Formal Verification of a Family of Spilling Algorithms Initial Bachelor Seminar Talk

Julian Rosemann Advisors: Prof. Gert Smolka, Sigurd Schneider

> Saarland University Department of Computer Science

> > 2016-06-10

Properties of Spilling

Appendix

Concept of Spilling

high-level language

assembly language

unbounded number of variables \leftrightarrow finite number of registers

Spilling uses the memory to buffer variables

Julian Rosemann

code	<i>r</i> ₁	r ₂	r ₃
$\begin{array}{l} \text{let } z=x+y \text{ in} \\ \text{if } z\geq y \text{ then} \end{array}$			
$\mathbf{x} + \mathbf{z}$ else			
Z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- Ioad: let x=X in
- memory variables only in loads & spills

code	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> 3
	x	у	
$\begin{array}{l} \text{let } z=x+y \text{ in} \\ \text{if } z\geq y \text{ then} \end{array}$			
x + zelse z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- load: let x=X in
- memory variables only in loads & spills

code	$ r_1$	<i>r</i> ₂	r ₃
	x	у	
$\begin{array}{l} \text{let } z=x+y \text{ in} \\ \text{if } z\geq y \text{ then} \end{array}$	x	у	z
x + zelse z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- Ioad: let x=X in
- memory variables only in loads & spills

code	$ r_1$	<i>r</i> ₂	r ₃
	x	у	
$\begin{array}{l} \text{let } z=x+y \text{ in} \\ \text{if } z\geq y \text{ then} \end{array}$	x x	у У	z z
x + zelse z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- Ioad: let x=X in
- memory variables only in loads & spills

code	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃
	x	у	
let $X = x$ in			
let $z = x + y$ in	x	у	z
if $z \ge y$ then	x	y	z
x + z			
else			
Z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- Ioad: let x=X in
- memory variables only in loads & spills

code	<i>r</i> ₁	<i>r</i> ₂	r ₃
	x	у	
let $X = x$ in	×	у	
let $z = x + y$ in	x	у	z
if $z \ge y$ then	x	у	z
x + z			
else			
Z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- Ioad: let x=X in
- memory variables only in loads & spills

code	<i>r</i> ₁	<i>r</i> ₂	r ₃
	x	у	
let $X = x$ in	x	y	
let $z = x + y$ in	z	у	
if $z \ge y$ then	x	у	z
x + z			
else			
Z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- Ioad: let x=X in
- memory variables only in loads & spills

code	<i>r</i> ₁	<i>r</i> ₂	r ₃
	x	у	
let $X = x$ in	×	у	
let $z = x + y$ in	z	у	
if $z \ge y$ then	z	у	
let $x = X$ in			
x + z			
else			
Z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- load: let x=X in
- memory variables only in loads & spills

code	<i>r</i> ₁	<i>r</i> ₂	r ₃
	x	у	
let $X = x$ in	x	у	
let $z = x + y$ in	z	у	
if $z \ge y$ then	z	у	
let $x = X$ in	z	X	
x + z			
else			
Z			

- x, y, z variables in register
- X, Y, Z variables in memory
- spill: let X=x in
- Ioad: let x=X in
- memory variables only in loads & spills

 r_1

х

 r_2

y

					code
code	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> 3	_	
	x	у			
let $X = x$ in	×	у			let $z = x + y$ in
let $z = x + y$ in	z	у			
if $z \ge y$ then	z	у			
let $x = X$ in	z	x			if $z \ge y$ then
x + z					
else					x + z
Z					else
				-	z

 r_1

х

х

 r_2

y

y

				code
code	<i>r</i> ₁	<i>r</i> ₂	r ₃	
	x	у		let $\mathbf{Y} = \mathbf{y}$ in
let $X = x$ in	x	у		let $z = x + y$ in
let $z = x + y$ in	z	у		
if $z \ge y$ then	z	у		
let $x = X$ in	z	x		if $z \ge y$ then
x + z				
else				x + z
z				else
				Z

 r_1

х

x y

 r_2

y

x z

				code
code	<i>r</i> ₁	<i>r</i> ₂	r ₃	
	x	у		let $Y = y$ in
let $X = x$ in	x	у		let $z = x + y$ in
let $z = x + y$ in	z	у		
if $z \ge y$ then	z	у		
let $x = X$ in	z	x		if $z \ge y$ then
x + z				
else				x + z
Z				else
				Z

Julian	Rosemann

code	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃
	x	у	
let $X = x$ in	×	у	
let $z = x + y$ in	z	у	
if $z \ge y$ then	z	у	
let $x = X$ in	z	x	
x + z			
else			
z			

code	$ r_1$	<i>r</i> ₂
	x	у
let $Y = y$ in	×	у
let $z = x + y$ in	×	z
let $X = x$ in	×	z
$\text{if } z \geq y \text{ then }$		
x + z		
else		
Z		

code	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃
	x	у	
let $X = x$ in	×	у	
let $z = x + y$ in	z	у	
if $z \ge y$ then	z	у	
let $x = X$ in	z	x	
x + z			
else			
Z			

code	<i>r</i> ₁	<i>r</i> ₂
	x	у
let $Y = y$ in	x	у
let $z = x + y$ in	x	z
let $X = x$ in	×	z
let $y = Y$ in	у	z
if $z \ge y$ then		
x + z		
else		
Z		

code	<i>r</i> ₁	<i>r</i> ₂	r ₃
	x	у	
let $X = x$ in	×	у	
let $z = x + y$ in	z	у	
if $z \ge y$ then	z	у	
let $x = X$ in	z	x	
x + z			
else			
Z			

code	<i>r</i> ₁	<i>r</i> ₂
	x	у
let $Y = y$ in	×	у
let $z = x + y$ in	x	z
let $X = x$ in	×	z
let $y = Y$ in	у	z
if $z \ge y$ then	у	z
x + z		
else		
Z		

code	<i>r</i> ₁	<i>r</i> ₂	r ₃
	x	у	
let $X = x$ in	x	у	
let $z = x + y$ in	z	у	
if $z \ge y$ then	z	у	
let $x = X$ in	z	x	
x + z			
else			
Z			

code	$ r_1$	<i>r</i> ₂
	x	у
let $Y = y$ in	×	у
let $z = x + y$ in	×	z
let $X = x$ in	×	z
let $y = Y$ in	у	z
if $z \ge y$ then	У	z
let $x = X$ in	×	z
x + z		
else		
Z		

spill : $\mathbb{N} \to \texttt{Statement} \to \texttt{Statement}$

 $\texttt{spill} \hspace{0.1 cm} : \hspace{0.1 cm} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$

(a) at most k registers used

- $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used

- $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation

- $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation
- (d) smart spilling choices depend on application

- $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation
- (d) smart spilling choices depend on application

Approach:

- $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation
- (d) smart spilling choices depend on application

Approach:

(i) correctness predicate

- $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation
- (d) smart spilling choices depend on application

Approach:

- (i) correctness predicate
 - guarantees (a), (b) and (c)

- $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation
- (d) smart spilling choices depend on application

Approach:

- (i) correctness predicate
 - guarantees (a), (b) and (c)
- (ii) spilling algorithm

- spill : $\mathbb{N} \to \texttt{Statement} \to \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation
- (d) smart spilling choices depend on application

Approach:

(i) correctness predicate

```
• guarantees (a), (b) and (c)
```

- (ii) spilling algorithm
 - satisfies (i)

- $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$
- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation
- (d) smart spilling choices depend on application

Approach:

(i) correctness predicate

```
• guarantees (a), (b) and (c)
```

- (ii) spilling algorithm
 - satisfies (i)
 - optimizes (d)

CompCert, a verified optimizing compiler for a C-subset

CompCert, a verified optimizing compiler for a C-subset

CompCert, a verified optimizing compiler for a C-subset

- Leroy, "A formally verified compiler back-end", 2009
 - translation validation for register allocation

CompCert, a verified optimizing compiler for a C-subset

- translation validation for register allocation
- verification of non-optimized spilling

CompCert, a verified optimizing compiler for a C-subset

- translation validation for register allocation
- verification of non-optimized spilling
 - each variable gets either a fixed register or is always spilled & loaded

CompCert, a verified optimizing compiler for a C-subset

- translation validation for register allocation
- verification of non-optimized spilling
 - each variable gets either a fixed register or is always spilled & loaded

•••
$let\; x = 2 in$
let $X = x$ in
let $x = X$ in
let $y = x$ in
let $x = X$ in
х

CompCert, a verified optimizing compiler for a C-subset

- translation validation for register allocation
- verification of non-optimized spilling
 - each variable gets either a fixed register or is always spilled & loaded
- Blazy, Robillard, and Appel, "Formal Verification of Coalescing Graph-Coloring Register Allocation", 2010

$let\; x = 2 in$
let $X = x$ in
let $x = X$ in
let $y = x$ in
let $x = X$ in
х

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

• Leroy, "A formally verified compiler back-end", 2009

- translation validation for register allocation
- verification of non-optimized spilling
 - each variable gets either a fixed register or is always spilled & loaded
- Blazy, Robillard, and Appel, "Formal Verification of Coalescing Graph-Coloring Register Allocation", 2010

verification of register allocation

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

• Leroy, "A formally verified compiler back-end", 2009

- translation validation for register allocation
- verification of non-optimized spilling
 - each variable gets either a fixed register or is always spilled & loaded
- Blazy, Robillard, and Appel, "Formal Verification of Coalescing Graph-Coloring Register Allocation", 2010

verification of register allocation

• Rideau and Leroy, "Validating Register Allocation and Spilling", 2010

let $x = 2$ in	ı
let $X = x i$	n
let x = X i	n
let $y = x$ in	ſ
let $x = X$ i	n
х	

Related Work – CompCert example

CompCert, a verified optimizing compiler for a C-subset

• Leroy, "A formally verified compiler back-end", 2009

- translation validation for register allocation
- verification of non-optimized spilling
 - each variable gets either a fixed register or is always spilled & loaded
- Blazy, Robillard, and Appel, "Formal Verification of Coalescing Graph-Coloring Register Allocation", 2010
 - verification of register allocation
- Rideau and Leroy, "Validating Register Allocation and Spilling", 2010
 - validator for spilling enables use of sophisticated spilling techniques as in Braun and Hack, "Register Spilling and Live-Range Splitting for SSA-Form Programs", 2009

Related Work

 In a functional language in SSA-form spilling can be separated from register allocation see: Hack, Grund, and Goos, "Register Allocation for Programs in SSA-Form", 2006

Related Work

• In a functional language in SSA-form spilling can be separated from register allocation see: *Hack, Grund, and Goos, "Register Allocation for*

Programs in SSA-Form", 2006

• Thesis is continuation of the RIL Klitzke, "Verification of a Spilling Algorithms in Coq", 2015

Properties of Spilling

Related Work

Preliminaries

Correctness Predicate

Conclusion

Appendix

IL

s, t ::=

Julian Rosemann

Properties of Spilling

Related Work

Preliminaries

Correctness Predicate

Conclusion

Appendix

IL

s, t ::= let x = e in s

Appendix

IL

s, t ::= let x = e in s | if e then s else t

IL

```
s, t ::= let x = e in s
| if e then s else t
| e
```

IL

s, t ::= let x = e in s
| if e then s else t
| e
| fun f
$$\overline{x} = s$$
 in t

Appendix

IL

s, t ::= let x = e in s
| if e then s else t
| e
| fun f
$$\overline{x}$$
 = s in t
| f \overline{x}

IL

```
s, t ::= let x = e in s

| if e then s else t

| e

| fun f \overline{x} = s in t

| f \overline{x}
```

Formally described in Schneider, Smolka, and Hack, "A First-Order Functional Intermediate Language for Verified Compilers", 2015

Liveness

• A variable x is **significant** in statement $s : \Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.

Liveness

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Significance of variables is undecidable

Properties of Spilling Related Work Preliminaries Correctness Predicate Conclusion Appendix
Liveness

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Significance of variables is undecidable
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

liveness

- A variable x is **significant** in statement $s : \Leftrightarrow \exists$ values v_0, v_1, d_2 where s behaves differently for $x = v_0$ and $x = v_1$.
- Significance of variables is undecidable
- Liveness intuition: variable x is **live** in statement s if its value is used in s.
- Live variables overapproximate significant variables

Liveness

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Significance of variables is undecidable
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.
- Live variables overapproximate significant variables
- Live variables are efficiently computable

code	live variables
$\begin{array}{l} \mbox{let } y = z \mbox{ in } \\ \mbox{if } x \geq 0 \\ \mbox{then } y \\ \mbox{else } z \end{array}$	

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

code	live variables
let $y = z$ in if $x > 0$	
then y else z	{z}

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

Appendix

code	live variables
$\begin{array}{l} \text{let } y = z \text{ in} \\ \text{if } x \geq 0 \end{array}$	
then y else z	{y} {z}

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

code	live variables
$\begin{array}{l} \mbox{let } y = z \mbox{ in } \\ \mbox{if } x \geq 0 \\ \mbox{then } y \\ \mbox{else } z \end{array}$	${x, y, z} {y} {z}$

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

code	live variables
$\begin{array}{l} \mbox{let } y = z \mbox{ in } \\ \mbox{if } x \geq 0 \\ \mbox{then } y \end{array}$	
else z	{z}

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

code	live variables
let $y = z$ in if $x \ge 0$	$\{x, z\}$ $\{x, y, z\}$
then y	{y}
else z	{z}

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

code	live variables	let $y = z$
$\begin{array}{l} \mbox{let } y = z \mbox{ in } \\ \mbox{if } x \geq 0 \\ \mbox{then } y \\ \mbox{else } z \end{array}$	{x, z} {x, y, z} {y} {z}	$if x \ge 0$ $y z$

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

code	live variables	let y = z	{x,z}
$\begin{array}{c} \mbox{let } y = z \mbox{ in } \\ \mbox{if } x \geq 0 \\ \mbox{then } y \\ \mbox{else } z \end{array}$		$if x \ge 0$ $y z$	$\{x,y,z\}$ $\{y\}$ $\{z\}$

- A variable x is **significant** in statement $s :\Leftrightarrow \exists$ values v_0, v_1 , where s behaves differently for $x = v_0$ and $x = v_1$.
- Liveness intuition: variable x is **live** in statement *s* if its value is used in *s*.

code	S	L
 let $X = x$ in let $z = x + y$ in if $z \ge y$ then let $x = X$ in x else z		

code	S	L
let $X = x$ in		
let $z = x + y$ in	{x}	{}
if $z \ge y$ then let $x = X$ in	{}	{}
x	{}	$\{X\}$
else	0	0
Z	{}	{}

У

code	S	L	
 let $X = x$ in let $z = x + y$ in if $z \ge y$ then let $x = X$ in x else	{x} {} {} {}	{} {} {X}	$\begin{array}{c} \text{let } z = x + \\ & \\ \text{if } z \ge y \\ & \swarrow \\ x z \end{array}$
Z	{}	{}	

code	S	L		
 let $X = x$ in let $z = x + y$ in if $z \ge y$ then let $x = X$ in x else z	{x} {} {} {}	{} {} { x }	$\begin{array}{c} let \ z = x + y \\ & \\ if \ z \geq y \\ & \swarrow \\ x z \end{array}$	({x},{}) ({},{}) ({},{X}) ({}

doSpill

doSpill : Statement \rightarrow Tree (Set $\mathcal{V}*\mathsf{Set}\ \mathcal{V}) \rightarrow$ Statement

doSpill

doSpill : Statement \rightarrow Tree (Set $\mathcal{V}*\mathsf{Set}\ \mathcal{V}) \rightarrow$ Statement

$$(s, (\underbrace{\{x_1, ..., x_n\}}_{\text{spills}}, \underbrace{\{Y_1, ..., Y_m\}}_{\text{loads}})) \mapsto let \ y_1 = Y_1 \ in \dots let \ y_m = Y_m \ in \\ s$$

Properties of a good spilling algorithm

 $\texttt{spill} \hspace{0.1 in} : \hspace{0.1 in} \mathbb{N} \rightarrow \texttt{Statement} \rightarrow \texttt{Statement}$

- (a) at most k registers used
- (b) every variable is in a register whenever used
- (c) equivalence transformation
- (d) smart spilling choices depend on application

Approach:

(i) correctness predicate

guarantees (a), (b) and (c)

(ii) spilling algorithm

satisfies (i)
optimizes (d)

$x \in R$	
$x \in M$	
S	
lv	
sl	

$x \in R$	$:\Leftrightarrow$ current value is in a register
$x \in M$	
5	
lv	
sl	

$x \in R$	$:\Leftrightarrow$ current value is in a register
$x \in M$	$:\Leftrightarrow$ current value is in the memory
5	
lv	
sl	

$x \in R$	$:\Leftrightarrow$ current value is in a register
$x \in M$	$:\Leftrightarrow$ current value is in the memory
5	statement
lv	
sl	

$(R, M) \vdash spill_k \ s \ lv \ : sl$

$x \in R$	$:\Leftrightarrow$ current value is in a register
-----------	---

- $x \in M$: \Leftrightarrow current value is in the memory
 - s statement
 - Iv liveness information

sl

$(R, M) \vdash spill_k \ s \ lv \ : sl$

- $x \in R$: \Leftrightarrow current value is in a register
- $x \in M$: \Leftrightarrow current value is in the memory
 - s statement
 - *lv* liveness information
 - sl spill/load information

$(R, M) \vdash spill_k \ s \ lv \ : sl$

- $x \in R$: \Leftrightarrow current value is in a register
- $x \in M$: \Leftrightarrow current value is in the memory
 - s statement
 - *lv* liveness information
 - sl spill/load information

• read: sl is a correct k-spilling of s with liveness lv on R and M

Appendix

Inductive Correctness Predicate

$(R, M) \vdash spill_k \ s \ lv \ : sl$

- $x \in R$: \Leftrightarrow current value is in a register
- $x \in M$: \Leftrightarrow current value is in the memory
 - s statement
 - *lv* liveness information
 - sl spill/load information
- read: sl is a correct k-spilling of s with liveness lv on R and M
- **not** neccessarily $R \cap M = \emptyset$

$(R, M) \vdash spill_k \ s \ lv \ : sl$

- $x \in R$: \Leftrightarrow current value is in a register
- $x \in M$: \Leftrightarrow current value is in the memory
 - s statement
 - *lv* liveness information
 - sl spill/load information
- read: sl is a correct k-spilling of s with liveness lv on R and M
- **not** neccessarily $R \cap M = \emptyset$
- *lv*, *sl* and the abstract syntax tree of *s* have the same shape

execution step	register state	memory state
	R	М

$$(let \ x = e \ in \ s, (\underbrace{\{x_1, \dots, x_n\}}_{spills}, \underbrace{\{Y_1, \dots, Y_m\}}_{loads})) \mapsto let \ y_1 = Y_1 \ in \dots let \ x = e \ in \ s$$

execution step	register state	memory state
 spill S	R	М

$$(let \ x = e \ in \ s, (\underbrace{\{x_1, \dots, x_n\}}_{spills}, \underbrace{\{Y_1, \dots, Y_m\}}_{loads})) \mapsto let \ X_1 = x_1 \ in \dots let \ x_1 = Y_1 \ in \dots let \ x = e \ in \ s$$

execution step	register state	memory state
 spill S load L	R	М

$$(let \ x = e \ in \ s, (\underbrace{\{x_1, \dots, x_n\}}_{spills}, \underbrace{\{Y_1, \dots, Y_m\}}_{loads})) \mapsto let \ y_1 = Y_1 \ in \dots let \ x = e \ in \ s$$

execution step	register state	memory state
 spill S load L eval e	R	М

$$(let \ x = e \ in \ s, (\underbrace{\{x_1, \dots, x_n\}}_{spills}, \underbrace{\{Y_1, \dots, Y_m\}}_{loads})) \mapsto let \ y_1 = Y_1 \ in \dots let \ x = e \ in \ s$$

execution step	register state	memory state
	R	М
spill S		
load L		
eval e		
store x		

$$(let \ x = e \ in \ s, (\underbrace{\{x_1, \dots, x_n\}}_{spills}, \underbrace{\{Y_1, \dots, Y_m\}}_{loads})) \mapsto let \ y_1 = Y_1 \ in \dots let \ x = e \ in \ s$$

execution step	register state	memory state
 spill S load L eval e store x	R	М

- (a) size of R is bounded by k
- (b) variables are in R when needed
- (c) program equivalence

execution step	register state	memory state
	R	М
spill S		
load L		
eval e		
store x		

$$(R, M) \vdash spill_k (let \ x = e \ in \ s) (lv \cdot lv_s) : (S, L) \cdot sl_s$$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L		
eval e		
store ×		

$$(R, M) \vdash spill_k (let \ x = e \ in \ s) (lv \cdot lv_s) : (S, L) \cdot sl_s$$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L		$M \cup S$
eval e		$M \cup S$
store ×		$M \cup S$

$$(R, M) \vdash spill_k (let \ x = e \ in \ s) (lv \cdot lv_s) : (S, L) \cdot sl_s$$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L	$R \setminus K \cup L =: R_e$	$M \cup S$
eval e		$M \cup S$
store ×		$M \cup S$

$$(R, M) \vdash spill_k (let \ x = e \ in \ s) (lv \cdot lv_s) : (S, L) \cdot sl_s$$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L	$R \setminus K \cup L =: R_e$	$M \cup S$
eval e		$M \cup S$
store ×		$M \cup S$

$$|R_e| \leq k$$

$$(R, M) \vdash spill_k (let \ x = e \ in \ s) (lv \cdot lv_s) \ : (S, L) \cdot sl_s$$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L	$R \setminus K \cup L =: R_e$	$M \cup S$
eval e	$R \setminus K \cup L$	$M \cup S$
store x	·	$M \cup S$

$$|R_e| \leq k$$

$$(R, M) \vdash spill_k (let \ x = e \ in \ s) (lv \cdot lv_s) : (S, L) \cdot sl_s$$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L	$R \setminus K \cup L =: R_e$	$M \cup S$
eval e	$R \setminus K \cup L$	$M \cup S$
store x	·	$M \cup S$
$ R_e \leq k$	$fv(e)\subseteq R_e$	
$\overline{(R,M)} \vdash spill_k$ (let $x = e$ in s) ($lv \cdot lv_s$)	$(S,L) \cdot sl_s$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L	$R \setminus K \cup L =: R_e$	$M \cup S$
eval e	$R \setminus K \cup L$	$M \cup S$
store ×	$(R \setminus K \cup L) \setminus K_x \cup \{x\} \eqqcolon R_s$	$M \cup S$
$ R_e \leq k$	$\mathit{fv}(e)\subseteq \mathit{R}_e$	
$(R, M) \vdash spill_k$ (let $x = e$ in s) $(lv \cdot lv_s)$: (S, L)	$\cdot sl_s$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L	$R \setminus K \cup L =: R_e$	$M \cup S$
eval e	$R \setminus K \cup L$	$M \cup S$
store ×	$(R \setminus K \cup L) \setminus K_x \cup \{x\} \eqqcolon R_s$	$M \cup S$
$ R_e \leq k$	$\mathit{fv}(e)\subseteq \mathit{R}_e$	
$ R_s \leq k$		
$\overline{(R,M)} \vdash spill_k$ (let $x = e$ in s) $(lv \cdot lv_s) : (S, L)$	$\cdot sl_s$

execution step	register state	memory state
	R	М
spill S	R	$M \cup S$
load L	$R \setminus K \cup L =: R_e$	$M \cup S$
eval e	$R\setminus K\cup L$	$M \cup S$
store x	$(R \setminus K \cup L) \setminus K_x \cup \{x\} \eqqcolon R_s$	$M \cup S$
$ R_e \leq k$	$\mathit{fv}(e)\subseteq R_e$	
$ R_s \leq k$	$(R_s, M \cup S) \vdash spill_k \ s \ lv_s \ : sl_s$	
$(R,M) \vdash spill_k$ (let $x = e$ in s) $(lv \cdot lv_s) : (S, L)$	· sls

code	S	L	K	Kz
$\begin{tabular}{c} \hline let $W = w$ in \\ let $y = Y$ in \\ let $z = x + y$ in \\ let $w = W$ in \\ $w + z$ \end{tabular}$				

code	5	L	K	Kz
let $W = w$ in				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	{w}	{y}		
let $w = W$ in		()		
w + z	{}	{w}		

$(R,M)\coloneqq(\{w,x\},\ \{y\})$						
code	5	L	K	Kz		
let $W = w$ in let $y = Y$ in let $z = x + y$ in let $w = W$ in						
w + z	{}	$\{w\}$				

(R,M) ∺	$(R,N) \coloneqq (\{W,X\}, \{Y\})$						
code	S	L	K	Kz			
let $W = w$ in							
let $y = Y$ in let $z = x + y$ in let $w = W$ in	{w}	{y}					
w + z	{}	$\{w\}$					
$\mid R_{e} \mid \leq 2$ $\mid R_{s} \mid \leq 2$ (R_{s} , {v				·) lvs : sls			
$\overline{(\{w,x\},\{y\})} \vdash \textit{spill}_2 (\textit{let } z = x -$	+y in w	(v + z)	$(lv \cdot lv)$	$(\{w\},$	$\{y\}) \cdot sl_s$		

 $(\mathsf{P}\mathsf{M}) := (\mathsf{f}\mathsf{w}\mathsf{w}) (\mathsf{w})$

$(R,M)\coloneqq(\{w,x\},\ \{y\})$							
	code	5	L	K	Kz		
	let $W = w$ in						
	let $y = Y$ in let $z = x + y$ in let $w = W$ in	{w}	{y}				
	w + z	{}	$\{w\}$				
$ \begin{array}{c c c c c c c c } & R_e & \leq 2 & fv(x+y) \subseteq R_e \\ & R_s & \leq 2 & (R_s \ , \{w,y\}) \vdash \textit{spill}_2 \ (w+z) \ \textit{lv}_s \ : \textit{sl}_s \\ \hline \hline (\{w,x\}, \{y\}) \vdash \textit{spill}_2 \ (\textit{let} \ z = x+y \ \textit{in} \ w+z) \ (\textit{lv} \cdot \textit{lv}_s) \ : (\{w\}, \{y\}) \cdot \textit{sl}_s \end{array} $							
	$R_e \coloneqq R \setminus K \cup L$						
F	$R_s \coloneqq R_e \setminus K_z \cup \{z\}$						

$(R,M)\coloneqq(\{w,x\},\ \{y\})$							
	code	5	L	К	Kz		
	let $W = w$ in let $y = Y$ in						
	let $z = x + y$ in let $w = W$ in	{w}	{y}				
	w + z	{}	$\{w\}$				
$\frac{ \begin{array}{c} R_{e} \\ R_{s} \\ R_{s} \\ \leq 2 \end{array}} \underbrace{fv(x+y) \subseteq R_{e}}_{(w,y) \vdash spill_{2} (w+z) v_{s} \\ (w+z) v_{s} \\ (w+z) (w+z) (w+z) \\ (w+z) \\ (w+z) (w+z) \\ (w+$							
(\w,*,;,\y)	$R_e \coloneqq R \setminus K \cup L =$	-	,		s) · (\'	₩ſ, (Уſ)	· 31 ₅
F	$R_s \coloneqq R_e \setminus K_z \cup \{z\}$						

$(R,M)\coloneqq(\{w,x\},\ \{y\})$						
	code	5	L	K	Kz	
	let $W = w$ in let $y = Y$ in					
	let $z = x + y$ in let $w = W$ in	{w}	{y}	{w}		
	w + z	{}	$\{w\}$			
$\begin{array}{ c c c c } & R_e & \leq 2 & fv(x+y) \subseteq R_e \\ & R_s & \leq 2 & (R_s, \{w, y\}) \vdash \textit{spill}_2 (w+z) \textit{lv}_s : \textit{sl}_s \end{array}$						
$(\{w, x\}, \{y\}) \vdash spill_2 (let \ z = x + y \ in \ w + z) (lv \cdot lv_s) : (\{w\}, \{y\}) \cdot sl_s$ $R_e := R \setminus K \cup L = \{w, x\} \setminus K \cup \{y\}$						
F	$R_e := R \setminus K \cup \{z\}$ $R_s := R_e \setminus K_z \cup \{z\}$	<i>w</i> ,χ}	\ \ \	(У)		

	(R,M) ∺						
	code	5	L	K	Kz		
	let $W = w$ in let $y = Y$ in						
	let $z = x + y$ in let $w = W$ in	{w}	{y}	{w}			
	w + z	{}	$\{w\}$				
-	$\begin{array}{c c} R_e & \leq 2 \\ R_s & \leq 2 & (R_s, \{v\}) \\ \hline h \in \operatorname{cpill} (lot z - v) \end{array}$			-	-		
({ <i>W</i> , <i>X</i> }, { <i>Y</i> })	$ \vdash spill_2 \ (let \ z = x - R_e := R \setminus K \cup L = r)$	-	,		,	<i>\</i> /},{ <i>y</i> })·	515
$R_s \coloneqq R_e \setminus K_z \cup \{z\}$							

 $(\mathbf{D} \mathbf{M})$, $((\dots)$ (\dots)

$(R,M)\coloneqq(\{w,x\},\ \{y\})$					
code	5	L	K	Kz	
let $W = w$ in					
let $y = Y$ in					
let $z = x + y$ in	{w}	{y}	$\{w\}$		
let $w = W$ in					
w + z	{}	$\{w\}$			

$$\begin{aligned} |\{x,y\}| &\leq 2 & fv(x+y) \subseteq \{x,y\} \\ | R_s | &\leq 2 & (R_s , \{w,y\}) \vdash spill_2 (w+z) \ lv_s : sl_s \\ \hline (\{w,x\},\{y\}) \vdash spill_2 (let \ z &= x+y \ in \ w+z) (lv \cdot lv_s) : (\{w\},\{y\}) \cdot sl_s \\ R_e &:= R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ R_s &:= R_e \setminus K_z \cup \{z\} \end{aligned}$$

$(R,M)\coloneqq(\{w,x\},\ \{y\})$					
code	5	L	Κ	Kz	
let $W = w$ in let $y = Y$ in let $z = x + y$ in	{w}	{y}	{w}		
$\begin{array}{l} let w = W in \\ w + z \end{array}$	{}	{w}	ĊĴ		

$$\begin{aligned} |\{x,y\}| &\leq 2 & fv(x+y) \subseteq \{x,y\} \\ | R_s | &\leq 2 & (R_s , \{w,y\}) \vdash spill_2 (w+z) \ lv_s : sl_s \\ \hline (\{w,x\},\{y\}) \vdash spill_2 (let \ z &= x+y \ in \ w+z) (lv \cdot lv_s) : (\{w\},\{y\}) \cdot sl_s \\ R_e &:= R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ R_s &:= R_e \setminus K_z \cup \{z\} \end{aligned}$$

$(R,M)\coloneqq(\{w,x\},\{y\})$						
code	5	L	Κ	Kz		
let $W = w$ in let $y = Y$ in						
	{w}	$\{y\}$	$\{w\}$			
w + z	{}	$\{w\}$				

$$\begin{aligned} \frac{|\{x,y\}| \leq 2 & fv(x+y) \subseteq \{x,y\}}{|R_s| \leq 2 & (R_s, \{w,y\}) \vdash spill_2 & (w+z) \ lv_s : sl_s} \\ \hline (\{w,x\}, \{y\}) \vdash spill_2 & (let \ z = x+y \ in \ w+z) & (lv \cdot lv_s) : (\{w\}, \{y\}) \cdot sl_s} \\ R_e &\coloneqq R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ R_s &\coloneqq R_e \setminus K_z \cup \{z\} \end{aligned}$$

$(R,M)\coloneqq(\{w,x\},\{y\})$						
code	5	L	K	Kz		
let $W = w$ in let $y = Y$ in						
let $z = x + y$ in let $w = W$ in	{w}	{y}	{w}			
w + z	{}	$\{w\}$				

$$\begin{aligned} &|\{x,y\}| \le 2 & fv(x+y) \subseteq \{x,y\} \\ &| R_s \ | \le 2 & (R_s \ , \{w,y\}) \vdash spill_2 \ (w+z) \ lv_s \ : sl_s \\ \hline &(\{w,x\},\{y\}) \vdash spill_2 \ (let \ z = x+y \ in \ w+z) \ (lv \cdot lv_s) \ : (\{w\},\{y\}) \cdot sl_s \\ &R_e \coloneqq R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ &R_s \coloneqq R_e \setminus K_z \cup \{z\} = \{x,y\} \setminus K_z \cup \{z\} \end{aligned}$$

$(R,M)\coloneqq(\{w,x\},\{y\})$						
code	5	L	K	Kz		
let $W = w$ in let $y = Y$ in let $z = x + y$ in let $w = W$ in	{w}	{y}	{w}	{y}		
w + z	{}	$\{w\}$				

$$\begin{aligned} |\{x,y\}| &\leq 2 & fv(x+y) \subseteq \{x,y\} \\ | R_s | &\leq 2 & (R_s , \{w,y\}) \vdash spill_2 (w+z) \ lv_s : sl_s \\ \hline (\{w,x\},\{y\}) \vdash spill_2 (let \ z &= x+y \ in \ w+z) (lv \cdot lv_s) : (\{w\},\{y\}) \cdot sl_s \\ R_e &\coloneqq R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ R_s &\coloneqq R_e \setminus K_z \cup \{z\} = \{x,y\} \setminus K_z \cup \{z\} \end{aligned}$$

$(R,M)\coloneqq(\{w,x\},\{y\})$					
code	5	L	Κ	Kz	
let $W = w$ in let $y = Y$ in let $z = x + y$ in let $w = W$ in	{w}	{y}	{w}	{y}	
w + z	{}	$\{w\}$			

$$\begin{aligned} &|\{x,y\}| \le 2 & fv(x+y) \subseteq \{x,y\} \\ &| R_s \ | \le 2 & (R_s \ , \{w,y\}) \vdash spill_2 \ (w+z) \ lv_s \ : sl_s \\ \hline &(\{w,x\},\{y\}) \vdash spill_2 \ (let \ z = x+y \ in \ w+z) \ (lv \cdot lv_s) \ : (\{w\},\{y\}) \cdot sl_s \\ &R_e \coloneqq R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ &R_s \coloneqq R_e \setminus K_z \cup \{z\} = \{x,y\} \setminus K_z \cup \{z\} = \{x,z\} \end{aligned}$$

$(R,M)\coloneqq(\{w,x\},\ \{y\})$					
code	5	L	K	Kz	
let $W = w$ in let $y = Y$ in let $z = x + y$ in let $w = W$ in	{w}	{y}	{w}	{y}	
$w = vv \ln w + z$	{}	{w}			

$$\begin{aligned} &|\{x,y\}| \le 2 & fv(x+y) \subseteq \{x,y\} \\ &|\{x,z\}| \le 2 & (\{x,z\}, \{w,y\}) \vdash spill_2 (w+z) \ lv_s \ : sl_s \\ \hline &(\{w,x\}, \{y\}) \vdash spill_2 \ (let \ z = x+y \ in \ w+z) \ (lv \cdot lv_s) \ : (\{w\}, \{y\}) \cdot sl_s \\ &R_e \coloneqq R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ &R_s \coloneqq R_e \setminus K_z \cup \{z\} = \{x,y\} \setminus K_z \cup \{z\} = \{x,z\} \end{aligned}$$

Correctness predicate for let x=e in - example

$(R,M)\coloneqq(\{w,x\},\ \{y\})$					
code	5	L	K	Kz	
let $W = w$ in let $y = Y$ in let $z = x + y$ in let $w = W$ in	{w}	{y}	{w}	{y}	
$w = vv \ln w + z$	{}	{w}			

$$\begin{aligned} &|\{x,y\}| \le 2 & fv(x+y) \subseteq \{x,y\} \\ &|\{x,z\}| \le 2 & (\{x,z\}, \{w,y\}) \vdash spill_2 (w+z) \ lv_s \ : sl_s \\ \hline &(\{w,x\}, \{y\}) \vdash spill_2 \ (let \ z = x+y \ in \ w+z) \ (lv \cdot lv_s) \ : (\{w\}, \{y\}) \cdot sl_s \\ &R_e \coloneqq R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ &R_s \coloneqq R_e \setminus K_z \cup \{z\} = \{x,y\} \setminus K_z \cup \{z\} = \{x,z\} \end{aligned}$$

Verification of Spilling Algorithms

Correctness predicate for let x=e in - example

$(R,M) \coloneqq (\{w,x\},\{y\})$					
code	5	L	K	Kz	
let $W = w$ in let $y = Y$ in let $z = x + y$ in let $w = W$ in	{w}	{y}	{w}	{y}	
w + z	{}	$\{w\}$	$\{x\}$		

$$\begin{split} |\{x,y\}| &\leq 2 & fv(x+y) \subseteq \{x,y\} \\ |\{x,z\}| &\leq 2 & (\{x,z\}, \{w,y\}) \vdash spill_2 & (w+z) \ lv_s \ : sl_s \\ \hline (\{w,x\}, \{y\}) \vdash spill_2 & (let \ z = x+y \ in \ w+z) & (lv \cdot lv_s) \ : (\{w\}, \{y\}) \cdot sl_s \\ R_e &\coloneqq R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ R_s &\coloneqq R_e \setminus K_z \cup \{z\} = \{x,y\} \setminus K_z \cup \{z\} = \{x,z\} \end{split}$$

Verification of Spilling Algorithms

Correctness predicate for let x=e in - example

$(R,M)\coloneqq(\{w,x\},\{y\})$					
code	5	L	K	Kz	
let $W = w$ in let $y = Y$ in let $z = x + y$ in	{w}	{y}	{w}	{y}	
$\begin{array}{l} {\sf let} \ {\sf w} = {\sf W} \ {\sf in} \\ {\sf w} + {\sf z} \end{array}$	{}	{w}	{x}		

$$\begin{split} |\{x,y\}| &\leq 2 & fv(x+y) \subseteq \{x,y\} \\ |\{x,z\}| &\leq 2 & (\{x,z\}, \{w,y\}) \vdash spill_2 & (w+z) \ lv_s \ : sl_s \\ \hline (\{w,x\}, \{y\}) \vdash spill_2 & (let \ z = x+y \ in \ w+z) & (lv \cdot lv_s) \ : (\{w\}, \{y\}) \cdot sl_s \\ R_e &\coloneqq R \setminus K \cup L = \{w,x\} \setminus K \cup \{y\} = \{x,y\} \\ R_s &\coloneqq R_e \setminus K_z \cup \{z\} = \{x,y\} \setminus K_z \cup \{z\} = \{x,z\} \end{split}$$

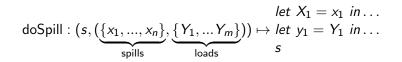
Verification of Spilling Algorithms

Conjecture 1. If $(\emptyset, \emptyset) \vdash spill_k \ s \ lv \ : sl$ holds then:

(a) doSpill s sl uses at most k registers

Conjecture 1. If $(\emptyset, \emptyset) \vdash spill_k \ s \ lv \ : sl$ holds then:

(a) *doSpill s sl* uses at most *k* registers



- (a) doSpill s sl uses at most k registers
- (b) For any Expression *e* in *doSpill s sl*, every variable used in *e* is in a register.

$$\mathsf{doSpill}: (s, (\underbrace{\{x_1, ..., x_n\}}_{\mathsf{spills}}, \underbrace{\{Y_1, ..., Y_m\}}_{\mathsf{loads}})) \mapsto \overset{\mathsf{let}}{\underset{\mathsf{s}}{\mathsf{let}}} \begin{array}{c} x_1 = x_1 \ in \dots \\ \mathsf{let} \ y_1 = Y_1 \ in \dots \\ \mathsf{s} \end{array}$$

- (a) doSpill s sl uses at most k registers
- (b) For any Expression *e* in *doSpill s sl*, every variable used in *e* is in a register.
- (c) doSpill s sl and s are semantically equivalent.

doSpill :
$$(s, (\underbrace{\{x_1, ..., x_n\}}_{spills}, \underbrace{\{Y_1, ..., Y_m\}}_{loads})) \mapsto et X_1 = x_1 in \dots s$$

Conjecture 1. If $(\emptyset, \emptyset) \vdash spill_k \ s \ lv \ : sl$ holds then:

- (a) doSpill s sl uses at most k registers
- (b) For any Expression *e* in *doSpill s sl*, every variable used in *e* is in a register.
- (c) doSpill s sl and s are semantically equivalent.

has to be generalized for inductive proof

doSpill :
$$(s, (\underbrace{\{x_1, ..., x_n\}}_{spills}, \underbrace{\{Y_1, ..., Y_m\}}_{loads})) \mapsto \stackrel{let}{\underset{s}{let}} \begin{array}{c} x_1 = x_1 \ in \dots \\ s \end{array}$$

- (a) doSpill s sl uses at most k registers
- (b) For any Expression *e* in *doSpill s sl*, every variable used in *e* is in a register.
- (c) doSpill s sl and s are semantically equivalent.
 - has to be generalized for inductive proof
 - judgement also needs information about functions

doSpill :
$$(s, (\underbrace{\{x_1, ..., x_n\}}_{spills}, \underbrace{\{Y_1, ..., Y_m\}}_{loads})) \mapsto \stackrel{let}{} x_1 = x_1 \quad in \dots$$

• concentrate on spilling - independant to register allocation

- concentrate on spilling independant to register allocation
- verification of a family of spilling algorithms

- ${\scriptstyle \bullet }$ concentrate on spilling independant to register allocation
- verification of a family of spilling algorithms
 - helpful in the construction of a translation validator

- concentrate on spilling independant to register allocation
- verification of a family of spilling algorithms
 - helpful in the construction of a translation validator
 - should simplify verification of concrete spilling algorithms

Appendix

References

- Blazy, Robillard, and Appel, "Formal Verification of Coalescing Graph-Coloring Register Allocation", 2010
- Braun and Hack, "Register Spilling and Live-Range Splitting for SSA-Form Programs", 2009
- Hack, Grund, and Goos, "Register Allocation for Programs in SSA-Form", 2006
- Klitzke, "Verification of a Spilling Algorithms in Coq", 2015
- Leroy, "A formally verified compiler back-end", 2009
- Rideau and Leroy, "Validating Register Allocation and Spilling", 2010
- Schneider, Smolka, and Hack, "A First-Order Functional Intermediate Language for Verified Compilers", 2015

$$\begin{split} & [a_e] \subseteq R_e \\ & \max\{R_e,R_s\} \leq k \quad (R_s,M\cup S) \vdash spill_k \ s \ a_s \ : \ b_s \\ \hline & (R,M) \vdash spill_k \ (let \ x = e \ in \ s) \ (\lambda \cdot a_e,a_s) \ : \ (S,L) \cdot b_s \\ & \text{where} \ R_e \coloneqq (R \setminus K \cup L) \qquad R_s \coloneqq (R_e \setminus K_x) \cup \{x\} \\ & \text{spill} \ k \land R \ M \ (Let \ x \ e \ s) \ (Node \ Y \ [y_e,y_s]) = \\ & \text{let} \ L = [y_e] \setminus R \ \text{in} \\ & \text{let} \ K \subseteq R \setminus [y_e] \land |K| = |L| \ \text{in} \\ & \text{let} \ S = [y_s] \cap K \ \text{in} \\ & \text{let} \ R_e = (R \setminus K \cup L) \ \text{in} \\ & \text{if} \ [y_e] \setminus [y_s] \neq \emptyset \ \text{then} \ K_x = \{\in [y_e] \setminus [y_s]\} \ \text{else} \ K_x = \emptyset \ \text{in} \\ & \text{let} \ R_s = (R_e \cup \{x\}) \setminus K_x \ \text{in} \\ & \text{if} \ |R_s| \leq k \\ & \text{then} \ Node \ (S,L) \ [spill \ k \land R_s \ (M \cup S) \ s \ y_s] \\ & \text{else} \ \bot \\ \end{split}$$

$R_f \subseteq R_f$	$R_t \cup X_R$			
$M_f \subseteq I$	$M_t \cup X_S \qquad f \mapsto ($	$(R_f, M_f), \Lambda$	$(R_f, M_f) \vdash spill_k s$	a _s : b _s
$max\{ R_f $	$ R_t \leq k f \mapsto 0$	$(R_f, M_f), \Lambda$	$(R_t, M_t) \vdash spill_k t$	a _t : b _t
$\overline{\Lambda;(R,M)\vdash spill_k (fun \ f \ X=s \ in \ t) (\lambda \cdot a_s,a_t) : (S,L) \cdot b_s, b_t}$				
step	register	memory	function env.	
	R	М	٨	
def f	$R \setminus K \cup L =: R_t$	$M \cup S$	$f\mapsto (R_f,M_f),\Lambda$	
	R'	M'	$f\mapsto (R_f,M_f),\Lambda'$	
apply f	$R'\setminus K'\cup L'$	$M' \cup S'$	$f\mapsto (R_f,M_f),\Lambda'$	

$$\frac{R_{f} \subseteq R' \setminus K' \cup L'}{\Lambda; (R', M') \vdash spill_{k} (f\overline{x}) \lambda : (S', L')} \Lambda f = (R_{f}, M_{f})$$

doSpill

```
doSpill s (Node (xs,y::ys) sl)
 = doSpill (let y = Y in s) (Node (xs,ys) sl)
doSpill s (Node (x::xs,[]) sl)
 =
     doSpill (let X = x in s)
                                         (Node (xs, []) sl)
doSpill s (Node ([],[]) sl)
 = match s, sl with
     Let x e s', [sl'] \Rightarrow Let x e (doSpill s'
                                                   sl')
     E e, [] \Rightarrow E e
     If e s' t, [sl1, sl2]
                                   sl1) (doSpill t
         \Rightarrow If e (doSpill s'
                                                         s12)
```