̀ t.

Exercise 28.9.10 (Heyting interpretation for ND system) One can define evalua-

tion of contexts such that (A ` s)→ EαA ≤ Eαs and Eα[] = 2.

a) Define evaluation of contexts as specified.

b) Show EαA ≤ Eαs → A = []→ Eαs = 2.

c) Prove (A ` s)→ EαA ≤ Eαs by induction on A ` s.
Hint: Define evaluation of contexts such that contexts may be seen as conjunctions

of formulas.

Exercise 28.9.11 (Diamond Heyting interpretation) The formulas

¬x ∨¬¬x
(x → y)∨ (y → x)

evaluate in our Heyting interpretation to 2 but are unprovable intuitionistically.

They can be shown unprovable with a 4-valued diamond-ordered

⊥ < a,b < >

Heyting interpretation as follows:

• x ∧y is the infimum of x and y .

• x ∨y is the supremum of x and y .

• x → y is the maximal z such that x ∧ z ≤ y .

a) Verify (¬a∨¬¬a) = ⊥
b) Verify ((a→ b)∨ (b → a)) = ⊥.

c) ProveH (s)→ Eαs = >.

To know more, google Heyting algebras.

290

28.10 Boolean Interpretation

28.10 Boolean Interpretation

Boolean evaluation evaluates formulas into a two-valued domain. We choose the

type B of boolean values and fix the order f < t. Moreover, we will call functions

α : N→ B boolean assignments. Specializing the ideas we have seen for the three-

valued Heyting interpretation, we define boolean evaluation as follows:

E : (N→ B)→ For→ B

Eαx := αx

Eα⊥ := f

Eα(s → t) := if Eαs then Eαt else t

Eα(s ∧ t) := if Eαs then Eαt else f

Eα(s ∨ t) := if Eαs then t else Eαt

Note that the definition respects both the familiar unordered view of boolean eval-

uation and the ordered view coming with the Heyting interpretation. It is easy to

verify that Eα(¬¬s → s) = t for all assignments α and all formulas s.
We call a formula valid if it evaluates under all boolean assignments to t:

valid s := ∀α. Eαs = t

It turns out that classic derivability and boolean validity of formulas agree:

˙̀s a valid s

This is a very prominent equivalence connecting classic derivability with boolean

evaluation. The two directions of the equivalence are known as soundness (→) and

completeness (←). The soundness direction can be shown following the ideas we

have seen for the soundness of the Heyting interpretation.

Fact 28.10.1 (Soundness) ˙̀s → valid s.

Proof We exploit the equivalence of the classical ND system with the classical

Hilbert system and show Ḣ (s) → Eαs by induction on the derivation Ḣ (s) with α
fixed. It is easy to see that the consequences of all axiomatic rules evaluate posi-

tively under α, and that modus ponens preserves positive evaluation under α (since

Eαs = t → Eα(s → t) = Eαt). �

The computational analysis of the completeness direction leads to the notion of

a certifying boolean solver.

Definition 28.10.2

A certifying boolean solver for ˙̀ is a function ∀s. (Σα. Eαs = t)+ (s ˙̀ ⊥).

291

28 Propositional Deduction

Fact 28.10.3 (Certifying boolean solver for ˙̀)

Given a certifying boolean solver for ˙̀, we have the following:

1. ∀s. valid s a ˙̀s

2. ∀s. D(˙̀s)
3. ∀As. D(A ˙̀ s)

Proof (1) Direction ← is soundness, For direction → we apply the solver to ¬s. If

Eα(¬s) = t, we have Eαs = f, contradicting validity of s. If ¬s ˙̀ ⊥, we have ˙̀s by

the contradiction rule.

(2) We apply the solver to ¬s. If Eα(¬s) = t, we have Eαs = f, contradicting va-

lidity of s. Thus (˙̀s)→ ⊥ by soundness. If ¬s ˙̀ ⊥, we have ˙̀s by the contradiction

rule.

(3) follows with (2) and reversion (Fact 28.6.7). �

Exercise 28.10.4 We say that a formula is satisfiable if it evaluates to t for some

assignment: sat s := ∃α. Eαs = t. Show that a formula is valid if and only if its

negation is unsatisfiable: ∀s. valid s ←→ ¬sat(¬s).

Exercise 28.10.5 Give a consistency proof for classical ND that does not make use

of intuitionistic ND.

Exercise 28.10.6 Show that x and ¬x are independent in ˙̀.

Exercise 28.10.7 Show that ¬¬¬x is independent in ˙̀.

Exercise 28.10.8 Show (∀st. ˙̀(s ∨ t)→ (˙̀ s)+ (˙̀ t))→ ⊥.

28.11 Boolean Formula Decomposition

A basic idea coming with boolean evaluation is formula decomposition as described

by the decomposition table shown in Figure 28.5. One way to read the table is

saying that a boolean assignment satisfies the formula on the left if and only if the

assignment satisfies both or one of the possibly negated subformulas on the right.

Formally we have

Eα(s ∧ t) = t ←→ Eα(s) = t ∧ Eα(t) = t

Eα(¬(s ∧ t)) = t ←→ Eα(¬s) = t ∨ Eα(¬t) = t

Eα(s ∨ t) = t ←→ Eα(s) = t ∨Eα(t) = t

Eα(¬(s ∨ t)) = t ←→ Eα(¬s) = t ∧ Eα(¬t) = t

Eα(s → t) = t ←→ Eα(¬s) = t ∨Eα(t) = t

Eα(¬(s → t)) = t ←→ Eα(s) = t ∧ Eα(¬t) = t

292

28.11 Boolean Formula Decomposition

s ∧ t s and t

¬(s ∧ t) ¬s or ¬t
s ∨ t s or t

¬(s ∨ t) ¬s and ¬t
s → t ¬s or t

¬(s → t) s and ¬t

Figure 28.5: Boolean decomposition table

for every boolean assignment α. This reading becomes even clearer if you remember

that boolean evaluation satisfies the de Morgan laws

Eα(¬(s ∧ t)) = Eα(¬s ∨¬t)
Eα(¬(s ∨ t)) = Eα(¬s ∧¬t)

as well as the implication and double negation laws:

Eα(s → t) = Eα(¬s ∨ t)
Eα(¬¬s) = Eα(s)

The decomposition table gives us the idea of an algorithm that given a list of

formulas replaces decomposable formulas with smaller formulas. This way we ob-

tain from an initial list A one or several decomposed lists A1, . . . , An containing only

formulas of the forms

x, ¬x, ⊥, ¬⊥

such that an assignment satisfies the initial list A if and only if it satisfies one of the

decomposed lists A1, . . . , An. We may get more than one decomposed list since the

decomposition rules for¬(s∧t), s∨t and s → t are branching (see Figure 28.5). For a

decomposed list, we can either construct an assignment satisfying all its formulas,

or prove that no such satisfying assignment exists. Put together, this gives us a

certifying boolean solver

∀A. (Σα.∀s ∈ A. Eαs = t)+ (∀α.Σ s ∈ A. Eαs = f)

Important aspects of the certifying solver are captured by the refutation system

shown in Figure 28.6, which can be formalized as is with an inductive type family

ρ : L(For)→ T. The relationship with the solver becomes clear if one reads the

rules backwards. Besides the 6 decomposition rules, there is a rotation rule (first

rule) making it possible to bring in front the formula we want to decompose next.

There are also two terminal rules recognizing lists with obvious conflicts.

293

28 Propositional Deduction

ρ(A++[s])
ρ(s :: A)

⊥ ∈ A
ρ(A)

x ∈ A ¬x ∈ A
ρ(A)

ρ(s :: t :: A)

ρ(s ∧ t :: A)

ρ(¬s :: A) ρ(¬t :: A)

ρ(¬(s ∧ t) :: A)

ρ(s :: A) ρ(t :: A)

ρ(s ∨ t :: A)

ρ(¬s :: ¬t :: A)

ρ(¬(s ∨ t) :: A))

ρ(¬s :: A) ρ(t :: A) t ≠ ⊥
ρ(s → t :: A)

ρ(s :: ¬t :: A)

ρ(¬(s → t) :: A))

Figure 28.6: Basic refutation system

Fact 28.11.1 (Boolean soundness)

ρA→ ∀α. Σ s ∈ A. Eαs = f.

Proof By induction on the derivation of ρA. As a representative example, we con-

sider the proof obligation for the positive implication rule:

u ∈ (¬s :: A) → Eαu = f →
v ∈ (t :: A) → Eαv = f →
Σw ∈ ((s → t) :: A). Eαw = f

Since the type of formulas is discrete, it suffices to consider one of the following 3

cases: u ∈ A, v ∈ A, and u = ¬s and v = t. For u ∈ A we choose w = u, for v ∈ A
we choose w = v , and for u = ¬s and v = t we choose w = (s → t). �

A surprising but crucial fact is that the refutation system is sound for the ND

systems.

Fact 28.11.2 (ND soundness)

ρA→ (A ` ⊥).

Proof By induction on the derivation of ρA. As a representative example, we con-

sider the proof obligation for the positive implication rule:

(¬s :: A ` ⊥)→ (t :: A ` ⊥)→ (s → t :: A ` ⊥)

294

28.12 Certifying Solver

By the implication lemma (Fact 28.5.2). it suffices to show ` ¬¬s → ¬t → ¬(s → t),
which is routine. �

28.12 Certifying Solver

We now come to the formal construction of a certifying solver

∀A. (Σα.∀s ∈ A. Eαs = t)+ ρ(A)

First we need a pre-solver that escapes if it finds a decomposable formula (i.e.,

s ∧ t, ¬(s ∧ t), s ∨ t, ¬(s ∨ t), s → t where t ≠ ⊥, or ¬(s → t).

Lemma 28.12.1 (Pre-solver)

∀A. (Σα.∀s ∈ A. Eαs = t)+ ρ(A)+ (Σ s ∈ A. decomposable(s)).

Proof Scan through A and find either a a decomposable formula, or a conflict that

yields a refutation with a terminal rule, or neither, in which case the assignment

satisfying all variables x ∈ A satisfies A. �

To establish termination of decomposition, we choose a size function

σ : L(For)→ N

that doesn’t count top-level negations but otherwise counts the constructors in a

formula.

Lemma 28.12.2 (Rotator)

∀As. s ∈ A → ΣA′. A ⊆ s :: A′ ∧ (ρ(s :: A′)→ ρ(A)) ∧ σ(s :: A′) = σ(A).

Proof Rotate A such that s appears in front. The rotation rule doesn’t change the

size of the list. �

Theorem 28.12.3 (Certifying solver)

∀A. (Σα.∀s ∈ A. Eαs = t)+ ρ(A).

Proof By size recursion on A. We first apply the pre-solver to A. If the pre-solver

yields the claim, we are done. Otherwise, we use the rotator to move the decom-

posable formula in front. We now recurse following to the applying decomposition

rule. It is not difficult to verify that for every decomposition rule an assignment

satisfying all formulas in a premise list also satisfies all formulas in the conclusion

list. �

295

28 Propositional Deduction

Corollary 28.12.4 (Decidability and completeness of classical ND)

1. ∀s. valid s a ˙̀s

2. ∀s. D(˙̀s)
3. ∀As. D(A ˙̀ s)

Proof Theorem 28.12.3, Fact 28.10.3, and Corollary 28.7.4. �

Exercise 28.12.5 Verify the proof of ND soundness (Lemma 28.11.2) in detail. The

proof is modular in that there is a separate proof obligation for every rule of the

refutation systems (Figure 28.6). The obligation for the rotation rule

(A++[s] ` ⊥)→ (s :: A ` ⊥)

follows with weakening, and the obligations for the terminal rules are obvious.

The obligations for the decomposition rules follow with the implication lemma

(Fact 28.5.2) and the derivability of the ND judgments from Exercise 28.5.8.

28.13 Cumulative Refutation System

Refutation systems, better known as tableaux systems in the literature, exist in many

variations. They are the classical version of Gentzen systems, which also exist for in-

tuitionistic provability. See Troelstra’s and Schwichtenberg’s textbook [25] to know

more.

Figure 28.7 shows a refutation system modifying our basic refutation system in

two respects:

• The formulas to be decomposed can be at any position of the list and are not

deleted when they are decomposed. Hence no rotation rule is needed.

• The terminal clash rule is generalized from clashing variables (x and ¬x) to

clashing formulas (s and ¬s).
We speak of the cumulative refutation system. When realized with an inductive

type family, the argument A of the type constructor γ comes out as a non-uniform

parameter.

Fact 28.13.1 (Boolean soundness)

γ(A)→ ∃s ∈ A. Eαs = f.

Proof By induction on the derivation γ(A). Similar to the proof of Fact 28.11.1. �

Fact 28.13.2 (Weakening)

γ(A)→ A ⊆ B → γ(B).

Proof By induction on γ(A) with B quantified. �

296

28.13 Cumulative Refutation System

⊥ ∈ A
γ(A)

s ∈ A ¬s ∈ A
γ(A)

(s ∧ t) ∈ A γ(s :: t :: A)

γ(A)

¬(s ∧ t) ∈ A γ(¬s :: A) γ(¬t :: A)

γ(A)

(s ∨ t) ∈ A γ(s :: A) γ(t :: A)

γ(A)

¬(s ∨ t) ∈ A γ(¬s :: ¬t :: A)

γ(A)

(s → t) ∈ A γ(¬s :: A) γ(t :: A)

γ(A)

¬(s → t) ∈ A γ(s :: ¬t :: A)

γ(A)

Figure 28.7: Cumulative refutation system

Fact 28.13.3 (Completeness)

ρ(A)→ γ(A).

Proof Straightforward using weakening. �

Fact 28.13.4 (Agreement)

ρ(A) a γ(A).

Proof Completeness, Theorem 28.12.3, and Boolean soundness. �

The rules of the cumulative refutation system yield a method for refuting formu-

las working well with pen and paper. We demonstrate the method at the example

of the unsatisfiable formula ¬(((s → t)→ s)→ s).

¬(((s → t)→ s)→ s) negated implication

(s → t)→ s positive implication

¬s
1 ¬(s → t) negative implication

s clash with ¬s
¬t

2 s clash with ¬s

297

28 Propositional Deduction

Exercise 28.13.5 Refute the negations of the following formulas using the rules of

the cumulative refutation system. See the example preceding this exercise.

a) s ∨¬s
b) s → ¬¬s
c) ` ¬¬s → ¬t → ¬(s → t)
d) ` (¬t → ¬s)→ ¬¬(s → t)

e) ` (t → ¬s)→ ¬(s ∧ t)
f) ` ¬¬s → ¬¬t → ¬¬(s ∧ t)
g) ` ¬s → ¬t → ¬(s ∨ t)
h) ` (¬t → ¬¬s)→ ¬¬(s ∨ t)

Exercise 28.13.6 (Saturated lists) A list A is saturated if the decomposition rules

of the cumulative refutation system do not add new formulas:

1. If (s ∧ t) ∈ A, then s ∈ A and t ∈ A.

2. If ¬(s ∧ t) ∈ A, then ¬s ∈ A or ¬t ∈ A.

3. If (s ∨ t) ∈ A, then s ∈ A or t ∈ A.

4. If ¬(s ∨ t) ∈ A, then ¬s ∈ A and ¬t ∈ A.

5. If (s → t) ∈ A, then ¬s ∈ A or t ∈ A.

6. If ¬(s → t) ∈ A, then s ∈ A and ¬t ∈ A.

Prove that an assignment α satisfies a saturated list A not containing ⊥ if it satisfies

all atomic formulas (x and ¬x) in A.

Hint: Prove

∀s. (s ∈ A→ Eαs = t)∧ (¬s ∈ A→ Eα(¬s) = t)

by induction on s.

28.14 Substitution

In the deduction systems we consider in this chapter, atomic formulas act as vari-

ables for formulas. We will now show that derivability of formulas is preserved if

one instantiates atomic formulas. To ease our language, we call atomic formulas

propositional variables in this section.

A substitution is a function θ : N → For mapping every number to a formula.

Recall that propositional variables are represented as numbers. We define applica-

tion of substitutions to formulas and lists of formulas such that every variable is

298

28.15 Entailment Relations

replaced by the term provided by the substitution:

θ·x := θx

θ·⊥ := ⊥
θ·(s → t) := θ·s → θ·t
θ·(s ∧ t) := θ·s ∧ θ·t
θ·(s ∨ t) := θ·s ∨ θ·t

θ·[] := []

θ·(s :: A) := θ·s :: θ·A

We will write θs and θA for θ·s and θ·A.

We show that intuitionistic and classical ND provability are preserved under ap-

plication of substitutions. This says that atomic formulas may serve as variables

for formulas.

Fact 28.14.1 s ∈ A→ θs ∈ θA.

Proof By induction on A. �

Fact 28.14.2 (Substitutivity) A ` s → θA ` θs and A ˙̀ s → θA ˙̀ θs.

Proof By induction on A ` s and A ˙̀ s using Fact 28.14.1 for the assumption rule.�

Exercise 28.14.3 Prove that substitution preserves derivability in the intuitionistic

Hilbert system H . Note that the proof obligation for the axiomatic rules all follow

with the same technique. Now use the equivalence with the ND system and Glivenko

to show substitutivity for the other three systems.

28.15 Entailment Relations

An entailment relation is a predicate3

ð: L(For)→ For→ P

satisfying the properties listed in Figure 28.8. Note that the first five requirements

don’t make any assumptions on formulas; they are called structural requirements.

Each of the remaining requirements concerns a particular form of formulas: Vari-

ables, falsity, implication, conjunction, and disjunction.

3We are reusing the turnstile ð previously used for Hilbert systems.

299

28 Propositional Deduction

1. Assumption: s ∈ A→ A ð s.
2. Cut: A ð s → A, s ð t → A ð t.
3. Weakening: A ð s → A ⊆ B → B ð s.
4. Consistency: ∃s. 6ð s.
5. Substitutivity: A ð s → θA ð θs.
6. Explosion: A ð ⊥ → A ð s.
7. Implication: A ð (s → t) ←→ A, s ð t.
8. Conjunction: A ð (s ∧ t) ←→ A ð s ∧ A ð t.
9. Disjunction: A ð (s ∨ t) ←→ ∀u. A, s ð u → A, t ð u → A ð u.

Figure 28.8: Requirements for entailment relations

Fact 28.15.1 Intuitionistic provability (A ` s) and classical provability (A ˙̀ s) are

entailment relations.

Proof Follows with the results shown so far. �

It turns out that every entailment relation is sandwiched between intuitionistic

provability at the bottom and classic provability at the top. Let ð be an entailment

relation in the following.

Fact 28.15.2 (Modus Ponens) A ð (s → t) → A ð s → A ð t.

Proof By implication and cut. �

Fact 28.15.3 (Least entailment relation)

Intuitionistic provability is a least entailment relation: A ` s → A ð s.

Proof By induction on A ` s using modus ponens. �

Fact 28.15.4 ð s → ð ¬s → ⊥.

Proof Let ð s and ð ¬s. By Fact 28.15.2 we have ð ⊥. By consistency and explosion

we obtain a contradiction. �

Fact 28.15.5 (Reversion) A ð s ←→ ð A · s.

Proof By induction on A using implication. �

300

28.15 Entailment Relations

To show that classic provability is a greatest entailment relation we shall use

boolean entailment:

E : (N→ B)→ L(For)→ B

Eα([]) := t

Eα(s :: A) := if Eαs then EαA else f

A î̇ s := ∀α. if EαA then Eαs = t else >

We first show that bool entailment A î̇ s is in fact an entailment relation.

Lemma 28.15.6

Eα(θs) = E(λn.Eα(θn))s holds for boolean evaluation.

Fact 28.15.7 A î̇ s → θA î̇θs.

Proof By induction on A using Lemma 28.15.6. �

Fact 28.15.8 Boolean entailment A î̇ s is an entailment relation.

Proof Substitutivity is established by Fact 28.15.7. The other requirements follow

with boolean case analysis. �

We now come to the key lemma for showing that abstract entailment implies

boolean entailment. The lemma was conceived by Tobias Tebbi in 2015. We define a

conversion function that given a boolean assignment α : N→ B yields a substitution

as follows: α̂n := if αn then ¬⊥ else ⊥.

Lemma 28.15.9 (Tebbi) if Eαs then ð α̂s else ð ¬α̂s.

Proof Induction on s using Fact 28.15.2 and assumption, weakening, explosion, and

implication. �

Note that we have formulated the lemma with a conditional. While this style of

formulation is uncommon in mathematics, it is compact and convenient in a type

theory with computational equality.

Lemma 28.15.10 ð s → î̇ s.

Proof Let ð s. We assume Eαs = f and derive a contradiction. By Tebbi’s Lemma

we have ð ¬α̂s. By substitutivity we obtain ð α̂s from the primary assumption.

Contradiction by Fact 28.15.4. �

301

28 Propositional Deduction

Fact 28.15.11 (Greatest entailment relation)

Boolean entailment is a greatest entailment relation: A ð s → A î̇ s.

Proof Follows with reversion (Facts 28.15.5 and 28.15.8) and Lemma 28.15.10. �

Exercise 28.15.12 (Agreement)

Prove that boolean entailment agrees with classical provability: A î̇ sa A ˙̀ s.

Exercise 28.15.13 Let ð be an entailment relation. Prove the following:

a) ∀s. ground s → (ð s)+ (ð ¬s).
b) ∀s. ground s → dec(ð s).

Exercise 28.15.14 Tebbi’s lemma provides for a particularly elegant proof of

Lemma 28.15.10. Verify that Lemma 28.15.10 can also be obtained from the facts

(1) ` α̂s ∨ ` ¬α̂s and (2) î̇ α̂s → Eαs = t using Facts 28.15.3 and 28.15.4.

28.16 Notes

The study of natural deduction originated in the 1930’s with the work of Gerhard

Gentzen [12, 13] and Stanisław Jaśkowski [17]. The standard text on natural deduc-

tion and proof theory is Troelstra and Schwichtenberg [25].

Decidability of intuitionistic ND One can show that intuitionistic ND is decidable.

This can be done with a method devised by Gentzen in the 1930s. First one shows

that intuitionistic ND is equivalent to a proof system called sequent calculus that

has the subformula property. Then one shows that sequent calculus is decidable,

which is feasible since it has the subformula property.

Kripke structures and Heyting structures One can construct evaluation-based

entailment relations that coincide with intuitionistic ND using either finite Heyting

structures or finite Kripke structures. In contrast to classical ND, where a single two-

valued boolean structure invalidates all classically unprovable formulas, one needs

either infinitely many finite Heyting structures or infinitely many finite Kripke struc-

tures to invalidate all intuitionistically unprovable formulas. Heyting structures are

usually presented as Heyting algebras and were invented by Arend Heyting around

1930. Kripke structures were invented by Saul Kripke in the late 1950’s.

Intuitionistic Independence of logical constants In the classical systems, falsity

and implication can express conjunction and disjunction. On the other hand, one

can prove using Heyting structures that in intuitionistic systems the logical con-

stants are independent.

302

29 Boolean Satisfiability

We study satisfiability of boolean formulas by constructing and verifying a DNF

solver and a tableau system. The solver translates boolean formulas to equivalent

clausal DNFs and thereby decides satisfiability. The tableau system provides a proof

system for unsatisfiability and bridges the gap between natural deduction and satis-

fiability. Based on the tableau system one can prove completeness and decidability

of propositional natural deduction.

The development presented here works for any choice of boolean connectives.

The independence from particular connectives is obtained by representing conjunc-

tions and disjunctions with lists and negations with signs.

The (formal) proofs of the development are instructive in that they showcast

the interplay between evaluation of boolean expressions, nontrivial functions, and

indexed inductive type families (the tableau system).

29.1 Boolean Operations

We will work with the boolean operations conjunction, disjunction, and negation,

which we obtain as inductive functions B→ B→ B and B→ B:

t & b := b t | b := t ! t := f

f & b := f f | b := b ! f := t

With these definitions, boolean identities like

a & b = b & a a | b = b | a ! !b = b

have straightforward proofs by boolean case analysis and computational equality.

Recall that boolean conjunction and disjunction are commutative and associative.

An important notion for our development is disjunctive normal form (DNF). The

idea behind DNF is that conjunctions are below disjunctions, and that negations are

below conjunctions. Negations can be pushed downwards with the negation laws

!(a & b) = !a | !b !(a | b) = !a & !b ! !a = a

and conjunctions can be pushed below disjunctions with the distribution law

a & (b | c) = (a & b) | (a & b)

303

29 Boolean Satisfiability

Besides the defining equations, we will also make use of the negation law

b ∧ !b = f

to eliminate conjunctions.

There are the reflection laws

a & b = t ←→ a = t∧ b = t

a | b = t ←→ a = t∨ b = t

!a = t ←→ ¬(a = t)

which offer the possibility to replace boolean operations with logical connectives.

As it comes to proofs, this is usually not a good idea since the computation rules

coming with the boolean operations are lost. The exception is the reflection rule

for conjunctions, which offers the possibility to replace the argument terms of a

conjunction with t.

29.2 Boolean Formulas

Our main interest will be in boolean formulas, which are syntactic representations

of boolean terms. We will consider the boolean formulas

s, t,u : For ::= x | ⊥ | s → t | s ∧ t | s ∨ t (x : N)

realized with an inductive data type For representing each syntactic form with a

value constructor. Variables x are represented as numbers. We will refer to formu-

las also as boolean expressions.

Our development would work with any choice of boolean connectives for formu-

las. We have made the unusual design decision to have boolean implication as an

explicit connective. On the other hand, we have omitted truth > and negation ¬,

which we accommodate at the meta level with the notations

> := ⊥ → ⊥ ¬s := s → ⊥

Given an assignment α : N → B, we can evaluate every formula to a boolean

value. We formalize evaluation of formulas with the evaluation function shown

in Figure 29.1. Note that every function Eα translates boolean formulas (object

level) to boolean terms (meta level). Also note that implications are expressed with

negation and disjunction.

We define the notation

α î s := Eαs = t

304

29.2 Boolean Formulas

Eαx := αx

Eα⊥ := f

Eα(s → t) := !Eαs | Eαt
Eα(s ∧ t) := Eαs & Eαt
Eα(s ∨ t) := Eαs | Eαt

Figure 29.1: Definition of the evaluation function E : (N→ B)→ For→ B

and say that α satisfies s, or that α solves s, or that α is a solution of s. We say

that a formula s is satisfiable and write sat s if s has a solution. Finally, we say that

two formulas are equivalent if they have the same solutions.

As it comes to proofs, it will be important to keep in mind that the notation α î s
abbreviates the boolean equation Eαs = t. Reasoning with boolean equations will

be the main workhorse in our proofs.

Exercise 29.2.1 Prove that s → t and ¬s ∨ t are equivalent.

Exercise 29.2.2 Convince yourself that the predicate α î s is decidable.

Exercise 29.2.3 Verify the following reflection laws for formulas:

α î (s ∧ t) ←→ α î s ∧α î t
α î (s ∨ t) ←→ α î s ∨α î t

α î ¬s ←→ ¬(α î s)

Exercise 29.2.4 (Compiler to implicative fragment) Write and verify a compiler

For → For translating formulas into equivalent formulas not containing conjunc-

tions and disjunctions.

Exercise 29.2.5 (Equation compiler) Write and verify a compiler

γ : L(For× For)→ For

translating lists of equations into equivalent formulas:

∀α. α î γA ←→ ∀(s, t) ∈ A. Eαs = Eαt

Exercise 29.2.6 (Valid formulas) We say that a formula is valid if it is satisfied by

all assignments: val s := ∀α. α î s. Verify the following reductions.

a) s is valid iff ¬s is unsatisfiable: ∀s. val s ←→ ¬sat(¬s).

305

29 Boolean Satisfiability

b) ∀s. stable(sat s)→ (sat s ←→ ¬val(¬s)).

Exercise 29.2.7 Write an evaluator f : (N → B) → For → P such that fαs ←→ α î s
and fα(s ∨ t) ≈ fαs ∨ fαt for all formulas s, t.
Hint: Recall the reflection laws from §29.1.

29.3 Clausal DNFs

We are working towards a decider for satisfiability of boolean formulas. The decider

will compute a DNF (disjunctive normal form) for the given formula and exploit

that from the DNF it is clear whether the formula is decidable. Informally, a DNF

is either the formula ⊥ or a disjunction s1 ∨ · · · ∨ sn of solved formulas si, where

a solved formula is a conjunction of variables and negated variables such that no

variable appears both negated and unnegated. One can show that every formula is

equivalent to a DNF. Since every solved formula is satisfiable, a DNF is satisfiable if

and only if it is different from ⊥.

There may be many different DNFs for satisfiable formulas. For instance, the

DNFs x∨¬x and y∨¬y are equivalent since they are satisfied by every assignment.

Formulas by themselves are not a good data structure for computing DNFs of

formulas. We will work with lists of signed formulas we call clauses:

S, T : SFor ::= s+ | s− signed formula

C,D : Cla := L(SFor) clause

Clauses represent conjunctions. We define evaluation of signed formulas and

clauses as follows:

Eα(s+) := Eαs Eα[] := t

Eα(s−) := !Eαs Eα(S :: C) := EαS & EαC

Note that the empty clause represents the boolean t. We also consider lists of

clauses

∆ : L(Cla)

and interpret them disjunctively:

Eα[] := f

Eα(C :: ∆) := EαC | Eα∆

Satisfaction of signed formulas, clauses, and lists of clauses is defined analogously

to formulas, and so are the notations α î S, α î C , α î ∆, and sat C . Since

306

29.4 DNF Solver

formulas, signed formulas, clauses, and lists of clauses all come with the notion

of satisfying assignments, we can speak about equivalence between these objects

although they belong to different types. For instance, s, s+, [s+], and [[s+]], are all

equivalent since they are satisfied by the same assignments.

A solved clause is a clause consisting of signed variables (i.e., x+ and x−) such

that no variable appears positively and negatively. Note that a solved clause C is

satisfied by every assignment that maps the positive variables in C to t and the

negative variables in C to f.

Fact 29.3.1 Solved clauses are satisfiable. More specifically, a solved clause C is

satisfied by the assignment λx. [x+ ∈ C\.

A clausal DNF is a list of solved clauses.

Corollary 29.3.2 A clausal DNF is satisfiable if and only if it is nonempty.

Exercise 29.3.3 Prove Eα(C ++D) = EαC & EαD and Eα(∆++∆′) = Eα∆ | Eα∆′.

Exercise 29.3.4 Write a function that maps lists of clauses to equivalent formulas.

Exercise 29.3.5 Our formal proof of Fact 29.3.1 is unexpectedly tedious in that it

requires two inductive lemmas:

1. α î C ←→ ∀S ∈ C. α î S.

2. solved C → S ∈ C → ∃x. (S = x+ ∧ x− ∉ C)∨ (S = x− ∧ x+ ∉ C).
The formal development captures solved clauses with an inductive predicate. This

is convenient for most purposes but doesn’t provide for a convenient proof of

Fact 29.3.1. Can you do better?

29.4 DNF Solver

We would like to construct a function computing clausal DNFs for formulas. For-

mally, we specify the function with the informative type

∀s Σ∆. DNF∆∧ s ≡ ∆

where

s ≡ ∆ := ∀α. α î s ←→ α î ∆
DNF∆ := ∀C ∈ ∆. solvedC

To define the function, we will generalize the type to

∀CD. solvedC → Σ∆. DNF∆∧ C ++D ≡ ∆

307

29 Boolean Satisfiability

dnf C [] = [C]

dnf C (x+ :: D) = if [x− ∈ C\ then [] else dnf (x+ :: C) D

dnf C (x− :: D) = if [x+ ∈ C\ then [] else dnf (x− :: C) D

dnf C (⊥+ :: D) = []

dnf C (⊥− :: D) = dnf C D

dnf C ((s → t)+ :: D) = dnf C (s− :: D)++dnf C (t+ :: D)

dnf C ((s → t)− :: D) = dnf C (s+ :: t− :: D)

dnf C ((s ∧ t)+ :: D) = dnf C (s+ :: t+ :: D)

dnf C ((s ∧ t)− :: D) = dnf C (s− :: D)++dnf C (t− :: D)

dnf C ((s ∨ t)+ :: D) = dnf C (s+ :: D)++dnf C (t+ :: D)

dnf C ((s ∨ t)− :: D) = dnf C (s− :: t− :: D)

Figure 29.2: Specification of a procedure dnf : Cla→ Cla→ L(Cla)

where C ≡ ∆ := ∀α. α î C ←→ α î ∆. To compute a clausal DNF of a formula s,
we will apply the function with C = [] and D = [s+].

We base the definition of the function on a purely computational procedure

dnf : Cla→ Cla→ L(Cla)

specified with equations in Figure 29.2. We refer to the first argument C of the

procedure as accumulator, and to the second argument as agenda. The agenda

holds the signed formulas still to be processed, and the accumulator collects signed

variables taken from the agenda. The procedure processes the formulas on the

agenda one by one decreasing the size of the agenda with every recursion step. We

define the size of clauses and formulas as follows:

σ[] := 0 σx := 1

σ(s+ :: C) := σs + σC σ⊥ := 1

σ(s− :: C) := σs + σC σ(s ◦ t) := 1+ σs + σt

Note that the equations specifying the procedure in Figure 29.2 are clear from the

correctness properties stated for the procedure, the design that the first formula on

the agenda controls the recursion, and the boolean identities given in §29.1.

Lemma 29.4.1 ∀CD. solvedC → Σ∆. DNF∆∧ C ++D ≡ ∆.

Proof By size induction on σD with C quantified in the inductive hypothesis aug-

menting the design of the procedure dnf with the necessary proofs. Each of the 13

cases is straightforward. �

308

29.5 DNF Recursion

Theorem 29.4.2 (DNF solver) ∀C Σ∆. DNF∆∧ C ≡ ∆.

Proof Immediate from Lemma 29.4.1. �

Corollary 29.4.3 ∀s Σ∆. DNF∆∧ s ≡ ∆.

Corollary 29.4.4 There is a solver ∀C. (Σα. α î C)+¬sat C .

Corollary 29.4.5 There is a solver ∀s. (Σα. α î s)+¬sat s.

Corollary 29.4.6 Satisfiability of clauses and formulas is decidable.

Exercise 29.4.7 Convince yourself that the predicate S ∈ C is decidable.

Exercise 29.4.8 Rewrite the equations specifying the DNF procedure so that you

obtain a boolean decider D : Cla→ Cla→ B for satisfiability of clauses. Give an in-

formative type subsuming the procedure and specifying the correctness properties

for a boolean decider for satisfiability of clauses.

Exercise 29.4.9 Recall the definition of valid formulas from Exercise 29.2.6. Prove

the following:

a) Validity of formulas is decidable.

b) A formula is satisfiable if and only if its negation is not valid.

c) ∀s. val s + (Σα. Eαs = f).

Exercise 29.4.10 If you are already familiar with well-founded recursion in compu-

tational type theory (Chapter 26), define a function Cla → Cla → L(Cla) satisfying

the equations specifying the procedure dnf in Figure 29.2.

29.5 DNF Recursion

From the equations for the DNF procedure (Figure 29.2) and the construction of the

basic DNF solver (Lemma 29.4.1) one can abstract out the recursion scheme shown

in Figure 29.3. We refer to this recursion scheme as DNF recursion. DNF recursion

has one clause for every equation of the DNF procedure in Figure 29.2 where the

recursive calls appear as inductive hypotheses. DNF recursion simplifies the proof

of Lemma 29.4.1. However, DNF recursion can also be used for other constructions

(our main example is a completeness lemma (29.6.5) for a tableau system) given

that it is formulated with an abstract type function p. Note that DNF recursion

encapsulates the use of size recursion on the agenda, the set-up and justification

of the case analysis, and the propagation of the precondition solvedC . We remark

that all clauses can be equipped with the precondition, but for our applications the

precondition is only needed in the clause for the empty agenda.

309

29 Boolean Satisfiability

∀pCla→Cla→T

(∀C. solvedC → pC[])→
(∀CD. x−∈ C → pC(x+ :: D))→
(∀CD. x−∉ C → p(x+ :: C)D → pC(x+ :: D))→
(∀CD. x+∈ C → pC(x− :: D))→
(∀CD. x+∉ C → p(x− :: C)D → pC(x− :: D))→
(∀CD. pC(⊥+ :: D))→
(∀CD. pCD → pC(⊥− :: D))→
(∀CD. pC(s− :: D)→ pC(t+ :: D)→ pC((s → t)+ :: D))→
(∀CD. pC(s+ :: t− :: D)→ pC((s → t)− :: D))→
(∀CD. pC(s+ :: t+ :: D)→ pC((s ∧ t)+ :: D))→
(∀CD. pC(s− :: D)→ pC(t− :: D)→ pC((s ∧ t)− :: D))→
(∀CD. pC(s+ :: D)→ pC(t+ :: D)→ pC((s ∨ t)+ :: D))→
(∀CD. pC(s− :: t− :: D)→ pC((s ∨ t)− :: D))→
∀CD. solvedC → pCD

Figure 29.3: DNF recursion scheme

Lemma 29.5.1 (DNF recursion)

The DNF recursion scheme shown in Figure 29.3 is inhabited.

Proof By size recursion on the σD with C quantified using the decidability of mem-

bership in clauses. Straightforward. �

DNF recursion provides the abstraction level one would use in an informal cor-

rectness proof of the DNF procedure. In particular, DNF recursion separates the

termination argument from the partial correctness argument. We remark that DNF

recursion generalizes the functional induction scheme one would derive for a DNF

procedure.

Exercise 29.5.2 Use DNF recursion to construct a certifying boolean solver for

clauses: ∀C. (Σα. α î C)+ (¬sat(C)).

310

29.6 Tableau Refutations

tab(S :: C ++D)
tab(C ++S :: D) tab(x+ :: x− :: C) tab(⊥+ :: C)

tab(s− :: C) tab(t+ :: C)

tab((s → t)+ :: C)

tab(s+ :: t− :: C)

tab((s → t)− :: C)

tab(s+ :: t+ :: C)

tab((s ∧ t)+ :: C)

tab(s− :: C) tab(t− :: C)

tab((s ∧ t)− :: C)

tab(s+ :: C) tab(t+ :: C)

tab((s ∨ t)+ :: C)

tab(s− :: t− :: C)

tab((s ∨ t)− :: C)

Figure 29.4: Inductive type family tab : Cla→ T

29.6 Tableau Refutations

Figure 29.4 defines an indexed inductive type family tab : Cla→ T for which we will

prove

tab(C) a ¬sat(C)

We call the inhabitants of a type tab(C) tableau refutations for C . The above equiv-

alence says that for every clause unsatisfiability proofs are inter-translatable with

tableau refutations. Tableau refutations may be seen as explicit syntactic unsatis-

fiability proofs for clauses. Since we have ¬sat s a ¬sat [s+], tableau refutations

may also serve as refutations for formulas.

We speak of tableau refutations since the type family tab formalizes a proof

system that belongs to the family of tableau systems. We call the value construc-

tors for the type constructor tab tableau rules and refer to type constructor tab as

tableau system.

We may see the tableau rules in Figure 29.4 as a simplification of the equations

specifying the DNF procedure in Figure 29.2. Because termination is no longer an

issue, the accumulator argument is not needed anymore. Instead we have a tableau

rule (the first rule) that rearranges the agenda.

We refer to the first rule of the tableau system as move rule and to the second

rule as clash rule. Note the use of list concatenation in the move rule.

The tableau rules are best understood in backwards fashion (from the conclusion

to the premises). All but the first rule are decomposition rules simplifying the

clause to be derived. The second and third rule derive clauses that are obviously

unsatisfiable. The move rule is needed so that non-variable formulas can be moved

311

29 Boolean Satisfiability

to the front of a clause as it is required by most of the other rules.

Fact 29.6.1 (Soundness)

Tableau refutable clauses are unsatisfiable: tab(C)→ ¬sat(C).

Proof Follows by induction on tab. �

For the completeness lemma we need a few lemmas providing derived rules for

the tableau system.

Fact 29.6.2 (Clash)

All clauses containing a conflicting pair of signed variables are tableau refutable:

x+ ∈ C → x− ∈ C → tab(C).

Proof Without loss of generality we have C = C1++x+ :: C2++x− :: C3. The primitive

clash rule gives us tab(x+ :: x− :: C1++C2++C3). Using the move rule twice we obtain

tab(C). �

Fact 29.6.3 (Weakening)

Adding formulas preserves tableau refutability:

∀CS. tab(C)→ tab(S :: C).

Proof By induction on tab. �

The move rule is strong enough to reorder clauses freely.

Fact 29.6.4 (Move Rules) The following rules hold for tab:

tab(revD++C ++E)
tab(C ++D++E)

tab(D++C ++E)
tab(C ++D++E)

tab(C ++S :: D)

tab(S :: C ++D)

We refer to the last rule as inverse move rule.

Proof The first rule follows by induction on D. The second rule follows from the

first rule with C = [] and rev (revD) = D. The third rule follows from the second

rule with C = [S]. �

Lemma 29.6.5 (Completeness)

∀DC. solvedC → ¬sat (D++C)→ tab(D++C).

Proof By DNF recursion. The case for the empty agenda is contradictory since

solved clauses are satisfiable. The cases with conflicting signed variables follow

with the clash lemma. The cases with nonconflicting signed variables follow with

the inverse move rule. The case for ⊥− follows with the weakening lemma. �

312

29.7 Abstract Refutation Systems

Theorem 29.6.6

A clause is tableau refutable if and only if it is unsatisfiable:

tab(C) a ¬sat(C).

Proof Follows with Fact 29.6.1 and Lemma 29.6.5. �

Corollary 29.6.7 ∀C. tab(C)+ (tab(C)→ ⊥).

We remark that the DNF solver and the tableau system adapt to any choice of

boolean connectives. We just add or delete cases as needed. An extreme case would

be to not have variables. That one can choose the boolean connectives freely is due

to the use of clauses with signed formulas.

The tableau rules have the subformula property, that is, a derivation of a

clause C does only employ subformulas of formulas in C . That the tableau rules

satisfies the subformula property can be verified rule by rule.

Exercise 29.6.8 Prove tab(C ++S :: D++T :: E) ←→ tab(C ++T :: D++S :: E).

Exercise 29.6.9 Give an inductive type family deriving exactly the satisfiable

clauses. Start with an inductive family deriving exactly the solved clauses.

29.7 Abstract Refutation Systems

An unsigned clause is a list of formulas. We will now consider a tableau system for

unsigned clauses that comes close to the refutation system associated with natural

deduction. For the tableau system we will show decidability and agreement with un-

satisfiability. Based on the results for the tableau system one can prove decidability

and completeness of classical natural deduction (Chapter 28).

The switch to unsigned clauses requires negation and falsity, but as it comes to

the other connectives we are still free to choose what we want. Negation could be

accommodated as an additional connective, but formally we continue to represent

negation with implication and falsity.

We can turn a signed clause C into an unsigned clause by replacing positive

formulas s+ with s and negative formulas s− with negations ¬s. We can also turn

an unsigned clause into a signed clause by labeling every formula with the positive

sign. The two conversions do not change the boolean value of a clause for a given

assignment. Moreover, going from an unsigned clause to a signed clause and back

yields the initial clause. From the above it is clear that satisfiability of unsigned

clauses reduces to satisfiability of signed clauses and thus is decidable.

Formalizing the above ideas is straightforward. The letters A and B will range

over unsigned clauses. We define α î A and satisfiability of unsigned clauses analo-

gous to signed clauses. We use Ĉ to denote the unsigned version of a signed clause

and A+ to denote the signed version of an unsigned clause.

313

29 Boolean Satisfiability

ρ (s :: A++B)
ρ (A++ s :: B) ρ (x :: ¬x :: A) ρ (⊥ :: A)

ρ (¬s :: A) ρ (t :: A)

ρ ((s → t) :: A)

ρ (s :: ¬t :: A)

ρ (¬(s → t) :: A)

ρ (s :: t :: A)

ρ ((s ∧ t) :: A)

ρ (¬s :: A) ρ (¬t :: A)

ρ (¬(s ∧ t) :: A)

ρ (s :: A) ρ (t :: A)

ρ ((s ∨ t) :: A)

ρ (¬s :: ¬t :: A)

ρ (¬(s ∨ t) :: A)

Figure 29.5: Rules for abstract refutation systems ρ : L(For)→ P

Fact 29.7.1 EαĈ = EαC , EαA+ = EαA, and Â+ = A.

Fact 29.7.2 (Decidability) Satisfiability of unsigned clauses is decidable.

Proof Follows with Corollary 29.4.6 and EαA+ = EαA. �

We call a type family ρ on unsigned clauses an abstract refutation system if it

satisfies the rules in Figure 29.5. Note that the rules are obtained from the tableau

rules for signed clauses by replacing positive formulas s+ with s and negative for-

mulas s− with negations ¬s.

Lemma 29.7.3 Let ρ be a refutation system. Then tab C → ρĈ .

Proof Straightforward by induction on tab C . �

Fact 29.7.4 (Completeness)

Every refutation system derives all unsatisfiable unsigned clauses.

Proof Follows with Theorem 29.6.6 and Lemma 29.7.3. �

We call an abstract refutation system sound if it derives only unsatisfiable

clauses (that is, ∀A. ρA→ ¬satA).

Fact 29.7.5 A sound refutation system is decidable and derives exactly the unsatis-

fiable unsigned clauses.

Proof Facts 29.7.4 and 29.7.2. �

314

29.7 Abstract Refutation Systems

Theorem 29.7.6 The minimal refutation system inductively defined with the rules

for abstract refutation systems derives exactly the unsatisfiable unsigned clauses.

Proof Follows with Fact 29.7.4 and a soundness lemma similar to Fact 29.6.1. �

Exercise 29.7.7 (Certifying Solver) Construct a function ∀A. (Σα. α î A)+ tabA.

Exercise 29.7.8 Show that boolean entailment

A î̇ s := ∀α. α î A → α î s

is decidable.

Exercise 29.7.9 Let A ˙̀ s be the inductive type family for classical natural deduc-

tion. Prove that A ˙̀ s is decidable and agrees with boolean entailment. Hint: Exploit

refutation completeness and show that A ˙̀ ⊥ is a refutation system.

315

30 Semi-Decidability and
Markov’s Principle

Computability theory distinguishes between decidable and semi-decidable predi-

cates, where Post’s theorem says that a predicate is decidable if and only if both

the predicate and its complement are semi-decidable. Many important problems

are semi-decidable but not decidable. It turns out that semi-decidability has an el-

egant definition in type theory, and that Post’s theorem is equivalent to Markov’s

principle.

We will see many uses of witness operators and pairing functions.

30.1 Preliminaries

Recall boolean deciders f for predicates p:

dec pX→P fX→B := ∀x. px ←→ fx = t

We have two possibilities to express that a predicate p is decidable:1

• ex(decp) says that we know that there is a boolean decider for p.

• sig(decp) says that we have a concrete boolean decider for p.

Note that sig(decp) is stronger than ex(decp) since we have a function

∀p. sig(decp)→ ex(decp)

but not necessarily a function for the converse direction. When we informally say

that a predicate p is decidable we leave it to the context to determine whether

the computational interpretation sig(decp) or the propositional interpretation

ex(decp) is meant.

We will make frequent use of certifying deciders and their inter-translatability

with boolean deciders (Fact 11.1.1).

Fact 30.1.1 ∀pX→P. sig(decp)a ∀x. D(px).

1Note that we have the computational equalities ex(decp) = ∃f .decpf and sig(decp) = Σf .decpf .

317

30 Semi-Decidability and Markov’s Principle

For several results in this chapter, we will use an existential witness operator for

numbers (Chapter 25):

∀pN→P. sig(decp)→ exp → sigp

We also need arithmetic pairing functions (Chapter 7)

〈_, _〉 : N→ N→ N

π1 : N→ N

π2 : N→ N

satisfying π1〈x,y〉 = x and π2〈x,y〉 = y for all x,y .

We call functions N→ B tests and say that a test f is satisfiable if ∃n. fn = t :

tsatfN→B := ∃n. fn = t

Tests may be thought of as decidable predicates on numbers. Tests will play a

major role in our development of semi-decidability. The witness operator ensures

that test satisfiability is computational.

Fact 30.1.2 ∀fN→B. (∃n. fn = t)a (Σn. fn = t).

Recall the notion of a stable proposition:

stablePP := ¬¬P → P

Note that stable proposition satisfy a weak form of excluded middle providing for

proof by contradiction. We will often tacitly exploit that stability is extensional (i.e.

invariant under propositional equivalence).

Fact 30.1.3 (Extensionality) (P ←→ Q) → stableP → stableQ.

Markov’s principle says that satisfiability of tests is stable:

MP := ∀fN→B. stable(tsatf)

MP is a consequence of excluded middle that is weaker than excluded middle. It is

know that computational type theory does not prove MP.

Fact 30.1.4 (MP characterization)

MP holds if and only if satisfiability of decidable predicates on numbers is stable:

MP←→ ∀pN→P. ex(decp)→ stable(exp).

Proof Decidable predicates on numbers are like tests. We leave a detailed proof as

exercise. �

Exercise 30.1.5 Show that excluded middle implies MP.

Exercise 30.1.6 Prove MP←→ ∀fN→B. ¬(∀n. fn = f)→ tsatf .

Exercise 30.1.7 Give a function ∀fN→B. tsatf → Σn. fn = t.

Exercise 30.1.8 Prove MP a ∀fN→B. ¬¬tsatf → Σn. fn = t.

318

30.2 Boolean Semi-Deciders

30.2 Boolean Semi-Deciders

Boolean semi-deciders f for predicates p are defined as follows:

sdec pX→P fX→N→B := ∀x. px ←→ tsat(fx)

We offer two intuitions for semi-deciders. Let f be a semi-decider for p. This

means we have px ←→ ∃n. fxn = t for every x. The fuel intuition says that f
confirms px if and only if px holds and f is given enough fuel n. The proof

intuition says that the proof system f admits a proof n of px if and only if px
holds.

Fact 30.2.1 Decidable predicates are semi-decidable: sig(decp)→ sig(sdecp).

Proof Let f be a boolean decider p. Then λxn.fx is a semi-decider for p. �

It turns out that we can strengthen a witness operator for decidable predicates

on numbers to a witness operator for semi-decidable predicates on numbers using

arithmetic pairing of numbers.

Fact 30.2.2 (Witness operator) ∀pN→P. sig(sdecp)→ exp → sigp.

Proof Let f be a semi decider for a satisfiable predicate p. Then

λn. f(π1n)(π2n) = t

is a decidable and satisfiable predicate on numbers. Thus a witness operator for

numbers gives us an n such that f(π1n)(π2n) = t. We have p(π1n). �

Fact 30.2.3 (Semi-decidable equality)

Semi-decidable equality predicates are decidable:

∀X. sig(sdec(eqX))→ sig(dec(eq)).

Proof Let fX→X→N→B satisfy ∀xyX . x = y ←→ ∃n. fxyn = t. Assume x,yX . With

an existential witness operator for numbers we obtain k such that fxxk = t. We

now check fxyk. If fxyk = t, we have x = y . If fxyk = f, we have x ≠ y . To see

this, assume fxyk = f and x = y . Then fxxk = f, which contradicts fxxk = t. �

Given the results of computability theory, no decider for tsat can be defined in

Coq’s type theory. We cannot expect a proof of this claim within Coq’s type theory.

On the other hand, there is a trivial semi-decider for tsat.

Fact 30.2.4 tsat is semi-decidable.

Proof λfn. fn is a semi-decider for tsat. �

319

30 Semi-Decidability and Markov’s Principle

It turns out that under MP all semi-decidable predicates are stable. In fact, this

property is also sufficient for MP since tsat is semi-decidable.

Fact 30.2.5 (MP characterization)

MP holds if and only if semi-decidable predicates are pointwise stable:

MP ←→ ∀XT∀pX→P. ex(sdecp)→ ∀x. stable(px).

Proof Direction ← holds since tsat is semi-decidable (Fact 30.2.4).

Direction →. Let f be a semi-decider for p. We show that px is stable. We have

px ←→ ∃n.fxn = t. Since ∃n.fxn = t is stable by MP, we have that px is stable.�

Exercise 30.2.6 (Projection) Let fX→N→N→B be a semi-decider for pX→N→P. Give a

semi-decider for λx.∃n.pxn.

Exercise 30.2.7 (Skolem function) Let RX→N→P be a total relation (i.e., ∀x∃y.Rxy)

and let fX→N→N→B be a semi-decider for R. Give a function gX→N such that

∀x. Rx(gx).

Exercise 30.2.8 Let pX→P be semi-decidable. Prove ∀x. px → ∀y. py + (y ≠ x).
Hint: The proof is similar to the proof of Fact 30.2.3. Using the witness operator one

obtains n such that fxn = t and then discriminates on fyn. In fact, Fact 30.2.3 is

a consequence of the above result.

30.3 Certifying Semi-Deciders

Recall that boolean deciders are inter-translatable with certifying deciders, and that

certifying deciders are technically convenient for many proofs. Following this de-

sign, we will now define semi-decisions and certifying semi-deciders. The idea for

semi-decisions is implicit in boolean semi-deciders, which yield for x a test such

that px holds if and only if the test is satisfiable. Following this idea, we define

semi-decision types S(P) as follows:

S : P→ T

S(P) := ΣfN→B. P ←→ tsatf

We may say that a semi-decision for P is a test that is satisfiable if and only if P
holds.

Fact 30.3.1 ∀PP. D(P)→ S(P).

Proof If P holds, we choose the always succeeding test, otherwise the always failing

test. �

320

30.3 Certifying Semi-Deciders

Fact 30.3.2 (Transport) ∀PPQP. (P ←→ Q)→ S(P)→ S(Q).

Fact 30.3.3 ∀PPQP. S(P)→ S(Q)→ S(P ∧Q).

Proof Let f be the test for P and g be the test for Q. Then λn. f(π1n)&g(π2n) is

a test for P ∧Q. Note the use of the pairing functions π1 and π2. �

Fact 30.3.4 ∀PPQP. S(P)→ S(Q)→ S(P ∨Q).

Proof Let f be the test for P and g be the test for Q. Then λn.fn | gn is a test for

P ∨Q. �

Fact 30.3.5 ∀PQP. S(P)→ S(Q)→ (P ∨Q)→ (P +Q).

Proof Let f be the test for P and g be the test for Q. Then λn.fn | gn is a test for

P ∨Q. Since we have P ∨Q, an existential witness operator for numbers gives us

an n such that fn | gn = t. Thus (fn = t) + (gn = t). If fn = t, we have P . If

gn = t, we have Q. �

Fact 30.3.6 S(tsatf).

Proof Trivial. �

Fact 30.3.7 (MP characterization)

MP holds if and only if semi-decidable propositions are stable:

MP ←→ ∀PP. S(P)→ stable(P).

Proof Direction →. Let P ←→ tsatf . The claim stable(P) follows by extensionality

and MP.

Direction ←. We show stable(tsatf). By the assumption it suffices to show

S(tsatf). Trivial. �

A certifying semi-decider for a predicate pX→P is a function ∀xX . S(px). From

a certifying semi-decider for p we can obtain a semi-decider for p by forgetting the

proofs. Vice versa, we can construct from a semi-decider and its correctness proof

a certifying semi-decider.

Fact 30.3.8

We can translate between semi-deciders and certifying semi-deciders:

∀XTpX→P. sig(sdecp) a ∀x.S(px).

Proof Direction ⇒. We assume ∀x. px ←→ ∃n.fnx = t and xX and obtain S(px)
with fx as test.

Direction ⇐. We assume g∀x.S(px) and use fx := π1(gx) as semi-decider. It

remains to show px ←→ ∃n.fxn = t, which is straightforward. �

321

30 Semi-Decidability and Markov’s Principle

We offer another characterization of semi-decisions.

Fact 30.3.9 ∀PP. S(P) a ΣfN→O(P). P → ∃n. fn ≠ �.

Proof Direction ⇒. Let g be the test for P . Then

fn := if gn then ◦[P\ else �

is a function as required.

Direction ⇐. Let P → ∃n. fn ≠ �. Then

gn := if [fn = �\ then f else t

is a test for P . �

It turns out that from a decider for tsat we can get a function translating semi-

decisions into decisions, and vice versa.

Fact 30.3.10 sig(dec(tsat)) a ∀PP. S(P)→D(P).

Proof Direction⇐ follows since f is a test for S(tsatf). For direction⇒ we assume

P ←→ tsatf and show D(P). By the primary assumption we have either tsatf or

¬tsatf . Thus D(P). �

Exercise 30.3.11 Prove ∀PP. (P ∨¬P)→ S(P)→ S(¬P)→D(P).

Exercise 30.3.12 Prove MP a (∀PP. D(P)a S(P)× S(¬P)).

30.4 Post Operators

We will consider Post operators,2 which are functions of the type

Post := ∀PP. S(P)→ S(¬P)→D(P)

We will show that MP gives us a Post operator, and that the existence of a Post

operator implies MP.

Fact 30.4.1 MP→ Post.

Proof Assume MP. Let f be a test for P and g be a test for ¬P . We show D(P). Let

hn := fn | gn. It suffices to show Σn. hn = t. Since we have a witness operator

and MP, we assume H : ¬tsath and derive a contradiction. To do so, we show ¬P
and ¬¬P . If we assume either P or ¬P , we have tsath contradicting H. �

2Post operators are named after Emil Post, who first showed that predicates are decidable if they are
semi-decidable and co-semi-decidable.

322

30.5 Enumerators

Fact 30.4.2 Post→ MP.

Proof We assume Post and H : ¬¬tsatf and show tsatf . It suffices to show

D(tsatf). Using Post it suffices to show S(tsatf) and S(¬tsatf). S(tsatf) holds

with f as test, and S(¬tsatf) holds with λ_.f as test. �

Theorem 30.4.3 (MP Characterization) MP a Post.

Proof Facts 30.4.1 and 30.4.2. �

We define the complement of predicates pX→P as p := λx.¬px.

Corollary 30.4.4 Given MP, a predicate is decidable if and only if it is semi-

decidable and co-semi-decidable:

MP→ ∀pX→P. sig(decp)a sig(sdecp)× sig(sdecp).

Proof Direction ⇒ doesn’t need MP and follows with Fact 30.2.1 and sig(decp) →
sig(decp). For direction ⇐ we use Fact 30.1.1 and obtain D(px) from S(px) and

S(¬px) using Facts 30.4.1 and 30.3.8. �

30.5 Enumerators

We define enumerators f for predicates p as follows:

enum pX→P fN→O(X) := ∀x. px ←→ ∃n. fn = ◦x

We will show that for predicates on data types (§32.4) one can freely translate be-

tween enumerators and semi-deciders.

We define equality deciders as follows:

eqdec XT fX→X→B := ∀xyX . x = y ←→ fxy = t

Fact 30.5.1 ∀pX→P. sig(eqdecX)→ sig(enump)→ sig(sdecp).

Proof Let d be an equality decider for X and f be an enumerator for p. Then

λxn. if [fn = ◦x\ then t else f

is a semi-decider for p. �

For the other direction, we need an enumerator for the base type X. To ease the

statement, we define a predicate as follows:

enum XT fN→O(X) := ∀x ∃n. fn = ◦x

323

30 Semi-Decidability and Markov’s Principle

Fact 30.5.2 ∀pX→P. sig(enumX)→ sig(sdecp)→ sig(enump).

Proof Let g be an enumerator for X and f be a semi-decider for p. We define an

enumerator h for p interpreting its argument as a pair consisting of a number for

g and an index for f :

hn :=

◦x if g(π1n) = ◦x ∧ fx(π2n) = t

� otherwise

is an enumerator for p. �

Recall that a type is a data type if and only if it has an enumerator and an equality

decider (Fact 32.4.5).

Corollary 30.5.3 One can translate between enumerators and semi-deciders for

predicates on data types.

Fact 30.5.4 Decidable predicates on enumerable types are enumerable:

∀pX→P. sig(decp)→ sig(enumX)→ sig(enump).

Fact 30.5.5 (MP characterization)

MP holds if and only if satisfiability of enumerable predicates is stable:

MP ←→ ∀XT∀pX→P. ex(enump)→ stable(exp).

Proof Direction →. Let f be an enumerator for p. Then

exp ←→ ∃nx. fn = ◦x

Since λn.∃x. fn = ◦x is decidable, stability of exp follows with Fact 30.1.4.

Direction ←. By Fact 30.1.4 it suffices to show that satisfiability of decidable

predicates on numbers is stable. Follows since decidable predicates on numbers

are enumerable (Fact 30.5.4). �

Fact 30.5.6 (MP characterization)

MP holds if and only if enumerable predicates on discrete types are pointwise stable:

MP ←→ ∀XT∀pX→P. ex(eqdecX)→ ex(enump)→ ∀x. stable(px).

Proof Direction →. We assume MP, a discrete type X, a predicate pX→P, and an

enumerator f for p. It suffices to show that ∃n. fn = ◦x is stable. Since we have

an equality decider for X, we have a decider for λn.fn = ◦x. Thus ∃n. fn = ◦x is

stable by Fact 30.1.4 and MP.

Direction ←. We show stable(tsatf) for fN→B. We define p(kN) := tsatf . By the

primary assumption it suffices to show ex(enump). By Fact 30.5.2 it suffices to give

a semi-decider for p. Clearly, λkn.fn is a semi-decider for p. �

324

30.6 Reductions

Exercise 30.5.7 Let f be an enumerator for pX→P and g be an enumerator for qX→P.

1. Give an enumerator for λx. px ∨ qx.

2. Give an enumerators for λx. px ∧ qx assuming X is discrete.

Exercise 30.5.8 (Projections) Let fN→O(X×Y) be an enumerator for pX→Y→P. Give

enumerators for the projections λx.∃y.pxy and λy.∃x.pxy .

Exercise 30.5.9 (Skolem functions) Let RX→Y→P be a total relation (i.e.,

∀x∃y.Rxy). Moreover, let fN→O(X×Y) be an enumerator for R and dX→X→B be

a equality decider for X. Give a function gX→Y such that ∀x. Rx(gx).

30.6 Reductions

Computability theory employs so-called many-one reductions to transport decid-

ability and undecidability results between problems. We model problems as pred-

icates and many-one reductions as functions. We define reductions from a predi-

cate p to a predicate q as follows:

red pX→P qY→P fX→Y := ∀x. p(x)←→ q(fx)

Fact 30.6.1

Decidability and undecidability transport through reductions as follows:

1. sig (redpq)→ sig (decq)→ sig (decp)

2. sig (redpq)→ sig (sdecq)→ sig (sdecp)

3. redpqf → (∀y.D(qy))→ (∀x.D(px))
4. redpqf → (∀y.S(qy))→ (∀x.S(px))
5. ex (redpq)→ ex (decq)→ ex (decp)

6. ex (redpq)→ ¬ex (decp)→ ¬ex (decq)

7. ex (redpq)→ ex (sdecq)→ ex (sdecp)

8. ex (redpq)→ ¬ex (sdecp)→ ¬ex (sdecq)

Proof 1. Let redpqf and decqg. Then λx.g(fx) is a boolean decider for p.

2. Let redpqf and sdecqg. Then λx.g(fx) is a semi decider for p.

3. Follows from (1) with Fact 30.1.1.

4. Follows from (2) with Fact 30.3.8.

5. Straightforward with (1).

6. Straightforward with (5).

7. Straightforward with (2).

325

30 Semi-Decidability and Markov’s Principle

8. Straightforward with (6). �

Fact 30.6.2 Stability transports through reductions:

ex (redpq)→ (∀y. stable(qy))→ (∀x. stable(px)).

Fact 30.6.3 A predicate is semi-decidable if and only if it reduces to tsat:

∀XTpX→P. (∀x. S(px))a sig (redp tsat).

Proof Direction ⇒ follows with the reduction mapping x to the test for S(px).
Direction ⇐ uses the test the reduction yields for x. �

Exercise 30.6.4 The reducibility relation between predicates is reflexive and transi-

tive. Prove redpp(λx.x) and redpqf → redqrg → redpr(λx.g(fx)) to establish

this claim.

Exercise 30.6.5 Prove redpq f → red q p f .

30.7 Summary of Markov Characterizations

We have established many different equivalent characterizations of Markov’s prin-

ciple making connections between tests, deciders, semi-deciders, enumerators, and

semi-decisions. Most of the characterizations use the notion of stability. The fol-

lowing fact collects prominent characterizations of Markov’s principle we have con-

sidered in this chapter.

Fact 30.7.1 (Markov equivalences) The following types are equivalent:

1. Satisfiability of tests is stable.

2. Satisfiability of decidable predicates on numbers is stable.

3. Satisfiability of semi-decidable predicates is stable.

4. Satisfiability of enumerable predicates is stable.

5. Semi-decidable predicates are pointwise stable.

6. Enumerable predicates on discrete types are pointwise stable.

7. Semi-decidable propositions are stable.

8. ∀PP. S(P)→ S(¬P)→D(P).

Exercise 30.7.2 Make sure you can prove equivalent the characterizations of

Markov’s principle stated in Fact 30.7.1. Start by writing down formally the charac-

terizations stated informally.

326

30.7 Summary of Markov Characterizations

Notes

The chapter originated with Forster et al. [11]. Andrej Dudenhefner and Yannick

Forster contributed nice facts about semi-deciders. Forster et al. [10] certify a re-

duction from the halting problem for Turing machines (HTM) to the Post correspon-

dence problem (PCP) (§22.6) in Coq. Thus PCP is undecidable if HTM is undecidable.

We believe that Coq’s type theory is consistent with assuming that HTM is undecid-

able. One can show in Coq’s type theory that there is no Turing machine deciding

HTM.

What we have developed here is a little bit of synthetic computability theory in

Coq’s type theory. We have assumed all definable functions as computable, which

is in contrast to conventional computability theory, where computable functions

are functions definable in some model of computation (i.e., Turing machines). We

also mention that in conventional computability theory computable functions are

restricted to specific data types like strings or numbers. A main advantage of syn-

thetic computability theory is that all constructions can be carried out rigorously,

which is practically impossible if Turing machines are used as model of computa-

tion.

327

31 Abstract Reduction Systems

Warning: This chapter is under construction.

31.1 Paths Types

We assume a relation R : X → X → T. We see R as a graph whose vertices are the

elements of X and whose edges are the pairs (x,y) such that Rxy . Informally,

a path in R is a walk

x0
R→ x1

R→ ·· · R→ xn

through the graph described by R following the edges. We capture this design

formally with an indexed inductive type

path (x : X) : X → T ::=
| P1 : pathxx

| P2 : ∀x′y. Rxx′ → pathx′y → pathxy

The constructors are chosen such that that the elements of a path type pathxy
formalize the paths from x to y . The first argument of the type constructor path is

a nonuniform parameter and the second argument of path is an index. The second

argument cannot be made a parameter because it is instantiated to x by the value

constructor P1. Here are the full types of the constructors:

path : ∀XT. (X → X → T)→ X → X → T

P1 : ∀XT∀RX→X→P∀xX . pathXR xx

P2 : ∀XT∀RX→X→P∀xx′yX . Rxx′ → pathXR x′y → pathXR xy

Note that the type constructor path takes three parameters followed by a single in-

dex as arguments. There is the general rule that parameters must go before indices.

We shall use notation with implicit arguments in the following. It is helpful to

see the value constructors in simplified form as inference rules:

P1
pathR xx

P2

Rxx′ pathR x′y

pathR xy

329

31 Abstract Reduction Systems

The second constructor is reminiscent of a cons for lists. The premise Rxx′ ensures

that adjunctions are licensed by R. And, in contrast to plain lists, the endpoints of

a path are recorded in the type of the path.

Fact 31.1.1 (Step function) ∀xy. Rxy → pathRxy .

Proof The function claimed can be obtained with the value constructors P1 and P2:

Rxy pathR yy
P1

pathR xy
P2

�

We now define an inductive function len that yields the length of a path (i.e., the

number of edges the path runs trough).

len : ∀xy. pathxy → N

lenx _ (P1_) := 0

lenx _ (P2 _x′y ra) := S(lenx′y a)

Note the underlines in the patterns. The underlines after P1 and P2 are needed since

the first arguments of the constructors are parameters (instantiated to x by the pat-

tern). The underlines before the applications of P1 and P2 are needed since the re-

spective argument is an index argument. The index argument appears as variable y
in the type declared for len. We refer to y (in the type of len) as index variable.

What identifies y as index variable is the fact that it appears as index argument

in the type of the discriminating argument. The index argument must be written

as underline in the patterns since the succeeding pattern for the discriminating ar-

gument determines the index argument. There is the general constraint that the

index arguments in the type of the discriminating argument must be variables not

occurring otherwise in the type of the discriminating argument (the so-called index

condition). Moreover, the declared type must be such that all index arguments are

taken immediately before the discriminating argument.

Type checking elaborates the defining equations into quantified propositional

equations where the pattern variables are typed and the underlines are filled in. For

the defining equations of len, elaboration yields the following equations:

∀xN. lenxx (P1 x) = 0

∀xx′yN∀rRxx′ ∀apathx′y . lenxy (P2 xx′y ra) = S(lenx′y a)

We remark that the underlines for the parameters are determined by the declared

type of the discriminating argument, and that the underlines for the index argu-

ments are determined by the elaborated type for the discriminating argument.

330

31.1 Paths Types

We now define an append function for paths

app : ∀zxy. pathxy → pathyz → pathxz

discriminating on the first path. The declared type and the choice of the discrimi-

nating argument (not explicit yet) identify y as an index variable and fix an index

argument for app. Note that the index condition is satisfied. The argument z is

taken first so that the index argument y can be taken immediately before the dis-

criminating argument. We can now write the defining equations:

appzx _ (P1 _) := λb.b : pathxz → pathxz

appzx _ (P2 _x′y ra) := λb. P2 xx′z r(appzx′y ab) : pathyz → pathxz

As always, the patterns are determined by the declared type and the choice of the

discriminating argument. We have the types r : Rxx′ and a : pathx′y for the

respective pattern variables of the second equation. Note that the index argument

is instantiated to x in the first equation and to y in the second equation.

We would now like to verify the equation

∀xyz∀apathxy ∀bpathyz. len (appab) = lena+ lenb

which is familiar from lists. As for lists, the proof is by induction on a. Doing the

proof by hand, ignoring the type checking, is straightforward. After conversion, the

case for P2 gives us the proof obligation

S(len (appab)) = S(lena+ lenb)

which follows by the inductive hypothesis, Formally, the induction can be validated

with the universal eliminator for path:

E : ∀p∀xy. pathxy→T.

(∀x. pxx(P1 x))→
(∀xyz∀rRxy ∀apathyz. pxz(P2 xyz ra))→
∀xya. pxya

E pe1e2 x _ , (P1 _) := e1x

E pe1e2 x _ (P2 _x′y r a) := e2 xx′y r(E pe1e2 x′y a)

Not that the type function p takes the nonuniform parameter, the index, and the

discriminating argument as arguments. The general rule to remember here is that

all nonuniform parameters and all indices appear as arguments of the return type

331

31 Abstract Reduction Systems

function of the universal eliminator. As always with universal eliminators, the defin-

ing equations follow from the type of the eliminator, and the types of the continu-

ation functions e1 and e2 follow from the types of the value constructors and the

type of the return type function.

No doubt, type checking the above examples by hand is a tedious exercise, also

for the author. In practice, one leaves the type checking to the proof assistant

and designs the proofs assuming that the type checking works out. With trained

intuitions, this works out well.

Exercise 31.1.2 Give the propositional equations obtained by elaborating the defin-

ing equations for len, app, and E. Hint: The propositional equations for len are

explained above. Use the proof assistant to construct and verify the equations.

Exercise 31.1.3 Define the step function asserted by Fact 31.1.1 with a term.

Exercise 31.1.4 (Index eliminator) Define an index eliminator for path:

∀pX→X→T.
(∀x. pxx)→
(∀xx′y. Rxx′ → px′y → pxy)→
(∀xy. pathxy → pxy)

Note that the type of the index eliminator is obtained from the type of the universal

eliminator by deleting the dependencies on the paths.

Exercise 31.1.5 Use the index eliminator to prove that the relation path is transi-

tive: ∀xyz. pathxy → pathyz → pathxz.

Exercise 31.1.6 (Arithmetic graph) Let Rxy := (Sx = y). We can see R as the

graph on numbers having the edges (x, Sx). Prove pathR xy a x ≤ y .

Hints. Direction ⇒ follows with index induction (i.e., using the index eliminator

from Exercise 31.1.4). Direction ⇐ follows with ∀k. pathR x(k + x), which follows

by induction on k with x quantified.

31.2 Reflexive Transitive Closure

We can see the type constructor path as a function that maps relations X → X → T
to relations X → X → T. We will write R∗ for pathR in the following and speak

of the reflexive transitive closure of R. We will explain later why this speak is

meaningful.

We first note that R∗ is reflexive. This fact is stated by the type of the value

constructor P1.

332

31.2 Reflexive Transitive Closure

We also note that R∗ is transitive. This fact is stated by the type of the inductive

function app.

Moreover, we note that R∗ contains R (i.e., ∀xy. Rxy → R∗xy). This fact is

stated by Fact 31.1.1.

Fact 31.2.1 (Star recursion)

Every reflexive and transitive relation containing R contains R∗ :

∀pX→X→T. reflp → transp → R ⊆ p → R∗ ⊆ p.

Proof Let p be a relation as required. We show∀xy. R∗xy → pxy using the index

eliminator for path (Exercise 31.1.4). Thus we have to show that p is reflexive, which

holds by assumption, and that ∀xx′y. Rxx′ → px′y → pxy . So we assume Rxx′

and px′y and show pxy . Since p contains R we have pxx′ and thus we have the

claim since p is transitive. �

Star recursion as stated by Fact 31.2.1 is a powerful tool. The function realized

by star recursion is yet another eliminator for path. We can use star recursion to

show that R∗ and (R∗)∗ agree.

Fact 31.2.2 R∗ and (R∗)∗ agree.

Proof We have R∗ ⊆ (R∗)∗ by Fact 31.1.1. For the other direction (R∗)∗ ⊆ R∗
we use star recursion (Fact 31.2.1). Thus we have to show that R∗ is reflexive,

transitive, and contains R∗. We have argued reflexivity and transitivity before, and

the containment is trivial. �

Fact 31.2.3 R∗ is a least reflexive and transitive relation containing R.

Proof This fact is a reformulation of what we have just shown. On the one hand, it

says that R∗ is a reflexive and transitive relation containing R. On the other hand,

it says that every such relation contains R∗. This is asserted by star recursion. �

If we assume function extensionality and propositional extensionality,

Fact 31.2.2 says R∗ = (R∗)∗. With extensionality R∗ can be understood as a

closure operator which for R yields the unique least relation that is reflexive,

transitive, and contains R. In an extensional setting, R∗ is commonly called the

reflexive transitive closure of R.

We have modeled relations as general type functions X → X → T rather than as

predicates X → X → P. Modeling path types R∗xy as computational types gives us

paths as computational values and provides for computational recursion on paths

as it is needed for the length function len. If we switch to propositional relations

X → X → P, everything we did carries over except for the length function.

Exercise 31.2.4 (Functional characterization)

Prove R∗xy a ∀pX→X→T. reflp → transp → R ⊆ p → pxy .

333

Part VII

Data Types

335

32 Data Types

We study computational bijections and injections. Both are bidirectional and are

obtained with two functions inverting each other. The inverse function of injections

yields options so that it can exist if the primary function is not surjective. Injections

transport equality deciders and existential witness operators from their codomain

to their domain.

We define data types as types that come with an injection into the type of num-

bers. Data types inherit the order features of numbers and include all first-order

inductive types. Data types can be characterized as types having an equality de-

cider and an enumerator. Infinite data types can be characterized as types that are

in bijection with the numbers.

You will see many option types and sigma types in this chapter. Option types

are needed for the inverses of injections. Sigma types are used to represent the

structures for bijections, injections, and data types.

32.1 Inverse Functions

We define predicates formulating basic properties of functions:

injectivef := ∀xx′. fx = fx′ → x = x′

surjectivef := ∀y∃x. fx = y
bijectivef := injectivef ∧ surjectivef

invgf := ∀x. g(fx) = x g inverts f

The predicate invgf is to be read as g inverts f or as g is an inverse function

for f . There may be different inverse functions for a given function, even with

functional extensionality.

Fact 32.1.1

1. invgf → surjectiveg ∧ injectivef

2. invgf → injectiveg ∨ surjectivef → invfg

3. surjectivef → invgf → invg′f → ∀y. gy = g′y

Proof All claims follow by straightforward equational reasoning. Details are best

understood with the proof assistant. �

337

32 Data Types

Note that Fact 32.1.1 (3) says that all inverse functions of a surjective function

agree.

The following lemma facilitates the construction of inverse functions.

Lemma 32.1.2 ∀fX→Y . (∀yΣx. fx = y)→ Σg. invfg.

Proof Let G : ∀yΣx. fx = y and define gy := π1(Gy). �

Fact 32.1.3 (Transport) injectivefX→Y → EY → EX.

Proof Exercise. �

Exercise 32.1.4 Give a function N→ N that has disagreeing inverse functions.

32.2 Bijections

A bijection between two types X and Y consists of two functions

f : X → Y
g : Y → X

inverting each other

∀x. g(fx) = x
∀y. f(gy) = y

and thus establishing a bidirectional one-to-one connection between the elements

of the two types. Formally, we define bijection types as nested sigma types:

BXY := ΣfX→Y ΣgY→X . invgf ∧ invfg

We say that two types are in bijection if we have a bijection between them.

Fact 32.2.1 Bijectivity is a computational equivalence relation on types:

1. BXX.

2. BXY → BYX.

3. BXY → BYZ → BXZ .

Proof Straightforward. �

Fact 32.2.2 Both functions of a bijection are bijective.

Proof Straightforward. �

338

32.3 Injections

Theorem 32.2.3 (Pairing) B N (N× N).

Proof See Chapter 7. �

Exercise 32.2.4 Show that the following types are in bijection.

a) B and >+>.

b) B and O(O(⊥)).
c) > and O(⊥).
d) O(X) and X +>.

e) X + Y and Y +X.

f) X × Y and Y ×X.

g) N and L(N).

32.3 Injections

An injection of a type X into a type Y consists of two functions

f : X → Y
g : Y → O(X)

such that

∀x. g(fx) = ◦x
∀xy. gy = ◦x → fx = y

We say that f and g quasi-invert each other. We may think of an injection as

an encoding or an embedding of a type X into a type Y . Following the encoding

metaphor, we will refer to f as the encoding function and to g as the decoding

function. We have the property that every x has a unique code and that every code

can be uniquely decoded.

The decoding function determines whether a member of Y is a code (gy ≠ �
iff y is a code). Obtaining this property is a main reason for using option types.

Option types also ensure that the empty type embeds into every type.

Formally, we define injection types as nested sigma types:

IXY := ΣfX→YΣgY→O(X). (∀x. g(fx) = ◦x)∧ (∀xy. gy = ◦x → fx = y)

We remark that our definition of injections is carefully chosen to fit practical and

theoretical concerns. A previous version did not require the second equation for f
and g. From the first equation one can obtain the second equation provided one is

willing to modify the decoding function (Lemma 32.3.5). The second equation for

injections for instance facilitates the construction of a least witness operator for

data types (Fact 32.5.2).

339

32 Data Types

Fact 32.3.1

Let f and g be the encoding and decoding function of an injection. Then:

1. The encoding function is injective: fx = fx′ → x = x′.
2. The decoding function is quasi-injective: gy ≠ �→ gy = gy ′ → y = y ′.
3. The decoding function is quasi-surjective: ∀x ∃y. gy = ◦x.

4. The decoding function determines the codes: gy ≠ �←→ ∃x. fx = y .

Proof Straightforward.

Fact 32.3.2

1. IXX (reflexivity)

2. IXY → IYZ → IXZ (transitivity)

3. BXY → IXY .

4. I ⊥X
5. I X(O(X))

Proof Straightforward. Claim 5 follows with fx := ◦x and ga := a. �

Fact 32.3.3 (Transport of equality deciders)

IXY → EY → EX.

Proof Let fX→Y from IXY . Then x = x′ ←→ fx = fx′ since f is injective. Thus an

equality decider for Y yields an equality decider for X. �

We define a type of witness operators:

W XT := ∀pX→P. (∀X. D(px))→ (∃x.px)→ (Σx.px)

Fact 32.3.4 (Transport of witness operators)

IXY →WY →WX.

Proof Let fX→Y and gY→O(X) from IXY . To show that there is a witness operator

for X, we assume a decidable and satisfiable predicate pX→P. We define a decidable

and satisfiable predicate qY→P as follows:

qy := match gy [◦x ⇒ px | �⇒ ⊥]

The witness operator for Y gives us a y such that qy . The definition of q gives us

an x such that px. �

When we construct an injection, it is sometimes convenient to first construct

a preliminary decoding function g that satisfies the first equation ∀x. g(fx) = ◦x
and then use a general construction that from g obtains a proper decoding function

satisfying both equations.

340

32.3 Injections

Lemma 32.3.5 (Upgrade) Given two functions fX→Y and gY→O(X) such that Y is

discrete and ∀x. g(fx) = ◦x, one can define a function g′ such that f and g′ form

an injection I XY .

Proof We assume fX→Y and gY→O(X) such that

∀x. g(fx) = ◦x

and define g′Y→O(X) as follows:

g′y :=

◦x if gy = ◦x ∧ fx = y
� otherwise

Verifying the two conditions

∀x. g′(fx) = ◦x
∀xy. g′y = ◦x → fx = y

required so that f and g′ form an injection is straightforward. �

Using a technique known as diagonalisation, Cantor showed that for no set the

power set of a set embeds into the set. The result transfers to type theory where

the function type X → B takes the role of the power set.

Fact 32.3.6 (Cantor) I(X → B)X → ⊥.

Proof Let f and g be the functions from I(X → B)X. We define a function

h : X → B

hx := match gx [◦ϕ ⇒ !ϕx | �→ f]

It suffices to show h(fh) = !h(fh). Follows using the definition of h and the

equation g(fh) = ◦h on the right hand side. �

A related result is discussed in §8.3.

Exercise 32.3.7 Show I(X → N)X → ⊥.

Exercise 32.3.8 Show ∀fX→Y∀g. invgf → EY → IXY .

341

32 Data Types

32.4 Data Types

We define data types as types that come with an injection into the type N of num-

bers:

datX := IXN

With this definition, data types are closed under forming product types, sum types,

option types, and list types. Moreover, data types will come with equality deciders,

existential witness operators, and least witness operators.

Fact 32.4.1

1. ⊥, >, and B are data types: dat⊥, dat>, dat B.

2. N is a data type: dat N.

3. Types that embed into data types are data types: IXY → datY → datX.

4. If X and Y are data types, then so are X × Y , X + Y , O(X), and L(X):
a) datX → datY → dat (X × Y)
b) datX → datY → dat (X + Y)
c) datX → dat (O(X))
d) datX → dat (L(X))

Proof The injections required for (4a) and (4b) can be constructed with the bijection

of Theorem 32.2.3. �

Fact 32.4.2 (Equality decider)

Data types have equality deciders.

Proof Follows with Fact 32.3.3. �

Fact 32.4.3 (Existential witness operator)

Data types have existential witness operators.

Proof Follows with Fact 32.3.4. �

Fact 32.4.4 (Inverse functions)

Bijective functions from data types to discrete types have inverse functions:

bijectivefX→Y → datX → EY → ΣgY→X . invgf ∧ invfg.

Proof By Fact 32.1.1 (2) it suffices to construct a function g such that invfg. By

Lemma 32.1.2 it suffices to show ∀yΣx. fx = y . Follows from the surjectivity of f
with the existential witness operator for X (Fact 32.4.3) and the discreteness of Y .�

342

32.5 Data Types are Ordered

An enumerator for a type X is a function gN→O(X) such that ∀x ∃n. gn = ◦x. It

turns out that data types can be characterized as discrete enumerable types. To

state the connection precisely, we define enumerator types:

enumXT := ΣgN→O(X).∀x ∃n. gn = ◦x

Fact 32.4.5 (Enumerator)

A type is a data type if and only if it has an equality decider and an enumerator:

datX a EX × enumX.

Proof Direction ⇒ is obvious. For the other direction, we assume an equality de-

cider and an enumerator gN→O(X) for X. The equality decider gives us a decider for

the satisfiable predicate λn.gn = ◦x. Thus the existential witness operator for N

gives us a function fX→N such that ∀x. g(fx) = ◦x. Now the upgrade lemma 32.3.5

yields an injection IXN. �

Exercise 32.4.6 Show that N→ B is not a data type.

Exercise 32.4.7 Show datX →W(L(X)).

Exercise 32.4.8 Show that injections transport enumerators:

∀XY. IXY → enumY → enumX.

32.5 Data Types are Ordered

Data types inherit the order of numbers. If x is a member of a data type X, we will

write #x for the unique code the encoding function of the injection IXN assigns

to x.

Fact 32.5.1 (Trichotomy) Let X be a data type. Then:

∀xyX .(#x < #y)+ (x = y)+ (#y < #x).

Proof Trichotomy operator for numbers and injectivity of the encoding function. �

Fact 32.5.2 (Least witness operator)

datX → (∀x. D(px))→ (Σx.px)→ (Σx. px ∧∀y. py → #x ≤ #y).

Proof Let f and g be the functions from IXN. We define a predicate on numbers.

qn := match gn [◦x ⇒ px | �⇒ ⊥]

It is easy to see that q is decidable and Σ-satisfiable. Thus the least witness operator

for numbers (Fact 17.3.2) gives us a least witness n of q. By the definition of q there

is x such that px and fx = n. It remains to show ∀y. py → n ≤ fy . Let py . Then

q(fy). Thus n ≤ fy since n is the least witness of q. �

Exercise 32.5.3 Define an existential least witness operator for data types:

∀XT. datX → (∀x. D(px))→ (∃x. px)→ (Σx. px ∧∀y. py → #x ≤ #y).

343

32 Data Types

32.6 Infinite Types

There are several possibilities for defining infiniteness of types, not all of which

are equivalent. We choose a propositional definition that is strong enough to put

infinite data types into bijection with numbers. We define infinite types as types

that for every list have an element that is not in the list:

infiniteXT := ∀AL(X) ∃xX . x ∉ A

Fact 32.6.1 N is infinite.

Proof ∀AL(N)∃n∀x. x ∈ A→ x < n follows by induction on A. �

Fact 32.6.2 (Transport) IXY → infiniteX → infiniteY .

Proof Let B be a list over Y , and let fX→Y and gY→O(X) be the functions coming with

IXY . We show ∃y. y ∉ B. Let AL(X) be the list obtained from g@B by deleting the

occurrences of � and erasing the constructor ◦ (Exercise 19.3.7). Since X is infinite,

we have x ∉ A. Then fx ∉ B (if fx ∈ B, then x ∈ A). �

Given a type X, we call a function ∀AL(X) Σx. x ∉ A a generator function for X.

Fact 32.6.3 (Generator function)

1. Types with generator functions are infinite.

2. Infinite data types have generator functions.

3. Discrete types X with an injective function N→ X have generator functions.

Proof (1) is obvious.

(2) Follows from the fact that data types have equality deciders and witness

operators (Facts 32.4.2 and 32.4.3).

For (3) we assume a discrete type X and an injective function fN→X . Let AL(X)

and n := lenA. Since f is injective, the list f@[0, . . . , n] is nonrepeating (Exer-

cise 19.6.7). Since lenA < len (f@[0, . . . , n]), the discrimination lemma 19.6.5 gives

us an x ∉ A. �

Exercise 32.6.4 Show that B is not infinite.

Exercise 32.6.5 Show datX → infiniteX → ΣxX . >.

344

32.7 Infinite Data Types

32.7 Infinite Data Types

We will show that a data type is infinite if and only if it is in bijection with the type

of numbers. We base this result on a lemma we call compression lemma.

Suppose we have a function g : N→ O(X) where X is an infinite data type. Then

we can see g as a sequence over X that has holes and repetitions.

g : �,x0, x1, x0, �, x2, x1, x3, . . .

If g covers all members of X, we can compress g into a sequence h : N→ X without

holes and repetitions:

h : x0, x1, x3, . . .

Seeing h as a function again, we have that h is a bijective function N→ X.

Lemma 32.7.1 (Compression) Let X be an infinite data type. Then we can define a

bijective function N→ X.

Proof Let g : N→ O(X) be the decoding function from IXN. We first define a chain

G0 ⊆ G1 ⊆ G2 ⊆ · · · collecting the values of g in X:

G0 := []

GSn := match gn [◦x ⇒ x :: Gn | �⇒ Gn]

We have ∀x∃n.x ∈ Gn since g is the decoding function from IXN.

For the next step we need a function

Φ : ∀AL(X) Σx. x ∉ A∧ ∃n. gn = ◦x ∧Gn ⊆ A

that for a list A yields the first x in g such that x ∉ A. We postpone the construction

of Φ and first show that Φ provides for the construction of a bijective function

N→ X.

Let ϕA := π1(ΦA). We define a chain H0 ⊆ H1 ⊆ H2 ⊆ · · · over X and h : N→ X
as follows:

H0 := []

HSn := ϕHn :: Hn
hn := ϕ(Hn)

It’s now straightforward to verify the following facts:

1. x ∈ A→ x ≠ϕA.

2. m < n→ hm ∈ Hn.

345

32 Data Types

3. m < n→ hm ≠ hn.

Thus h is injective.

To show that h is surjective, it suffices to show Gn ⊆ Hn and

x ∈ Hn → ∃k. hk = x

Both claims follow by induction on n.

To conclude the proof, it remains to construct Φ, which in fact is the most

beautiful part of the proof. We fix A and use the generator function provided by

Fact 32.6.3 to obtain some x0 ∉ A. Using the encoding function from IXN, we obtain

n0 such that gn0 = ◦x0. We now do a linear search k = 0,1,2, . . . until we find the

first k such that ∃x. gk = ◦x ∧Gn ⊆ A. The search can be realized with structural

recursion since we have the bound k ≤ n0. Formally, we construct a function

∀k. k ≤ n0 → Gk ⊆ A→ Σx. x ∉ A∧ ∃n. gn = ◦x ∧Gn ⊆ A

by size recursion on n0 − k. For gk = �, we recurse with Sk. For gk = ◦y , we check

y ∈ A. If y ∈ A, we recurse with Sk. If y ∉ A, we terminate with x = y and n = k.�

We can now show that infinite data types are exactly those types that are in

bijection with N. In other words, up to bijection, N is the only infinite data type.

Theorem 32.7.2 (Characterizations of infinite data types)

For every type X the following types are equivalent:

1. IXN × infiniteX

2. EX × ΣfN→X . bijectivef

3. BXN

4. IXN × INX
5. IXN × ΣfN→X . injectivef

Proof 1→ 2. Compression lemma 32.7.1.

2→ 3. Inverse function lemma 32.4.4.

3→ 4. Fact 32.3.2 (3).

4→ 5. Fact 32.3.1.

5→ 1. Fact 32.6.3 (3). �

346

33 Finite Types

We define finite types as types that come with an equality decider and a list contain-

ing all elements of the type. We fix the cardinality of finite types with nonrepeating

and covering lists. We show that finite types are data types and that finite types

embed into each other if and only if their cardinality permits. As one would ex-

pect, finite types of the same cardinality are in bijection. For every number n, a

finite type of cardinality n can be obtained by n-times taking the option type of the

empty type.

33.1 Coverings and Listings

A covering of a type is a list that contains every member of the type:

covering AL(X) := ∀xX . x ∈ A

A listing of a type is a nonrepeating covering of the type:

listing AL(X) := covering A∧ nrepA

We need a couple of results for coverings and listings of discrete types.

Fact 33.1.1 Given a covering of a discrete type, one can obtain a listing of the type:

EX → covering AL(X) → ΣBL(X). listingB.

Proof Fact 19.6.4. �

Fact 33.1.2 All listings of a discrete type have the same length.

Proof Follows with Corollary 19.6.6 (2). �

Fact 33.1.3 Let A and B be lists over a discrete type X.

1. coveringA→ nrepB → lenA ≤ lenB → listingB.

2. listingA→ coveringB → lenB ≤ lenA→ listingB.

3. listingA→ lenB = lenA→ (nrepB ←→ coveringB).

Proof Follows with Corollary 19.6.6. �

347

33 Finite Types

33.2 Finite Types

We define finite types as discrete types that come with a covering list:

fin XT := E(X) × ΣAL(X). coveringA

This definition ensures that finite types are computational objects we can put our

hands on. We already know that for a covering of a discrete type we can compute

a listing of the type having a uniquely determined length. It will be convenient to

have a second definition for finite types fixing a listing and announcing the size of

the type:

finn XT := E(X) × ΣAL(X). listingA∧ lenA = n

Fact 33.2.1 For every type X:

1. finX a Σn.finnX

2. finmX → finnX →m = n (uniqueness)

Proof Facts 33.1.1 and 33.1.2. �

Fact 33.2.2 If X and Y are finite types, then so are X × Y , X + Y and O(X).

Proof Discreteness follows with Facts 11.2.1 and 33.3.1. We leave the construction

of the covering lists as an exercise. �

Fact 33.2.3 Finite types are data types: finX → CX.

Proof By Fact 33.2.1 we assume a covering A for X. We use the upgrade

lemma 32.3.5 so that only the first equation for IXN needs to be verified. If A
is empty, we construct IXN with fx := 0 and gn := �. Otherwise, A contains an

element a. We now use the position-element mappings pos and sub from §19.10

and define

fx := posAx

gn := ◦subaAn

The equation g(fx) = ◦x now follows with Fact 19.10.1 �

Fact 33.2.4 Finite types are not infinite: finX → infiniteX → ⊥.

Proof Exercise. �

Fact 33.2.5 finiteX → I NX → ⊥.

Proof Follows with Facts 32.6.2, 32.6.1, and 33.2.4. �

348

33.3 Finite Ordinals

Fact 33.2.6 (Injectivity-surjectivity agreement) Functions between finite types of

the same cardinality are injective if and only if they are surjective:

finnX → finn Y → ∀fX→Y . injectivef ←→ surjectivef .

Proof Let A and B be listings for X and Y , respectively, with lenA = lenB. We fix

fX→Y and have covering(f@A)←→ nrep(f@A) by Fact 33.1.3 (3).

Let f be injective. Then f@A is nonrepeating by Exercise 19.6.7 (a). Thus f@A
is covering. Hence f is surjective.

Let f be surjective. Then f@A is covering and thus nonrepeating. Thus f is

injective by Exercise 19.6.7 (b). �

Exercise 33.2.7 Prove fin0⊥, fin1>, and fin2 B.

Exercise 33.2.8 Prove the following:

a) datX → (∃AL(X)∀x. x ∈ A)→ finX.

b) XM→ datX → infinteX ∨ (∃AL(X)∀x. x ∈ A).
Proving (b) with a sum type rather than a disjunction seems impossible.

Exercise 33.2.9 (Bounded quantification)

Let p be a decidable predicate on a finite type X. Prove the following types:

a) D(∀x.px)
b) D(∃x.px)
c) (Σx.px)+ (∀x.¬px)

Exercise 33.2.10

Prove finmX → finn Y →m > 0→ (∀fX→Y . injectivef ←→ surjectivef)→ m = n.

33.3 Finite Ordinals

We define for every number n a finite type Fn with exactly n elements by applying

n-times the option type constructor to the empty type ⊥:

Fn := On(⊥)

We refer to the types Fn as finite ordinals.

Fact 33.3.1 (Discreteness) The finite ordinals are discrete: E(Fn).

Proof Follows by induction on n since ⊥ is discrete (Fact 11.2.1) and O preserves

discreteness (Fact 11.3.2). �

349

33 Finite Types

We define a function L : ∀n. L(Fn) that yields a listing for every finite ordinal:

L0 := []

LSn := � :: (◦@ Ln)

For instance, L4 = [�, ◦�, ◦◦�, ◦◦◦�].

Fact 33.3.2 Ln is a listing of Fn having length n.

Proof By induction on n. �

Fact 33.3.3 Fn is a finite type of size n: finn Fn.

Proof Facts 33.3.1 and 33.3.2. �

33.4 Bijections and Finite Types

Fact 33.4.1 (Transport) BXY → finnX → finn Y .

Proof Bijections map listings to listings and preserve their length. �

Theorem 33.4.2 (Finite bijection)

Finite types of the same size are in bijection: finnX → finn Y → BX Y .

Proof Let A and B be listings of X and Y , respectively, both of length n. If

A = B = [], we can define functions X → ⊥ and Y → ⊥ and thus the claim fol-

lows with computational elimination for ⊥. Otherwise, we have a ∈ A and b ∈ B.

The listings A and B give us bijective connections between the elements of X and

the positions 0, . . . , n− 1, and the elements of Y and the positions 0, . . . , n− 1. We

realize the resulting bijection between X and Y using the list operations sub and

pos with escape values (§19.10):

fx := subbB (posAx)

gy := subaA (posB y)

Recall that pos yields the position of a value in a list, and that sub yields the value

at a position of a list. Since A and B are covering, the escape values a and b will not

be used by sub. �

Corollary 33.4.3 finmX → finn Y → (BXY a m = n).

Proof Direction⇒ follows with Facts 33.4.1 and 33.2.1 (2). Direction⇐ follows with

Theorem 33.4.2. �

350

33.5 Injections and Finite Types

Exercise 33.4.4 Prove the following:

a) finnX → BXFn.

b) B Fm Fn → m = n.

c) B Fn FSn → ⊥.

33.5 Injections and Finite Types

We may consider a type X is smaller than a type Y if X can be embedded into Y with

an injection. For finite types, this abstract notion of size agrees with the numeric

size we have assigned to finite types through nonrepeating lists.

Lemma 33.5.1 (Transport of covering lists)

IXY → coveringY B → ΣA. coveringX A.

Proof Let B be a covering of Y , and let f : X → Y and g : Y → O(X) be the functions

coming with IXY . Let A : L(X) be the list obtained from g@B by deleting the

occurrences of � and erasing the constructor ◦ (Exercise 19.3.7). We show that A is

covering. Let x : X. Then fx ∈ B. Hence ◦x = g(fx) ∈ g@B. Thus x ∈ A. �

Fact 33.5.2 (Transport of finiteness)

IXY → finY → finX.

Proof Fact 32.3.3 and Lemma 33.5.1. �

Fact 33.5.3 (Characterizations of finite types)

For every type X the following types are equivalent:

1. finX

2. Σn.finnX

3. Σn.BXFn

4. ΣY . IXY × finY

Note that each of the types gives us a characterization of finite types.

Proof The equivalences follow with Facts 33.2.1 and 33.3.3, Theorem 33.4.2, and

Facts 32.3.2 (3) and 33.5.2. �

Fact 33.5.4

finmX → finn Y →m ≤ n→ I X Y .

Proof The proof is similar to the proof of Theorem 33.4.2. Again we use the up-

grade lemma 32.3.5 so that only the first equation for IXY needs to be verified.

351

33 Finite Types

Let A be listing of X of lengthm and B be a listings of Y of length n ≥m. If A = [],
we can define a function X → ⊥ and the claim follows with computational elimina-

tion for ⊥. Otherwise, we have an escape values a ∈ A and b ∈ B. We realize the

injection of X into Y as follows:

fx := subbB (posAx)

gy := ◦subaA (posB y) �

Fact 33.5.5

finmX → finn Y → I X Y →m ≤ n.

Proof Let A be a nonrepeating list of length m over X, B be a covering list over Y
of length n, and f : X → Y be injective. Then f@A ⊆ B is nonrepeating and thus

m ≤ n by Corollary 19.6.6. �

Theorem 33.5.6 (Finite injection) finmX → finn Y → (m ≤ na IXY).

Proof Follows with Facts 33.5.4 and 33.5.5. �

Corollary 33.5.7 finmX → finn Y →m > n→ IXY → ⊥.

Fact 33.5.8 (Finite sandwich)

1. IXY → IYX → (finnXa finn Y).

2. IXY → IYX → finX → BXY .

Proof Claim 1 follows with Facts 33.2.1, 33.5.2, and 33.5.5. Claim 2 follows with

Fact 33.2.1, Claim 1, and Theorem 33.4.2. �

Exercise 33.5.9 Prove the following:

a) I Fm Fn a m ≤ n.

b) I FSn Fn → ⊥.

Exercise 33.5.10 Prove the following:

1. I N Fn → ⊥.

2. Fn ≠ N.

352

Part VIII

Appendices

353

Appendix: Typing Rules

` u : Ti x :u ` v : P

` ∀xu. v : P

` u : Ti x :u ` v : Ti

` ∀xu. v : Ti

` s : ∀xu.v ` t : u

` s t : vxt

` u : Ti x :u ` s : v

` λxu. s : ∀xu. v

` s : u′ u ≈ u′ ` u : Ti

` s : u

x : u ` x : u

` P : T2 ` Ti : Ti+1

` s : u ` u ⊂ u′

` s : u′

` P ⊂ Ti

i < j

` Ti ⊂ Tj

` u : Ti ` v ⊂ v′

` ∀xu. v ⊂ ∀xu. v′

• The constants P ⊂ T1 ⊂ T2 ⊂ · · · are called universes. There is no T0.

• Computational equality s ≈ t is defined with reduction and α- and η-equivalence.

• vxt is capture-free substitution.

• Assumptions (x :u before `) must be introduced by the rules for ∀ and λ.

• Simple function types u→ v are notation for dependent function types∀x :u.v
where x does not occur in v .

• T1 is called Set in Coq.

• Functions whose type ends with the universe P are called predicates.

• Functions whose type ends with a universe are called type functions or type

families.

355

Appendix: Inductive Definitions

We collect technical information about inductive definitions here. Inductive defini-

tions come in two forms, inductive type definitions and inductive function defini-

tions. Inductive type definitions introduce typed constants called constructors, and

inductive function definitions introduce typed constants called inductive functions.

Inductive function definitions come with defining equations serving as computation

rules. Inductive definitions are designed such that they preserve consistency.

Inductive Type Definitions

An inductive type definition introduces a system of typed constants consisting of a

type constructor and n ≥ 0 value constructors. The type constructor must target

a universe, and the value constructors must target a type obtained with the type

constructor. The first n ≥ 0 arguments of the type constructor may be declared as

parameters. The remaining arguments of a type constructor are called indices.

Parameter condition: Each value constructor must take the parameters as lead-

ing arguments and must target the type constructor applied to the parameters.

Strict positivity condition: If a value constructor uses the type constructor in

an argument type, a path to the type constructor must not go through the left-hand

side of a function type.

Dominance condition: If the type constructor targets a universe Ti, the types

of the nonparametric arguments of the value constructors must be in Ti.

Inductive Function Definitions

An inductive function definition introduces a constant called an inductive function

together with a system of defining equations serving as computation rules. An

inductive function must be defined with a functional type, a number of required

arguments, and a distinguished required argument called the discriminating argu-

ment. The type of an inductive function must have the form

∀x1 . . . xk∀y1 . . . ym. cs1 . . . sny1 . . . ym → t

where the following conditions are satisfied:

357

Appendix: Inductive Definitions

• cs1 . . . sny1 . . . ym types the discriminating argument.

• c is a type constructor with n ≥ 0 parameters and m ≥ 0 indices.

• Index condition: The index variables y1, . . . , ym must be distinct and must not

occur in s1, . . . , sn.

• Elimination restriction: t must be a proposition if c is not computational. A

type constructor c is computational if in case it targets P it has at most one proof

constructor d and all nonparametric arguments of d have propositional types.

For every value constructor of c a defining equation must be provided, where the

pattern and the target type of the defining equations are determined by the type of

the inductive function, the position of discriminating argument, and the number of

arguments succeeding the discriminating argument. Each pattern contains exactly

two constants, the inductive function and a value constructor in the position of

the discriminating argument. Patterns must be linear (no variable appears twice)

and must give the index arguments of the inductive function and the parametric

arguments of the value constructor with underlines.

Every defining equation must satisfy the guard condition, which constrains the

recursion of the inductive function to be structural on the discriminating argument.

The guard condition must be realized as a decidable condition. There are different

possibilities for the guard condition. In this text we have been using the strictest

form of the guard condition.

Remarks

1. The format for inductive functions is such that universal eliminators can be

defined that can express all other inductive functions. Inductive functions may

also be called eliminators.

2. The special case of zero value constructors is redundant. A proposition ⊥ with

an eliminator ⊥ → ∀XT. X can be defined with a single proof constructor ⊥ → ⊥.

3. Assuming type definitions at the computational level, accommodating type defi-

nitions also at the propositional level adds the elimination restriction. Note that

the dominance condition is vacuously satisfied for propositional type definitions.

4. Defining equations with a secondary case analysis (e.g., subtraction) are a syn-

tactic convenience. They can be expressed with auxiliary functions defined as

inductive functions.

5. Our presentation of inductive definitions is compatible with Coq but takes away

some of the flexibility provided by Coq. Our format requires that in Coq a re-

cursive abstraction (i.e., fix) is directly followed by a match on the discriminating

argument. This excludes a direct definition of Euclidean division. It also excludes

358

the (redundant) eager recursion pattern sometimes used for well-founded recur-

sion in the Coq literature.

359

Appendix: Basic Definitions

We summarize basic definitions concerning functions and predicates. We make

explicit the generality coming with dependent typing. As it comes to arity, we state

the definitions for the minimal number of arguments and leave the generalization

to more arguments to the reader (as there is no formal possibility to express this

generalization).

A fixed point of a function fX→X is a value xX such that fx = x.

Two types X and Y are in bijection if there are functions fX→Y and gY→X invert-

ing each other; that is, the roundtrip equations∀x. g(fx) = x and∀y. f(gy) = y
are satisfied. We define:

invg f := ∀x. g(fx) = x g inverts f

For functions f : ∀xX . px we define:

injective (f) := ∀xx′. fx = fx′ → x = x′ injectivity

surjective (f) := ∀y ∃x. fx = y surjectivity

bijective (f) := injective (f)∧ surjective (f) bijectivity

f ≡ f ′ := ∀x. fx = fx′ agreement

The definitions extend to functions with n ≥ 2 arguments as one would expect.

Note that injectivity, surjectivity, and bijectivity are invariant under agreement.

For binary predicates P : ∀xX . px → P we define:

functional (P) := ∀xyy ′. Pxy → Pxy ′ → y = y ′ functionality

total (P) := ∀x ∃y. Pxy totality

The definitions extend to predicates with n ≥ 2 arguments as one would expect.

For unary predicates P,Q : X → P we define:

P ⊆ Q := ∀x. Px → Qx respect

P ≡ Q := ∀x. Px ←→ Qx agreement

The definitions extend to predicates with n ≥ 2 arguments as one would expect.

For functions f : ∀xX . px and predicates P : ∀xX . px → P:

f ⊆ P := ∀x. Px(fx) respect

361

Appendix: Basic Definitions

The definitions extend to functions with n ≥ 2 arguments and predicates with n+1

arguments as one would expect.

The following facts have straightforward proofs:

1. P ⊆ Q → functional (Q)→ functional (P)

2. P ⊆ Q → total (P)→ total (Q)

3. P ⊆ Q → total (P)→ functional (Q)→ P ≡ Q
4. f ⊆ P → functional (P)→ (∀xy. Pxy ←→ fx = y)

362

Appendix: Favorite Problems

Here is a list of problems the author likes to discuss with students in oral exams.

The problems are given in the order they appear first in the text.

1. Fibonacci function with iter, uniqueness of procedural specification

2. Russell’s law

3. Leibniz symmetry

4. Leibniz equality

5. Constructor laws for numbers

6. Kaminski’s equation

7. Eliminator for numbers

8. Equality decider for numbers

9. N ≠ B

10. Cantor pairing

11. Barber theorem

12. Bijection between sum types and sigma types

13. Skolem equivalence

14. Certifying decider equivalence

15. Bijection and cardinality theorems for finite types

16. N is not finite

17. Pigeonhole theorem for finite types

18. Bijection between (B→ B) and B× B under FE

19. PE implies PI, SE implies PE

20. Counterexample characterization of XM

21. Classical reasoning for stable claims

22. Antisymmetry of order on numbers from first principles

23. Euclidean division

24. Step-indexed linear search (correctness)

25. Size recursion operator

26. GCD functions and relations (step-indexed, certifying, inductive constructions)

27. Discriminating element lemmas

363

Appendix: Favorite Problems

28. Equivalent nonrepeating lists have equal length

29. Correctness of arithmetic expression compiler

30. Predecessor and constructor laws for indexed numeral types

31. Inversion operator and equality decider for indexed numeral types

32. Decidability of regular expression matching

33. Glivenko’s theorem and agreement of ND and Hilbert systems

34. Intuitionistic unprovability of double negation law

35. Inductive equality versus Leibniz equality

36. Hedberg’s theorem and CD(X)→ DPI(X)

364

Appendix: Exercise Sheets

Below you will find the weekly exercise sheets for the course Introduction to

Computational Logic as given at Saarland University in the summer semester 2022

(13 weeks of full teaching). The sheets tell you which topics of MPCTT we covered

and how much time we spent on them.

365

Appendix: Exercise Sheets

Assignment 1

Do the following exercises on paper using mathematical notation and also with the

proof assistant Coq. Follow the style of Chapter 1 and the accompanying Coq file

gs.v. For each function state the type and the defining equations. Make sure you

understand the definitions and proofs you give.

Exercise 1.1 Define an addition function add for numbers and prove that it is com-

mutative.

Exercise 1.2 Define a distance function dist for numbers and prove that it is com-

mutative. Do not use helper functions.

Exercise 1.3 Define a minimum function min for numbers and prove that it is com-

mutative. Do not use helper functions. Prove minx (x +y) = x.

Exercise 1.4 Define a function fib satisfying the procedural Fibonacci equations.

Define the unfolding function for the equations and prove your function satisfies

the unfolding equation.

Exercise 1.5 Define an iteration function computing fn(x) and prove the shift laws

f Sn(x) = fn(fx) = f(fn(x)).

Exercise 1.6 Give the types of the constructors pair and Pair for pairs and pair

types. Give the inductive type definition. Define the projections fst and snd and

prove the η-law. Define a swap function and prove that it is self-inverting. Do not

use implicit arguments.

Want More?

You will find further exercises in Chapter 1 of MPCT. You may for instance define

Ackermann functions using either a higher-order helper function or iteration and

verify that your functions satisfy the procedural specification given as unfolding

function.

366

Assignment 2

Do the exercises on paper using mathematical notation and also with the proof

assistant Coq.

Exercise 2.1 Define a truncating subtraction function using a plain constant defini-

tion and a recursive abstraction.

Exercise 2.2 Assume A := fixf x.λy.match x [0⇒ y | Sx ⇒ S(fxy)].

a) Gives the types for A, f , x, and y .

b) For each of the following equations, give the normal forms of the two sides and

say which reduction rules are needed. Decide whether the equation holds by

computational equality.

(i) A1 = S.

(ii) A2 = λy.SSy

(iii) (letf = A1 inf) = S

(iv) A = λxy.Axy
(v) A = fixf x.match x [0⇒ λy.y | Sx ⇒ λy. S(fxy)]

Exercise 2.3 Prove the following propositions (diagrams, terms, and Coq). Assume

that X, Y , Z are propositions.

a) X → Y → X
b) (X → Y → Z)→ (X → Y)→ X → Z
c) (X → Y)→ ¬Y → ¬X
d) (X → ⊥)→ (¬X → ⊥)→ ⊥
e) ¬(X ↔ ¬X)
f) ¬¬(¬¬X → X)
g) ¬¬(((X → Y)→ X)→ X)
h) ¬¬((¬Y → ¬X)→ X → Y)
i) (X ∧ Y → Z)→ (X → Y → Z)
j) (X → Y → Z)→ (X ∧ Y → Z)
k) ¬¬(X ∨¬X)
l) ¬(X ∨ Y)→ ¬X ∧¬Y
m) ¬X ∧¬Y → ¬(X ∨ Y)

367

Appendix: Exercise Sheets

Assignment 3

Do the exercises on paper using mathematical notation and also with the proof

assistant Coq.

Exercise 3.1 (Match functions and impredicative characterizations) Give the

types and the defining equations for the matching functions for ⊥, ∧ and ∨.

Following the types of the matching functions, state the impredicative characteriza-

tions for ⊥, ∧ and ∨. Make sure you can prove the impredicative characterizations

(proof diagram, proof term, coq script). Type the type arguments of the matching

functions with T (rather than P) if this is possible (elimination restriction). Ex-

plain why in the impredicative characterizations all type arguments must be typed

with P.

Exercise 3.2 (Exclusive disjunction) Exclusive disjunction X ⊕ Y is a logical con-

nective satisfying the equivalence X ⊕ Y ←→ (X ∧¬Y)∨ (Y ∧¬X).
a) Give an inductive definition of exclusive disjunction and prove the above equiv-

alence.

b) Define the matching function for inductive exclusive disjunction.

c) Give and verify the impredicative characterization of exclusive disjunction.

Exercise 3.3 (Double negation law) Prove the equivalence

(∀XP. X ∨¬X)←→ (∀XP.¬¬X → X)

to show that the law of excluded middle is intuitionistically equivalent to the double

negation law. Do the proof first with a diagram and then verify your reasoning with

Coq.

Exercise 3.4 (Conversion rule) Prove

(∀pX→P. py → px)→ (∀pX→P. px ←→ py)

with a diagram and with Coq. Assume X :T and determine the types of the variables

x and y .

368

Exercise 3.5 (Propositional equality) Assume the constants

eq : ∀XT. X → X → P

Q : ∀XT∀xX . eqX xx

R : ∀XT∀xyX ∀pX→P. eqXxy → px → py

for propositional equality and prove the following proposition assuming the vari-

able types x :X, y :X, z :X, f :X → Y , X :T, and Y :T:

a) eqxy → eqyx

b) eqxy → eqyz → eqxz

c) eqxy → eq (fx) (fy)

d) ¬eq>⊥
e) ¬eq t f

For each occurrence of eq determine the implicit argument.

369

Appendix: Exercise Sheets

Assignment 4

Do the exercises on paper using mathematical notation and verify your findings

with the proof assistant Coq.

Exercise 4.1 Define the equational constants eq, Q, and R.

Exercise 4.2 MPCTT gives two proofs of transitivity, one using the conversion rule

and one not using the conversion rule. Give each proof as a diagram and as a term

and verify your findings with the proof assistant Coq.

Exercise 4.3 Define the eliminators for booleans, numbers, and pairs.

Exercise 4.4 (Truncating subtraction)

Define a truncating subtraction function using the eliminator for numbers and not

using discrimination. Show that your function agrees with the standard subtraction

function from Chapter 1 using the eliminator for numbers.

Exercise 4.5 (Boolean equality decider)

Define a boolean equality decider eqb : N→ N→ B using the eliminator for numbers

and not using discrimination. Show that your function satisfies eqbxy = t←→ x =
y using the eliminator for numbers. Use this result to show ∀xyN. x = y ∨x ≠ y .

Exercise 4.6 (Boolean pigeonhole principle)

a) Prove the pigeonhole principle for B: ∀xyzB. x = y ∨ x = z ∨y = z.

b) Prove Kaminski’s equation based on the instance of the boolean pigeonhole

principle for f(fx), fx, and x.

Exercise 4.7 (Pair types)

a) Define the eliminator for pair types.

b) Prove that the pair constructor is injective using the eliminator.

c) Use the eliminator to define the projections π1, π2 and swap.

d) Prove the eta law using the eliminator.

e) Prove swap(swapa) = a.

Exercise 4.8 (Unit type >)

a) Define the eliminator for > (following the scheme for B).

b) Prove the pigeonhole principle for >: ∀xy>. x = y .

c) Prove B ≠ >.

Exercise 4.9 Show B ≠ T.

We remark that B = P cannot be proved or disproved.

370

Assignment 5

Do the exercises on paper and verify your findings with Coq.

Exercise 5.1 Define the constants ex, E, and M∃ for existential quantification both

inductively and impredicatively.

Exercise 5.2 Give and verify the impredicative characterization of existential quan-

tification.

Exercise 5.3 Give a proof term for (∃x.px) → ¬∀x.¬px using the constants for

existential quantification. Do not use matches.

Exercise 5.4 Prove the following facts about existential quantification:

a) (∃x∃y. pxy)→ ∃y∃x. pxy
b) (∃x. px ∨ qx) ←→ (∃x.px)∨ (∃x.qx)
c) ((∃x.px)→ Z) ←→ ∀x. px → Z
d) ¬¬(∃x.px) ←→ ¬∀x.¬px
e) (∃x.¬¬px) → ¬¬∃x.px
f) (∃x.px)∧ Z ←→ ∃x. px ∧ Z
g) x ≠ y ←→ ∃p. px ∧¬py

Exercise 5.5 (Fixed points)

a) Prove that all functions > → > have fixed points.

b) Prove that the successor function S : N→ N has no fixed point.

c) For each type Y = ⊥, B, B× B, N, P, T give a function Y → Y that has no fixed

point.

d) State and prove Lawvere’s fixed point theorem.

Exercise 5.6 (Intuitionistic drinker) Using excluded middle, one can argue that in

a bar populated with at least one person one can always find a person such that if

this person drinks milk everyone in the bar drinks milk:

∀XT∀pX→P. (∃xX .>)→ ∃x. px → ∀y.py

The fact follows intuitionistically once two double negations are inserted:

∀XT∀pX→P. (∃xX .>)→ ¬¬∃x. px → ∀y.¬¬py

Prove the intuitionistic version.

371

Appendix: Exercise Sheets

Exercise 5.7 Give the procedural specification for the Fibonacci function as an un-

folding function and prove that all functions satisfying the unfolding equation

agree.

Exercise 5.8 (Puzzle) Give two types that satisfy and dissatisfy the predicate

λXT.∀fgX→X ∀xyX . fx = y ∨ gy = x.

372

Assignment 6

Exercise 6.1 (Constructor laws for sum types)

Prove the constructor laws for sum types.

a) Lx ≠ Ry .

b) Lx = Lx′ → x = x′.
c) Ry = Ry ′ → y = y ′.

Exercise 6.2 (Sum and sigma types)

a) Define the universal eliminator for sum types and use it to prove

∀aX+Y . (Σx. a = Lx)+ (Σy. a = Ry).

b) Define the projections π1 and π2 for sigma types.

c) Write the eta law ∀asigp. a = (π1a,π2 a) for sigma types without notational

sugar and without implicit arguments and fully quantified.

d) Define the universal eliminator for sigma types and use it to prove the eta law.

e) Prove ∀xyB. x & y = f a (x = f)+ (y = f).

Exercise 6.3 (Certifying division by 2)

Define a function ∀xN Σn. (x = n · 2)+ (x = S(n · 2)).

Exercise 6.4 (Certifying distance function)

Assume a function ∀xyN Σz. (x + z = y) + (y + z = x) and use it to define

functions f as follows. Verify that your functions satisfy the specifications.

a) fxy = x −y
b) fxy = t ←→ x = y
c) fxy = (x −y)+ (y − x)
d) fxy = t←→ (x −y)+ (y − x) ≠ 0

Exercise 6.5 (Certifying deciders) Define functions as follows.

a) ∀XYT. D(X)→D(Y)→D(X + Y).
b) ∀XT. (D(X)→ ⊥)→ ⊥.

c) ∀XT fX→B xX . D(fx = t).

d) ∀XT. D(X) a ΣbB. Xa b = t.

373

Appendix: Exercise Sheets

Exercise 6.6 (Bijectivity)

a) Prove B B (>+>).
b) Prove (B B >)→ ⊥.

c) Prove B (X × Y) (sig (λxX .Y)).

d) Prove B (X + Y) (sig (λbB. if b then X else Y)).

e) Find a type X for which you can prove BX (X +>).
f) Assume function extensionality and prove B (> → >)>.

g) Assume function extensionality and prove B (B→ B) (B× B).

374

Assignment 7

Do the proofs with the proof assistant and explain the proof ideas on paper.

Exercise 7.1 (Option types)

a) State and prove the constructor laws for option types.

b) Give the universal eliminator for option types.

c) Prove B (O(X)) (X +>).
d) Prove E(X)a E(O(X)).
e) Prove ∀aO(X). a ≠ � a Σx. a = ◦x.

f) Prove ∀fX→O(Y). (∀x. fx ≠ �)→ ∀x Σy. fx = ◦y .

g) Prove ∀xO3(⊥). x = �∨ x = ◦�∨ x = ◦◦�.

h) Prove ∀f O3(⊥)→O3(⊥)∀x. f 8(x) = f 2(x).

i) Find a type X and functions f : X → O(X) and g : O(X) → X such that you can

prove invg f and disprove invf g.

Exercise 7.2 (Finite types)

Let d be a certifying decider for p : On(⊥)→ T. Prove the following:

a) D(∀x.px).
b) D(Σx.px).
c) (Σx.px)+ (∀x.px → ⊥).
d) The type N of numbers is not finite.

Exercise 7.3 (Pigeonhole)

Prove ∀fOSn(⊥)→On(⊥).Σab. a ≠ b ∧ fa = fb.

Intuition: If n + 1 pigeons are in n holes, there must be a hole with at least two

pigeons in it.

Exercise 7.4 (Function extensionality)

Assume function extensionality and prove the following.

a) ∀f>→>. f = λa>.a.

b) B (> → >)>.

c) B ≠ (> → >).
d) E(B→ B).

Exercise 7.5 (Proof irrelevance)

a) Prove PE→ PI.

b) Suppose there is a function f : (> ∨ >) → B such that f(L I) = t and f(R I) = f.

Prove ¬ PI. Why can’t you define f inductively?

375

Appendix: Exercise Sheets

Exercise 7.6 (Set extensionality)

We define set extensionality as SE := ∀XT∀pqX→P. (∀x. px ←→ qx) → p = q.

Prove the following:

a) FE→ PE→ SE.

b) SE→ PE.

c) SE→ p − (q ∪ r) = (p − q)∩ (p − r).

376

Assignment 8

Do the proofs with the proof assistant and explain the proof ideas on paper.

Exercise 8.1 (Arithmetic proofs from first principles)

Prove the following statements not using lemmas from the Coq library. Use

the predefined definitions of addition and subtraction and define order as

(x ≤ y) := (x −y = 0). Start from the accompanying Coq file providing the nec-

essary definitions.

a) x +y = x → y = 0

b) x − 0 = x
c) x − x = 0

d) (x +y)− x = y
e) x − (x +y) = 0

f) x ≤ y → x + (y − x) = y
g) (x ≤ y)+ (y < x)
h) ¬(y ≤ x)→ x < y
i) x ≤ y ←→ ∃z. x + z = y
j) x ≤ x +y
k) x ≤ Sx

l) x +y ≤ x → y = 0

m) x ≤ 0 → x = 0

n) x ≤ x
o) x ≤ y → y ≤ z → x ≤ z
p) x ≤ y → y ≤ x → x = y
q) x ≤ y < z → x < z
r) ¬(x < 0)

s) ¬(x +y < x)
t) ¬(x < x)
u) x ≤ y → x ≤ y + z
v) x ≤ y → x ≤ Sy

w) x < y → x ≤ y
x) ¬(x < y)→ ¬(y < x)→ x = y
y) x ≤ y ≤ Sx → x = y ∨y = Sx

z) x +y ≤ x + z → y ≤ z

Exercise 8.2 (Arithmetic proofs with automation)

Do the problems of Exercise 1 with Coq’s definition of order and the automation

tactic lia.

377

Appendix: Exercise Sheets

Exercise 8.3 (Complete induction)

a) Define a certifying function ∀xy. (x ≤ y)+ (y < x).
b) Prove a complete induction lemma.

c) Prove ∀xy.Σab. x = a ·Sy +b ∧ b ≤ y using complete induction and repeated

subtraction.

d) Formulate the procedural specification

f : N→ N→ N

fx y := if [x ≤ y\ then x else f (x − Sy y)y

as an unfolding function using the function from (a).

e) Prove that all functions satisfying the procedural specification agree.

f) Let f be a function satisfying the procedural specification.

i) Prove ∀xy. fxy ≤ y .

ii) Prove ∀xy. Σk. x = k · Sy + fxy .

378

Assignment 9

Do all exercises with the proof assistant.

Exercise 9.1 (Certifying deciders with lia)

Define deciders of the following types using lia but not using induction.

a) ∀xy. (x ≤ y)+ (y < x)
b) ∀xy. (x ≤ y)+¬(x ≤ y)

c) ∀xyN. (x = y)+ (x ≠ y)
d) ∀xy. (x < y)+ (x = y)+ (y < x)

Exercise 9.2 (Uniqueness with trichotomy)

Show the uniqueness of the predicate δ for Euclidean division using nia but not

using induction.

Exercise 9.3 (Euclidean quotient)

We consider γ xya := (a · Sy ≤ x < Sa · Sy).

a) Show that γ specifies the Euclidean quotient: γ xya←→ ∃b. δxyab.

b) Show that γ is unique: γxya→ γxya′ → a = a′.
c) Show that every function fN→N→N satisfies

(∀xy. γ xy(fxy)) ←→ ∀xy. fxy = if [x ≤ y\ then 0 else S(f (x − Sy)y)

d) Consider the function

f : N→ N→ N

f0yb := 0

f(Sx)yb := if [b = y\ then S(fxy0) else fxy(Sb)

Show γ xy(fxy0); that is, fxy0 is the Euclidean quotient of x and Sy . This

requires a lemma. Hint: Prove b ≤ y → γ (x + b)y (fxyb).

Exercise 9.4 (Least and safe predicates)

a) Prove safe p(Sn)←→ safe pn∧¬pn.

b) Prove least (λa. x < Sa · Sy)a←→ ∃b. x = a · Sy + b ∧ b ≤ y .

c) Prove least (λz. x ≤ y + z)z ←→ z = x −y .

d) Show that the predicates in (b) and (c) are decidable using lia.

e) Prove (∀pN→P. exp → ex (leastp))→ ∀x. safe px ∨ ex (leastp).

379

Appendix: Exercise Sheets

Exercise 9.5 (Least witness search)

Let pN→P be a decidable predicate and L and G be the functions from §17.4 of

MPCTT. Prove the following:

a) ∀n. leastp (Gn)∨ (Gn = n∧ safepn)

b) ∀n. pn→ leastp (Gn)

c) ∀nk. safepk→ leastp (Lnk)∨ (Lnk = k+n∧ safep(k+n)
d) ∀n. pn→ leastp (Ln0)

380

Assignment 10

Do all exercises with the proof assistant.

Exercise 10.1 (Relational specification of least witness operators)

One can give a relational specification of least witness operators in the way we have

seen it for division operators. Given a decidable predicate pN→P, we define

δxy := (leastpy ∧y ≤ x)∨ (y = x ∧ safepx)

Understand and prove the following:

a) ∀nxy. pn→ n ≤ x → δxy → leastpy soundness

b) ∀xyy ′. δxy → δxy ′ → y = y ′ uniqueness

c) ∀x Σy. δxy satisfiability

d) ∀x. δx(Gx) correctness of G

e) ∀x. δx(Lx0) correctness of L

Claim (e) needs to be generalized to Lxy for the induction to go through.

Exercise 10.2 (List basics)

Define the universal eliminator and the constructor laws for lists. First on paper

using mathematical notation, then with Coq.

Exercise 10.3 (List facts)

Understand and prove the following facts about lists:

a) x :: A ≠ A

b) (A++B)++C = A++(B++C)
c) len (A++B) = lenA+ lenB

d) x ∈ A++B ←→ x ∈ A∨ x ∈ B.

e) x ∈ f@A ←→ ∃a. a ∈ A∧ x = fa.

Exercise 10.4 (Lists over discrete type)

Understand and prove the following facts about lists over a discrete type:

a) repA+ nrepA

b) nrepA←→ ¬repA

c) dec (repA)

d) x ∈ A→ ΣB. lenB < lenA∧A ⊆ x :: B

e) nrepA→ lenB < lenA→ Σz. z ∈ A∧ z 6∈ B
f) nrepA→ nrepB → A ≡ B → lenA = lenB

Exercise 10.5 (Pigeonhole)

Prove that a list of numbers whose sum is greater than the length of the list must

contain a number that is at least 2: sumA > lenA → Σx. x ∈ A ∧ x ≥ 2. First

define the function sum.

381

Appendix: Exercise Sheets

Exercise 10.6 (Andrej’s Challenge)

Assume an increasing function fN→N (i.e., ∀x. x < fx) and a list A of numbers

satisfying ∀x. x ∈ A←→ x ∈ f@A. Show that A is empty.

382

Assignment 11

Exercise 11.1 (Even and Odd)

Define recursive predicates even and odd on numbers and show that they partition

the numbers: evenn→ oddn→ ⊥ and evenn+ oddn.

Exercise 11.2 (Non-repeating lists)

Assume a discrete base type and prove the following facts. You may use the dis-

criminating element lemma.

a) D(x ∈ A) and D(A ⊆ B)
b) ∀A.ΣB. B ≡ A∧ nrepB

c) A ⊆ B → lenB < lenA → repA

d) nrepA→ A ⊆ B → lenB ≤ lenA→ nrepB

e) nrepA→ A ⊆ B → lenB ≤ lenA→ B ≡ A
f) nrep (f@A)→ nrepA

g) nrepA→ nrep(revA)

Exercise 11.3 (Equivalent nonrepeating lists)

Show that equivalent nonrepeating lists have equal length without assuming dis-

creteness of the base type. Hint: Show nrepA→ A ⊆ B → lenA ≤ lenB by induction

on A with B quantified using a deletion lemma.

Exercise 11.4 (Existential characterizations)

Give non-recursive existential characterizations for x ∈ A and repA and prove their

correctness.

Exercise 11.5 (Existential witness operator for booleans)

Let pB→P be a decidable predicate. Prove exp → sigp.

Exercise 11.6 (Search types)

Prove the following facts about search types for a decidable predicate pN→P.

a) pn→ Tn
b) T(Sn)→ Tn
c) T(k+n)→ Tn

d) Tn→ T0

e) pn→ T0.

f) pn→m ≤ n→ Tm

g) ∀ZT. ((¬pn→ T(Sn))→ Z)→ Tn→ Z
h) ∀qN→T. (∀n. (¬pn→ q(Sn))→ qn)→ ∀n. Tn→ qn
i) Tn ←→ ∃k. k ≥ n∧ pk
Note that (h) provides an induction lemma for T useful for direction → of (i).

383

Appendix: Exercise Sheets

Exercise 11.7 (Strict positivity)

Assume that the inductive type definition B : T ::= C(B → ⊥) is admitted although

it violates the strict positivity condition. Give a proof of falsity. Hint: Assume the

definition gives you the constants

B : T C : (B → ⊥)→ B M : ∀Z. B → ((B → ⊥)→ Z)→ Z

First define a function f : B → ⊥ using the matching constant M .

384

Assignment 12

Exercise 12.1 (Intuitionistic ND)

Assume the weakening lemma and prove the following facts with diagrams giving

for each line the names of the deduction rules used:

a) (A ` ¬¬⊥)→ (A ` ⊥)
b) (A ` ¬¬¬s)→ (A ` ¬s)
c) (A ` s)→ (A ` ¬¬s)
d) A ` s → A, s ` t → A ` t
e) A ` ¬¬(s → t)→ ¬¬s → ¬¬t
f) (` s → t → u)→ (A ` s)→ (A ` t)→ (A ` u)
g) (A ` s → t)→ (A, s ` t)
h) (A ` s ∨ t) a ∀u. (A, s ` u) → (A, t ` u) → (A ` u)

Exercise 12.2 (Classical ND)

Assume the weakening lemma and prove the following facts with diagrams giving

for each line the names of the deduction rules used:

a) (A ˙̀ ⊥)→ (A ˙̀ s)

b) (A ˙̀ ¬¬s)→ (A ˙̀ s)

c) ˙̀ s ∨¬s
d) ˙̀ ((s → t)→ s)→ s

Exercise 12.3 (Glivenko)

Assume ∀As. (A ` s) → (A ˙̀ s) and ∀As. (A ˙̀ s) → (A ` ¬¬s) and prove the

following:

a) A ˙̀ ¬s a A ` ¬s
b) A ˙̀ ⊥ a A ` ⊥
c) ((`⊥)→ ⊥)a ((˙̀⊥)→ ⊥)

Exercise 12.4 (Induction)

a) (A ` s) → pAs can be shown by induction on the derivation of A ` s. Give the

proof obligation for each of the 9 deduction rules.

b) How do the obligations change if we switch to the classical system and prove

(A ˙̀ s)→ pAs?
c) As an example, give the proof obligations for a proof of

(A ˙̀ s)→ (A ` ¬¬s).

385

Appendix: Exercise Sheets

Exercise 12.5 (Reversion, challenging)

We define a reversion function A · s preserving the order of assumptions:

[] · s := s

(t :: A) · s := t → (A · s)

Prove (A ` s)a (` A · s).

386

Assignment 13

Exercise 13.1 (Formulas)

We consider an inductive type for formulas s ::= x | ⊥ | s → t with the constructors

for, Var, Bot, and Imp.

a) Give the types of the constructors.

b) Give the type of the eliminator for formulas.

c) Define a recursive predicate ground for formulas saying that a formula contains

no variables.

d) Prove ground(s)→ ([] ` s)+ ([] ` ¬s) using the eliminator from (b).

Exercise 13.2 (Hilbert Systems)

We consider formulas s ::= x | ⊥ | s → t | s ∨ t.
a) Give the rules for the Hilbert systemsH (s).
b) Give the types of the constructors for the inductive type family A ð s. Explain

why A is a uniform parameter and s is an index.

c) Complete the type of the induction lemma ∀Ap. · · · → ∀s. A ð s → ps.
d) Prove (A ð s → s).
e) Prove (A ð t)→ (A ð s → t).
f) Prove (s :: A ð t)→ (A ð s → t).

Exercise 13.3 (Heyting evaluation)

Consider the Heyting interpretation 0 < 1 < 2.

a) Define the evaluation function E.

b) Give an assignment such that ((x → y)→ x)→ x evaluates to 1.

c) Explain how one showsH (((x → y)→ x)→ x)→ ⊥ using (b).

d) Give a formula that evaluates under all assignments to 2 but is not intuitionisti-

cally provable.

Exercise 13.4 (Certifying solver)

Assume that E is the boolean evaluation function and that every refutation predi-

cate ρ has a certifying solver ∀A. (Σα.∀s ∈ A. Eαs = t)+ρA. Show the following:

a) λA.A ˙̀ ⊥ is a refutation predicate.

b) D(˙̀ s).

c) ˙̀ sa ∀α. Eαs = t.

387

Appendix: Exercise Sheets

Exercise 13.5 (Refutation system)

Consider the predicate ρFor→P inductively defined with the following rules:

⊥ ∈ A
ρ(A)

s ∈ A ¬s ∈ A
ρ(A)

(s → t) ∈ A ρ(¬s :: A) ρ(t :: A)
ρ(A)

¬(s → t) ∈ A ρ(s :: ¬t :: A)
ρ(A)

(s ∧ t) ∈ A ρ(s :: t :: A)
ρ(A)

¬(s ∧ t) ∈ A ρ(¬s :: A) ρ(¬t :: A)
ρ(A)

(s ∨ t) ∈ A ρ(s :: A) ρ(t :: A)
ρ(A)

¬(s ∨ t) ∈ A ρ(¬s :: ¬t :: A)
ρ(A)

a) Show ρ(¬(((s → t)→ s)→ s)).
b) Show ρ(A)→ ∃s. s ∈ A∧Eαs = f.

c) Show the weakening property: ρ(A)→ A ⊆ B → ρ(B).
d) Show ρ is a refutation predicate.

388

Appendix: Glossary

Here is a list of technical terms used in the text but not used (much) otherwise. The

technical terms are given in the order they appear first in the text.

• Discrimination

• Inductive function

• Elimination restriction

• Computational falsity elimination

• Index condition and index variables

• Reloading match

389

Appendix: Historical Remarks

1. The first paper discussing indexed finite types seems to be McBride [21] from

2004. The HoTT book [26] from 2013 doesn’t mention generic finite types. Nei-

ther do generic finite types appear in Martin-Löf’s papers.

391

Appendix: Ideas for Improvements

1. Bijections and their representation with an inductive type should be introduced

more prominently. Maybe one also should do injections early.

2. The presentation of finite types could be harmonized and extended. There are

four equivalent representations:

• Recursive numeral types

• As refinement types of N

• List-based representation

• Indexed numeral types

The representation as refinement type is not mentioned so far, neither are re-

finement types. Recursive numeral types are reintroduced twice, with somewhat

different notations. The two bijection theorems are first shown for recursive nu-

meral types in §11.4, and then again for list-based finite types in Chapter 33. The

injection theorems shown for list-based finite types may also be shown for re-

cursive numeral types (but obtaining the results for list-based finite types seems

easier). An early chapter on recursive numeral types proving the cardinality and

injection theorems should be nice.

393

Bibliography

[1] Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor,

Handbook of Mathematical Logic, pages 739–782. North-Holland, 1977.

[2] Peter Aczel. The Type Theoretic Interpretation of Constructive Set Theory.

Studies in Logic and the Foundations of Mathematics, 96:55–66, January 1978.

[3] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recursion

in type theory. In Mark Aagaard and John Harrison, editors, Theorem Proving

in Higher Order Logics, pages 1–16. Springer Berlin Heidelberg, 2000.

[4] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, 2nd revised edition, 1984.

[5] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM

(JACM), 11(4):481–494, 1964.

[6] Rod M. Burstall. Proving properties of programs by structural induction. The

Computer Journal, 12(1):41–48, 1969.

[7] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic

Introduction to the Coq Proof Assistant. The MIT Press, 2013.

[8] R. L. Constable. Computational type theory. Scholarpedia, 4(2):7618, 2009.

[9] Thierry Coquand. Metamathematical investigations of a calculus of construc-

tions, 1989.

[10] Yannick Forster, Edith Heiter, and Gert Smolka. Verification of PCP-related

computational reductions in Coq. In Interactive Theorem Proving (ITP 2018),

Oxford, LNCS 10895, pages 253–269. Springer, 2018.

[11] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability

in Coq, with an application to the Entscheidungsproblem. In CPP 2019, Lisbon,

Portugal, 2019.

[12] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathematis-

che Zeitschrift, 39(1):176–210, 1935. Translation in: Collected papers of Ger-

hard Gentzen, ed. M. E. Szabo, North-Holland,1969.

395

Bibliography

[13] Gerhard Gentzen. Untersuchungen über das logische Schließen II. Mathematis-

che Zeitschrift, 39(1):405–431, 1935. Translation in: Collected papers of Ger-

hard Gentzen, ed. M. E. Szabo, North-Holland, 1969.

[14] Michael Hedberg. A coherence theorem for Martin-Löf’s type theory. Journal

of Functional Programming, 8(4):413–436, 1998.

[15] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators,

an Introduction. Cambridge University Press, 2008.

[16] Martin Hofmann and Thomas Streicher. The groupoid model refutes unique-

ness of identity proofs. In LICS 1994, pages 208–212, 1994.

[17] Stanisław Jaśkowski. On the rules of supposition in formal logic, Studia Logica

1: 5—32, 1934. Reprinted in Polish Logic 1920-1939, edited by Storrs McCall,

1967.

[18] Nicolai Kraus, Martín Hötzel Escardó, Thierry Coquand, and Thorsten Al-

tenkirch. Generalizations of Hedberg’s theorem. In Proceedings of TLCA 2013,

volume 7941 of LNCS, pages 173–188. Springer, 2013.

[19] Edmund Landau. Grundlagen der Analysis: With Complete German-English Vo-

cabulary, volume 141. American Mathematical Soc., 1965.

[20] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9. Bib-

liopolis Naples, 1984.

[21] Conor McBride. Epigram: Practical programming with dependent types. In

Varmo Vene and Tarmo Uustalu, editors, Advanced Functional Programming,

5th International School, AFP 2004, Tartu, Estonia, August 14-21, 2004, Revised

Lectures, volume 3622 of Lecture Notes in Computer Science, pages 130–170.

Springer, 2004.

[22] John McCarthy and James Painter. Correctness of a compiler for arithmetic

expressions. Mathematical aspects of computer science, 1, 1967.

[23] Bengt Nordström. Terminating general recursion. BIT Numerical Mathematics,

28(3):605–619, Sep 1988.

[24] Raymond M. Smullyan and Melvin Fitting. Set Theory and the Continuum Hy-

pothesis. Dover, 2010.

[25] A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Cambridge University

Press, 2nd edition, 2000.

396

Bibliography

[26] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-

dations of Mathematics. https://homotopytypetheory.org/book, Institute

for Advanced Study, 2013.

[27] Louis Warren, Hannes Diener, and Maarten McKubre-Jordens. The drinker para-

dox and its dual. CoRR, abs/1805.06216, 2018.

397

https://homotopytypetheory.org/book

	Preface
	Getting Started
	Getting Started
	Booleans
	Numbers
	Notational Conventions
	Structural Induction
	Quantified Inductive Hypotheses
	Procedural Specifications
	Pairs and Polymorphic Functions
	Implicit Arguments
	Iteration
	Ackermann Function
	Unfolding Functions
	Concluding Remarks

	Basic Computational Type Theory
	Inductive Type Definitions
	Inductive Function Definitions
	Reduction
	Plain Definitions
	Lambda Abstractions
	Typing Rules
	Let Expressions
	Matches
	Recursive Abstractions
	Computational Equality
	Values and Canonical Terms
	Choices Made by Coq
	Discussion

	Propositions as Types
	Implication and Universal Quantification
	Falsity and Negation
	Conjunction and Disjunction
	Propositional Equivalence
	Notational Issues
	Impredicative Characterizations
	Proof Term Construction using Proof Diagrams
	Law of Excluded Middle
	Discussion

	Conversion Rule, Universe Hierarchy, and Elimination Restriction
	Conversion Rule
	Cumulative Universe Hierarchy
	Elimination Restriction

	Leibniz Equality
	Abstract Propositional Equality
	Basic Equational Facts
	Definition of Leibniz Equality
	Abstract Presentation of Propositional Connectives
	Declared Constants and Lemmas

	Inductive Eliminators
	Boolean Eliminator
	Eliminator for Numbers
	Equality of Numbers is Logically Decidable
	Eliminator for Pairs
	Disequality of Types
	Abstract Return Types
	Uniqueness of Procedural Specifications

	Case Study: Cantor Pairing
	Definitions
	Proofs
	Discussion

	Existential Quantification
	Inductive Definition and Basic Facts
	Barber Theorem
	Lawvere's Fixed Point Theorem

	Executive Summary

	More Type Theory
	Informative Types and Certifying Functions
	Lead Examples
	Sum Types and Sigma Types
	Projections and Skolem Equivalence
	Lead Examples Revisited
	Inhabitation
	Bijection Types
	Notes

	Decision Types, Discrete Types, and Option Types
	Decision Types and Certifying Deciders
	Discrete Types
	Option Types
	Finite Types and Cardinality
	Notes

	Extensionality
	Extensionality Assumptions
	Set Extensionality
	Proof Irrelevance
	Notes

	Excluded Middle and Double Negation
	Characterizations of Excluded Middle
	Double Negation
	Stable Propositions
	Definite Propositions
	Variants of Excluded Middle
	Notes

	Provability
	Provability Predicates
	Consistency

	Numbers and Lists
	Numbers
	Inductive Definition
	Addition
	Multiplication
	Subtraction
	Order
	More Order
	Complete Induction
	Notes

	Euclidean Division
	Certifying Version
	Simply Typed Version
	Uniqueness
	Repeated Subtraction with Complete Induction
	Summary

	Least Witnesses
	Least Witness Predicate
	Step-Indexed Linear Search
	Direct Search
	Variations
	Least Witnesses and Excluded Middle

	Size Recursion and Procedural Specifications
	Basic Size Recursion Operator
	Euclidean Division
	Greatest Common Divisors
	Step-Indexed Function Construction
	Summary

	Lists
	Inductive Definition
	Basic Operations
	Membership
	List Inclusion and List Equivalence
	Setoid Rewriting
	Nonrepeating Lists
	Constructive Discrimination Lemma
	Element Removal
	Cardinality
	Position-Element Mappings

	Case Study: Expression Compiler
	Expressions and Evaluation
	Code and Execution
	Compilation
	Decompilation
	Discussion

	Indexed Inductive Types
	Numeral Types as Indexed Inductive Types
	Numeral Types
	Index Condition and Predecessors
	Inversion Operator
	Embedding Numerals into Numbers
	Recursive Numeral Types

	Inductive Derivation Systems
	Binary Derivation System for Comparisons
	Linear Derivation System for Comparisons
	Derivation Systems for GCDs
	Regular Expressions
	Decidability of Regular Expression Matching
	Post Correspondence Problem

	Inductive Equality
	Basic Definitions
	Uniqueness of Identity Proofs
	Hedberg's Theorem
	Inversion with Casts
	Constructor Injectivity with DPI
	Inductive Equality at Type
	Notes

	Vectors
	Basic Definitions
	Operations
	Converting between Vectors and Lists

	Higher Order Recursion
	Existential Witness Operators
	Linear Search Types
	Definition of Existential Witness Operator
	More Existential Witness Operators
	Eliminator and Existential Characterization
	Notes

	Well-Founded Recursion
	Recursion Types
	Well-founded Relations
	Unfolding Equation
	Example: GCDs
	Unfolding Equation without FE
	Witness Operator
	Equations Package and Extraction
	Padding and Simplification
	Classical Well-foundedness
	Transitive Closure
	Notes

	Aczel Trees and Hierarchy Theorems
	Inductive Types for Aczel Trees
	Propositional Aczel Trees
	Subtree Predicate and Wellfoundedness
	Propositional Hierarchy Theorem
	Excluded Middle Implies Proof Irrelevance
	Hierarchy Theorem for Computational Universes

	Case Studies
	Propositional Deduction
	ND Systems
	Intuitionistic ND System
	Formalisation with Indexed Inductive Type Family
	The Eliminator
	Induction on Derivations
	Classical ND System
	Glivenko's Theorem
	Intuitionistic Hilbert System
	Heyting Interpretation
	Boolean Interpretation
	Boolean Formula Decomposition
	Certifying Solver
	Cumulative Refutation System
	Substitution
	Entailment Relations
	Notes

	Boolean Satisfiability
	Boolean Operations
	Boolean Formulas
	Clausal DNFs
	DNF Solver
	DNF Recursion
	Tableau Refutations
	Abstract Refutation Systems

	Semi-Decidability and Markov's Principle
	Preliminaries
	Boolean Semi-Deciders
	Certifying Semi-Deciders
	Post Operators
	Enumerators
	Reductions
	Summary of Markov Characterizations

	Abstract Reduction Systems
	Paths Types
	Reflexive Transitive Closure

	Data Types
	Data Types
	Inverse Functions
	Bijections
	Injections
	Data Types
	Data Types are Ordered
	Infinite Types
	Infinite Data Types

	Finite Types
	Coverings and Listings
	Finite Types
	Finite Ordinals
	Bijections and Finite Types
	Injections and Finite Types

	Appendices
	Appendix: Typing Rules
	Appendix: Inductive Definitions
	Appendix: Basic Definitions
	Appendix: Favorite Problems
	Appendix: Exercise Sheets
	Appendix: Glossary
	Appendix: Historical Remarks
	Appendix: Ideas for Improvements
	Bibliography

