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Abstract

A recursion scheme is an orthogonal rewriting system with rules of the form
f(x1, . . . , xn)→ s. We consider terms to be equivalent if they rewrite to the same
redex-free possibly infinite term after infinitary rewriting. For the restriction to
the nonnested case, where nested redexes are forbidden, we prove the existence of
principal unifiers modulo scheme equivalence. We give an algorithm computing
principal unifiers by reducing the problem to a novel fragment of semi-unification
we call anchored semi-unification. For anchored semi-unification, we develop a
decision algorithm that returns a principal semi-unifier in the positive case and
has a time complexity of O(n3α(n)) where α(n) is the inverse of the Ackermann
function.
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1 Introduction

Recursion schemes (in the following shortly called schemes) describe mutually
recursive function definitions and go back to the 1970s [19, 2]. They can be
understood as rewriting systems with rules of the form f(x1, . . . , xn) → s such
that there is exactly one rule per function symbol f and s is not a redex. Starting
with a finite term, the limit of repeatedly rewriting with these rules is a possibly
infinite term containing no redexes, see Dershowitz et al. [3].

We consider two terms to be equivalent if they rewrite to the same redex-free
term. This equivalence is known as tree equivalence (introduced by Rosen [19]).
Given a scheme S, we will speak of S-equivalence in the following.

As shown by Courcelle [2], S-equivalence is interreducible to the equivalence of de-
terministic pushdown automata (DPDA). DPDA equivalence was an open problem
for 20 years and was finally shown to be decidable by Sénizergues [22]. Sénizergues’
proof yields a non-elementary decision procedure. The best known upper bound
for the complexity of the problem is primitive recursive (see Stirling [24]).

In this thesis, we will consider schemes without nested redexes, which we call
nonnested schemes following Courcelle [2]. Sabelfeld [20] gives a polynomial
decision procedure for S-equivalence where S is a nonnested scheme.

Our motivation to investigate nonnested schemes is compiler verification. Non-
nested schemes suffice to encode control flow graphs (CFGs) where everything but
register updates and jumps is left uninterpreted. See Figure 1.1 for an example of
a CFG together with a corresponding scheme. If two CFGs result in equivalent
recursion schemes, then they are observationally equivalent. So if a compiler
optimization produces a transformed CFG whose recursion scheme is equivalent to
the recursion scheme of the original CFG, then this optimization is sound. Thus in
a verified compiler, a compilation phase that produces a scheme-equivalent CFG
can be validated by running a recursion scheme equivalence checker. We expect
that compilation phases like global value numbering, code motion for assignments
and register allocation (except for spilling) can be validated with this method.

We solve a more general problem than S-equivalence, namely unification modulo
S-equivalence. This relies on our result that S-unification is unitary (i.e., principal
S-unifiers exist). Given two terms s and t, we show how to compute a principal
S-unifier of s and t if one exists. For our results, we restrict substitutions such
that variables are replaced with redex-free terms.

Our method is a certifying algorithm [16] in the following sense. Whenever we
compute a principal substitution σ such that σs and σt are S-equivalent, we also
have a certificate proving that σs and σt are S-equivalent.

Our method works by reducing the unification problem to a new decidable
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1 Introduction

x:=10

x := x - 1
y := 2 * y

return y
x > 0x ≤ 0

f1(x, y) → f2(10, y)
f2(x, y) → if(x− 1 > 0, f2(x− 1, 2 ∗ y), f3(x− 1, 2 ∗ y))
f3(x, y) → return(y)

Figure 1.1: CFG with corresponding scheme

fragment of semi-unification we call anchored semi-unification. Semi-unification
is a generalization of ordinary syntactic unification. Given a set of inequalities
s1 �̇ t1, . . . , sn �̇ tn, a solution consists of substitutions σ, τ1, . . . , τn such that
τi(σsi) = σti for i ∈ {1, . . . , n}. Semi-unification was first identified by Lankford
and Musser [11] in 1978 and rediscovered in different areas ten years later [6, 8, 18].
In its general form, semi-unification was shown to be undecidable by Kfoury et
al. [9]. Several decidable fragments of semi-unification are known, but all of them
differ significantly from our new fragment (see Chapter 5).

We present two decision-procedures for anchored semi-unification. First, we give
a naive algorithm based on equational rules, which allows for a simple proof of
correctness. These rules can be seen as a restriction of the diverging semi-unification
rules of Leiß [13]. However, the naive algorithm has exponential run-time. Second,
we present an efficient algorithm that is based on the unification-closure method [1].
This algorithm has almost cubic complexity, that is, O(n3α(n)) where α(n) is the
inverse of the Ackermann function.

This thesis is based on a publication at RTA 2013 [23].

Overview

In Chapter 2, we define unification modulo nonnested recursion schemes and
show how to reduce this problem to the semi-unification problem.

We employ a direct coinductive definition of S-equivalence for nonnested schemes
and seem to be the first to do so. According to our definition, two terms s and t are
S-equivalent (i.e., s ≡ t) if there is a compliant relation relating s and t. Compared
with process equivalence, compliant relations play the role of bisimulations.

Our first main result is the existence of principal S-unifiers. A substitution σ
is a principal S-unifier of two terms s and t if it is a principal (aka most general)
substitution such that σs ≡ σt. We aim at solving the S-unification problem
(ScUP), asking for a principal S-unifier of two terms fs and gt.

We solve ScUP by reducing it to the anchored semi-unification problem (AnSUP).
This is done using three reduction steps.

ScUP→ FIP→ SUP∗ → AnSUP

12



From the existence of principal S-unifiers, it follows that there are principal
pairs. A pair of terms (fs, gt) is a principal pair for the function symbols f and
g if for all tuples of terms u and v, we have fu ≡ gv iff (fu, gv) is a substitution
instance of (fs, gt).

To find an S-unifier of fs and gt, it suffices to determine a principal pair for f
and g. If there is no principal pair for f and g, then fs and gt are not S-unifiable.

In analogy to up-to techniques for bisimulations, we weaken the conditions
on compliant relations and obtain a decidable criterion for finite relations that
implies S-equivalence for the pairs in the relation (and their substitution instances).
We call finite relations that satisfy this criterion certificates. It turns out that
every finite set of principal pairs can be extended to a certificate by adding more
principal pairs. Thus there are certificates for all S-equivalences between redexes.
On the other hand, a principal certificate contains only principal pairs. A principal
certificate is a relation σF where F is a frame and σ is a principal substitution
such that σF is a certificate. A frame is roughly a relation on terms of the form
fx that does not contain a variable twice. We will show that if there is a principal
pair for f and g, then it is possible to compute a frame F such that there is a
substitution σ with σF being a principal certificate containing a principal pair
for f and g. Finding such a substitution given a frame is the frame instantiation
problem (FIP).

We reduce FIP to the standard semi-unification problem SUP. Since SUP is
undecidable in general, we need a further reduction to the anchored semi-unification
problem AnSUP.

In Chapter 3, we define AnSUP and show that it is decidable using a naive
algorithm. Furthermore, we show that every instance of SUP obtained by our
reduction from FIP translates to an instance of AnSUP. In the diagram above,
SUP∗ indicates the fragment of SUP reachable by our reduction from FIP.

While we use inequalities s �̇ t to define SUP, our definition of AnSUP employs
equations s

.
= t where s and t can contain instance variables αx consisting of a

simple variable x and a substitution variable α that represents a substitution. The
anchoredness constraint ensures that for every relevant instance variable αx, there
is an equation αx

.
= s where s contains no instance variables.

We present a naive decision procedure that employs terminating semi-unification
rules that are a restriction of the rules in [13]. The anchoredness constraint is pre-
served by applications of the semi-unification rules and allows us to always eliminate
instance variables. However, the naive algorithm has exponential complexity.

In Chapter 4, we give a fast algorithm for anchored semi-unification and
show that its complexity is almost cubic. The algorithm is based on an alterna-
tive definition of the semi-unification problem that makes it easier to adapt the
unification-closure method to our problem.
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2 Nonnested Linear Recursion
Schemes

In this chapter, we define the unification problem for nonnested recursion schemes
and show how to reduce it to the semi-unification problem.

2.1 Equivalence Modulo Nonnested Schemes

We assume an alphabet of constants (ranged over by a, b, c), an alphabet of
function symbols (ranged over by f , g, h) and an alphabet of variables (ranged
over by x, y, z). We assume that there are infinitely many variables and finitely
many function symbols. We define terms (ranged over by s, t, u, v) using the
grammar

s, t ::= a | x | s · t | fs

where s is a tuple of terms not containing a term of the form ft.
Note that although we restrict ourselves to a single binary operator (·), we do

not loose expressive power compared to full first-order terms since they can be
encoded, for example with a(s1, s2, . . . , sn) (· · · ((a · s1) · s2) · · · · sn). We impose
the usual discipline that every function symbol has a fixed arity and that for fs,
the length of s is the arity of f . We omit parentheses such that s · t · u = s · (t · u).

Since we will have a rewrite rule for every function symbol, we call every term of
the form fs a redex. A term is simple if it contains no redexes. A term is plain
if it is simple or a redex.

A substitution (ranged over by σ, τ) is a function from variables to simple
terms. Note that this is a nonstandard restriction and affects our results for
unification modulo nonnested schemes. We lift substitutions to range over terms,
tuples and sets in the usual way.

A declaration of f is a rewrite rule fx → s1 · s2 with distinct variables x
and terms s1, s2 containing only variables from x. A nonnested scheme (in the
following shortly scheme) S is a set of declarations that contains exactly one
declaration for every function symbol. We assume that a scheme S is given. For
technical reasons, we require that S is reduced, that is, for every declaration
fx → s1 · s2, both s1 and s2 are plain and at least one of them is a redex.
Sabelfeld [20] uses a similar restriction of the same name. Given a redex fs, its
unfolding S(fs) is the term σt where fx→ t is the unique declaration of f in S
and σ is a substitution with σx = s. We write Sis for ti where Ss = t1 · t2 and
i ∈ {1, 2}.
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2 Nonnested Linear Recursion Schemes

Example 1 For the reduced scheme

f(x, y)→ x · g(a · x, y)

g(x, y)→ y · f(a · x, a · a · y)

infinitary rewriting of the redex f(x, y) results in the infinite tree

·
x ·
y ·

·
a ·
a x

·
·

a ·
a y

· · ·

2

General Convention. From now on until Section 2.5, s, t, u and v will always
denote plain terms and R will always denote a binary relation on plain terms.

We now give a coinductive definition of S-equivalence. We call a relation R on
plain terms closed if R(Sis)(Sit) for all pairs of redexes (s, t) ∈ R and i ∈ {1, 2}.
The kernel of a relation R is KR := {(s, t) ∈ R | s or t simple}. A relation R is
coreflexive if s = t whenever Rst. We call a relation R compliant if it is closed
and KR is coreflexive. Two plain terms s and t are S-equivalent iff there is a
compliant relation R with Rst. Since S is fixed, we simply write s ≡ t to say
that s and t are S-equivalent and use (≡) to denote the set of all S-equivalent
pairs. Note that a compliant relation is essentially a bisimulation between the
trees generated by infinitary rewriting.

Example 2 For the scheme from Example 1,

{(f(x, a · y), g(y, x)),

(x, x), (g(a · x, a · y), f(a · y, a · a · x)),

(a · y, a · y), (f(a · a · x, a · a · a · y), g(a · a · y, a · a · x)), . . .}

is a compliant relation containing (f(x, a · y), g(y, x)). Observe how this relation
corresponds to a walk through the following tree, which can be obtained by
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2.1 Equivalence Modulo Nonnested Schemes

infinitary rewriting of either f(x, a · y) or g(y, x).

·
x ·
·

a y

·
·

a ·
a x

· · ·

2

Proposition 3 S-equivalence (≡) is an equivalence relation on plain terms. More-
over, it is the largest compliant relation.

Proof Reflexivity follows from the fact that {(s, s) | s plain} is compliant. The
other properties follow from the fact that the inverse, union, intersection and
composition of compliant relations are compliant. �

Our coinductive definition of S-equivalence is equivalent to the usual approach
using infinite trees. For every term s, infinitary rewriting with the rules of the
scheme yields a possibly infinite redex-free term that can be seen as a possibly
infinite binary tree Ts whose internal nodes are labeled with · and whose leaves
are labeled with constants and variables. Two terms s and t are tree-equivalent if
Ts = T t. We write (Ts) · (T t) for the tree whose root has exactly Ts and T t as
children. For a formal definition of tree equivalence, see e.g. Courcelle [2]. We will
not define Ts, but instead we use the following two properties.

1. T (s · t) = (Ts) · (T t)
2. Ts = (T (S1s)) · (T (S2s)) if s is a redex

In the following, we write (∼T ) for the relation on plain terms such that s ∼T t iff
Ts = T t. Using property (1.), it is clear that for simple terms s and t, we have
s ∼T t iff s = t. For a simple term s, Ts is finite. In contrast to this, Ts is infinite if
s is a redex because S is reduced. Taking these properties together, we obtain that
K(∼T ) is coreflexive. We also have that (∼T ) is closed because if s ∼T t for redexes
s and t, then, by property (2.), (T (S1s)) · (T (S2s)) = (T (S1t)) · (T (S2t)) and
hence Sis ∼T Sit for i ∈ {1, 2}. Thus (∼T ) is a compliant relation and therefore
(∼T ) ⊆ (≡).

It remains to show that (∼T ) ⊇ (≡). Assume, for contradiction, that there
are plain terms s and t with s ≡ t that are not tree-equivalent. When two trees
are different, then they differ at some finite level. Select s and t such that the
level l at which Ts and T t differ is minimal. Since s ≡ t, we have that s and t
are both redexes because otherwise s = t. Since Ts = (T (S1s)) · (T (S2s)) and
T t = (T (S1t)) · (T (S2t)) differ at level l, there is i ∈ {1, 2} such that T (Sis) and
T (Sit) differ at level l − 1. So we have a contradiction because Sis ≡ Sit.

17



2 Nonnested Linear Recursion Schemes

Remark 4 We can restrict ourselves to plain terms because other terms can be
transformed into plain terms by adding additional declarations to the scheme.

Also, the restriction to reduced schemes is inessential because every scheme can
be transformed into an equivalent reduced one.

• A declaration fx → s with s simple can be eliminated by replacing every
redex ft in S with the simple term S(ft).

• A declaration with deep redexes can be split into several declarations, e.g.

f(x)→ a · g() · x  f(x)→ a · f ′(x)

f ′(x)→ g() · x 2

2.2 Scheme Unification Problem (ScUP)

A substitution σ is an S-unifier of two terms s and t if σs ≡ σt. We define the
usual instantiation pre-order (�) on tuples of terms and substitutions. For two
tuples of terms s and t, we have s � t if σs = t for some substitution σ. For two
substitutions σ and τ , we have σ � τ if τ = τ ′ ◦ σ for some substitution τ ′ (as
usual, (τ ′ ◦ σ)(x) := τ ′(σx)). We call a set Σ of substitutions quasi-principal if
Σ is either empty or contains a substitution σ such that Σ = {τ | σ � τ}. In this
case we call σ a principal element of Σ. A principal S-unifier of s and t is a
principal element of {σ | σs ≡ σt}.

Problem 1 (ScUP) Given two plain terms s and t, find a principal S-unifier of
s and t if one exists. 2

In the remainder of this section, we prove that two terms have a principal S-
unifier if they are S-unifiable. The principal S-unifiers will turn out to be essential
for our reduction, because they allow us to characterize all S-equivalences between
terms with the finite set of principal S-unifiers between terms of the form fx.

The closure C(s, t) of s and t is the smallest closed relation containing (s, t).

Proposition 5 s ≡ t iff K(C(s, t)) is coreflexive.

Proof If s ≡ t, then there is a compliant relation R containing (s, t). Thus
C(s, t) ⊆ R. Hence K(C(s, t)) ⊆ KR is coreflexive.

If K(C(s, t)) is coreflexive, then C(s, t) is a compliant relation containing (s, t).
Thus s ≡ t. �

Proposition 6 For every redex s, we have S(σs) = σ(Ss).

This means that the closure is invariant under substitutions, as can be seen with
the following lemma.

Lemma 7 C(σs, σt) = σ C(s, t)

18



2.3 Frame Instantiation Problem (FIP)

Proof
Using Proposition 6, we obtain that σ C(s, t) is closed. Since also (σ C(s, t))(σs)(σt),
we have C(σs, σt) ⊆ σ C(s, t). It remains to show that C(σs, σt) ⊇ σ C(s, t). This
follows from a simple induction on the derivations of the elements in C(s, t). �

The following well-known result generalizes the existence of principal unifiers for
ordinary unification to infinite systems of equations. Note that σR is coreflexive
iff σ is an (ordinary) unifier of R.

Proposition 8 For a relation R on terms with finitely many variables, {σ |
σR coreflexive} is quasi-principal.

Proof See Proposition 4.10 in Eder [4]. �

Theorem 9 {σ | σs ≡ σt} is quasi-principal.

Proof We have

{σ | σs ≡ σt}
= {σ | K(C(σs, σt)) coreflexive} by Proposition 5

= {σ | K(σ C(s, t)) coreflexive} by Lemma 7

= {σ | σ(K(C(s, t))) coreflexive}

and {σ | σ(K(C(s, t))) coreflexive} is quasi-principal by Proposition 8. �

For a relation R on plain terms, we define

↑R := {(s′, t′) | ∃(s, t) ∈ R. (s, t) � (s′, t′)}

Given function symbols f and g, we call (fs, gt) a principal pair for (f, g) if
↑{(fs, gt)} = {(fu, gv) | fu ≡ gv}. Note that a principal pair for f and g
completely characterizes S-equivalence for terms of the form fs and gt.

Corollary 10 If σ is a principal S-unifier of fx and gy, and x, y are pairwise
distinct variables, then σ(fx, gy) is a principal pair.

2.3 Frame Instantiation Problem (FIP)

In this section, we introduce the frame instantiation problem, which will allow us
to compute principal pairs. In Section 2.4, we will then show how to construct a
frame that can be instantiated to a certificate consisting of principal pairs only.

For a relation R on redexes, we define ⇑R := ↑R ∪ {(s, s) | s simple}. A finite
relation R on redexes is a certificate if ⇑R(Sis)(Sit) for all redexes (s, t) ∈ R and
i ∈ {1, 2}. Note that a certificate is essentially a bisimulation up-to instantiation
in the sense of up-to techniques for bisimulations [21].
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2 Nonnested Linear Recursion Schemes

Example 11 For the scheme from Example 1,

R := {(f(x, a · y), g(y, x)), (g(y, x), f(x, a · y))}

is a certificate. Observe that ⇑R is a superset of the compliant relation from
Example 2. Also note that R consists of two principal pairs. 2

Lemma 12 Let R be a certificate. Then ⇑R ⊆ (≡).

Proof It suffices to show that ⇑R is compliant. We have that K⇑R is coreflexive
because K⇑R = ⇑(KR) = ⇑{}. It remains to show that ⇑R is closed. Consider a
pair of redexes (s, t) ∈ ⇑R. We have to show that ⇑R(Sis)(Sit) for i ∈ {1, 2}. By
the definition of ⇑R, there are redexes (u, v) ∈ R with (u, v) � (s, t). Since R is a
certificate, we have ⇑R(Siu)(Siv). As (Siu,Siv) � (Sis,Sit) by Proposition 6, it
follows that ⇑R(Sis)(Sit). �

We write s ≈ t if s and t are redexes with the same function symbol, and
(s, t) ≈ (u, v) if s ≈ u and t ≈ v. We call a relation R on redexes unitary if there
are no distinct pairs (s1, s2), (t1, t2) ∈ R with (s1, s2) ≈ (t1, t2). Note that every
unitary relation is finite because there are only finitely many function symbols. We
call a unitary relation F on redexes of the form fx a frame if no variable occurs
twice in F .

Example 13 Consider the frame

F := {(f(x1, x2), g(x3, x4)), (g(x5, x6), f(x7, x8))}

There is a substitution σ such that σF is the certificate from Example 11. Moreover,
σ is principal with this property if it is the identity on all variables not occurring
in F . 2

Problem 2 (FIP) Given a frame F , find a principal element of

{σ | σF is a certificate}

if it exists. 2

It is easy to decide if a finite relation is a certificate. Thus a certificate proves
that its elements are S-equivalent. So for every solution σ of a frame F , we obtain
a certificate (in the sense of a certifying algorithm [16]) for the fact that all pairs
of terms in σF are S-equivalent.

2.4 ScUP to FIP

To solve ScUP, it suffices to compute principal pairs. Suppose we want to compute
a principal S-unifier of two plain terms s and t. We distinguish three cases.

20



2.4 ScUP to FIP

1. If s and t are both redexes, then consider a principal pair (s′, t′) with
(s′, t′) ≈ (s, t) and fresh variables. We obtain an ordinary unification problem
because

{σ | σs ≡ σt} = {σ | (s′, t′) � σ(s, t)} = {σ | ∃τ. τ(s′, t′) = σ(s, t)}

2. If s and t are both simple, then we are about to solve an ordinary unification
problem since for simple terms, S-equivalence is (syntactic) equality.

3. Otherwise, one of them is a redex and the other one is a simple term and
hence they cannot be S-unifiable.

So in the following, we only consider the first case and construct a frame F such
that for its principal solution σ, a suitable principle pair is contained in σF .

We call a relation R on redexes pointwise S-unifiable if s and t are S-unifiable
whenever Rst. We call a relation R on redexes function-closed if ⇑R(Sis)(Sit)
whenever Rst, i ∈ {1, 2} and Sis and Sit are both redexes. For example, the frame
from Example 13 is pointwise S-unifiable and function-closed.

Lemma 14 For every function-closed and pointwise S-unifiable frame F , there is
a substitution σ such that σF is a certificate containing only principal pairs.

Proof For (s, t) ∈ F , let σs,t be a principal S-unifier of s and t. These S-unifiers
exist because F is pointwise S-unifiable. Since the elements of F have disjoint
variables, the following substitution is well-defined.

τx :=

{
σs,tx if there is (s, t) ∈ F s.t. x occurs in (s, t)

x otherwise

For all (s, t) ∈ F , we have that σs,t(s, t) = τ(s, t) and hence τ(s, t) is a principal pair
by Corollary 10. Thus τF consists only of principal pairs and ⇑(τF ) = (≡) ∩ ⇑F .

It remains to show that τF is a certificate. Consider a pair of redexes (s, t) ∈ τF .
We have to show that ⇑(τF )(Sis)(Sit) for i ∈ {1, 2}. There are (s′, t′) ∈ F with
τ(s′, t′) = (s, t). We have that s ≡ t and hence Sis ≡ Sit. By Proposition 6,
τ(Sis′) = Sis ≡ Sit = τ(Sit′). Thus either both Sis′ and Sit′ are redexes or both
are simple. Hence and because F is function-closed, we have ⇑F (Sis′)(Sit′). Thus
also ⇑F (τ(Sis′))(τ(Sit′)) and equivalently ⇑F (Sis)(Sit). Since ⇑(τF ) = (≡) ∩ ⇑F ,
we conclude that ⇑(τF )(Sis)(Sit). �

However, we are still missing a way to construct an appropriate function-closed
and pointwise S-unifiable frame. It turns out that we get pointwise S-unifiability
for free if we just make the frame as small as we can.

Given function symbols f and g, we write F(f, g) for a fixed function-closed
frame with minimum cardinality containing a pair (fx, gy) for some pairwise
distinct variables x, y. Since every maximum cardinality frame is function-closed,
F(f, g) always exists. For example, we can take the frame from Example 13 for
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F(f, g) where f and g are the function symbols from Example 1. One can easily
compute F(f, g) by incrementally adding elements (hx, h′y) with fresh and distinct
variables x, y as required by the function-closedness constraint.

Lemma 15 If fs and gt are S-unifiable, then F(f, g) is pointwise S-unifiable.

Proof Suppose, for contradiction, that F := {(u, v) ∈ F(f, g) | u, v S-unifiable} 6=
F(f, g). Then F has strictly smaller cardinality. We have ⇑F (fs)(gt) since fs and
gt are S-unifiable. Thus we can conclude a contradiction by showing that F is
also function-closed. Let (u, v) ∈ F and i ∈ {1, 2} such that Siu and Siv are both
redexes. We need to show that ⇑F (Siu)(Siv). Since F(f, g) is function-closed, we
have (⇑F(f, g))(Siu)(Siv). Select a substitution σ with σu ≡ σv. By Proposition 6,
we have σ(Siu) = Si(σu) ≡ Si(σv) = σ(Siv). Thus Siu and Siv are S-unifiable
and hence ⇑F (Siu)(Siv). �

Corollary 16 If fs and gt are S-unifiable, then {σ | σF(f, g) is certificate} is
nonempty and for every principal element σ, we have that σF(f, g) contains a
principal pair for (f, g).

We will reduce FIP to AnSUP in a way that a frame F is mapped to an anchored
system of equations E with {σ | σF is certificate} = {σ | σ semi-unifies E} and
we will prove that {σ | σ semi-unifies E} is quasi-principal. Thus if fs and gt are
S-unifiable, then {σ | σF(f, g) is certificate} contains a principal element σ and
σF(f, g) contains a principal pair for (f, g). Otherwise {σ | σF(f, g) is certificate}
is empty. This concludes the reduction from ScUP to FIP.

2.5 FIP to SUP

In this section, we define the semi-unification problem (SUP) using systems of
inequalities and give a reduction from FIP to SUP.

Let D be a relation on tuples of plain terms. We write the elements (s, t) ∈ D
as inequalities s �̇ t and call D a system of inequalities. We call D directed
if s � t for all (s �̇ t) ∈ D. If σD is directed, then σ is a semi-unifier of D.

Problem 3 (SUP) Given a system of inequalities D, find a principal semi-unifier
of D. 2

In this section, we will show how to construct a system of inequalities with the
same principal solution as a given instance of FIP.

Note that our definition of SUP corresponds roughly to the usual definition
of the semi-unification problem (e.g. in Henglein [6]). Since semi-unification is
undecidable, we cannot hope to solve the problem in general. Instead, we only
consider the image of the reduction from FIP. In Section 3.2, we will show how to
reduce this image to the anchored fragment.
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For a unitary relation R, we define the projection of a pair (s, t) of plain terms
as follows.

πR(s, t) :=


(s′, t′) if Rs′t′ and (s′, t′) ≈ (s, t)

(s, s) if s, t simple

() otherwise

Note that πR(s, t) is well-defined because R is unitary. The following proposition
holds due to the fact that (s, s) � (s, t) iff s = t.

Proposition 17 Let R be unitary. Then ⇑Rst iff πR(s, t) � (s, t).

For a unitary relation R, we construct the system of inequalities

DR := {πR(Sis,Sit) �̇ (Sis,Sit) | Rst, i ∈ {1, 2}}

Example 18 For the frame F from Example 13, we construct the system of
inequalities

D F = { (x1, x1) �̇ (x1, x4),

(g(x5, x6), f(x7, x8)) �̇ (g(a · x1, x2), f(a · x3, a · a · x4)),

(x6, x6) �̇ (x6, x7),

(f(x1, x2), g(x3, x4)) �̇ (f(a · x5, a · a · x6), g(a · x7, x8)) } 2

Proposition 19 Let R be unitary. Then DR is directed iff R is a certificate.

Proof Follows from the construction of DR using Proposition 17. �

Proposition 20 Let R be unitary. Then σ(πR(s, t)) = π(σR)(σs, σt) and σ(DR) =
D(σR).

Lemma 21 Let R be unitary. Then σ semi-unifies DR iff σR is a certificate.

Proof Follows immediately from Proposition 19 and Proposition 20. �

Thus D is a reduction from FIP to SUP.
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In this chapter, we define the anchored semi-unification problem (AnSUP), show
that the reduction from FIP can be extended to AnSUP and give a naive algorithm
proving that AnSUP is decidable.

3.1 Anchored Semi-Unification Problem (AnSUP)

The definition as well as the algorithm for AnSUP rely on a formulation of semi-
unification that uses systems of equations between terms with explicit substitution
variables instead of inequalities. A similar formulation has been used by Leiß [13].
For example, the inequalities (x1, x2) �̇ (x3, x4) and (x5) �̇ (x6) corresponds to the
equations αx1

.
= x3, αx2

.
= x4 and βx5

.
= x6 with the substitution variables α

and β. The substitution variables make the additional substitution on the left-hand
side of inequalities explicit.

We call the variables we have used so far simple variables and assume an
additional alphabet of substitution variables (ranged over by α, β, γ). An
instance variable αx is a pair of a substitution variable and a simple variable.
We define a new kind of terms that extend the simple terms we defined before
with instance variables.

s, t ::= a | x | s · t | αx

Given a simple term s and a substitution variable α, we write α̂s for the term
obtained from s by replacing every variable x by αx. As before, substitutions are
functions from variables to simple terms. In the semi-unification context [13, 6, 8],
this is the standard notion of substitution. We lift substitutions to terms according
to the equations σ(αx) = α̂(σx), σ(s · t) = σs · σt and σa = a.

We say a term s occurs in a term t if s is a subterm of t. We do not consider x
to be a subterm of αx.

An assignment A is a function from substitution variables to substitutions.
Assignments are lifted to terms such that As is the term obtained from s by
replacing every occurrence of an instance variable αx with the simple term (Aα)x.

A system of equations E is a finite set of pairs of terms. We take the freedom
to write s

.
= t for a pair (s, t). A substitution σ is a semi-unifier of E if there is

an assignment A such that for all s
.
= t ∈ E, we have A(σs) = A(σt).

The formulation of semi-unification as just presented has the same expressivity
as the formulation with inequalities. We will now restrict the systems of equations
we consider to obtain the anchored fragment.
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An atom (ranged over by X, Y , Z) is either a simple variable or an instance
variable. A partial equivalence relation (PER) is a symmetric and transitive
relation. Note that a PER (∼) is an equivalence relation on {X | X ∼ X}.

We call an equation αx
.
= s an anchor for αx if s is simple. The anchoredness

condition ensures that there is an anchor for every instance variable αx that might
occur when the semi-unification rules to be defined later are applied. A system of
equations E is anchored with a PER (∼) on atoms if the following conditions
hold.

1. If s
.
= t ∈ E with X and Y occurring in s

.
= t, then X ∼ Y .

2. If x ∼ y and αx ∼ αx, then αx ∼ αy.

3. If αx ∼ αx, then there is a simple term s with αx
.
= s ∈ E or x

.
= s ∈ E.

For example, {x .
= z · βy, αx = a · b} is not anchored, but {x .

= z · βy, αx = a · b,
βy = z, αz = z} is anchored with the symmetric and transitive closure of {(x, z),
(z, βy), (αx, αz), (αz, z)}.

Problem 4 (AnSUP) Given an anchored system of equations E, find a principal
semi-unifier. 2

For comparison to other fragments of semi-unification, we now give a definition
of the anchoredness condition for systems of inequalities. A system of inequalities
is anchored if there is a partition X of the variables such that for every inequality
s �̇ t, the following two conditions hold.

1. All variables in t are in a single class of the partition X.

2. All variables in s are in a single class A of the partition X and every variable
in A occurs at least once at a position in s that also exists in t. Expressed
formally, there is a tuple u and substitutions σ, τ such that σu = s, τu = t
and for all variables x ∈ A, we have that σx = x and x occurs in u.

3.2 FIP to AnSUP

Let F be a frame. We will translate the system of inequalitiesD F into an equivalent
anchored system of equations E such that σ semi-unifies E iff σ semi-unifies D F .

The case where D F contains an element of the form () �̇ (s, t) is trivial, since
in this case, there are no substitutions that semi-unify D F . So in the following,
we assume that D F contains only inequalities between pairs.

We construct E by translating every element of D F into equations according to
the rules

(fx, gy) �̇ (fs, gt)  αx
.
= s, αy

.
= t

(s, s) �̇ (s, t)  s
.
= t
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where α is a fresh substitution variable for every inequality and αx
.
= s stands

for αx1
.
= s1, . . . , αxn

.
= sn with x = (x1, . . . , xn) being a tuple of variables and

s = (s1, . . . , sn) being a tuple of simple terms of the same length. Note that the
rules cover all elements of D F and that in the second rule, s and t are always
simple terms.

Example 22 The system of inequalities from Example 18 is translated into the
system of equations

x1
.
= x4,

αx5
.
= a · x1, αx6

.
= x2, αx7

.
= a · x3, αx8

.
= a · a · x4,

x6
.
= x7,

βx1
.
= a · x5, βx2

.
= a · a · x6, βx3

.
= a · x7, βx4

.
= x8 2

Lemma 23 Let E be a translation of D F for some frame F . Then σ semi-unifies
D F iff σ semi-unifies E.

Proof Since distinct inequalities in D F are translated into equations with disjoint
substitution variables, it suffices to consider the translation E ′ of a singleton subset
D′ ⊆ D F .

Let D′ = {(fx, gy)�̇(fs, gt)}. Then E ′ = {αx .
= s, αy

.
= t}. If σ semi-unifies D′,

then there is a substitution τ with τ(σ(fx, gy)) = σ(fs, gt). Thus σ semi-unifies
E ′ with the assignment A where Aα := τ . If σ semi-unifies E ′, then σ semi-unifies
D′ because (Aα)(σx) = A(σ(αx)) = A(σs) = σs and the same for αy and t.

Let D′ = {(s, s) �̇ (s, t)} with s and t being simple. Then E ′ = {s .
= t}. If σ

semi-unifies D′, then there is a substitution τ with τ(σs) = σs and τ(σs) = σt.
Thus σs = σt and hence σ semi-unifies E ′. If σ semi-unifies E ′, then σs = σt and
hence σ semi-unifies D′. �

We need the following technical lemma to show that the translation is anchored.

Lemma 24 Let (∼) be an equivalence relation on simple variables and let E be a
system of equations containing only equations of the form αx

.
= s or s

.
= t where s

and t are simple terms. Then E is anchored if the following conditions are satisfied.

1. If αx occurs in E and x ∼ y, then αy occurs in E.

2. If αx1
.
= s ∈ E and αx2

.
= t ∈ E, then y1 ∼ y2 for all simple variables y1, y2

that occur in s or t.

3. If s
.
= t ∈ E, then x ∼ y for all simple variables x, y that occur in s or t.

Proof Let ∼̂ be the smallest symmetric relation on atoms such that

• If x ∼ y, then x ∼̂ y.

• If αx and αy occur in E, then αx ∼̂ αy.
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• If αx
.
= s ∈ E and y occurs in s, then αx ∼̂ y.

The transitive closure ∼̂∗ of ∼̂ is a PER. We will show that E is anchored with
∼̂∗. But first, we prove that x ∼ y whenever x ∼̂∗ y. We do this by induction
on the length of the shortest sequence x ∼̂X1 ∼̂ · · · ∼̂Xn ∼̂ y. If n = 0, then the
claim follows immediately from the definition of ∼̂. For the inductive case, we
distinguish two cases. If there is some simple variable Xi with i ∈ {1, . . . , n}, then
the inductive hypothesis for x ∼̂X1 ∼̂ · · · ∼̂Xi and Xi ∼̂ · · · ∼̂Xn ∼̂ y yield x ∼ Xi

and Xi ∼ y and thus x ∼ y. Otherwise, by the definition of ∼̂, there are simple
variables z1, . . . , zn and a single substitution variable α such that Xi = αzi for
all i ∈ {1, . . . , n}. By the definition of ∼̂, there are simple terms s, t such that
αz1

.
= s ∈ E and αzn

.
= t ∈ E where x occurs in s and y occurs in t. Thus x ∼ y

by requirement (2) on (∼).
Now, we show that E is anchored with ∼̂∗.

1. Let s
.
= t ∈ E with X and Y occurring in s

.
= t. We need to show that

X ∼̂∗Y . If s and t are simple, then this follows immediately from requirement
(3) on (∼). Otherwise s = αx for some instance variable αx and the claim
follows from the definition of ∼̂.

2. Let x ∼̂∗ y and αx ∼̂∗ αx. We need to show that αx ∼̂∗ αy. Because of
requirement (1) on (∼), it suffices to show that x ∼ y. As we proved before,
this follows from x ∼̂∗ y.

3. Let αx∼̂∗αx. It suffices to show that there is a simple term s with αx
.
= s ∈ E.

This follows from the conditions on E as ∼̂∗ only contains instance variables
from E. �

Lemma 25 Let E be a translation of D F for some frame F . Then E is anchored.

Proof Consider the equivalence relation (∼) on simple variables such that x ∼ y
iff x and y occur in the same element of F or x = y. It is easy to check that (∼)
and E satisfy the conditions of Lemma 24. �

3.3 Solving AnSUP

In this section, we present naive rules to solve the anchored semi-unification
problem. Our rules are a restriction of the rules presented by Leiß [13].

However, the rules presented in this section only yield an algorithm with expo-
nential complexity. In Chapter 4, we will improve upon this by giving a second
algorithm, which has polynomial complexity.

We first define the solved form computed by our algorithm. We write E, s
.
= t

for the disjoint union E ∪̇ {s .
= t}. Given a system of equations E, we call an

atom X eliminated if E has the form E ′, X
.
= s such that neither X nor (in case

X is a simple variable) an instance variable αX occur in E ′ or in s. A system of
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equations E is in solved form if all equations have the form X
.
= s where X is

eliminated and s is simple.

Lemma 26 If a system of equations E is in solved form, then it has a principal
semi-unifier.

Proof Since E is in solved form, we can unambiguously define a substitution σ
and an assignment A as follows.

σx =

{
s if x

.
= s ∈ E

x else

(Aα)x =

{
s if αx

.
= s ∈ E

x else

For σ to be a semi-unifier of E, we have to show that for every equation X
.
= s ∈ E

we have A(σX) = A(σs). Since E is in solved form, s is simple and cannot contain
an eliminated simple variable. Thus A(σs) = As = s. So it suffices to show that
A(σX) = s.

If X = x for some simple variable x, then σx = s by the definition of σ. Since s
is simple, it follows that A(σx) = A(s) = s.

If X = αx for some instance variable αx, then σx = x because otherwise
x would be eliminated and hence αx could not occur in E. So it follows that
A(σ(αx)) = A(αx) = s.

It remains to show that σ is principal. Consider some other semi-unifier τ of E.
Since τ unifies all equations of the form x

.
= s ∈ E, we have that τx = τ(σx) for

all simple variables x. Thus σ � τ . �

A system of equations E is clashed if one of the following conditions holds.

• a .
= s ∈ E or s

.
= a ∈ E where a 6= s and s is not an atom.

• x .
= s ∈ E where x or αx for some α occurs in s and s is not an atom.

• αx .
= s ∈ E where αx occurs in s 6= αx.

Proposition 27 A clashed system of equations has no semi-unifiers.

The rules in Figure 3.1 transform every anchored system of equations into
an equivalent system of equations that is clashed or in solved form. To ensure
termination, the rules must not be applied to a clashed system of equations. We
write s[t/x] for σs where σ is the unique substitution satisfying σx = t and σy = y
for all y with y 6= x. We write s[t/αx] for the term that is obtained from s by
replacing every occurrence of αx with t. We write E[s/X] for {t[s/X]

.
= u[s/X] |

t
.
= u ∈ E}.
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Rbop E, s1 · s2
.
= t1 · t2 =⇒ E, s1

.
= t1, s2

.
= t2

Rrefl E, s
.
= s =⇒ E

Rorient1 E, s
.
= αx =⇒ E,αx

.
= s if s is not an instance variable

Rorient2 E, s
.
= x =⇒ E, x

.
= s if s is not an atom

Relim1 E,αx
.
= s =⇒ E[s/αx], αx

.
= s if s is simple

Relim2 E, x
.
= s =⇒ E[s/x], x

.
= s if x does not occur in s

and s is simple

Figure 3.1: Semi-Unification Rules

Example 28 We transform the following anchored system of equations into solved
form.

αx1
.
= a · x3, αx2

.
= a · (a · x4), αx3

.
= a · x1, αx4

.
= x2, x1

.
= x4

Relim2

=⇒ αx4
.
= a · x3, αx2

.
= a · (a · x4), αx3

.
= a · x4, αx4

.
= x2, x1

.
= x4

Relim1

=⇒ x2
.
= a · x3, αx2

.
= a · (a · x4), αx3

.
= a · x4, αx4

.
= x2, x1

.
= x4

Relim2

=⇒ x2
.
= a · x3, a · αx3

.
= a · (a · x4), αx3

.
= a · x4, αx4

.
= a · x3, x1

.
= x4

Rbop

=⇒ x2
.
= a · x3, a

.
= a, αx3

.
= a · x4, αx4

.
= a · x3, x1

.
= x4

Rrefl

=⇒ x2
.
= a · x3, αx3

.
= a · x4, αx4

.
= a · x3, x1

.
= x4 2

Proposition 29 If E =⇒ E ′, then E and E ′ have the same semi-unifiers.

Proposition 30 If E,X
.
= s is anchored and s is simple, then E[s/X], X

.
= s is

anchored.

Lemma 31 If E =⇒ E ′ and E is anchored, then E ′ is anchored.

Proof For Relim1 and Relim2, this follows immediately from Proposition 30. For
the other rules, the claim is trivial. �

Lemma 32 There is no infinite reduction sequence E1 =⇒ E2 =⇒ · · · such that
Ei is not clashed for all i ∈ {1, 2, . . .}.

Proof We assign a triple of natural numbers (n1, n2, n3 +n4 +n5) to every system
of equations E = {s1

.
= t1, . . . , sn

.
= tn} where

n1 is the number of simple variables in E that are not eliminated,
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n2 is the number of instance variables in E that are not eliminated,

n3 is the sum of the sizes of every term si that is not an instance variable
for i ∈ {1, 2, . . .},

n4 is the sum of the sizes of every term si that is not an atom for i ∈ {1, 2, . . .}
and

n5 is the number of equations in E.

With the usual lexicographical ordering, this yields a well-founded ordering on
systems of equations. It is easy to show that every rule application respects the
ordering and hence an infinite reduction sequence is impossible. �

We call a system of equations E terminal if there is no system of equations E ′

with E =⇒ E ′.

Proposition 33 If E is anchored and terminal, then E is either clashed or in
solved form.

Proof Let E be anchored, terminal and not clashed. We show that E is in solved
form, that is, all equations have the form X

.
= s where X is eliminated and s is

simple.
Let s

.
= t ∈ E. Then s is an atom because otherwise Rbop, Rrefl, Rorient1 or

Rorient2 would be applicable contradicting the fact that E is terminal. Also, t is
simple because if it contained an instance variable αx, then E would also contain
an equation αx

.
= u because E is anchored. This is a contradiction because Relim1

would be applicable. Since s is an atom and t is simple, s must be eliminated
because otherwise Relim1 or Relim2 would be applicable. �

Thus we can transform every anchored system of equations E either into solved
form or into a clashed system of equations. In the first case, we have computed a
principal semi-unifier of E. In the second case, E has no semi-unifiers.
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The naive rules for anchored semi-unification presented in Section 3.3 suffer from the
same problems as the naive rules for ordinary unification (see [1]). The term size can
grow exponentially in the number of steps. For example, the rules perform poorly
on the ordinary unification problem x1

.
= x2 · x2, x2

.
= x3 · x3, . . . , xn−1

.
= xn · xn.

The repeated substitutions yield a term of exponential size. Processing such
exponentially large terms can take an exponential number of steps.

In this chapter, we will show how to solve AnSUP in almost cubic time.

4.1 Extended Substitutions

Our efficient algorithm makes use of an alternative definition of the semi-unification
problem, which we will give now. An extended substitution θ is a function from
atoms to simple terms. Extended substitutions are lifted to terms according to the
equations θ(s · t) = θs · θt and θa = a. Note that extended substitutions ignore
the intended connection between a simple variable x and its instance variables αx.
For example, we can have θx = a · a while θ(αx) = a.

To regain the connection between instance variables and simple variables, we
define a restriction on extended substitutions. A compatible substitution θ is
an extended substitution such that θ(αx) = θ(α̂(θx)) for all simple variables x and
substitution variables α.

Now, we can define an alternative to semi-unifiers. A compatible unifier θ
of a system of equations E is a compatible substitution such that θs = θt for all
s
.
= t ∈ E. To show the equivalence to semi-unifiers, we need a standard notion

from unification theory. A substitution σ is idempotent if σ(σs) = σs for all
terms s.

Lemma 34 An anchored system of equations E has a semi-unifier iff it has a
compatible unifier.1

Proof We show the two directions of the biconditional separately.

• If E has a semi-unifier, then it also has an idempotent semi-unifier. This
follows from the construction in the proof of Lemma 26. Let σ be an

1The restriction to anchored systems of equations is not strictly necessary and could be removed
by showing that every system of equations that has a semi-unifier also has an idempotent
semi-unifier. For systems of inequalities, this has been shown by Henglein [6].
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idempotent semi-unifier of E. Then there is an assignment A such that
A(σs) = A(σt) for all s

.
= t ∈ E. We define the extended substitution

θx := σx

θ(αx) := A(σ(αx))

We first prove that θs = A(σs) for all terms s by induction on s. If s = x,
then θx = σx = A(σx) because σx is simple. The other cases are trivial.

Using this, we can show that θ is a compatible unifier of E. We have that
θs = A(σs) = A(σt) = θt for all s

.
= t ∈ E. It remains to show that θ is

compatible. This is the case because θ(α̂(θx)) = θ(α̂(σx)) = θ(σ(αx)) =
A(σ(σ(αx))) = A(σ(αx)) = θ(αx) for all simple variables x and substitution
variables α.

• Let θ be a compatible unifier of E. We define the substitution σ with
σx := θx and the assignment A with (Aα)x := θ(αx).

For σ to be a semi-unifier of E, it suffices to show that θs = A(σs) for all
terms s. We prove this by induction on s. If s = x, then θx = σx = A(σx)
because σx is simple. If s = αx, then

A(σ(αx)) = A(α̂(σx)) by the definition of substitutions

= A(α̂(θx)) by the definition of σ

= θ(α̂(θx)) by a nested induction on α̂(θx)

= θ(αx) because θ is compatible

The case that s is not an atom is trivial. �

4.2 Fast Semi-Unification Rules

In this section, we present fast rules to solve AnSUP.
Given a system of equations E, we call an extended substitution θ such that

θs = θt for all s
.
= t ∈ E a weak unifier of E. Our algorithm works by trans-

forming a system of equations until weak unifiers and compatible unifiers almost
coincide. Since finding a weak unifier is a standard unification problem, this
approach allows us to stay very close to the almost linear unification algorithm
that uses the unification-closure method (see Section 2.3.3 in Baader and Sny-
der [1]). Like in the unification-closure method, we use a union-find structure that
implements an equivalence relation on terms with fixed representatives for each
equivalence class. Leaving out the implementation details, we assume that we can
efficiently manipulate idempotent functions ρ from terms to terms. We call ρs
the representative of s. The corresponding equivalence kernel ('ρ) is defined by
s 'ρ t iff ρs = ρt. It satisfies that s 'ρ ρs and thus ρ selects a representative from
every equivalence class of ('ρ).
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4.2 Fast Semi-Unification Rules

In the algorithm, we will have to merge equivalence classes and select a common
representative. We give precedence to terms without atoms, then terms that are
not atoms, then simple variables and finally instance variables. This is achieved
with the following operation.

(ρ, s ' t)u :=


ρu if ρu 6= ρs and ρu 6= ρt

ρt otherwise, if ρt contains no atoms

ρs otherwise, if ρs is not an atom or ρt = αx for some αx

ρt otherwise

The rules for the fast semi-unification algorithm are shown in Figure 4.1. They
operate on a pair ρ;E consisting of an idempotent function ρ from terms to terms
and a system of equations E. We call such a pair a state. In contrast to the rules
from Section 3.3, we treat the equations in E as unoriented pairs, that is, we do
not distinguish between s

.
= t and t

.
= s.

To solve a system of equations E, we start with the initial state ρE;E where
ρE(αx) = s for some αx

.
= s ∈ E if such an anchor exists and ρEt = t for all other

terms t. The rules work by removing or replacing equations from E while merging
equivalence classes of ('ρ).

We associate every state ρ;E with the system of equations

E(ρ;E) := {s .
= ρs | s 6= ρs} ∪ E

We say that a state ρ;E implies an equation s
.
= t if we have θs = θt for every

weak unifier θ of E(ρ;E).

Proposition 35 A state ρ;E implies every equation s
.
= t with s 'ρ t.

We say that an extended substitution θ is a weak (compatible) unifier of
ρ;E if θ is a weak (compatible) unifier of E(ρ;E). The rules maintain the set of
compatible unifiers of ρ;E. Moreover, as we will show in Lemma 44, if E is empty,
then we can construct a principal weak unifier θ of ρ;E that is compatible and
hence θ is a principal compatible unifier of the initial system of equations.

The rules R′bop and R′refl correspond to rules in the standard unification-closure
algorithm. The rule R′elim is special in that it cares about the relationship between
simple variables and their instance variables. It needs to extract a simple term
bscρ out of ρ.

bscρ =


ρs if ρs contains no atoms

select a smallest simple term t with t 'ρ αx otherwise, if s = αx

bs1cρ · bs2cρ otherwise, if s = s1 · s2

s otherwise, if s is simple

Proposition 36 Every state ρ;E implies the equation bscρ
.
= s.
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4 Solving AnSUP Efficiently

R′refl ρ;E, s
.
= t =⇒ ρ;E

if ρs = ρt

R′bop ρ;E, s
.
= t =⇒ ρ, s ' t;E, s1

.
= t1, s2

.
= t2

if ρs 6= ρt, ρs = s1 · s2 and ρt = t1 · t2
R′elim ρ;E, s

.
= t =⇒ ρ, s ' t;E,α1x

.
= α̂1btcρ, . . . , αnx

.
= α̂nbtcρ

if ρs 6= ρt, ρs = x and α1x, . . . , αnx are all instance variables

of x in E(ρ;E, s
.
= t)

Figure 4.1: Fast Semi-Unification Rules

Note that bscρ can be undefined if s contains an instance variable αx such that
there is no simple term t with αx 'ρ t. This would lead to R′elim being not
applicable. However, we will prevent this from happening using the anchoredness
condition.

4.3 Correctness

It is easy to see that the rules are sound in the following sense.

Proposition 37 If ρ;E =⇒ ρ′;E ′, then θ is a compatible unifier of E(ρ;E) iff θ
is a compatible unifier of E(ρ′;E ′).

It remains to show that whenever we reach a terminal state that was obtained
by applying the rules to an initial state constructed from an anchored system of
equations, we can efficiently determine a principal compatible unifier or the fact
that there are no compatible unifiers. This proof requires a number of invariants.

We call a state ρ;E proper if the following properties are satisfied.

1. If ρs is an instance variable, then all terms in the equivalence class [s]'ρ are
instance variables.
If ρs is a simple variable, then all terms in the equivalence class [s]'ρ are
atoms.
If s contains no atoms, then ρs contains no atoms.

2. If s1 · s2 'ρ t1 · t2, then (si, ti) is in the reflexive transitive closure of ('ρ)∪E
for i ∈ {1, 2}.

Lemma 38 For every state ρ;E, rule application preserves the invariant that ρ;E
is proper.

Proof The first property of a proper state follows from the definition of ρ, s ' t.
It remains to show that the second property is preserved. For the rule R′elim, this
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4.3 Correctness

follows from the first property. For R′bop, this follows from the fact that we add
the necessary equations to E. �

The initial state ρE;E is proper for every system of equations E. Thus all states
that will ever occur are proper. In the following, we will assume that all states are
proper without stating it again.

To argue that the rules preserve anchoredness, we extract a system of equations
from a state and require this system of equations to be anchored. It turns out
that E(ρ;E) is not sufficient for this purpose and we need to add the additional
anchors

A(ρ;E) := {αx .
= s | s simple, αx 'ρ s and ρ(αx) contains an atom}

We call a state ρ;E anchored with a PER (∼) if the system of equations E(ρ;E)∪
A(ρ;E) is anchored with (∼) and for every anchor αx

.
= s ∈ E, we have αx 'ρ s.

It might seem strange that we remove anchors from A(ρ;E) once a representative
contains no atoms. This is to take care for situations like E = {x .

= a, y
.
= a, αx =

a} where x and y must not be related by a PER with which E is anchored, but x
and y might happen to share the representative a.

Proposition 39 If the system of equations E is anchored, then the initial state
ρE;E is anchored.

In the following, we write s ∼ t if X ∼ Y for all atoms X, Y in s or t. Note that
if t contains an atom, s ∼ t and t ∼ u, then s ∼ u.

Lemma 40 If ρ;E, s
.
= t is anchored with a PER (∼), then ρ, s ' t;E is also

anchored with (∼).

Proof Let s′, t′ be the terms such that {s′, t′} = {ρs, ρt} and t′ = (ρ, s ' t)s. The
system of equations E(ρ, s ' t;E) can be obtained from E(ρ;E, s

.
= t) by removing

s
.
= t, replacing some equations u

.
= s′ with u

.
= t′ and possibly adding the equation

s′
.
= t′. We have that u ∼ t′ because either t′ contains no atoms or both t′ and s′

contain an atom since ρ, s ' t;E is proper and then u ∼ t′ follows from u ∼ s′ and
s′ ∼ t′. Thus we have u1 ∼ u2 for all equations u1

.
= u2 ∈ E(ρ, s ' t;E). It remains

to show that this also holds forA(ρ, s ' t;E) and that E(ρ, s ' t;E)∪A(ρ, s ' t;E)
contains sufficiently many anchors. For this, we distinguish two cases.

• Consider the case that t′ contains an atom. Then A(ρ, s ' t;E) differs
from A(ρ;E) in that A(ρ, s ' t;E) contains additional anchors αx

.
= u with

αx 'ρ,s't u. We will show that αx ∼ u. We can assume that αx 6'ρ u
because the other case is trivial. Now assume w.l.o.g. (for the other case,
switch s′ and t′) that αx 'ρ s′ and u 'ρ t′. Since ρ, s ' t;E is proper,
we have that s′ contains an atom and thus αx ∼ u since αx ∼ s′, s′ ∼ t′

and t′ ∼ u. It remains to show that there are still anchors for all instance
variables in (∼). This is the case since all anchors removed in E(ρ, s ' t;E)
are still contained in A(ρ, s ' t;E).
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4 Solving AnSUP Efficiently

• Consider the case that t′ does not contain an atom. Then A(ρ, s ' t;E)
differs from A(ρ;E) in that A(ρ, s ' t;E) does not contain anchors for the
instance variables in the equivalence class [s]ρ,s't. However, we still have
enough anchors because for every instance variable αx ∈ [s]ρ,s't, we have
that (ρ, s ' t)(αx) = t′ and thus the anchor αx

.
= t′ is in E(ρ, s ' t;E). �

Proposition 41 If ρ;E is anchored with (∼) and t occurs in E(ρ;E), then
t ∼ btcρ.

Lemma 42 For every state ρ;E, rule application preserves that ρ;E is anchored
with an invariant PER.

Proof For R′refl, the claim is trivial. For R′bop, the claim follows from Lemma 40.
For R′elim, consider a state ρ;E, s

.
= t with ρs = x and α1x, . . . , αnx being the

instance variables of x in E(ρ;E). Apart from the conclusion of Lemma 40, we
additionally need to show that αix ∼ α̂ibtcρ for i ∈ {1, . . . , n}. This is the case
because
• x ∼ s and s is an atom because ρ;E is proper,
• s ∼ t and t contains atoms if btcρ contains atoms,
• t ∼ btcρ by Proposition 41 and
• αix ∼ αix. �

We call a simple variable x bound in a state ρ;E if ρx 6= x. The rule R′elim makes
sure that whenever a simple variable x gets bound, sufficiently many equations are
added to the state to express the relationship between x and its instance variables.
This is expressed by the following property, which is somewhat involved because
we have to prevent these equations from being cyclic. We say that a state ρ;E
is pre-compatible if there is a well-founded strict partial order (>) on simple
variables such that x > y implies x 'ρ y and for every bound simple variable x
and for every instance variable αx that occurs in E(ρ;E), there is a simple term s
such that x > s if s is a simple variable and ρ;E implies the equations x

.
= s and

αx
.
= α̂s.

Lemma 43 For every anchored state ρ;E, rule application preserves the invariant
that ρ;E is pre-compatible.

Proof For every rule application ρ;E =⇒ ρ′;E ′, we have that a weak unifier of
E(ρ′;E ′) is also a weak unifier of E(ρ;E). Thus ρ′;E ′ implies every equation that
is implied by ρ;E. Also, by Lemma 42, the set of instance-variables in E(ρ;E) and
E(ρ′;E ′) is identical. So we only need to consider R′elim, since all other rules do
not change the set of bound simple variables. Consider a state ρ;E, s

.
= t with

ρs = x and an application ρ;E, s
.
= t =⇒ ρ′;E ′ of R′elim to this state. We need to

show that the new equations in E ′ suffice for ρ′;E ′ to be pre-compatible. We have
that x is the only newly bound variable. Also, E(ρ′;E ′) contains the same instance
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4.3 Correctness

variables as E(ρ;E, s
.
= t) and ρ′;E ′ implies x

.
= btcρ by Proposition 36. Thus the

equations added in E ′ satisfy all conditions for ρ′;E ′ to be pre-compatible if we
can extend (>) such that x > btcρ if btcρ is a simple variable. This is possible
because ρx 6= ρt and hence x 6'ρ btcρ if btcρ is a simple variable. �

If no rule applies to a pre-compatible and anchored state ρ;E, then we want to
extract a principal compatible unifier from ρ;E if one exists. Given that ρ;E has
a weak unifier θ, we can define the following function by induction on the size of
θs (this works because θt = θ(ρt) for all terms t).

dseρ =

{
ds1eρ · ds2eρ if ρs = s1 · s2

ρs otherwise

Since ρ;E is proper and anchored, we have that dseρ is a simple term. Moreover,
ρ;E implies s

.
= dseρ and dseρ only contains simple variables x with ρx = x. We

obtain a principal compatible unifier θρ by defining θρX := dXeρ for all atoms X.

Lemma 44 If no rule applies to a pre-compatible and anchored state ρ;E that
has a weak unifier, then θρ is a principal compatible unifier of ρ;E.

Proof Assume ρ;E has a weak unifier θ. First, we show that E is empty. Suppose,
for contradiction, that E contains an equation s

.
= t. Since ρ;E is anchored, it is

impossible that ρs is an instance variable or that btcρ is undefined. Thus, the rule
conditions cover all cases that are not obviously contradictory and some rule has
to apply contradicting our assumptions.

Next, we will show that θρ is a weak unifier of E(ρ;E). For this, it suffices to
show that θρs = θρ(ρs) for all terms s. Since dseρ = dρseρ, this follows from the
fact that θρs = dseρ, which we prove now by induction on s.

If s is an atom, then this follows from the definition of θρ. If s = a, then
θρa = a = θa = θ(ρa) = ρa = daeρ. So let s = s1 · s2 and ρs = s′1 · s′2. Note that
ρs cannot be an atom because ρ;E is proper. Also, we have that ρsi = ρs′i for
i ∈ {1, 2} because s 'ρ ρs, ρ;E is proper and E is empty. Thus by induction, we
have θρs = θρs1 · θρs2 = ds1eρ · ds2eρ = ds′1eρ · ds′2eρ = dseρ.

We have that θρ is a principal weak unifier of ρ;E because θs = θdseρ and hence
θ = θ ◦ θρ for every weak unifier θ of ρ;E.

It remains to show that θρ is compatible. This will rely on the fact that ρ;E is
pre-compatible with a well-founded strict partial order (>) on simple variables. We
need to show that θρ(αx) = θρ(α̂(θρx)) for all simple variables x and substitution
variables α. We prove this by induction on the well-founded lexicographical ordering
on simple variables which, given x and y, first compares the sizes of θρx and θρy
and if they are equal, compares x and y according to (>). Consider an instance
variable αx. Since ρ;E is pre-compatible, there is a simple term s such that x > s
if s is a simple variable, θρx = θρs and θρ(αx) = θρ(α̂s).

If s is a simple variable y, then the inductive hypothesis for y yields θρ(α̂(θρx)) =
θρ(α̂(θρy)) = θρ(αy) = θρ(αx).
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4 Solving AnSUP Efficiently

If s is not an atom, then we can apply the inductive hypothesis to every simple
variable y in s since the size of θρy is strictly smaller than the size of θρs = θρx.
Thus θρ(α̂(θρx)) = θρ(α̂(θρs)) = θρ(α̂s) = θρ(αx). This concludes the proof that
θρ is compatible.

Since θρ is compatible and a principal weak unifier, it is a principal compatible
unifier. �

So given an anchored system of equations E, we can compute a principal
compatible unifier of E as follows.

1. Start with the initial state ρE;E.

2. Apply the rules as long as possible, yielding a state ρ′;E ′.

3. Check if E(ρ′;E ′) has a weak unifier using a standard unification algorithm. If
it does, then θρ is the principal compatible unifier we searched for. Otherwise,
there are no compatible unifiers.

4.4 Complexity

In this section, we will argue that it is possible to implement the algorithm in
polynomial time. This needs two standard ingredients.

First, we represent terms by nodes in a directed acyclic graph (DAG). For
example, the term (f · (g · αx)) · (g · αx) is represented by the uppermost node in
the following DAG

·

·

f ·

g αx

In the following we assume that there is a global DAG such that at every point
during the execution of the algorithm, all terms are represented by nodes in the
global DAG. Moreover, we assume that this global DAG is minimal in the sense
that two different nodes always represent two different terms. This can be achieved
with asymptotically no overhead using hash-consing [5]. Whenever we need a
new term s

.
= t for existing terms s and t, we either find a suitable node using a

hash-map that maps pairs of nodes to their parent or else we create a single new
node and add edges to the nodes for s and t. The fact that the global DAG is
minimal allows us to test terms equality in time O(1). Despite the fact that we only
manipulate nodes, we will continue to write a node in the global DAG as the term
it represents. In the following, we will call the cardinality of the set of subterms
of a term s the size of s since this corresponds exactly to the number of nodes
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4.4 Complexity

in the global DAG that are reachable from the node representing s. Moreover,
we say that a set of terms M has size |{s | s occurs as subterm in M}| and a
system of equations E has size |E|+ |{s | s occurs as subterm in E}|. Again, this
corresponds to the size of a representation in memory because the global DAG
allows for structure sharing between different terms.

Second, we represent ρ with the usual union-find structure [25], which can
perform finding a representative and computing ρ, s ' t in an amortized running
time of O(α(n)) where α(n) is the inverse of the Ackermann function. In the
following, we will write α for α(size of E) where E is the initial system of equations.

To argue the complexity of the algorithm, we will associate every state ρ;E with
a run-time measure r(ρ;E) and show that every rule application ρ;E =⇒ ρ′;E ′

can be performed in time O(r(ρ;E) − r(ρ′;E ′)). Then the running time of the
overall algorithm is O(r(ρ;E)) for an initial state ρ;E.

We set
r(ρ;E) := (n1 + 8n2(n3 + n4n5))α

where

n1 is 3 · |{ρs | s occurs as subterm in E(ρ;E)}|+ size of E(ρ;E)

n2 is the number of different instance variables αx in E(ρ;E) such that x is
unbound.

n3 is the size of the largest term in E(ρ;E)

n4 is the number of different unbound simple variables that occur in E(ρ;E).

n5 is the size of {s | there is αx s.t. s is a smallest simple term with s 'ρ
αx}

Since r(ρE;E) ∈ O((size of E)3α), we only need to check that the individual
rules sufficiently decrease r(ρ;E) to prove that every sequence of rule applications
needs time O((size of E)3α).

R′refl Rule application needs time O(α). We have that n1 is decreased while n2,
n3, n4 and n5 are not changed.

R′bop Rule application needs time O(α). We have that n1 is decreased while n2,
n3, n4 and n5 are not changed.

R′elim Let n′2 be the new value of n2 after the rule application. Rule application
needs time O((n2 − n′2)n3α). The simple term bscρ can be computed
efficiently if we permanently associate every representative ρu with a smallest
simple term t such that t 'ρ ρu.

We have that n2 is not increased and n4 is decreased by 1 while n1 is
increased by at most 7(n2 − n′2)n3 and n3 is increased by at most n5. So
taking everything together, r(ρ;E) is decreased by at least (n2 − n′2)n3α.

Since the final test if E(ρ;E) has a weak unifier for a terminal state ρ;E can
be performed in time linear to the size of E(ρ;E) using a standard unification
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4 Solving AnSUP Efficiently

algorithm, the overall performance of our algorithm is O(n3α(n)) where n is the
size of the initial system of equations.
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5 Conclusion

This thesis presents the first unification algorithm for nonnested recursion schemes.
Based on a novel coinductive definition of S-equivalence, we establish the existence
of principal S-unifiers. Our method for solving S-unification problems works by a
reduction to a new decidable semi-unification problem we call AnSUP (anchored
semi-unification problem). We present an algorithm that computes a principal
semi-unifier whenever one exists and prove that this algorithm has time complexity
O(n3α(n)) where α(n) is the inverse of the Ackermann function.

AnSUP is quite different from other decidable semi-unification problems we
know of.

• The uniform fragment [8, 17] only allows for a single substitution variable
(or, in the usual representation, a single inequality). In contrast to this, our
reduction requires many substitution variables.

• The acyclic fragment [10] and its extension to the R-acyclic fragment [15]
disallow cyclic inequalities in the following sense. There must not be a
sequence of inequalities s1 �̇ t1, . . . , sn �̇ tn such that tn and s1 share a
variable and for all i ∈ {1, . . . , n−1}, ti and si+1 share a variable. In contrast
to this, we allow arbitrary cycles and need them in the reduction.

• The left-linear fragment [7] does not allow that a variable occurs twice in
the left-hand side s of an inequality s �̇ t. Adding inequalities of the form
(s, s)�̇(s, t) is impossible since this would allow for the same expressive power
as unrestricted semi-unification, which is undecidable. So it is impossible to
express ordinary unification with the left-linear fragment.

• The quasi-monadic fragment [14] does not allow terms containing two different
variables.

• There is a decidable fragment that only allows two variables [12].

To the best of our knowledge, AnSUP is the only fragment that allows for cyclic
inequalities, an unrestricted number of variables and subsumes ordinary unification.

Future Work

We would like to see if our algorithms can be used in compiler verification. There,
it would be especially interesting to see how they perform in practice. Since we
have a certifying algorithm for S-equivalence, it should be possible to integrate our
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5 Conclusion

method into a formally verified compiler by only verifying the certificate checker
while leaving the reduction to SUP and the algorithm for AnSUP unverified but
validated by the certificate checker.

For future research, it might be interesting to investigate the combination of
S-equivalence with additional theories like in E-unification [1]. This might lead
to applications in compiler verification that go beyond the equivalences in the
Herbrand interpretation that we can detect currently.

The anchored fragment of semi-unification is incomparable to all known frag-
ments. So it might be possible to combine it with another fragment to obtain one
that strictly contains both. We expect that this is possible for the quasi-monadic
fragment.
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