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Abstract

We study, formalize, and verify reductions of the halting problem for Turing ma-
chines (Halt) to the Post correspondence problem (PCP). The formalizations and
verifications are carried outwith the interactive theoremprover Coqwith construc-
tive proofs not using excluded middle. We verify 7 reductions: Halt to SR (word
problem for string rewriting), SR toMPCP (Post correspondence problemwith fixed
first domino) and MPCP to PCP. We present an alternative, direct reduction of Halt
to MPCP, and reductions of SR to RSR (word problem for string rewriting with
nonempty rules) as well as RSR to PCP. In addition, the reduction of Halt to SR
includes a reduction of the reachability problem for Turing machines (Reach) to
SR. We observe that the correctness of the reductions is argued rather informally
in the literature and that the formal verification requires considerable elaboration
and effort.
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Chapter 1

Introduction

Undecidability proofs are often based on reductions of undecidable problems that
rely on the definition of Turing machines. Rice’s Theorem states that every non-
trivial property of the accepted language of a Turing machine is undecidable [10].
This leads to undecidable problems asking whether a Turing machine accepts all
inputs, accepts a specific input (halting problem) or if it accepts a context-free lan-
guage. The correspondence decision problem, stated by Emil L. Post in 1946 [14], is
an undecidable problem which is machine independent. Today it is known as Post
correspondence problem (PCP) and has many applications in undecidability proofs.
For example, reductions of PCP prove problems related to context-free languages
[10] or variants of specification formalisms [5, 16] undecidable.

An instance of PCP consists of a finite number of dominoes. The following example
with three dominoes is adopted from Hesselink [9]:

eats
at

1

dog
doge

2

print
sprint

3

The question is whether there is a finite sequence of these dominoes such that the
concatenation of the top strings equals the concatenation of the bottom strings. One
dominomay be used several times in this sequence. Arranging the dominoes in the
order 2, 1, 3 describes the shortest solution for this instance. The concatenation of
both rows yield the string dogeatsprint.

dog
doge

eats
at

print
sprint

Since this example was easy to solve, it may seem surprising that in general it is not
possible to decide algorithmically if an instance is solvable. The following instance
uses only two different symbols and does not seem too difficult at first glance, but
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needs considerable more thought.

110

1
1

0

111
2

1

01
3

This instance is indeed solvable with a sequence of 7 dominoes.1

Besides the general definition of PCP, there exist several restricted variants limiting
the number of dominoes, the size of the alphabet, or the length of a solution. The
version limiting the instance to only two dominoes is still decidable [4, 8]. While
the question of undecidability for instances with three dominoes is still unsettled,
using four or more dominoes leads to undecidability [13].

The undecidability of unrestricted PCP can be obtained in different ways. Emil
Post presents a reduction of Post normal systems to PCP. A simplified version of
his proof and a different reduction also based on normal systems can be found in
Halava [7]. Many textbooks on computability theory reduce the halting problem
(Halt) for Turing machines to PCP [10, 3]. In this thesis we formalize and verify the
different approaches of reducing Halt to PCP from the literature.

The Halting Problem

Halt is the problemwhether a TuringmachineM eventually reaches a final state on a
given inputw. A reduction of Halt toPCP converts a TuringmachineM and inputw
into a set of dominoes. The transformation described by a the reduction is correct,
if in case the PCP instance is solvable, the machine M halts on input w and vice
versa. We illustrate the idea of the reduction with an exemplary Turing machineM
that accepts all strings over the alphabet {a, b} containing an even number of a’s. M
has states {q0, q1, qf}with initial state q0 and final state qf. The symbolt represents
the blank and L, Rmoves of the machine head to the left or the right. The transition
function δ is defined in Table 1.1. We are only interested in reaching the final state

qi δ (qi, a) δ (qi, b) δ (qi,t)
q0 (q1, a, R) (q0, b, R) (qf,t, L)
q1 (q0, a, R) (q1, b, R) (q1,t, R)

Table 1.1: Transition function forM.

and omit all outgoing transitions of qf. The string aba contains an even number of
a’s and is accepted byM, eventually halting in the final state qf. We represent the

1Take the dominoes in order 1311322 to obtain a solution. If this was still too easy, youmight tackle
the decision problem for the PCP instance 1000

0

01

0

1

101

00

001
. The solution has at least 206 dominoes[21].
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halting computation by configurations that include the current state to the left of
the symbol under the machine head.

q0aba ` aq1ba ` abq1a ` abaq0 ` abqfa (1.1)

SinceM accepts aba, the corresponding PCP instance should be solvable. This is
achieved by providing dominoes emulating the computation ofM. If we concate-
nate the strings of a domino sequencewhich is not yet amatch, the resulting bottom
row is one configuration ahead of the top row. The concatenated sequence in 1.2
represents the first two transitions of the computation in 1.1.

q0aba ` aq1ba ` . . .
q0aba ` aq1ba ` abq1a ` . . .

(1.2)

Due to the infinite tape of a Turingmachine, configurations can become indefinitely
large. We cannot provide dominoes containing the current configuration at the top
and the successor configuration at the bottom because a PCP instance is limited to
finitely many dominoes. To solve this problem, we translate the transition function
δ into dominoes and split configurations into two parts: A changing part including
the state (indicated in bold) and symbolswhich do not change in the next transition.

abq1a `

Symbols that do not change are copied to the next configuration using dominoes
a

a
and b

b
. Dominoes representing the transition function cover the changing parts

of a configuration. The domino q1a
aq0

for instance, corresponds to the transition

δ (q1, a) = (q0, a, R). Adding the top and bottom strings of the dominoes a

a

b

b

q1a
aq0

to the sequence in 1.2, extends both rows by one configuration:

q0aba ` aq1ba ` abq1a . . .
q0aba ` aq1ba ` abq1a ` abaq0 . . .

We provide extra dominoes for all final states to complete a domino sequence to
a solution. By defining these dominoes exclusively for final states, we ensure that
a PCP solution always models a halting computation. However, we face the in-
auspicious situation that dominoes like a

a
already form trivial solutions of a PCP

instance. To circumvent this problem and assure that the represented computation
starts with the initial state and the given input word, we fix the first domino of
the solution to the initial configuration (q0aba). This restricted definition of PCP
is called modified Post correspondence problem (MPCP). Halt is then reduced to MPCP
and the undecidability of PCP follows from a reduction of MPCP.
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String Rewriting

Instead of using MPCP as intermediate problem, Davis et al. [3] present a reduction
of Halt to the word problem in string-rewriting systems. The word problem is the
question whether a string x can be transformed into a string y using rewrite rules
from a set R. Consider the instance of a word problem with the set of rules R :=

{ab/bb, ba/ab}, the initial string x :=aba, and a target string y :=bbb. In this case, a
derivation from aba to bbb is possible. We substitute the bold parts of the strings
according to the rules in R:

aba⇒ bba⇒ bab⇒ bbb

The existence of a derivation from x to y for arbitrary R, x, and y is undecidable.
This can be proven by a reduction of Halt similar to the reduction of Halt to MPCP.
A reduction of SR to PCP completes this approach, but needs an intermediate step:
The word problem for restricted string-rewriting systems (RSR) whose rewrite rules
contain only nonempty strings, is used for the reduction to PCP.

1.1 Contribution

The reductions proving PCP undecidable that can be found in the literature are
carried out informally and the authors strongly rely on the intuition of the reader
when arguing about the correctness of their reductions. By formalizing and veri-
fying the reductions of Hopcroft et al. [10] and Davis et al. [3], we reveal hidden
invariants and clearly state the techniques needed to prove them correct. Beyond
that, we present a reduction of SR to MPCP which is a simpler version of the reduc-
tion of RSR to PCP and can be found in Hesselink [9]. We further give a reduction
of the reachability problem for Turing machines (Reach) to SR, which is hidden in
the reduction of Halt to SR. Figure 1.1 states the different decision problems and
reductions.

SR

Halt

Reach

MPCP

PCP

RSR Davis et al. [3]

Hopcroft et al. [10]

Figure 1.1: Overview illustrating the reductions verified in this thesis. The contin-
uous line depicts the approach of Hopcroft et al. [10], the reductions from Davis
et al. [3] are indicated with a dashed line. The dotted reduction of SR to MPCP can
be found in Hesselink [9] and the reduction of Reach to SR can be extracted from
Halt to SR.
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1.2 Related Work

To the best of our knowledge, we present the first formalization ofmany-one reduc-
tions from the halting problem to string rewriting and PCP in constructive type
theory. Asperti and Ricciotti [1; 2] formalize Turing machines in the interactive
theorem prover Matita and verify a reduction of multi-tape to single-tape Turing
machines. We adapt their formal definition of multi-tape Turing machines in our
work. Xu et al. [20] prove the halting problem undecidable in Isabelle/HOL.

1.3 Outline

Chapter 1 contains the introduction.

Chapter 2 introduces string-rewriting systems, the Post correspondence problem,
the modified Post correspondence problem, and single-tape Turing ma-
chines. Furthermore, it defines the notion of formal reductions and un-
decidability used throughout this thesis.

Chapter 3 presents the reduction of MPCP to PCP.

Chapter 4 presents the reduction of SR to MPCP.

Chapter 5 presents the reduction of Reach to SR.

Chapter 6 uses the results of Chapter 5 to present a reduction of Halt to SR.

Chapter 7 gives an alternative reduction of Halt to MPCP.

Chapter 8 outlines the reduction of SR to RSR and RSR to PCP.

Chapter 9 combines the results to state the undecidability of PCP and presents op-
tions for future work.



Chapter 2

Definitions

This chapter introduces formal reductions and undecidability as well as the de-
cision problems used in this thesis. This includes the word problem in string-
rewriting systems, the Post correspondence system, the modified Post correspon-
dence problem, and the reachability and halting problem for Turing machines.

2.1 Reductions

Reductions are used to measure the relative hardness of two decision problems.
We define decision problems as classes, which are unary predicates.

Definition 2.1 (Class) Let X be a type. Then P : X→ P is a class over X. Elements x : X
are called instances of P.

A reduction is a function that converts instances of one class into instances of a
second class. The original instance is in the first class if and only if the resulting
instance is in the second class.

Definition 2.2 (Reduction) Assume two types, X and Y. A reduction of P : X → P to
Q : Y → P is a function f : X→ Y with

∀ x. P x ↔ Q (f x).

Fact 2.3 Reductions are transitive.

We say that P : X→ P reduces toQ : Y → Pwhenever there is a reduction f : X→ Y.
The above definition formalizes the notion of many-one reductions. The reason for
this is that all functions in Coq are total and also computable since our constructive
development does not use further axioms.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Reductions.html#red
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Reductions.html#red_trans
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2.2 String Rewriting

A central notion of this thesis is string rewriting which is the stepwise transforma-
tion of strings following rewrite rules. String-rewriting systems were first intro-
duced by Axel Thue [18] and are also called semi-Thue systems. We define string-
rewriting systems over a finite alphabet of symbols. Formally, a finite alphabet is
represented by a finite type, a type whose elements are listable. We use L to denote
list types. Assuming a finite alphabet Γ , we introduce the following terminology:

• a, b, c denote elements of Γ and are called symbols.

• x, y, z, u, v denote elements of type Γ∗ := L Γ and are called strings.

• ax denotes cons and xy denotes concatenation.

• A rule is a pair of strings of type Γ∗ × Γ∗. We write u/v for a rule (u, v).

• A string rewriting system R is a finite subset of Γ∗ × Γ∗.

The single application of a rewrite rule and the reflexive transitive closure are de-
fined inductively.

u/v ∈ R
xuy⇒R xvy z⇒∗R z

x⇒R y y⇒∗R z
x⇒∗R z

Fact 2.4 ⇒∗ is transitive.

The word problem related to a string-rewriting system R asks whether a string y
can be derived from a string xwith rules from R.

Definition 2.5 The word problem in string-rewriting systems is the class

SR (R, x, y) := x⇒∗R y.

Wealso define thewordproblem for restricted string-rewriting systems (RSR)where
R contains only rules (u/v) with u and v being nonempty strings. Formally, an in-
stance of RSR carries a proof that no rule is empty.

Definition 2.6 The word problem in restricted string-rewriting systems where x and y
are strings over Γ is defined as

RSR ({R : L (Γ∗ × Γ∗) |∀uv. (u/v) ∈ R→ u 6= [ ]∧ v 6= [ ]}, x, y) := x⇒∗R y.

2.3 The Post Correspondence Problem

A PCP instance is a finite set of dominoes. We say an instance is solvable if there
is a nonempty list of dominoes from the set, possibly containing duplicates, where
the concatenated top and bottom rows are equal.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.String_rewriting.html#rewtTrans
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.String_rewriting.html#SR
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.String_rewriting.html#RSR
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Example 2.7 The PCP instance
{

1

111
, 10111

10
, 10
0

}
has the solution 10111

10

1

111

1

111

10

0
.

Formally, we assume an alphabet Σ and define dominoes as pairs of strings and
PCP instances as lists of dominoes.

domino := Σ∗ × Σ∗

pcp := L domino

We use the variables P and S to refer to lists of dominoes, and d to denote a single
domino.

Definition 2.8 (PCP match) A list S is a match if the concatenation of the top strings
equals the concatenation of the bottom strings.

S is a match := concat (map π1 S) = concat (map π2 S)

S is a match for P := S is a match ∧ S 6= [ ] ∧ S ⊆ P

We may abbreviate concat (map π1 S) with C1 S, and concat (map π2 S) with C2 S.

Definition 2.9 The class

PCP (P : pcp) := ∃ S, S is a match for P

characterizes all solvable PCP instances.

2.4 The Modified Post Correspondence Problem

Contrary to PCP instances, where the order of the dominoes is not relevant, an in-
stance of themodified Post correspondence problem (MPCP) separates one domino
from the remaining ones.

mpcp := domino× pcp

In addition, a match for an MPCP instance (d, P) must begin with domino d, the
first component of the pair. The definition of the MPCP class contains the notion of
being a match for a PCP instance.

Definition 2.10 The class

MPCP (d, P) := ∃S, (d :: S) is a match for (d :: P)

characterizes all solvable MPCP instances.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.PCP.html#pcp_solution
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.PCP.html#PCP
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.PCP.html#MPCP


2.5. Turing Machines 9

Note that the list S is preceded by the first domino d of the MPCP instance before
it is checked to be a match. Thus it might be empty if the first domino is a trivial
match. Furthermore, we use the set notation in pictorial representations of MPCP
instances, marking the special first domino with a thick domino border.

Example 2.11 Amatch for theMPCP instance
{

1

111
, 10111

10
, 10
0

}
, whichmust start with

10111

10
, would be 10111

10

1

111

1

111

10

0
.

We call a list of dominoes a partial match, if the concatenated top row is a substring
of the concatenated bottom row or vice versa. If suitable dominoes are available, a
partial match can be completed to a match.

2.5 Turing Machines

The computational model of a Turing machine can be defined in many different
ways. Turing machines may be deterministic or indeterministic, differ in the num-
ber of tapes and the movements of the machine head, and the tape may be infinite
to both sides or only semi-infinite. In this thesis we adapt the formalization of
of multi-tape Turing machines from Asperti and Ricciotti [2] to define symmetric
single-tape Turing machines having a doubly-infinite tape. We start with the cen-
tral concept of their Turing model, which is the definition of tapes.

A tape describes the content to the left, to the right, and under the tape head ↑.
We assume the tape symbols to be from a fixed alphabet Σ, and use a : Σ and lists
A, B : LΣ. We do not include the infinite number of blank cells to both sides of the
tape content, which leads to the following kinds of tapes:

∅
↑ ↑

aA Ba
↑
A Ba

↑

Only the third tape describes the situation where the head points to a symbol. For-
mally we define a type tape representing these four cases.

Definition 2.12 tape := ∅ | leftof aA | midtapeBaA | rightof aB (a : Σ) (A B : Σ∗)

It turns out to be convenient providing the content to the left of the tape head in
reversed oder. We use the superscript R to reverse a list. With this convention,
the tape corresponding to (rightof aB)will be (BRa

↑
). The decision to represent the

contentwith lists over Σ symbols accompanies the fact that we do not define a blank
symbol and the tape head can not run over empty cells. To indicate that the head is
not reading a symbol, we use an option type Σ⊥ as input for the transition function.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Single_TM.html#tape
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A Turing machineM over a finite alphabet Σ, which represents the input and the
tape alphabet, is defined as the quadruple

M := (Q, δ, q0, H)

consisting of the following components:

• A finite type of states Q.

• A transition function δ : Q×Σ⊥ → Q×Σ⊥× {L,N, R}, defined for all states and
options Σ⊥. An option either names a symbol from the alphabet, represented
as bac or declares the current cell empty (⊥). The resulting triple δ(q, o) =

(q ′, o ′,m) specifies

– The new state q ′.

– An option o ′ indicating whether to write a new symbol on the tape or to
leave the cell unchanged.

– A move m of the tape head. L is a move to the left, R to the right, and N
stands for none where the head remains stationary.

• The starting state q0 : Q.

• A function indicating all halting states H : Q→ B.

Note that limiting the moves of the tape head to L and R would suffice and agree
with the standard definitions. Following [2], we adopt the moves from multi-tape
Turing machines, to keep a uniform representation. Further, we do not apply the
transition function δ to halting states and omit these values when defining transi-
tion functions for examples.

The following definitions and examples take place in the context of a Turing ma-
chineM = (Q, δ, q0, H) over the alphabet Σ.

Effects of a Transition

To explain the effect of the transition function δ on tapes, we distinguish the case
where a symbol is written on the tape from the case where the cell under the head
remains unchanged. If we write a symbol bbc, the content of the cell under the tape
head is changed to b and the head performs a specified move from {L,N, R}. If the
writing option is ⊥, either move does not have an effect on the empty tape. The
situation with leftof and rightof tapes is different as a move further away from the
tape content has not effect: A move to the left on (

↑
aA) results in (

↑
aA) and a move

to the right on (Ba
↑
) results in (Ba

↑
).
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A tape does not contain enough information to determine the result of the transition
function. Therefore, we use configurations which are comprised of the current
state and a tape.

conf :=Q× tape

Rather than (q,midtapeBaA), we will use the pictorial representation (q, BRa
↑
A) of

configurations. A sequence of successive configurations is called a computation of
a Turing machine. We define a step function δ̂ which interprets the result of the
transition function δ and computes the successor configuration.

δ̂ : conf → conf

While the successor state is directly given by δ, the tape is modified depending on
the optional symbol and the move of the tape head.

Example 2.13 (Midtape move) Assume a configuration (q, Bb
↑
aA) and δ (q, bbc) =

(q ′, bcc, R). The step-function yields δ̂ (q, Bb
↑
aA) = (q ′, Bca

↑
A)

Example 2.14 (Leftof move) The configuration (q,
↑
aA) describes the situation where

the tape head points to an empty cell. Assume δ (q,⊥) = (q ′,⊥, L). In this case the step
function yields δ̂ (q,

↑
aA) = (q ′,

↑
aA) which leaves the tape unchanged.

Reachability of Configurations

We do not apply the step function to final configurations which contain a halting
state. To identify those, we introduce the notation

Hc :=H (π1 c) = true.

The following inductive predicate relates two configurations if the second can be
obtained by the repeated application of the step function to the first configuration.

Definition 2.15 (Reachability) The configuration c ′ is reachable from c if c ` c ′.

c ′ ` c ′
δ̂ c ` c ′ ¬Hc

c ` c ′

Definition 2.16 The class Reach states reachability of two configurations with respect to
the transition function of a Turing machineM.

Reach (M,c1, c2) := c1 `M c2

Wesay aTuringmachine halts, if it reaches a final configuration containing a halting
state. The halting problem is the questionwhether a Turingmachine halts, starting
in configuration (q0, t) for a given initial tape t.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Single_TM.html#reach
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Single_TM.html#Reach
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Definition 2.17 The class

Halt (M, t) := ∃ cf. (q0, t) `M cf ∧ Hcf

denominates all pairs of Turing machines M and tapes t such that M halts on the initial
configuration (q0, t).

2.6 Undecidability

Coq’s type theory is constructive and thus comes with a built-in notion of com-
putability enabling straightforwarddefinitions of decidable classes and computable
reductions between classes. However, the concomitant notion of undecidability is
useless since the assumption that every class is decidable is consistent and no class
can be shown undecidable within Coq’s type theory.

To circumvent this fact, we call a class Turing undecidable if the halting problem
reduces to it. The internal notion of Turing undecidability then formalizes the exter-
nal notion of undecidability and external undecidability proofs can be formalized
in Coq. Since external undecidability proofs consist of reductions and the concomi-
tant correctness proofs, they are well-suited for formalization in a constructive type
theory.

Definition 2.18 A class P : X→ P is undecidable if Halt reduces to P.

This means there exists a function f such that ∀Mt.Halt (M, t)↔ P (f (M, t)).

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Single_TM.html#HaltD
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Reductions.html#undecidable


Chapter 3

Reducing MPCP to PCP

In this reduction we transform an MPCP instance (d, P) into a PCP instance consist-
ing of a single list of dominoes. Recall the definitions of these two classes:

S is a match for P := S is a match, S 6= [ ] and S ⊆ P
PCP (P : pcp) := ∃ S, S is a match for P
MPCP (d, P) := ∃S, (d :: S) is a match for (d :: P)

Reducing MPCP to PCP means that the original MPCP instance is solvable if and
only if the constructed PCP instance has a match. Since all matches for an instance
(d, P) start with domino d, we need to make sure that all PCP matches also start
with d. We cannot change the definition for a list to be a PCP match, such that the
external condition to start with a special domino has to be internalized in the PCP
dominoes itself.

To ensure that d starts everymatch, we transform all other dominoes in P such they
do not fit at the beginning: A new symbol #, which is not in the original alphabet,
is inserted to the left of each symbol in the top row and to the right of each symbol
in the bottom row of all dominoes. Additionally, we define the domino d to start at
the top and the bottomwith #, and provide a final domino to compensate the extra
# in the top row. With this modification, all MPCP matches starting with d can still
be constructed and are simply interleaved with # symbols.

The idea of this reduction can be found in Hopcroft et al. [10]. They implicitly
consider all dominoes to be pairs of nonempty strings, which is not the case in our
definition but required for the correctness. For this reason, the deletion of empty
dominoes is part of our reduction.

Before defining the reduction formally, we elaborate the underlying idea with ex-
amples. The most simple transformation of an MPCP instance (d, P) into a PCP
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instance would add the first domino d to the remaining dominoes, creating the in-
stance (d :: P). The following instances demonstrate why this naive approach fails.

Example 3.1 We transform a solvable MPCP instance
{

1

111
, 10111

10
, 10
0

}
into the PCP

instance
{

1

111
, 10111

10
, 10
0

}
. In this special case we observe the desired result that theMPCP

match is the same for the PCP instance:

MPCPmatch : 10111

10

1

111

1

111

10

0

PCPmatch : 10111

10

1

111

1

111

10

0

Example 3.2 By choosing a different starting domino, we obtain the unsolvable MPCP
instance {

1

111
, 10111

10
, 10
0

}
.

If we proceed the same way as before to transform the above instace into{
1

111
, 10111

10
, 10
0

}
,

we face the problem that the latter is indeed solvable, since it is equivalent to the instance
from Example 3.1.

These examples illustrate the need to inhibit other dominoes from starting amatch.
Inserting the # symbol to the left of the symbols in the top row and to the right of
each symbol in the bottom row, a domino a1a2 . . . an

b1b2 . . . bm
is transformed into #a1#a2 . . . #an

b1#b2# . . . bm#
.

We abbreviate the application of this insertion process to each pair of a set of domi-
noes with # .

Example 3.3 Convince yourself that no domino in the right set can be used to start a
match.

#
{

1

111
, 10111

10
, 10

0

}
=

{
#1

1#1#1# ,
#1#0#1#1#1

1#0# , #1#0
0#

}

We also need to add a modified version of the designated first domino of an MPCP
instance that can be used to start a PCP match. In addition, we provide a domino
completing a match with the missing # at the top. These dominoes include another
new symbol $ to emphasize that they are only used at the very beginning or the
end of a match. This simplifies formal proofs.
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Example 3.4 Transforming the MPCP instance
{

1

111
, 10111

10
, 10
0

}
into{

$#1#0#1#1#1
$#1#0# , #1

1#1#1# ,
#1#0#1#1#1

1#0# , #1#0
0# , #$

$

}
ensures that a match can only start with the modified first domino $#1#0#1#1#1

$#1#0# :

$#1#0#1#1#1
$#1#0#

#1
1#1#1#

#1
1#1#1#

#1#0
0#

#$
$

3.1 Definition of PCP Dominoes

To state the formal reduction, we fix an MPCP instance (d, P) over alphabet Σ for
the remainder of this chapter. The resulting type of the PCP instance is defined as
Γ , including the new symbols # and $.

Γ ::= # | $ | s : Σ

Definition 3.5 (Functions inserting # symbols) We define the functions #L and #R,
inserting # to the left or the right of all symbols of a string A over Σ.

#L : Σ∗ → Γ∗

#L A := concat (map (λ s. [#; s]) A)

#R : Σ∗ → Γ∗

A #R := concat (map (λ s. [s; #]) A)

# : pcpΣ → pcpΓ
# := map (λp. (#L (π1 p), (π2 p) #R))

We use the #R operation in postfix notation. The function # applies both operations to a list
of dominoes.

The functions #L and #R have no effect on empty dominoes like . This fact is
problematic, since an empty domino could be used as a trivial match for a PCP
instance.

Example 3.6 The original intention of altering the dominoes such that no domino can
start a match, is not met when we have a domino in the set:

#
{

1 , 1

111
, 10111

10
, 10

0

}
=

{
1 , #1

1#1#1# ,
#1#0#1#1#1

1#0# , #1#0
0#

}

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#hash_right
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To resolve this problem we delete empty dominoes before applying # using the
notation del . Next we define the reduction of MPCP to PCP.
Definition 3.7 (Reduction) The function f ′ modifies d as a starting domino and pro-
vides a domino to complete a match. All dominoes in P are interleaved with # symbols
using #. This function is separated from the reduction, because it is also used to transform
an MPCP match into a PCP match.

f ′ : mpcpΣ → pcpΓ

f ′ (d, P) := $ :: (#L (π1 d))
$ :: # :: ((π2 d) #R)

:: # (del P) ++ # $
$

Since d might be needed in the middle of a match it is added to the set of dominoes P which
yields the reduction f.

f : mpcpΣ → pcpΓ

f (d, P) := f ′ (d, (d :: P))

Example 3.8 Applying the reduction to an unsolvable MPCP instance, the deletion of
empty dominoes and the # symbols ensure that the resulting PCP instance is unsolvable
too.

f

(
10

0
,

{
1 , 1

111
, 10111

10

})
=

{
$#1#0
$#0# , #1#0

0# , #1#0#1#1#1
1#0# , #1

1#1#1# ,
# $
$

}

Before stepping into the correctness proof, we discuss how to transform a match
of type pcpΓ into a match for the original MPCP instance of type mpcpΣ. Since the
# symbols have been inserted in an interleaving manner, eliminating those again
does not affect the match itself.
Definition 3.9 The function del#$ removes all # and $ symbols, returning a string over
Σ.

del#$ : Γ∗ → Σ∗

g : pcpΓ → pcpΣ

g := map (λ (x, y) . (del#$ x , del#$ y))

Since del#$
#$
$ results in the empty domino , we use del on top of g to receive only

dominoes that can be found in the original MPCP instance.
Example 3.10 The composition of del and g yields a match for the original MPCP in-
stance from Example 3.4.

del
(
g

{
$#1#0#1#1#1
$#1#0# , #1

1#1#1# ,
#1

1#1#1# ,
#1#0
0# , # $

$

})
=

{
10111

10
, 1

111
, 1

111
, 10

0

}

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#mpcp_to_pcp_instance
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#trans_pcp_pcp'
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3.2 Correctness Proof

In this section we show the reduction f to be correct by proving the equivalence

MPCP (d, P) ↔ PCP (f (d, P)).

Recall the notation C1A := concat (map π1 A) and C2A := concat (map π2 A).

Fact 3.11 (Equivalences) Let A be a string over Σ and S a list of dominoes.

a) C1 (#A) = #L (C1A)

b) C2 (#A) = (C2A) #R

c) #LA++ [#] = [#] ++A #R

d) C1 (del S) = C1 S

e) C2 (del S) = C2 S

Transforming MPCP Matches to PCP Matches

We use the function f ′ to transform a match for the MPCP instance (d, P) into a
match for the PCP instance f (d, P).

Lemma 3.12 If (d :: S) is a match, then the list f ′ (d, S) is a match as well.

Proof By equations (a) to (e) of Fact 3.11

Lemma 3.13 If MPCP (d, P), we can construct a match for the PCP instance f (d, P).

Proof Let S be a list such that (d ::S) is a match for (d, P). By definition it holds that
(d :: S) ⊆ (d :: P) and C1 (d :: S) = C2 (d :: S). By Lemma 3.12 we know that f ′ (d, S) is
a match. f ′ (d, S) ⊆ f ′ (d, d :: P) follows from the assumption (d :: S) ⊆ (d :: P). �

Transforming PCP Matches to MPCP Matches

In the other proof direction we have a match S : pcpΓ for the PCP instance f (d, P)
and need to provide a list S ′ : pcpΣ such that (d :: S ′) is a match. We aim to iden-
tify the first domino of S as the modified domino d. Remember the intention of
inserting #-symbols to prevent dominoes that are different from d from starting a
match.

Lemma 3.14 If S is a match for f (d, P), then $#L(fstd)
$# (sndd) #R

is the first domino of S.

Proof Since a match cannot be empty, we have s ::S ′ ⊆ f (d, P). We continue by case
analysis on s ∈ f (d, P).

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#concat_hash_left
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#concat_hash_right
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#hash_equal_hash
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#concat_del_dominos_fst
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#concat_del_dominos_snd
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#pcp_mpcp_solution
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#mpcp_pcp
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#hd_modified_pcp
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s = $#L(fstd)
$# (sndd) #R

The claim holds.

s ∈ # (del (d, P)) Let s = (A,B). If A = a :: A and B = b :: B, the first domino is
# a(#LA)
b # (B #R)

, which is contradictory. If either A = [ ] or B = [ ], we
prove C1 S = a :: # :: A ++ C2 S and # :: a :: A ++ C1 S = C2 S to be
contradictory for all a ∈ Σ. This is done by induction on S.

s = #$
$ Contradiction because # 6= $. �

Now we are close to stating a list that is an MPCP match when preceded by the
domino d. The last step removes the additional symbols # and $ and the resulting
empty dominoes using del and g : pcpΓ → pcpΣ.

Fact 3.15 Let A be a string over Σ and S : pcpΓ .

a) C1 S = C2 S→ C1 (g S) = C2 (g S)

b) del#$ (A #R) = A

c) del#$ (#LA) = A

Lemma 3.16 If the PCP instance f (d, P) has a match, then there is a match for (d, P).

Proof Let d = (d1, d2). By Lemma 3.14 it holds that the match for the PCP instance
must be of the form $#L d1

$# d2 #R
:: S. We prove that the list del (gS) is a match for (d, P).

By definition of MPCP we need to show that (d :: del (gS)) is a match for (d :: P).

• d :: del (gS) ⊆ d ::P : All dominoes in Smust be in f (d, P) because S is a match
for this instance. By Fact 3.15 (b) and (c), g reverses the # operation and the
domino # $

$ is eliminated with del .

• C1 (d ::del (gS)) = C2 (d ::del (gS)): By Fact 3.11 (d) and (e) it suffices to prove
d1 ++ C1 (gS) = d2 ++ C2 (gS). This follows the assumption that $#L d1

$# d2 #R
:: S is

a match and Fact 3.15. �

Theorem 3.17 MPCP reduces to PCP.

∀dP.MPCP (d, P)↔ PCP (f (d, P))

Proof Follows with Lemmas 3.13 and 3.16. �

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#solution_trans_pcp
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#hash_trans_right_inv
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#hash_trans_left_inv
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#pcp_mpcp
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html#reduction_mpcp_pcp
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Altogether, the correctness proof of this reduction uses several technical facts, most
of them are proven by list induction. All other lemmas only use case analysis and
the equivalences established in Facts 3.11 and 3.15.

In our reduction we insert the $ symbol at the beginning of the initial domino
$#L(π1 d)
$# (π2 d) #R

. In [10] it is only used at the end of the final domino. This is possible
since they assume all dominoes to be pairs of non empty strings. We might have
dominoes with one empty string in our PCP instance:

f

({
1

01
, 0

})
=

{
#1
#0#1# ,

#1
0#1# ,

#0 , #$
$

}

A match for this PCP instance is #0 #1
#0#1#

#$
$ , whereas the original MPCP instance

is not solvable. Lemma 3.14 would not be provable without this extra $ symbol in
front.



Chapter 4

Reducing String Rewriting to MPCP

A reduction of the word problem in string-rewriting systems toMPCP transforms a
set of rules, the initial string x, and the target string y into a designated first domino
and a list of dominoes. The dominoes are designed such that each row of an MPCP
match depicts a rewrite sequence from x to y.

We start with a domino where the initial string x at the bottom exceeds the top
component. In all partial matches, the bottom row will be longer than the top row,
determining the upcoming dominoes. To simulate one rewrite step, we provide
rewrite dominoes u

v
for each rule u/v which tie together the current and the next

string. Since a rewrite rule might be applied in the midst of a string we need to
transfer unchanged symbols from the current to the next string. This is done by
copy dominoes having the same symbol from the alphabet at the top and the bottom
component. To prevent rewrite dominoes from covering two successive strings,
which is not possible in string rewriting, we insert an additional symbol ? between
consecutive strings. If a partial match exceeds the top row by the target string y, a
single domino with y in the top component is defined to complete the match.

The general idea of this reduction can be found in [9], where the question of rewrit-
ing to the empty string is reduced to MPCP.

Example 4.1 The set of rules R:={ab/ba, aa/ab} characterizes a string-rewriting system
over the alphabet {a, b}. The derivation

aab⇒ aba⇒ baa⇒ bab⇒ bba

illustrates that (aab) ⇒∗R (bba) holds. To obtain an MPCP instance, we define the first
domino, the last domino, copy dominoes for the symbols a, b and the separator ?, and domi-
noes representing rewrite rules as follows:{

$
$aab? ,

bba ? $
$ ,

a

a
,
b

b
,

?

?
,
ab

ba
,
aa

ab

}
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The $ symbol ensures that the first and the last domino cannot be used inside a match. The
MPCP match below corresponds to the rewriting sequence from aab to bba:

aab ⇒ aba ⇒ baa ⇒ bab ⇒ bba

$
$aab?

a

a

ab

ba

?

?

ab

ba

a

a

?

?

b

b

aa

ab

?

?

b

b

ab

ba

?

?

bba ? $
$

4.1 Definition of MPCP Dominoes

For the remaining of this chapter, we assume an arbitrary string-rewriting system
R ⊆ Σ∗ × Σ∗ and strings x, y in Σ∗. The alphabet of the MPCP instance to construct,
consists of all symbols from Σ, the separator ?, and $:

Γ := $ | ? | (a : Σ)

Definition 4.2 (Reduction) A string-rewriting instance (R, x, y) is converted into aMPCP
instance with dominoes containing x and y to start and end a solution, respectively. Then,
there are dominoes to copy symbols from Σ and to simulate rewrite rules from R.

f : L (Σ∗ × Σ∗)× Σ∗ × Σ∗ → mpcpΓ

f (R, x, y) :=

{
$
$x? ,

y ? $
$ ,

?

?

}
∪
{

a

a

∣∣∣∣a : Σ

}
∪
{

u

v

∣∣∣∣u/v ∈ R}

4.2 Correctness Proof

We prove that the MPCP instance f (R, x, y) is solvable if and only if x rewrites to y
with rules in R.

x⇒∗R y↔ MPCP (f (R, x, y))

Since for all symbols a : Σ there are dominoes a

a
, we abbreviate the domino repre-

sentation of a string z := z1z2 . . . zn. Instead of enumerating z1
z1

z2
z2
. . . zn

zn
, we will

use the notation z

z
.

Lemma 4.3 If x⇒∗R y, then there is some A ⊆ f (R, x, y) such that

(C1A) ++ y++ [?] = x++ [?] ++ (C2A)

Proof By induction on the derivation⇒∗.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_MPCP.html#reduction_f
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_MPCP.html#rewrite_exists_pcp_list
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x = y Take A := [ ].

x⇒R z
z⇒∗R y

Let x = x1ux2 and z = x1vx2 with u/v ∈ R. By the inductive hypothesis we
have a list A ′ ⊆ f (R, x, y) with (C1A

′) ++ y ++ [?] = x1vx2 ++ [?] ++ (C2A
′).

We define A := x1
x1

:: u
v
:: x2
x2

:: ?

?
::A ′ and have x1ux2 ? ::(C1A ′) ++ [y] ++ [?] =

x1ux2 ++ [?] ++ x1vx2 ? ::(C2A). �

Lemma 4.4 If x⇒∗R y, then the MPCP instance f (R, x, y) is solvable.

Proof By Lemma 4.3 we have a list A ⊆ f (R, x, y)with (C1A) ++ y++ [?] = x++ [?] ++

(C2A). The list $
$x? ::A++ y ? $

$ is a match and contains only dominoes in f (R, x, y).�

The opposite direction of the correctness statement requires that a solvable MPCP
instance f (R, x, y) implies that y can be derived from xwith rules from R. The proof
is slightly more involved and needs some insight how MPCP solutions are com-
posed. By construction of the reduction, it is possible that two consecutive strings
in a solution list A which are separated by ? encode zero, one, or several rewrite
steps. Consider the rules R := {ab/ba, aa/ab} and the following solution for the
MPCP instance f (R, aaaa, baba):

$
$aaaa?

a

a

a

a

aa

ab

?

?

aa

ab

ab

ba

?

?

a

a

b

b

b

b

a

a

?

?

ab

ba

b

b

a

a

?

?

baba ? $
$

When concatenating these dominoes, it becomes obvious that the third string is the
result of rewriting aaabwith both rules in R, whereas the fourth, abba, equals the
previous.

$aaaa ? aaab ? abba ? abba ? baba ? $
$aaaa ? aaab ? abba ? abba ? baba ? $

As a consequence, the two forthcoming Lemmas 4.6 and 4.7 use⇒∗ instead of⇒ to
establish the connection between string rewriting and the MPCP match. Addition-
ally, the proofs are done by size induction on the length of the solution list, because
one string might be represented by more than one domino.

Fact 4.5 Let A and B be two strings which contain only Σ symbols and C, D strings over
Γ . If A++ C = B++ [?] ++D, then B = A++ B ′ for some B ′.

Proof By induction on A with a generalized claim for all B.

A = [ ] We have B = [ ] ++ B.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_MPCP.html#sr_then_pcp_solution
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_MPCP.html#split_sigma
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A = a ::A If B = [ ], a :: A ++ C = ? :: D is contradictory because a : Σ, so a 6= ?. If
B = b :: B, we have a = b and use the inductive hypothesis to obtain B ′
and prove b :: B = a ::A++ B ′. �

Lemma 4.6 Let z and w be strings over Σ and A ⊆ f (R, x, y). If

C1A = z++ [?] ++w++ C2A

then either z ⇒∗R y and w = [ ], or z ⇒∗R m, C1 B = z, C2 B = m, and A = B ++ ?

?
++ A ′

hold for some A ′, B and stringm.

Proof By size induction on A and a generalized claim for all z and w. Since A = [ ]

is contradictory, we continue with A = d1
d2

:: A and a case analysis on z.

z = [ ] We have d1 ++ C1A = ? ::w ++ d2 ++ C2A and proceed by case analysis on
the type of the domino d ∈ f (R, x, y).

$
$x? Contradiction because $ 6= ?.

y ? $
$ Then y = [ ], w = [ ] and the left hand side holds.

u

v
The upper string u must be empty, otherwise it conflicts with the
? symbol. The claim follows from the inductive hypothesis with
z := [ ] and w := w ++ v. Either the left hand side holds trivially, or
[ ]⇒∗R (v++m) can be proven with [ ]⇒∗R m and ε/v ∈ R.

?

?
With B := [ ] andm := [ ] the right hand side, [ ]⇒∗R [ ], holds.

a

a
Contradiction because a 6= ?.

z = b :: z The assumption is d1 ++ C1A = b :: z ++ ? :: w ++ d2 ++ C2A. We do case
analysis on d ∈ f (R, x, y).

$
$x? Contradiction because $ 6= b.

y ? $
$ This domino implies y = b :: z and w = [ ] and the left hand side

stating b :: z⇒∗R b :: z holds.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_MPCP.html#rewrite_solution
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u

v
Fact 4.5 yields b :: z = u++ z ′ for some z ′. If the inductive hypothesis
with z:=z andw:=w++v results in z⇒∗R y and v = [ ], thenu++z⇒∗R y
follows. Otherwise u++ z⇒∗R v++m follows from z⇒∗R m.

?

?
Contradiction because ? 6= b.

a

a
We have a = b and use the inductive hypothesis with z := z and
w :=w++ [b]. If w++ [b] = [ ] we prove this contradictory. If z⇒∗R m
the right hand side, b :: z⇒∗R b ::m is obvious. �

Lemma 4.7 Let z be a string over Σ and A a list of dominoes with A ⊆ f (R, x, y). If

z?
::A is a match, then z⇒∗R y.

Proof We start by size induction on the length ofA. From Lemma 4.6 with (w :=[ ])

we get two cases. In the first, the assumption z ⇒∗R y equals the claim. In the
second, where z⇒∗R m andA = B++ ?

?
++A ′, we conclude C1A ′ = m++? ::C2A

′. By
transitivity of⇒∗ it suffices to show z ⇒∗R m and m ⇒∗R y. The latter follows from
the inductive hypothesis. �

Lemma 4.8 If the MPCP instance f (R, x, y) is solvable, then x⇒∗R y.

Proof Follows from Lemma 4.7. �

Theorem 4.9 The word problem in string-rewriting systems reduces to MPCP.

∀Rxy.SR (R, x, y)↔ MPCP (f (R, x, y))

Proof By Lemmas 4.4 and 4.8. �

What we have seen in this correctness proof is that it is straightforward to simulate
a single rewrite with dominoes from the constructed MPCP instance. The main
difficulty is the other direction where we are given the match and need to work out
its structure. Lemma 4.6 assumes that at least the separator symbol ? precedes the
bottom row of a match, which yields a sufficient inductive hypothesis to establish
the rewrite connection between sequential strings.

One might replace the $ symbol by the separator ?when arguing informally about
the correctness of the reduction, as it is done in [9]. However, in the formal cor-
rectness proof it is beneficial that the initial and the final domino include a symbol
that is not used in between the strings. This simplifies to prove the usage of a final
domino in the midst of a match contradictory.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_MPCP.html#mpcp_rewriting
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Chapter 5

Reducing Reachability of Turing Configurations to
String Rewriting

The reduction of the halting problem to string-rewriting systems is based on the
translation of the transition function for Turing machines to rewrite rules. This
construction can be stated as independent reduction of Reach to SR. The reduction
of Halt to SR is discussed in Chapter 6. We adopt the general reduction idea from
Davis et al. [3] which reduce the halting problem for nondeterministic Turing ma-
chines. Some definitions are customized to fit our notion of deterministic machines
which can perform a move of the tape head and write a symbol in one step.

Recall the definition of the class Reach (M,c1, c2) := c1 `M c2. A reduction to SR
converts a machineM and configurations c1 and c2 into an SR instance with a set
of rules R and strings x and y such that

Reach (M,c1, c2)↔ SR (R, x, y)

The main concept behind the reduction is to consider configurations as strings and
translate the transition function into rewrite rules. A rewrite rule substitutes those
parts of a configuration which must be changed to obtain the successor configu-
ration. One rewrite of a configuration simulates exactly one δ̂-step. The question
whether c2 is reachable from c1 is converted to the question whether the represen-
tation of c1 rewrites to c2.

For the remaining of this chapter we fix a Turing machine M := (Q, δ, q0, H) over
the finite alphabet Σ. To transform configurations into strings, we use an encoding
function 〈·〉 stated in Table 5.1. It assumes a symbol a : Σ and strings A and B over
Σ. We use the delimiter symbols L and M to mark the left and the right end of the
tape content. The state q is inserted to the left of the symbol under the machine
head. If there is no symbol to read, the state occurs to the left of the respective
tape delimiter. This encoding leads to the underlying type Γ of the string-rewriting
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tape ∅ leftof midtape rightof

c (q, ∅
↑
) (q,

↑
aA) (q, Ba

↑
A) (q, Ba

↑
)

〈c〉 qLM qLaAM LBqaAM LBaqM

Table 5.1: Encoding function for configurations.

system R. It is comprised of the alphabet Σ, states of type Q and the separators L
and M.

Γ := q : Q | a : Σ | L | M
〈·〉 : conf → Γ∗

Lemma 5.1 〈·〉 is injective.

With the type of the string-rewriting system fixed, we can characterize the reduc-
tion of Reach to SR formally:

f : (TM× con× con)→ (L (Γ∗ × Γ∗)× Γ∗ × Γ∗)

∀M c1 c2.Reach (M,c1, c2) ↔ SR (f (M,c1, c2))

We already know how the second and third component of f (M,c1, c2) are defined.
The initial string x := 〈c1〉 and the target string y := 〈c2〉. The next step is to specify
rewrite rules simulating the application of δ̂ on configurations.

5.1 Definition of Rewrite Rules Simulating a Transition

Example 5.2 Consider the configuration sequence of the Turing machine defined in Table
1.1 which accepts the string aba.

a
↑
q0

ba ` ab
↑
q1

a ` aba
↑
q1

` aba
↑
q0

` aba
↑
qf

The upcoming definitions will provide rules such that the following rewrite sequence holds.

Lq0abaM⇒ Laq1baM⇒ Labq1aM⇒ Labaq0M⇒ LabqfaM

Recall the type of the transition function δ : Q×Σ⊥ → Q×Σ⊥×{L,N, R}. Because δ is
not applied to halting states, we partition the set of statesQ intoQH := {q : Q |Hq =

true} and QH :=Q \QH. For all states q1 in QH we determine the result of δ (q1,⊥)
and δ (q1, bac) , ∀a ∈ Σ, and provide rewrite rules which interpret δ the same way

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_SR.html#mk_srconf_inj
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δ (q1,⊥) = (q2,write,move)

u v u v write move

q1L q2L c q1M q2 cM ⊥ L
q1L q2L q1M q2M ⊥ N
q1LM q2LM q1M q2M ⊥ R
q1L c Lq1 c ⊥ R

q1L q2Lb cq1M q2 c bM bbc L
q1L Lq2 b q1M q2 bM bbc N
q1L Lbq2 q1M bq2M bbc R

δ (q1, bac) = (q2,write,move)

u v u v write move

Lq1 a q2La cq1 a q2 c a ⊥ L
q1 a q2 a ⊥ N
q1 a aq2 ⊥ R

Lq1 a q2Lb cq1 a q2 c b bbc L
q1 a q2 b bbc N
q1 a bq2 bbc R

Table 5.2: The upper rewrite rules (u/v) simulate a transition where the machine
does not read a symbol and the head is at the left or the right end of the tape. The
rules below represent transitions where the head points to a symbol. The rules are
defined for all symbols c : Σ.
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as δ̂ does on configurations. We will refer to these rewrite rules defined in Table 5.2
as transition rules.

Note that there are possibly several rules for for one δ-transition. The result of
δ (q1,⊥) = (q2,⊥, R) for instance, leads to three transition rules which cover the
different tapes:

(q1LM / q2LM) If the tape is empty, we only change the state itself and do not move
right between the tape delimiters.

(q1L c / Lq2 c) This rule can be used whenever the tape is not empty, since it is pro-
vided for every c : Σ.

(q1M / q2M) If the state occurs at the right end of the tape content, the move has
no effect because empty cells are not included in the tape.

Definition 5.3 (Transition Rules) We combine all rules which translate the transition
function δ in a set ∆. Let the process of choosing the corresponding transition rules from
Table 5.2 be abbreviated by rules.

∆ :=
⋃

q∈Q\QH

rules (δ (q,⊥)) ∪
⋃

q∈Q\QH

a:Σ

rules (δ (q, bac))

Example 5.4 The set of rules

{(q0a/bq1), (q1b/bq1), (q1a/bq0), (aq0M/qfaM)}

which represents some of the transition rules for the Turing machine defined in 1.1 suffices
to establish the rewrite sequence

Lq0abaM⇒ Laq1baM⇒ Labq1aM⇒ Labaq0M⇒ LabqfaM

Definition 5.5 (Reduction) The reduction f is defined as f (M,c1, c2):=(∆M, 〈c1〉, 〈c2〉).

5.2 Correctness Proof

To prove our transformation of the transition function into rewrite rules correct,
we need two lemmas, one for each proof direction. We prove that one rewrite⇒∆
simulates one δ̂ application and vice versa.

Lemma 5.6 If c is not a final configuration, then 〈c〉 ⇒∆ 〈 δ̂ c 〉

Proof Let c = (q, t). First we do case analysis on tape t and then a case analysis
on the outcome of δ (q,⊥) or δ (q, bac) depending on the tape. The combinations
of the new symbols Σ⊥ and a move from {L,N, R} leaves us with six cases for each
tape. In each case there is exactly one applicable rule in ∆which is used to convert
〈c〉 into the successor configuration 〈 δ̂ c 〉. �

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_SR.html#TMrules
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Example 5.7 Consider a configuration (q1, a
↑
B) with q1 being a non-halting state. Let

the result of the transition δ (q1, bac) be (q2, bbc, L). We are looking for a rewrite rule in
∆ to transform the string representation Lq1aBM into the successor configuration q2LbBM.
For this transition we have rules (Lq1a /q2Lb) and (cq1a /q2cb), ∀ c : Σ in ∆ (see Table
5.2). Since we are at the left end of the tape, only the former rule is applicable.

The next lemma states that applying a transition rule to a configuration 〈c〉 invari-
ably leads to the successor configuration. In the proof we match the left hand side
of a transition rule u/v to the encoding of a configuration 〈c〉. Since both, u and 〈c〉,
contain one state, we conclude that they must be equal. Hence u/v and δ̂ c rely on
the same δ-transition and yield equal successor configurations.

Lemma 5.8 If 〈c〉 ⇒∆ z then z = 〈δ̂ c 〉 and c is not a final configuration.

Proof Let c = (q, t). By the definition of ⇒ we have 〈c〉 = xuy and z = x v y for
some strings x and y over Γ , and u/v ∈ ∆. We continue by case analysis on t.

∅
↑

We have 〈(q, ∅
↑
)〉 = qLM = xuy. We do a case analysis on u/v ∈ ∆.

u/v ∈ rules (δ (q ′, bcc)): Contradiction because qLM 6= xq ′ c y for all states q ′
and symbols c.

u/v ∈ rules (δ (q ′,⊥)): By case analysis on the outcome of this transition
we obtain the concrete transition rules. In order to shorten the
proof we assume δ(q ′,⊥) = (q̂, bac, R) and (u/v) = (q ′L / Laq̂).
From qLM = xq ′Ly we conclude q = q ′, x = [ ] and y = M. Now,
δ (q,⊥) = (q̂, bac, R), and 〈δ̂ c〉 is equal to Laq̂M. The claim ¬Hc
follows from the fact that all rules in ∆ are only defined for non
halting states.

↑
aA We have qLaAM = xuy and use the same technique as in the niltape case.

BRa
↑

We have LBRaqM = xuy and use the same technique as in the niltape case.

BRa
↑
A With LBRqaAM = xuy, we do a case analysis on u/v ∈ ∆.

u/v ∈ rules (δ (q ′,⊥)): Contradiction because the state q is not to the left of
a tape delimiter.

u/v ∈ rules (δ (q ′, bcc)) for some q ′ and c. Let δ (q ′, bcc) = (q̂, bbc, R) and
(u/v) = (q ′c / bq̂). From xq ′c y = LBRqaAM we conclude q ′ = q
and c = a, since B and A are strings over Σ. By δ (q, bac) =

(q̂, bbc, R), the claim 〈δ̂c〉 = LBRbq̂AM holds. �

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_SR.html#rewrite_step_halt
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Theorem 5.9 Reachability reduces to string rewriting.

∀Mc1 c2.Reach (M,c1, c2)↔ SR (f (M,c1, c2))

Proof We use the reduction f and prove c1 `M c2 ↔ 〈c1〉 ⇒∗∆M 〈c2〉.

→ Induction on `.

c1 = c2 The claim 〈c1〉 ⇒∗∆ 〈c1〉 holds by definition.

δ̂ c1 ` c2 , ¬Hc1 We prove the claim 〈c1〉 ⇒∗∆ 〈c2〉with 〈c1〉 ⇒∆ 〈δ̂ c1〉 by Lemma
5.6 and 〈δ̂ c1〉 ⇒∗∆ 〈c2〉 using the inductive hypothesis.

← Induction on y⇒∗∆ 〈c2〉with the generalized claim ∀ c1 , y = 〈c1〉 → c1 ` c2.

〈c1〉 = 〈c2〉 With injectivity of 〈·〉 (Lemma 5.1) the claim c1 ` c1 holds.

〈c1〉 ⇒∆ z ,
z⇒∗∆ 〈c2〉

By Lemma 5.8 we have z = 〈δ̂ c1〉 and ¬Hc1 . The claim c1 ` c2
follows using the inductive hypothesis with c1 := δ̂ c1. �

The shortness of the correctness proof for the reduction of reachability to string
rewriting originates from the one to one correspondence of⇒∆ and`, as one rewrite
rule simulates one δ̂ application. Lemma 5.6 demonstrates the fact that one rewrite
rule carries enough information to transform one configuration in its successor con-
figuration. In theory this proof is quite short, since one can easily check whether
there are suitable rewrite rules for all different tapes and transitions in Table 5.2.
When doing this proof in Coq, we have to explicitly state the rewrite rule used
for each of the 24 cases (there are three possible moves {L,N, R}, and two writing
options ⊥ and b·c for each tape).

For the proof of Lemma 5.8 it is essential that the two tape delimiters are different
symbols. Consider the string q1LM and the transition δ (q1,⊥) = (q2, bac, R). If we
have L 6=M, the only applicable rewrite rule is (q1L / Laq2) and Laq2M = 〈(q2, a

↑
)〉. If we

had defined only one tape delimiter ‖, also the rule (q1‖ / aq2‖) for the right end of
the tape would have been suitable. But definitely, aq2‖‖ 6= 〈(q2, a

↑
)〉 = ‖aq2‖. Note

that in [3], there is only one tape delimiter but an extra blank symbol to allocate
new cells.

With the result of this chapter, one could consider Turingmachines as special string-
rewriting systems. All strings contain one state and two tape delimiters, and the
state might be to the left of the L delimiter. When defining rewrite rules for all non
final states in either tape configuration one could also represent non determinis-
tic Turing machines. The halting problem then corresponds to terminating rewrite
sequences starting with a string containing the initial state.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_SR.html#reduction_reach_sr


Chapter 6

Reducing the Halting Problem to String Rewriting

In this chapter we present the reduction of the halting problem to string rewriting.
Why this is different from the reduction in Chapter 5 becomes clear if we consider
the equivalence

Halt (M, t)↔ SR (R, x, y)

A reduction of Halt to SR transforms a Turing machineM and an input tape t into a
set of rewrite rules R and strings x and y. The class Halt is defined as reachability of
a final configuration, starting in (q0, t). Therefore it seems clear to start rewriting
with x := 〈(q0, t)〉, but it is less obvious what the target string ymight be. Intuitively
we would think of a final configuration, though this is not realizable. The problem
is that there exist infinitely many configurations containing a halting state, and we
do not knowwhich onewill be reached. For this reason, we fix y as the empty string
ε. The set of rewrite rules contains the transition rules ∆ defined in 5.3 to rewrite
to a final configuration. Additionally, it contains rules to delete symbols to the left
and the right of a final state such that finally a single final state is replaced with ε.

6.1 Definition of Rewrite Rules Deleting Symbols

The transition rules in ∆ guarantee that whenever a configuration c2 is reachable
from c1, 〈c1〉 ⇒∗∆ 〈c2〉 holds. Rewrite rules which delete symbols should only be
applicable to final configurations. Consequently all of them contain a final state in
their left component. The following example illustrates the procedure of deleting
symbols.

Example 6.1 The string LabqfaM represents the final configuration of the accepting run
stated in Example 5.2. If we provide the rules (cqf/qf) and (qfc/qf) for all c ∈ {a, b, L, M}
we can rewrite LabqfaM to qf. The rule (qf/ε) then removes the final state:

LabqfaM⇒ LabqfM⇒ Labqf ⇒ Laqf ⇒ Lqf ⇒ qf ⇒ ε
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The rules deleting symbols do not differentiate between tape symbols and tape
delimiters L and M. This allows to abstract the difference between these symbols,
leading to shorter proofs. For the following definition and lemmas, we assume a
finite type Φ and a set of final symbols F ⊆ Φ. The overall goal is to define a set of
deletion rules such that for any string x over Φ it holds that

∀ f ∈ F . f ∈ x→ x⇒∗D ε

Definition 6.2 (Deletion rules) The setD of deletion rules contains three types of rules
for all final symbols.

D := {(af, f), (fa, f), (f, ε) |a : Φ, f ∈ F}

A deletion rule can only be applied to a string containing a symbol f ∈ F, since
all left hand sides contain such a final symbol. Furthermore, a deletion rule either
keeps the final symbol f or erases it and therefore is the last applicable rule.

Note the fact that rewriting using rules from Dmay be indeterministic.

Example 6.3 Consider the string afb f ′c with f, f ′ ∈ F and a, b, c ∈ Φ. The deletion
rules facilitate several rewrite sequences which lead to the empty word.

a fb f ′c⇒D fb f ′c⇒D f f ′c⇒D fc⇒D f⇒D ε

a fb f ′c⇒D a fb f ′ ⇒D fb f ′ ⇒D f f ′ ⇒D f ′ ⇒D ε

In the following we assume x, y and z being strings over Φ and f ∈ F.

Fact 6.4

a) xfy⇒∗D xf

b) xfy⇒∗D fy

c) f⇒D ε

Lemma 6.5 If z contains a final symbol f, then z⇒∗D ε.

Proof Let z = xfy for some strings x and y. By transitivity of ⇒∗ and Fact 6.4 (a)
the claim is xf ⇒∗D ε. From (b) with y := [ ] we obtain xf ⇒∗D f and f ⇒∗D ε follows
from (c). �

Lemma 6.6 If x⇒D y, then x contains a final symbol.

Proof Let u/v ∈ D and x = x1ux2. As all rules in D have a final symbol f in their
first component, it follows that f ∈ u and therefore f ∈ x. �
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To state and verify the reduction of Turing machines to string-rewriting systems,
we assume a Turing machineM = (Q, δ, q0, H) over the finite alphabet Σ. The final
states QH ofM serve as the set of final symbols F for the definition of the deletion
rules D. Remember the type Γ for the string-rewriting system:

Γ := q : Q | a : Σ | L | M

Definition 6.7 (Reduction) The reduction f yields a string-rewriting system combining
the transition rules from Table 5.2 and deletion rules for all final states. The initial string
is the encoding of the initial configuration and the target string is ε.

f : (TM× tape)→ (L (Γ∗ × Γ∗)× Γ∗ × Γ∗)
f (M, t) := (∆M ∪DQH , 〈(q0, t)〉, ε)

6.2 Correctness Proof

Lemmas 6.5 and 6.6 result in the following properties for final configurations.

Lemma 6.8 If c is a final configuration, then 〈c〉 ⇒∗D ε.

Lemma 6.9 If 〈c〉 ⇒D x for some x, then c is a final configuration.

Nowwe rewrite an arbitrary configuration 〈c〉 to εwith rules in ∆∪D, and prove a
final configuration reachable from 〈c〉 using the results from Chapter 5.

Lemma 6.10 If 〈c〉 ⇒∗∆∪D ε, then c ` cf for a final configuration cf.

Proof We generalize the claim to ∀ c, y = 〈c〉 → ∃ cf, c ` cf ∧ Hcf and continue by
induction on y⇒∗∆∪D ε.

〈c〉 = ε Contradiction because every string representation of any configura-
tion contains at least a state and the two tape delimiters.

〈c〉 ⇒∆∪D z
z ⇒∗∆∪D ε

We have 〈c〉 = xux ′ and z = xvx ′ and proceed by case analysis on the
membership of u/v:

u/v ∈ ∆ By Lemma 5.8, z = 〈δ̂ c〉 and ¬Hc. The inductive hypothesis
yields a final configuration cf and δ̂ c ` cf. The claim c ` cf
follows from the definition of `.

u/v ∈ D We prove c ` c and Hc by Lemma 6.9. �

Theorem 6.11 The halting problem reduces to string rewriting.

∀Mt.Halt (M, t) ↔ SR (f (M, t))
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Proof Let M be a Turing machine with initial state q0. We show the equivalence
(∃ cf, (q0, t) ` cf ∧Hcf)↔ 〈(q0, t)〉 ⇒∗∆∪D ε. Let 〈(q0, t)〉 be abbreviated by c0.

→ By Theorem 5.9 we have c0 ⇒∗∆ cf. The claim c0 ⇒∗∆∪D ε follows from transi-
tivity and cf ⇒∗D ε using Lemma 6.8.

← Lemma 6.10 provides a final configuration cf such that c0 ` cf. �

The main effort of this reduction lies in the simulation of the Turing computation,
the reduction of Reach to SR. Nonetheless, it is crucial to define a fixed target string
which is derivable from all final configurations. Of course it does not need to be the
empty string ε. Davis et al. [3] define two new states, one for deleting the symbols to
the right and the other to delete all symbols to the left. Their deletion process ends
with a string containing one deletion state in between two tape delimiters. This
makes rewriting with deletion rules deterministic but does not seem to shorten the
verification of the reduction.



Chapter 7

Reducing the Halting Problem to MPCP

Hopcroft et al. [10] prove the undecidability of MPCP with a direct reduction of
the halting problem. Remember that we already defined reductions from Halt to
SR and from SR toMPCP. In this chapter we verify the direct approach, which com-
bines the concepts of the reductions involving string rewriting: An MPCP match
simulates a halting computation of a Turing machine. One δ̂ application on con-
figurations is simulated by one transition domino, containing the current state and
neighboring symbols at the top and the successor state with surrounding symbols
at the bottom. In contrast to string rewriting, we have to construct thewhole config-
uration round the transition domino and append symbols which have not changed
using copy dominoes. In partial matches the bottom row is always one configu-
ration ahead the upper row until a final configuration is reached. Then we use
deletion dominoes to remove one symbol after another to both sides of a final state
until the match can be completed with a last domino containing a single final state.

Following the proof of Hopcroft et al. [10], we need to adjust the transition domi-
noes to our model of Turing machines. Their machines are different in terms of
the movements of the tape head. It moves either to the left or the right, but never
moves left from its initial head position.

We illustrate the process of constructing an MPCP match using a Turing machine
M := ({qs, q0, q1, qf}, δ, qs, {qf}) over the alphabet Σ := {a, b}. It accepts all strings
containing an even number of a’s and replaces themwith b. The transition function
δ is defined in Table 7.1. Note that the initial position of the tape head should be to
the left of the tape content.

Example 7.1 (Accepting) M halts on the input tape
↑
aba with the following configura-

tion sequence:

↑
qs

aba ` a
↑
q0

ba ` bb
↑
q1

a ` bba
↑
q1

` bbb
↑
q0

` bbb
↑
qf
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qi δ (qi, bac) δ (qi, bbc) δ (qi,⊥)

qs (qs,⊥, N) (qs,⊥, N) (q0,⊥, R)
q0 (q1, b, R) (q0,⊥, R) (qf,⊥, L)
q1 (q0, b, R) (q1,⊥, R) (q1,⊥, L)

Table 7.1: Transition function δ for TMM.

Constructing an MPCP match requires an encoding similar to 〈·〉 from Table 5.1.
This time, we use the delimiters L and M exclusively to separate two configurations
and introduce a blank symbol t. This symbol occurs in configurations where the
tape is empty or the head is at the left end of the tape.

tape ∅ leftof midtape rightof

c (q, ∅
↑
) (q,

↑
aA) (q, Ba

↑
A) (q, Ba

↑
)

〈c〉 LqtM Lq t aAM LBqaAM LBaqM

Table 7.2: Encoding of configurations using a blank symbol.

We illustrate how to construct a match for the input tape
↑
aba which is accepted

by M reaching the final state qf. The match starts with a domino containing the
initial configuration at the bottom. The second domino represents the first tran-
sition δ (qs,⊥) = (q0,⊥, R) and the next three copy dominoes complete the first
configuration at the top and the second at the bottom.

$
$Lqs t abaM

Lqs t a
Lq0a

b

b

a

a

M
M

Dominoes simulating a transition are defined for all nonhalting statesq ∈ {qs, q0, q1}

such that the partial match can be expanded until the final state qf is reached.

$
$Lqs t abaM

Lqs t a
Lq0a

b

b

a

a

M
M

L
L

q0a

bq1

b

b

a

a

M
M

L
L

b

b

q1b

bq1

a

a

M
M

L
L

b

b

b

b

q1a

bq0

M
M

L
L

b

b

b

b

bq0M
qfbM

Adomino sequence endingwith a final configuration is a partialmatchwith the top
row being a substring of the bottom row. Since it represents a halting computation,
we need to complement it to amatch. Similar to the reduction of Halt to SR, deletion
dominoes are used to remove symbols next to the final state until a domino LqfM$

$

makes the top and bottom row equal.

. . . L
L

b

b

b

b

qfb

qf

M
M

L
L

b

b

bqf
qf

M
M

L
L

bqf
qf

M
M

LqfM$
$
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Put together, these dominoes concatenate to a match for the halting computation
ofM on the input tape

↑
aba :

↑
qs

aba ` a
↑
q0

ba ` bb
↑
q1

a ` bba
↑
q1

` bbb
↑
q0

` bbb
↑
qf

$Lqs t abaM Lq0abaM Lbq1baM Lbbq1aM Lbbbq0M LbbqfbM LbbqfM LbqfM LqfM$
$Lqs t abaM Lq0abaM Lbq1baM Lbbq1aM Lbbbq0M LbbqfbM LbbqfM LbqfM LqfM$

7.1 Definition of MPCP Dominoes

The definition of the dominoes and the verification of the reduction take place in
the context of a Turing machine M = (Q, δ, q0, H) over a finite alphabet Σ and a
given initial tape t0. The constructed dominoes will be of type

Γ := q : Q | s : Σ | t | M | L | $

and the type of the reduction is f : (TM× tape)→ mpcpΓ .

Definition 7.2 (Initial domino) The first domino of the MPCP match contains the ini-
tial configuration 〈(q0, t0)〉 for the tape t0.

Dinit :=
$
$ 〈(q0, t0)〉

Definition 7.3 (Copy dominoes) For Σ symbols, and the tape delimiters L and Mwe pro-
vide copy dominoes.

Dcopy :=

{
L
L
,

M
M
,
a

a

∣∣∣∣∣a : Σ

}

To transform the transition function δ into dominoes, we determine the result of
δ (q1,⊥) and δ (q1, bac) for all non-halting states q1 and symbols a : Σ. Table 7.3
contains these dominoes, which are similar (up to the blank symbol) to the rewrite
rules defined in Table 5.2.

Definition 7.4 (Transition dominoes) We abbreviate the process of choosing the domi-
noes belonging to the result of a transition δ (q1, ·) by trans (δ (q1, ·)). The set Dtrans of
transition dominoes is defined as

Dtrans :=
⋃

q1∈Q\QH

a:Σ

(trans (δ (q1,⊥)) ∪ trans (δ (q1, bac)))

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#type_1_first_card
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#type_2_tape_symbols
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#type_3_transitions
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δ (q1,⊥) (q2,⊥, L) (q2,⊥, N) (q2,⊥, R)

Lq1t
Lq2t

cq1M
q2cM

Lq1t
Lq2t

q1M
q2M

Lq1tM
Lq2tM

q1M
q2M

Lq1 t c
Lq1c

δ (q1,⊥) (q2, bbc, L) (q2, bbc, N) (q2, bbc, R)

Lq1t
Lq2 t b

cq1M
q2cbM

Lq1t
Lq2b

q1M
q2bM

Lq1t
Lbq2

q1M
bq2M

δ (q1, bac) (q2,⊥, L) (q2,⊥, N) (q2,⊥, R)

Lq1a
Lq2 t a

cq1a

q2ca

q1a

q2a

q1a

aq2

δ (q1, bac) (q2, bbc, L) (q2, bbc, N) (q2, bbc, R)

Lq1a
Lq2 t b

cq1a

q2cb

q1a

q2b

q1a

bq2

Table 7.3: The dominoes in the two upper rows simulate a transition where the
machine does not read a symbol and the head is at the left or the right end of the
tape. The dominoes below represent transitions where the head points to a symbol
a. The rules are defined for all symbols c : Σ.

Definition 7.5 (Deletion dominoes) The set of deletion dominoes is defined for all halt-
ing states qf ∈ QH. One domino removes a Σ symbol or t to the left or the right of a final
state.

Ddel :=

{
qfa

qf
,
aqf
qf
,
qft
qf

∣∣∣∣∣qf ∈ QH, a : Σ

}

Definition 7.6 (Final dominoes) For all halting states there is one domino which can
complete a partial match to a match.

Dfin :=

{
LqfM$

$

∣∣∣∣∣qf ∈ QH
}

Definition 7.7 (Reduction) The composed reduction f is defined as

f (M, t) :=
(
Dinit, Dcopy ∪Dtrans ∪Ddel ∪Dfin

)
We use D to refer to the union of all dominoes Dinit ∪Dcopy ∪Dtrans ∪Ddel ∪Dfin.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#type_4_followup_left
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#type_5_final_pair
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#MPCP_instance
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7.2 Correctness Proof

When proving f correct, it will be convenient to assume dominoeswhich copymore
than one symbol. We we use symbols a, b : Σ and strings A, B, C over Σ. If A =

a1a2 . . . an, we abbreviate the list of dominoes a1
a1

a2
a2
. . . an

an
as A

A
. Of course, the

top string and the bottom string of such a domino represents the list itself, C1 A

A
=

A and C2 A

A
= A.

The correctness proof is based on the fact that each pair of subsequent configura-
tions, 〈c〉 and 〈δ̂c〉where c is not final, have a unique representation with dominoes
from D. This leads to the definition of a function next, which yields, given a con-
figuration c, a domino sequence where the top components concatenate to 〈c〉 and
the bottom components to 〈δ̂c〉.

Definition 7.8 (Next configuration) The function

next : conf → pcpΓ

yields a list of dominoes such that C1 (next c) = 〈c〉 and C2 (next c) = 〈δ̂c〉.

Since the complete definition of next is a straightforward case analysis on the tape of
c and the outcome of δ but quite long, we explain the intuition using two examples.

Example 7.9 Assume a configuration (q1, Aa
↑
) where A is a possibly empty string over

Σ. Let δ (q1,⊥) = (q2, bbc, L).

next (q1, Aa
↑
) = L

L
A

A

aq1M
q2abM

The dominoes first copy the tape delimiter L and all symbols in A before an appropriate
transition domino completes both configurations.

Example 7.10 Assume a configuration (q2, Aa
↑
B) where A and B are possibly empty

strings over Σ. Let δ (q2, bac) = (q3,⊥, L). This situation needs special attention be-
cause we defined two dominoes which might fit here, Lq2a

Lq3 t a
and cq2a

q3ca
for some c : Σ. To

choose the right one, we do a case analysis on A which yields

next (q2, a
↑
B) = Lq2a

Lq3 t a
B

B

M
M

next (q2, Aca
↑
B) = L

L
cq2a

q3ca

B

B

M
M

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#make_domino_config
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Arranging the two results of Example 7.9 and 7.10 successively, demonstrates that
next expands a partial match by one configuration.

next (q1, a
↑
) ++ next (q2, a

↑
b) = L

L
aq1M
q2abM

Lq2a
Lq3 t a

b

b

M
M

Laq1M Lq2abM
Lq2abM Lq3 t abM

Lemma 7.11 Let c be a configuration. Then C1 (next c) = 〈c〉.

Proof Let c = (q, t). A case analysis on t and the outcome of δ (q, ·) which is the
move and the new symbol Σ⊥ prove the equivalence. �

Lemma 7.12 Let c be a configuration. Then C2 (next c) = 〈δ̂c〉.

Proof Let c1 = (q, t). By case analysis on t, the movem, and the new symbol o : Σ⊥
in δ (q,⊥) = (q ′, o,m), both sides evaluate to equal domino lists. If t = Aa

↑
B, a case

analysis on δ (q, bac) and A proves the claim. �

Lemma 7.13 If q is not a halting state, then next (q, t) ⊆ D for all tapes t.

Proof The dominoes of next (q, t) are either copy dominoes or transition dominoes.
Since we assume q to be a non halting state, all transition dominoes used are con-
tained inDtrans. Let us consider the result of the two previous examples. The domi-
noes L

L
A

A

aq1M
q2abM

from Example 7.9 are copy dominoes and one transition domino
which can be found in the second row and the leftmost column of Table 7.3. Just
as well in Example 7.10, where Lq2a

Lq3 t a
and cq2a

q3ca
are transition dominoes defined in

the third row. �

The function next is used in both directions of the correctness proof which is split
into two sections.

7.2.1 Halting Computations to MPCP Matches

In this section we prove that the MPCP instance f (M, t0) is solvable, ifM halts on
input t0.

Halt (M, t0)→ MPCP (f (M, t0))

To construct the MPCP match, the function next will be used to reach the final con-
figuration. Afterwards it is not more applicable since transition dominoes are not
defined for halting states. Instead we use deletion dominoes and a final domino
to complete the match. The following lemmas state that strings to the left and the
right of a final state can be removed using deletion dominoes. They are equivalent
to the statements of Fact 6.4 from the reduction of Halt to string rewriting, but their
proofs are longer since we additionally have to deal with copy dominoes.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#mkdomino_fst
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#mkdomino_snd
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#make_domino_config_element
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Lemma 7.14 For all halting states qf and strings B and C over Σ, there is some list of
dominoes A ⊆ D with

(C1A) ++ LBqfM = LBqfCM ++ (C2A)

Proof By induction on C.

C = [ ] Take A := [ ]

C = a ::C With the inductive hypothesiswe obtainA ′with (C1A
′)++LBqfM = LBqfCM++

(C2A
′). We define A := L

L
B

B

qfa

qf

C

C

M
M
++ A ′. A ⊆ D is routine, since the

dominoes not inA ′ are either inDcopy orDdel, because qf is a halting state.
The equivalence for A ′ proves the claim LBqfaCM ++ (C1A

′) ++ LBqfM =

LBqfaCM ++ LBqfCM ++ (C2A) �

Remember the notationAR to reverse a list. This is neededwhen dealing with leftof
configurations.

Lemma 7.15 For all halting states qf and strings B over Σ, there is some list of dominoes
A ⊆ D with

(C1A) ++ LqfM = LBRqfM ++ (C2A)

Proof By induction on B.

B = [ ] Take A := [ ]

B = b :: B With the inductive hypothesiswe obtainA ′with (C1A
′)++LqfM = LBRqfM++

(C2A
′). We define A := L

L
BR

BR
bqf
qf

M
M
++ A ′. A ⊆ D is routine, since the

new dominoes not inA ′ are either inDcopy orDdel, because qf is a halting
state. The equivalence forA ′ proves the claim LBRbqfM++(C1A

′)++LqfM =
LBRbqfM ++ LBRqfM ++ (C2A) �

The two lemmas lead to the statement that for all final configurations there is some
list of deletion dominoes which is a match if the configuration is added at the bot-
tom and the final state at the top.

Lemma 7.16 For all final configurations (qf, t), there is a list of dominoes A ⊆ D with

(C1A) ++ LqfM = 〈(qf, t)〉++ (C2A)

Proof By case analysis on t.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#deletion_dominoes_right
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#deletion_dominoes_left
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#deletion_dominoes
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∅
↑

We use A := L
L

qft
qf

M
M
to prove the claim (C1A) ++ LqfM = LqftM ++ (C2A).

↑
aC By Lemma 7.14 with B := [ ], we have A ′ with (C1A

′) ++ LqfM = LqfaCM ++

(C2A
′). By prefixing A ′ with L

L
qft
qf

a

a

C

C

M
M
, it is obvious that Lqf t aCM ++

(C1A
′) ++ LqfM = Lqf t aCM ++ (C2A

′) holds.

BR b
↑

A list of deletion dominoesA and the claim (C1A)++LqfM = LBRbqfM++(C2A)

follow directly from Lemma 7.15.

BR a
↑
C By Lemma 7.14 with B :=f B

R and C := a :: C, we have A ′ with (C1A
′) ++

LBRqfM = LBRqfaCM ++ (C2A
′). By Lemma 7.15 with B := B we have Â with

(C1 Â)++LqfM = LBRqfM++(C2 Â). UsingA :=A ′++Â,A ⊆ D trivially holds. It
remains to show that (C1A ′)++(C1 Â)++LqfM = LBRqfaCM++(C2A

′)++(C2 Â).
This follows using the characterizing equations for Â and A ′ stated above.

�

The following lemma use next to compute the list of dominoes containing the suc-
cessor configuration and the Lemma 7.16 to complete a partial match with a final
configuration.

Lemma 7.17 Let c be a configuration and cf a final configuration. If c ` cf then there is
a list of dominoes S ⊆ D with $

$〈c〉 :: S being a match.

Proof By induction on the proof of c ` cf. Let cf = (qf, t).

c = cf Lemma 7.16 provides a list A with (C1A) ++ LqfM = 〈(qf, t)〉 ++ (C2A). We
define S:=A ′++ LqfM$

$ , using a final domino fromDfin to complete thematch.
With the equation fromabove it follows that $ (C1A)++LqfM$ = $〈(qf, tf)〉++
(C2A) $.

δ̂ c ` cf We have ¬Hc and a list A ⊆ D with $
$〈δ̂c〉

:: A being a match. With (next c)

we obtain dominoes leading from 〈c〉 to 〈δ̂c〉. Hence S := (next c) ++A. The
claim S ⊆ D follows from Lemma 7.13. $(C1 (next c)) ++ (C1A) = $〈c〉 ++
(C2 (next c)) ++ (C2A) follows from Lemmas 7.11 and 7.12. �

Lemma 7.18 Assume M halts on input tape t0. Then there is a match for the MPCP
instance f (M, t0).

Proof By Lemma 7.17 we know that $
$〈(q0, t0)〉

:: S is a match. �

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#TM_Halt_solution
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#TM_Halt_MPCP_solution
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7.2.2 MPCP Matches to Halting Computations

It remains to show that the existence of an MPCP match for f (M, t0) implies that
M halts on the input tape t0.

MPCP (f (M, t0))→ Halt (M, t0)

Initially, we only know about a list S ⊆ D with $
$〈(q0, t)〉

++ S being a match. The
further structure of S is still uncertain, but it is important to identify this pattern.
We aim to prove for any list S prefixed with a configuration 〈c〉 at the bottom, that
either the first dominoes describe the step from 〈c〉 to 〈δ̂c〉, or c is already a final
configuration. We start with two lemmas, stating that we use copy dominoes to
complete a configuration, and to reach the position where a transition domino can
be used.

Lemma 7.19 Let B and S ⊆ D be lists of dominoes and A a string over Σ. If C1 S =

A++MLB we have S = A

A
++ M

M
S ′ for some S ′.

Proof By induction on A with the generalized claim for all S. In both cases we
prove S to be of the form d :: S and do a case analysis on d ∈ D.

A = [ ] All dominoes except from d = M
M
are contradictory. The claim M

M
S = M

M
S ′

follows with with S ′ := S.

A = a ::A The copy domino a

a
is the only domino fitting. Thenwe have a ::(C1 S) =

aA++MLB and show a

a
++S = a

a

A

A
++ M

M
S ′ using the inductive hypothesis.

�

Lemma 7.20 Let B and S ⊆ D be lists of dominoes, b : Σ, and A a string over Σ. If
C1 S = A++ [b] ++ B we have S = A

A
++ S ′ for some S ′.

Proof By induction on A with the generalized claim for all S. In both cases we
prove S to be of the form d :: S and do a case analysis on d ∈ D.

A = [ ] Trivial.

A = a ::A Because no transition domino has two subsequent symbols ab on the top
component, we have d = a

a
. We use the inductive hypothesis to get S ′

with S = A

A
++ S ′ and show a

a
:: S = a

a

A

A
++ S ′. �

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#next_sigma_dominoes_left
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#next_sigma_dominoes_right
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Lemma 7.21 Let c be a non final configuration and S ⊆ D with C1 S = 〈c〉++(C2 S). We
can identify the structure of S as S = (next c) ++ S ′ for some list S ′.

Proof Let c = (q, t). We start by case analysis on tape t and can show that S 6= [ ].
In the sequel we will do case analysis on the type of the dominoes in d :: S. Since
we have five types of dominoes and numerous transition dominoes which all need
to be considered, we leave out some cases of the formal proof. Let d = (d1, d2).

t = ∅
↑

We have d1 ++ C1 S = LqtM ++ d2 ++ (C2 S). By case analysis on d ∈ D we
can exclude most types of dominoes

d = $
$〈(q0, t0)〉

Contradiction because $ 6= L.

d ∈ Dcopy The only copy domino which fits is d = L
L
which leads to

the assumption L::(C1 S) = LqtM++ L::(C2 S). We do another
case analysis on S. S = [ ] is contradictory, so we continue
with S = e :: S ′. It follows another case analysis on e ∈ D,
but neither domino will fit, since all transition dominoes
having a blank symbol at the second position begin with
L.

d ∈ Dtrans All transition dominoes from Table 7.3 with Lq1t or Lq1tM
in the top component are successful candidates for d. Let
d = Lq1tM

Lq2tM
. We have Lq1tM++C1 S = LqtM++ Lq2tM++ (C2 S)

and conclude q1 = q. Because the domino d has been
defined as a transition domino using the step function δ,
we have δ (q,⊥) = (q2,⊥, R). With this information, next c
computes to exact this domino, proving d::S = (next c)++S ′

with S ′ := S. For all other suitable transition dominoes,
where M is not included, we need do prove additionally
that M

M
comes next in S.

d ∈ Ddel Contradiction because none of the two deletion dominoes
qfa

qf
and aqf

qf
agree with the first symbol L and q is not a

halting state.

d ∈ Dfin Contradiction because LqfM 6= LqtM for all qf and q is not a
halting state.

t =
↑
aA This case is similar to the one above, using Lemma 7.19 when the state

is covered by a transition domino and only Σ symbols are left.

t = AR a
↑

We have d1++(C1 S) = LARaqM++d2++(C2 S). All dominoes except from

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#next_cards_solution_list
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d = L
L
are contradictory. Then the assumption is L::(C1 S) = LARaqM ++

L::(C2 S) and we split S into AR

AR
++ S ′ by Lemma 7.20. With S ′ = aqM ++

L::(C2 S), the next dominoes in S ′ are either a transition domino covering
the symbol a, or a copy domino a

a
and a transition qM

q̂M
.

t = AR a
↑
B With the assumption d1++(C1 S) = LARqaBM++d2++(C2 B)we combine

the techniques used for leftof and rightof tapes using both Lemmas, 7.19
and 7.20. �

Lemma 7.22 Let c be a configuration and S ⊆ D. If C1 S = 〈c〉 ++ (C2 S), then a final
configuration is reachable from c.

Proof By size induction on the length of Swith the generalized claim for all c. Let
c = (q, t). We do case analysis whether q is a halting state.

Hq = true The claim (q, t) ` (q, t) holds by definition.

Hq = false ByLemma7.21withC1 S = 〈(q, t)〉++(C2 S)wehave S ′ and S = next (q, t)++
S ′. Since the result of next is not empty we have |S ′| 6 |S|. To use the
inductive hypothesis with c := δ̂c, we need to prove C1 S ′ = (C2 〈δ̂c〉) ++
(C2 S

′)which follows from (C1 next c)++(C1 S
′) = (C2 〈c〉)++(C2 next δ̂c)++

(C2 S
′) and Lemmas 7.11, 7.12. The result is a final configuration cf and

δ̂c ` cf. Since q is not a halting state we have c ` cf. �

Lemma 7.23 If the MPCP instance f (M, t0) has a match, then Halt (M, t0).

Proof By definition of MPCP we have a list Swith $
$ 〈(q0, t0)〉

:: S being a match. The
claim follows from lemma 7.22.

The general reduction is defined for all Turing machinesM and input tapes t.

Theorem 7.24 The halting problem reduces to MPCP.

∀Mt.Halt (M, t)↔ MPCP (f (M, t))

Proof The equivalence (∃ cf. (q0, t) ` cf ∧ Hcf) ↔ ∃S.
$
$〈(q0, t)〉

:: S is a match for
f (M, t) can be shown with Lemmas 7.18 and 7.23. �

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#solution_Halt
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#MPCP_solution_TM_Halt
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#reduction_halt_mpcp
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The correctness proof of this reduction shows that we do not gain amore elegant or
shorter proof by skipping the intermediate reduction to string rewriting. It rather
combines both ideas and turns out to have similar length than the reductions from
Halt to SR and SR to MPCP together. The notion of string rewriting is hidden in
the transition dominoes which simulate the rewrite process. Additionally we al-
ways have to construct complete configurations using copy dominoes next to tran-
sition dominoes. While it is simple to construct an MPCP match following a Turing
computation or a string-rewriting sequence, it is particularly taxing to reveal the
structure of a given MPCP match in Coq.

Consider a list S of dominoes fromD such that C1 S = LabcqM :: (C2 S) and q is not a
halting state. For all possible results of δ (q,⊥) we aim to show that S begins with
the dominoes we would expect to match. If the transition function yields δ (q,⊥) =
(q̂, bac, L) one would have no doubts that S = L

L
a

a

b

b

cqM
qcaM

:: S ′ for some S ′. To fix
just one of these four dominoes, we have to show that all other dominoes in D are
not suitable. These include the three types of deletion dominoes, copy dominoes,
the initial domino, the final domino, and 21 different transition dominoes which
all have to be considered.

The decision how we define dominoes plays a major role when we aim to prove a
domino being the head of a list S contradictory. This starts with the initial domino
$
$ 〈(q0, t0)〉

where the top and bottom row is preceded by the $ symbol. Hopcroft et al.
[10] omit this symbol, but for formal proofs it turns out to be beneficial since it does
not occur inside amatch. Furthermore, we encode configurations to be surrounded
by the tape delimiters L and M. In this proof the delimiters could be defined as the
same symbol. We just adopted them from the previous encoding. If we had used
the encoding from Table 5.1 without an additional blank symbol, the transition
dominoes for the left end of the tape would have started with a state, for example
q1L
q2La

. Here only the second symbol L ensures that this domino can exclusively be
used at the left of a configuration. In our proofs it is convenient to use L right at the
beginning, such as in Lq1t

Lq2 t a
.



Chapter 8

Reducing String Rewriting to PCP

Davis et al. [3] present a reduction of string rewriting to PCP without mentioning
MPCP. However, we can easily modify their reduction to serve as a reduction of
SR to MPCP, which is presented in Chapter 4. Reducing directly to PCP has the
same underlying concept of simulating a rewrite sequence with dominoes. The
transformation of a rewriting system R and strings x and y into a PCP instance
defines a starting domino containing x, a final domino containing y, copy dominoes
for all symbols and a string separator ?, and dominoes representing the rewrite
rules in R. Tomake sure that the initial domino starts thematch, the copy dominoes
and rewrite dominoesmust bemodified. For each of them, two versions are defined
where either the symbols at the top row or the symbols at the bottom row change to
a tagged version. Tagged dominoes like ã

a
and a

ã
for instance, cannot be used at the

beginning of a match. If the symbols at the top are all different from the symbols
at the bottom, there must be an offset between these symbols since they do not
match. In a partial match the bottom row is one string ahead the top row such that
the top and the bottom component of a domino are separated. All strings are either
represented completely by tagged or untaggeddominoes and the subsequent string
is represented by the contrary version.

The example below recalls the reduction of SR to MPCP defined in 4.2 and demon-
strates why it does not suffice as reduction to PCP.

Example 8.1 Consider the set of rewrite rules R := {ab/ba, aa/ab} and the question
whether (bbb) ⇒∗R (bba). Since the predicate does not hold, the corresponding PCP in-
stance should be unsolvable. Treating the special first domino as all other dominoes, the
reduction f provides:

{
$
$bbb? ,

bba ? $
$ ,

a

a

b

b
,

?

?
,
ab

ba
,
aa

ab

}
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Clearly, this is not a correct reduction to PCP: Since we are not forced to start the match
with a specific domino, ?

?
and a

a
are both matches for this instance.

8.1 Definition of PCP Dominoes

To make sure that only the domino containing the initial string starts a match, we
tag the symbols from the bottom or the top rowwith ∼. Assuming a word problem
(R, x, y) over alphabet Σ, the new alphabet of the PCP dominoes is defined as

Γ := $ | ? | ?̃ | a | ã (a : Σ)

Definition 8.2 (Reduction) The reduction f provides a domino to start a solution in-
cluding the string x and a domino to end a solution with y at the top. Besides, we need two
variants of all other types of dominoes.

f : L (Σ∗ × Σ∗)× Σ∗ × Σ∗ → mpcpΓ

f (R, x, y) :=

{
$
$x? ,

y ? $
$ ,

?

?̃
, ?̃

?

}
∪
{

a

ã
, ã

a

∣∣∣∣a : Σ

}
∪
{

u

ṽ
, ũ

v

∣∣∣∣u/v ∈ R}

The next example shows how to solve a PCP using tagged dominoes.

Example 8.3 Let R := {aa/ab, ab/ba}, x := baa and y := bab with baa ⇒∗R bab. We
rewrite only once to obtain the target string y. Intuitively we would start a solution with

$
$baa?

b

b̃

aa

ãb̃

?

?̃
. . .

The final domino bab ? $
$ comes with an untagged version of bab, so we need to copy the

final string to complete the match.

. . . b̃
b

ã

a

b̃

b

?̃

?

bab ? $
$

The correctness claim for the reduction f states

x⇒∗R y↔ PCP (f (R, x, y))

With our general definition of string-rewriting systems this is not provable. The
problem are empty rules that can be put together forming a match, although a
derivation of y from x is not possible.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.RSR_PCP.html#pcp_dominos
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Example 8.4 Let R := {b/ε, ε/b}, the initial string x := a, and the target y := b. The re-
duction f yields:

f (R, a, b) =

{
$
$a?
, b ? $

$
, ?

?̃
, ?̃

?
, a

ã
, ã

a
, b

b̃
, b̃

b
, b , b̃ ,

b̃
,
b

}
Obviously, b

b
serves as solution for this PCP instance but a 6⇒∗R b.

8.2 Reducing String Rewriting to Restricted String Rewriting

To avoid the problem with empty rules, citetdavis assume their string-rewriting
systems to have only non empty strings in both components. They justify this de-
cision by the reduction of Halt to SR, which yields only rewrite rules that are non
empty. We give a full reduction of SR to RSR. Transforming a set of rules R over al-
phabetΣ, and strings x and y into R ′, x ′, and y ′ such that all rules in R ′ are nonempty
and x ⇒∗R y ↔ x ′ ⇒∗R ′ y ′ is an easy exercise. We use the function #R defined in 3.5
and interleave all strings with # symbols. Further we add an additional # at the
beginning of each string to ensure that they are nonempty. The alphabet of the
restricted string-rewriting system is defined as

Σ# := # | (a : Σ).

Definition 8.5 The function h interleaves all rules of a set R with # symbols.

hR := {(# :: (u#R) / # :: (v#R)) | (u/v) ∈ R}

Lemma 8.6 ∀uv. (u/v) ∈ hR→ u 6= [ ]∧ v 6= [ ].

Definition 8.7 (Reduction) When reducing SR to RSR we also modify the initial string
x and the target string y.

g (R, x, y) := ({hR |∀uv. (u/v) ∈ gR→ u 6= [ ]∧ v 6= [ ]}, # :: (x#R), # :: (y#R)).

Theorem 8.8 The class SR reduces to RSR.

∀Rxy.SR (R, x, y)↔ RSR (g (R, x, y))

Proof Rewriting is not affected by inserting # symbols, but it ensures that for all
(u/v) ∈ R, u 6= [ ] and v 6= [ ]. The correctness proof of this reduction can be found
online. �

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_RSR.html#replace_nil
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_RSR.html#no_nil_in_R
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_RSR.html#srs_no_epsilon_reduction
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_RSR.html#reduction_sr_restricted_sr
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_RSR.html#rewrite_SR_iff_rewrite_RSR
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8.3 Correctness Proof

Actually we do not reduce SR to PCP, but put the reduction of SR to RSR in front.
This solves the problem with empty rules from Example 8.4 and leaves us with the
claim x ⇒∗R y ↔ PCP (f (R, x, y)) having the assumption ∀uv. (u/v) ∈ R → u 6=
[ ]∧ v 6= [ ].

The verification of the reduction f requires the same techniques as the correctness
proof in Chapter 4. The construction of a PCP match is straightforward but the
other direction needs considerable work. After identifying the first domino of the
match, $

$x? , the inner structure is still unknown. The proof requires all lemmas
in two versions, one where a tagged string exceeds the bottom row of the partial
match and another one with the untagged string. A presentation of the formal
proof would be quite repetitive, such that we only state the theorem and refer the
interested reader to the online proof.

Theorem 8.9 RSR reduces to PCP.

∀ (H : {R |∀uv. (u/v) ∈ R→ u 6= [ ]∧ v 6= [ ]}) xy.RSR (H, x, y)↔ PCP (f (R, x, y))

The reduction presented in this chapter seems to be unnecessarily complicated in
contrast to the two independent reductions involving MPCP. However, the idea of
tagged dominoes is interesting since it cannot be used to reduce MPCP to PCP. The
reason for this is that anMPCPmatchmight have symbols from one dominomatch-
ing at the top and the bottom row. If the domino is tagged in one row, the symbols
do not match. A second property of the matches for string rewrite sequences is
that one string is tagged or untagged uniformly, because we complete the string
using copy dominoes of the same variant than the rewrite domino. Consequently
we never face the situation that either version of a rewrite rule does not fit because
a string is tagged heterogeneously. The idea of tagging dominoes could be used
to give a direct reduction of Halt to PCP with cannot be found in the literature.
However, a formal proof of the combination of three reductions would be quite
involved.

In addition to nonempty rules, Davis et al. [3] assume the underlying alphabet to
consist of exactly two symbols. Therefore, they give a reduction of string-rewriting
systems without empty rules to string-rewriting systems with only two symbols in
their alphabet beforehand. We do not need this extra reduction in our proof, be-
cause the definition of the dominoes can easily be adapted to alphabets containing
more than two symbols and this does not introduce any significant overhead in the
formal proof.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.RSR_PCP.html#reduction_restricted_sr_pcp
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.RSR_PCP.html#reduction_restricted_sr_pcp


Chapter 9

Conclusion

We conclude the thesis by a brief discussion of the undecidability result and outline
directions for future work.

9.1 Undecidability of PCP

The results of the previous chapters lead to the undecidability of the Post corre-
spondence problem, which is obtained by a reduction of the halting problem.

Theorem 9.1 Halt reduces to PCP.

Proof The claim follows from transitivity of reductions (Fact 2.3) using different
intermediate classes:

SR, MPCP By Theorems 3.17, 4.9, and 6.11.

MPCP By Theorems 3.17 and 7.24.

SR, RSR By Theorems 6.11, 8.8, and 8.9. �

Recall that a class is undecidable if Halt reduces to it. This leads to the final theorem
stating the undecidability of PCP.

Theorem 9.2 The class PCP is undecidable.

Proof By Theorem 9.1. �

We formalized, verified, and compared different approaches to prove the Post cor-
respondence problem undecidable. First we defined a formal notion of reductions
and undecidability as well as the classes PCP,MPCP, string rewriting, and the halt-
ing problem for Turingmachines. We presented reductions fromMPCP to PCP and
from Halt to MPCP following Hopcroft et al. [10]. By reducing Halt to SR, which

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.PCP_undecidability.html#Halt_MPCP_PCP_reduction
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.PCP_undecidability.html#PCP_undecidability
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includes a reduction of Reach to SR, and SR to MPCP, we disclosed the principle of
string rewriting which is hidden in the direct reduction to MPCP. Additionally we
verified reductions from SR to RSR, and from RSR to PCP following Davis et al. [3].

9.2 Future Work

The formal undecidability result of PCP leads to several options for future work.
One direction is the field of context-free grammars and related undecidable prob-
lems. The undecidability of deciding inclusion for two context-free grammars or
the question whether the intersection of two context-free grammars is nonempty
can both be obtained by a reduction of PCP. The proof ideas are described in [10]
and [3] and could be verified formally in Coq.

Furthermore, PCP can be used as a stepping stone to the formalized undecidability
of other formalisms. One could formalize undecidability proofs for the validity
problem in first-order logic [15] or the secrecy problem for security protocols [19]
amongst others.

Lastly, one could prove that PCP is not decidablewith respect to a concretemodel of
computation. Forster and Smolka [6] use aweak call-by-value λ-calculus they call L
to develop basic computability theory in Coq. In order to to show λ undecidability,
all functions used in this thesis need to be implemented in L. Furthermore, one
would have to formalize the computational equivalence of L and Turing machines
proven in [11]. This would prove λ undecidability, and, by the equivalence result,
Turing undecidability of PCP.



Appendix A

Realization in Coq

All reductions presented in this thesis have been defined and verified in the proof
assistant Coq [17] without using additional axioms. The development is available
online at https://www.ps.uni-saarland.de/~heiter/bachelor.php. The files have
been compiled using version 8.6 of Coq and are structured as follows:

Preliminaries The file Prelim.v contains definitions and tactics adapted from the
ICL base library 1 and a formalization of finite types adopted from
[12].

Definitions Reductions.v, String_rewriting.v, PCP.v, andSingle_TM.vprovide the
definitions stated in Chapter 2.

Reductions All reductions are defined and verified in separate files, except the
reduction of Reach to SR, which is included in the file containing
the reduction of Halt to SR.

Chapter 3: MPCP to PCP is formalized inMPCP_PCP.v.

Chapter 4: SR to MPCP is formalized in SR_MPCP.v.

Chapter 5: Reach to SR and

Chapter 6: Halt to SR are formalized in Halt_SR.v.

Chapter 7: Halt to MPCP is formalized in Halt_MPCP.v.

Chapter 8: SR to RSR is formalized in SR_RSR.v.

RSR to PCP is formalized in RSR_PCP.v.

Undecidability PCP_undecidability.v uses all reduction files to state the undecid-
ability result of PCP.

1Gert Smolka. Base library for ICL lecture. Saarland University, 2016. URL http://www.ps.
uni-saarland.de/courses/cl-ss16/LectureNotes/html/LectureNotes.Base.html

https://www.ps.uni-saarland.de/~heiter/bachelor.php
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Prelim.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Reductions.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.String_rewriting.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.PCP.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Single_TM.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.MPCP_PCP.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_MPCP.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_SR.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.SR_RSR.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.RSR_PCP.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.PCP_undecidability.html
http://www.ps.uni-saarland.de/courses/cl-ss16/LectureNotes/html/LectureNotes.Base.html
http://www.ps.uni-saarland.de/courses/cl-ss16/LectureNotes/html/LectureNotes.Base.html
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Overall, the development has about 2800 lines of code, split into 1100 lines of speci-
fication and 1700 lines of proofs. The distribution between the different reductions
is stated in Table A.1. The preliminary definitions are included in the first row.

File Spec Proof Σ

Definitions 292 121 413
MPCP_PCP.v 75 145 220
SR_MPCP.v 50 127 177
Halt_SR.v 209 349 558
Halt_MPCP.v 306 517 823
SR_RSR.v 37 71 108
RSR_PCP.v 118 328 446
PCP_undecidability.v 9 12 21

1096 1670 2766

Table A.1: Lines of code of the formalized reductions.

The independent reduction of Reach to SR make up 70% of the reduction of Halt
to SR. Note that the three different approaches to reduce Halt to PCP are almost
equally long: The lines of code add up to 955 in the reduction via SR and MPCP, to
1043 via MPCP, and to 1112 via SR.

The only proof techniques needed to verify the reductions is induction, size in-
duction, and case analysis. When dealing with nested case analyses it is advanta-
geously to formalize the proofs in Coq, since keeping track of all assumptions and
unsolved cases by handwould be difficult. This applies primarily to the reductions
that transform an instance of Halt to SR or MPCP, including proofs which require
large case analyses on the outcome of transitions. To shorten the cumbersome pro-
cess of solving all cases one by one, we define tactics which automate simple and
repetitive parts of these proofs. InHalt_MPCP.v, the split_element tactic mainly ap-
plies lemmas related to list membership. In Halt_SR.v we additionally automate
the process of extracting information hidden in the equivalence of two lists. If we
have, for instance, A ++ (a :: q1 :: B) = c :: (C ++ (q2 :: D)) and c :: C and D do not
include a state, it is obvious that A++ [a] = c ::C, B = D, and q1 = q2 but it requires
several tactics to get the desired result in Coq. In Lemma 5.8 we have to analyze
such list equivalences for all 21 transition rules. The definition and verification of
reductions of the halting problem could be shortened by using a simpler model of
Turing machines. If we had not allowed the tape head to remain steady, or had de-
fined a semi-infinite tape, there would have been less transition rules and transition
dominoes to consider.

https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_MPCP.html#split_element
https://www.ps.uni-saarland.de/~heiter/coqdoc/PCPUndecidability.Halt_SR.html
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