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Concept of Spilling

high-level language

unbounded number of variables ↔

assembly language

finite number of registers

Spilling uses the memory to buffer variables
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Spilling example

code r1 r2 r3

...

let X = x in x y

let z = x + y in

z

if z ≥ y then

let x = X in

x + z
else

z

x, y, z variables in register

X, Y, Z variables in memory

spill: let X=x in

load: let x=X in

memory variables only in
loads & spills
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Properties of a good spilling algorithm

spill : N→ Statement→ Statement

(a) at most k registers used

(b) every variable is in a register whenever used

(c) equivalence transformation

(d) smart spilling choices – depend on application

Approach:

(i) correctness predicate

guarantees (a), (b) and (c)

(ii) spilling algorithm

satisfies (i)
optimizes (d)
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Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation

verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

Leroy, “A formally verified compiler back-end”, 2009

translation validation for register allocation
verification of non-optimized spilling

each variable gets either a fixed register
or is always spilled & loaded

Blazy, Robillard, and Appel, “Formal Verification of
Coalescing Graph-Coloring Register Allocation”, 2010

verification of register allocation

...
let x = 2 in
let X = x in
let x = X in
let y = x in
let x = X in

x

Rideau and Leroy, “Validating Register Allocation and Spilling”, 2010

validator for spilling – enables use of sophisticated spilling techniques
as in Braun and Hack, “Register Spilling and Live-Range Splitting for
SSA-Form Programs”, 2009

Julian Rosemann Verification of Spilling Algorithms 5 / 21



Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix

Related Work

In a functional language in SSA-form spilling can be separated
from register allocation

see: Hack, Grund, and Goos, “Register Allocation for
Programs in SSA-Form”, 2006

Thesis is continuation of the RIL Klitzke, “Verification of a
Spilling Algorithms in Coq”, 2015
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IL

s , t : :=

let x = e in s
| i f e then s else t
| e
| fun f x = s in t
| f x

Formally described in Schneider, Smolka, and Hack, “A First-Order
Functional Intermediate Language for Verified Compilers”, 2015
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Liveness

A variable x is significant in statement s :⇔ ∃ values v0, v1,
where s behaves differently for x = v0 and x = v1.

Significance of variables is undecidable

Liveness intuition: variable x is live in statement s if its value
is used in s.

Live variables overapproximate significant variables

Live variables are efficiently computable
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Spilling

code S L

...
let X = x in
let z = x + y in

{x} {}

if z ≥ y then

{} {}

let x = X in
x

{} {X}

else
z

{} {}

let z = x + y

if z ≥ y

x z

({x},{})

({},{})

({},{X}) ({},{})
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doSpill

doSpill : Statement→ Tree (Set V ∗ Set V)→ Statement

(s, ({x1, ..., xn}︸ ︷︷ ︸
spills

, {Y1, ...Ym}︸ ︷︷ ︸
loads

)) 7→
let X1 = x1 in . . . let Xn = xn in
let y1 = Y1 in . . . let ym = Ym in

s
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Properties of a good spilling algorithm

spill : N→ Statement→ Statement

(a) at most k registers used

(b) every variable is in a register whenever used

(c) equivalence transformation

(d) smart spilling choices – depend on application

Approach:

(i) correctness predicate
guarantees (a), (b) and (c)

(ii) spilling algorithm

satisfies (i)
optimizes (d)
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Inductive Correctness Predicate

(R,M) ` spillk s lv : sl

x ∈ R

:⇔ current value is in a register

x ∈ M

:⇔ current value is in the memory

s

statement

lv

liveness information

sl

spill/load information

read: sl is a correct k-spilling of s with liveness lv on R and M

not neccessarily R ∩M = ∅
lv , sl and the abstract syntax tree of s have the same shape
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Correctness predicate for let x=e in

execution step register state memory state

... R M

spill S R M ∪ S
load L R \ K ∪ L =: Re M ∪ S
eval e R \ K ∪ L M ∪ S
store x (R \ K ∪ L) \ Kx ∪ {x} =: Rs M ∪ S

(let x = e in s, ({x1, ..., xn}︸ ︷︷ ︸
spills

, {Y1, ...Ym}︸ ︷︷ ︸
loads

)) 7→
let X1 = x1 in . . .
let y1 = Y1 in . . .
let x = e in s
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load L

R \ K ∪ L =: Re M ∪ S

eval e

R \ K ∪ L M ∪ S

store x

(R \ K ∪ L) \ Kx ∪ {x} =: Rs M ∪ S

(a) size of R is bounded by k

(b) variables are in R when needed

(c) program equivalence
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Correctness predicate for let x=e in – example

(R,M) := ({w,x}, {y})

code S L K Kz

let W = w in
let y = Y in
let z = x + y in

{w} {y} {w} {y}

let w = W in
w + z

{} {w} {x}

| Re | ≤ 2 fv(x + y) ⊆ Re

| Rs | ≤ 2 ( Rs , {w , y}) ` spill2 (w + z) lvs : sls

({w , x}, {y}) ` spill2 (let z = x + y in w + z) (lv · lvs) : ({w}, {y}) · sls

Re := R \ K ∪ L = {w , x} \ K ∪ {y} = {x , y}

Rs := Re \ Kz ∪ {z} = {x , y} \ Kz ∪ {z} = {x , z}
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Soundness

Conjecture 1. If (∅, ∅) ` spillk s lv : sl holds then:

(a) doSpill s sl uses at most k registers

(b) For any Expression e in doSpill s sl , every variable used in e is
in a register.

(c) doSpill s sl and s are semantically equivalent.

has to be generalized for inductive proof

judgement also needs information about functions

doSpill : (s, ({x1, ..., xn}︸ ︷︷ ︸
spills

, {Y1, ...Ym}︸ ︷︷ ︸
loads

)) 7→
let X1 = x1 in . . .
let y1 = Y1 in . . .
s
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Conclusion

concentrate on spilling – independant to register allocation

verification of a family of spilling algorithms

helpful in the construction of a translation validator
should simplify verification of concrete spilling algorithms
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[ae ] ⊆ Re

max{Re ,Rs} ≤ k (Rs ,M ∪ S) ` spillk s as : bs

(R,M) ` spillk (let x = e in s) (λ · ae , as) : (S , L) · bs

where Re := (R \ K ∪ L) Rs := (Re \ Kx) ∪ {x}

spill k Λ R M (Let x e s) (Node Y [ye , ys ]) =
let L = [ye ] \ R in
l e t K ⊆ R \ [ye ] ∧ |K | = |L| in
l e t S = [ys ] ∩ K in
l e t Re = (R \ K ∪ L) in
i f [ye ] \ [ys ] 6= ∅ then Kx = {∈ [ye ] \ [ys ]} else Kx = ∅ in
l e t Rs = (Re ∪ {x}) \ Kx in
i f |Rs | ≤ k

then Node (S , L) [spill k Λ Rs (M ∪ S) s ys ]
e lse ⊥
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Rf ⊆ Rt ∪ XR

Mf ⊆ Mt ∪ XS f 7→ (Rf ,Mf ),Λ; (Rf ,Mf ) ` spillk s as : bs
max{|Rf |, |Rt |} ≤ k f 7→ (Rf ,Mf ),Λ; (Rt ,Mt) ` spillk t at : bt

Λ; (R,M) ` spillk (fun f X = s in t) (λ · as , at) : (S , L) · bs , bt

step register memory function env.

... R M Λ
def f R \ K ∪ L =: Rt M ∪ S f 7→ (Rf ,Mf ),Λ
... R ′ M ′ f 7→ (Rf ,Mf ),Λ′

apply f R ′ \ K ′ ∪ L′ M ′ ∪ S ′ f 7→ (Rf ,Mf ),Λ′

Rf ⊆ R ′ \ K ′ ∪ L′

|R ′ \ K ′ ∪ L′| ≤ k Mf ⊆ M ′ ∪ S

Λ; (R ′,M ′) ` spillk (f x) λ : (S ′, L′)
Λf = (Rf ,Mf )
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doSpill

doSpill s sl = doSpill’ s [] sl

doSpill

’

s

S

(Node (xs,y::ys) sl)

= doSpill

’

(let y = Y in s)

S

(Node (xs,ys) sl)

doSpill

’

s

S

(Node (x::xs,[]) sl)

=

if x /∈ S then

doSpill

’

(let X = x in s)

(s::S)

(Node (xs, []) sl)

else

doSpill’ s S (Node (xs,[]) sl)

doSpill

’

s

S

(Node ([],[]) sl)

= match s, sl with

Let x e s’, [sl’] ⇒ Let x e (doSpill

’

s’

S

sl’)

E e, [] ⇒ E e

If e s’ t, [sl1, sl2]

⇒ If e (doSpill

’

s’

S

sl1) (doSpill

’

t

S

sl2)
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