Translating a Satallax Refutation to a Tableau Refutation Encoded in Coq
 Bachelor Seminar - first talk

Andreas Teucke

Advisor: Chad Brown
Supervisor: Gert Smolka
Department of Computer Science
Saarland University

October 22, 2010

Outline

(9) Introduction

- The Tableau Calculus
- Satallax
(2) The Goal of my Thesis
- The Algorithm
- Cut-free?

A Cut-free Tableau Calculus for Simple Type Theory \mathcal{T}

- C. Brown, G. Smolka : "Analytic Tableaux for Simple Type Theory and its First-Order Fragment" (2010)
- J. Backes, C. Brown: "Analytic Tableaux for Higher-Order Logic with Choice" (2010)

Some Tableau Rules from \mathcal{T}

$$
\begin{array}{cc}
\mathcal{T}_{\vee} \frac{s \vee t}{s \mid t} & \mathcal{T}_{\wedge} \frac{(s \wedge t)}{s, t} \\
\mathcal{T}_{\forall} \frac{\forall x . s}{s_{y}^{X}} y \in \mathcal{U} & \mathcal{T}_{\exists} \frac{\exists x . s}{s_{y}^{X}} y \in \mathcal{V} \text { fresh } \\
\mathcal{T}_{\text {MAT }} \frac{\delta s, \neg \delta t}{s \neq t}
\end{array}
$$

Automated Theorem Prover Satallax

- Written by Chad E. Brown as a theorem prover using the tableau calculus
- It reduces HO problems to a sequence of SAT problems, which are solved by Minisat
- In case Minisat returns unsatisfiable, the initial problem is refutable
- Chad E. Brown:" Reducing Theorem Proving to a Sequence of SAT Problems" (September 10, 2010)

The Output of Satallax

called a Satallax Refutation

- Returns an unsatisfiable set of clauses C_{Σ}
- Using PicoSat the set is reduced to its unsatisfiable core
- A clause c is a finite set of formulas $c=\left\{s_{1}, \ldots, s_{n}\right\}$ thought of disjunctively
- The initial (unit) clauses correspond to the assumptions in the original branch
- All other clauses correspond to rules in the calculus

Step 1: A Finite Tableau Calculus \mathcal{T}_{Σ}

- each clause c defines a set F_{c} of allowed formulas, a set of steps $\mathcal{T}_{c, F}$ restricted on formulas in F and a set Δ_{c}, that tells, whether a step can be applied
- e.g. for $c=\{\overline{s \vee t}, s, t\}$
$F_{c}=\{s \vee t, \neg(s \vee t), s, t\}$
$\mathcal{T}_{c, F}=\{<A, A \cup\{s\}, A \cup\{t\}>\mid\{s \vee t\} \subseteq A \subseteq F\} \subseteq \mathcal{T}_{\vee}$
$\Delta_{c}=\{s \vee t\}$
- $F=\bigcup_{c \in C} F_{c}$ and $\mathcal{T}_{\Sigma}=\bigcup_{c \in C} \mathcal{T}_{c, F}$

Step 2: Searching for a Refutation

- Start with only the initial branch in the tableau
- While there is an open branch A in the tableau do
- Choose $c \in C_{\Sigma}$ such that $A \cap c=\emptyset$ (c is not satisfied by A).
- Such a clause exists, because C_{Σ} is strongly unsatisfiable.
- Apply \mathcal{T}_{c} and replace A by the new branches in the tableau.
- This terminates, because every branch in the tableau would eventually be a C_{Σ}-branch

Step 2: Searching for a Refutation

- e.g. $c=\{\overline{s \vee t}, s, t\}$:
- Case $1\{s \vee t\} \subseteq A$: apply $<A, A \cup\{s\}, A \cup\{t\}>\in \mathcal{T}_{\Sigma}$ add $A \cup\{s\}$ and $A \cup\{t\}$.
- Case $2\{s \vee t\} \nsubseteq A$: apply Cut on $s \vee t$ add $A \cup\{s \vee t, s\}, A \cup\{s \vee t, t\}$ and $A \cup\{\neg(s \vee t)\}$.

What is Cut and Why We don't Want it

- Cut as a tableau rule $\mathcal{T}_{\text {cut }} \frac{}{s \mid \neg s}$ is not in the cut-free tableau calculus \mathcal{T}
- Therefore we know that there is a refutation without Cut
- Can we always choose c such that we are in case 1 ?

A Surprising Example

- initial branch $\boldsymbol{A}=\{\{\delta \boldsymbol{s} \vee \delta t\},\{\neg \delta u \vee \neg \delta t\},\{\boldsymbol{s}=t\},\{t=u\}\}$
- could result in $C_{\Sigma}=$

$$
\delta \boldsymbol{s} \vee \delta t
$$

$$
\neg \delta u \vee \neg \delta t
$$

$$
s=t
$$

$$
t \overline{\overline{\delta s} \vee \delta t} \sqcup \delta s \sqcup \delta t
$$

$$
\leftarrow \mathcal{T}_{\vee}
$$

$$
\overline{\neg \delta u \vee \neg \delta t} \sqcup \neg \delta u \sqcup \neg \delta t
$$

$$
\leftarrow \mathcal{T}_{V}
$$

$$
\overline{\delta s} \sqcup \overline{\neg \delta t} \sqcup s \neq t
$$

$\leftarrow \mathcal{T}_{\text {MAT }}$

$$
\overline{\delta t} \sqcup \overline{\neg \delta u} \sqcup t \neq u \quad \leftarrow \mathcal{T}_{M A T}
$$

A Surprising Example

Trying to refute this in \mathcal{T}_{Σ} without Cut \ldots

$$
\begin{aligned}
& \delta \boldsymbol{s} \vee \delta t \\
& \neg \delta u \vee \neg \delta t \\
& s=t \\
& t=u \\
& \neg \delta u^{\delta s} \left\lvert\, \begin{array}{c|c}
& \neg \delta t \\
& s \neq t
\end{array}\right. \\
& \delta t \\
& \left.\begin{array}{l}
\neg \delta u \\
t \neq u
\end{array} \right\rvert\, \neg \delta t
\end{aligned}
$$

... we get stuck.

A Surprising Example

But with a Cut on δt we can complete the refutation.

$$
\begin{aligned}
& \delta \boldsymbol{s} \vee \delta t \\
& \neg \delta u \vee \neg \delta t \\
& s=t \\
& t=u
\end{aligned}
$$

Making a Compromise

Conclusion :

- \mathcal{T}_{Σ} isn't complete without Cut
- As a solution certain Cuts will be allowed in \mathcal{T}_{Σ}
- $\mathcal{T}_{\Sigma} \cup\left\{<A, A \cup\{s\}, A \cup\{\neg s\}>\mid \exists c \in C_{\Sigma}, s \in \Delta_{c}\right\}$

Summary

- Search for a refutation in a finite calculus provided by Satallax
- This calculus won't be cut-free
- Outlook
- Further restricting the use of Cuts
- Dealing with freshness
F. Pfenning: "Analytic and non-analytic proofs" (1984).

References I

囯 C．Brown，G．Smolka
＂Analytic Tableaux for Simple Type Theory and its
First－Order Fragment＂（2010）．
圊 J．Backes，C．Brown
＂Analytic Tableaux for Higher－Order Logic with Choice＂
（2010）
囯 C．Brown
＂Reducing Theorem Proving to a Sequence of SAT
Problems＂（September 10，2010）
國 N．Eén，N．Sörensson
＂An Extensible SAT－solver＂

References II

固 F. Pfenning
" Analytic and non-analytic proofs"
In R.E. Shostak, editor, Proceedings of the 7th Conference on Automated Deduction, pages 394-413, Napa, California, May 1984. Springer-Verlag LNCS 170.

Some Definitions

Definition

A is a C-branch if $A \subseteq F_{C}, A$ is open, and $\forall c \in C, A \cap c \neq \emptyset$.

Definition

A set of clauses C is strongly unsatisfiable, if there are no C-branches.

Definition rule-clauses

- Definition And-rule : for $c=\{\overline{s \wedge t}, s\} \vee c=\{\overline{s \wedge t}, t\}$ $F_{c}=\{\overline{s \wedge t}, s \wedge t, s, t\}, \Delta_{c}=\{s \wedge t\}$ and $\mathcal{T}_{c, F}=\{<A, A \cup\{s, t\}>\mid\{s \wedge t\} \subseteq A \subseteq F\} \subseteq \mathcal{T}_{\wedge}$
- Definition Forall-rule : for $c=\left\{\overline{\forall x . s}, s_{y}^{x}\right\}$
$F_{c}=\left\{\overline{\forall x . s},, \forall x . s, S_{y}^{x}\right\}, \Delta_{c}=\{\forall x . s\}$ and
$\mathcal{T}_{c, F}=\left\{<A, A \cup\left\{s_{y}^{x}\right\}>\mid\{\forall x . s\} \subseteq A \subseteq F\right\} \subseteq \mathcal{T}_{\forall}$
- Definition Exists-rule : for $c=\left\{\overline{\exists x . s}, s_{y}^{x}\right\}$
$F_{c}=\left\{\overline{\exists x . s}, \exists x . s, s_{y}^{x}\right\}, \Delta_{c}=\{\exists x . s\}$ and
$\mathcal{T}_{c, F}=\left\{<A, A \cup\left\{s_{y}^{x}\right\}>\mid\{\exists x . s\} \subseteq A \subseteq F\right.$
$\wedge y$ is fresh in $A\} \subseteq \mathcal{T}_{\exists}$
In this case we say c selects y.

A Surprising Example - cut-free refutation

We would have to use $\mathcal{T}_{\text {MAT }}$ on δs and $\neg \delta u$ and $\mathcal{T}_{\text {CON }}$ on $s=t$ and $s \neq u$ to complete the refutation.

$$
\begin{gathered}
\delta \boldsymbol{s} \vee \delta t \\
\neg \delta u \vee \neg \delta t \\
s=t \\
t=u
\end{gathered}
$$

\[

\]

How Freshness Adds to my Troubles

$$
\mathcal{T}_{\forall} \frac{\forall x \cdot s}{s_{y}^{x}} y \in \mathcal{U}
$$

$$
\mathcal{T}_{\exists} \frac{\exists x \cdot s}{s_{y}^{x}} y \in \mathcal{V} \text { fresh }
$$

- As the variables are already chosen by Satallax, if we choose a c which selects a variable x, x will need to be still fresh in A
- Therefore which c is chosen has to be restricted

A Solution - The Strict Partial Order $<_{C}$

Definition

The strict partial order $<_{c}$ on clauses in C is the transitive closure of $<_{C}^{0}$, where $\forall c_{1}, c_{2} \in C$,
$c_{1}<{ }_{C}^{0} c_{2} \rightarrow \exists$ variable x, c_{1} selects $x \wedge x$ is free in c_{2}.

- The initial list of clauses Satallax produces is a linearisation of $<c_{\Sigma}$
- The c has to be chosen as a minimum in the set of clauses unsatisfied by A

Another Example

- the initial branch

$$
A=\{\{\forall x y . \neg r x y\},\{(\forall x . r x x) \vee \exists x . r x x\}\}
$$

- could result in $C_{\Sigma}=$
$\forall x y . \neg r x y$
$(\forall x . r x x) \vee \exists x . r x x$

$$
\begin{array}{ll}
\hline \overline{(\forall x . r x x) \vee \exists x . r x x} \sqcup \forall x . r x x \sqcup \exists x . r x x & \leftarrow \mathcal{T}_{\vee} \\
\hline \exists x . r x x & \\
\hline \forall x . r x x & \leftarrow \mathcal{T}_{\exists} \\
\hline \forall x y . \neg r x y & \leftarrow \mathcal{T}_{\forall} \\
\hline \forall y . \neg r x y & \leftarrow y . \neg r x y \\
& \leftarrow \mathcal{T}_{\forall} \\
\hline \mathcal{T}_{\forall}
\end{array}
$$

Another Example

With a Cut on $\exists x . r x x$ we can again complete the refutation

\[

\]

Another Example - desired solution

But we actually would like to have ...

$$
\begin{array}{c|c}
\forall x y . \neg r x y \\
(\forall x . r x x) \vee \exists x \cdot r x x \\
\forall x . r x x & \exists x \cdot r x x \\
r x x & r x x \\
\forall y . \neg r x y & \forall y . \neg r x y \\
\neg r x x & \neg r x x
\end{array}
$$

