
Containers
Constructing Strictly Positive Types

Felix Rech
Advisor: Steven Schäfer

June 30, 2016

1

Topic

Construction of types
Nested inductive and coinductive types

Based on simple primitives

2

Type Equivalence

Definition (Equivalence)
Two types A and B are equivalent (A ∼= B) iff there is an
isomorphism from A to B.

Axiom (Univalence)
Equivalence is equivalent to equality between two types

Proposition

Univalence → Funext

3

Inductive Types

F X :≡ 1 +X

N is a fixed point of F :

N ∼= 1 + N

N is the least fixed point of F :

N ∼= µ1 +X

Least fixed points are exactly the inductive types.

4

Inductive Types

What about F X :≡ X → 0?
Assume X ∼= (X → 0)

I If X is empty, then X → 0 is inhabited.
I If X is inhabited, then X → 0 is empty.

⇒ F has no least fixed point.

Solution: restriction to strictly positive types

5

Strictly Positive Type Expressions

eI ::= x | k | eI + e′I | eI × e′I | k → eI | µeOption I | νeOption I

x : I, k : Type

I Parametrized by the type of free variables I
I They serve as a specification for types, that depends on an

environment Γ : I → Type.
I Types for x, k, eI + e′I , eI × e′I and k → eI are specified

explicitly.
I µeOption I and νeOption I require more work.

6

µ-Expressions

Idea: µeOption I describes the least fixed point of eOption I

Problem: eOption I might contain more than one free variable.

More precisely:

I Fix an expression eOption I and an environment Γ : I → Type.
I Assume F : Type→ Type is a function such that F Y

corresponds to eOption I in the environment Γ; ;Y for all Y .
I If X is the least fixed point of F , then X corresponds to
µeOption I .

The specification for greatest fixed points works in the same way.

7

Containers

Definition (Unary Container)
A unary container consists of:

I A type of shapes S (constructors)
I A function P : S → Type

Assigns a type of positions to every shape (arities)

Notation: S I P

Definition (Unary Container Function)

L·M : UContainer→ (Type→ Type)

LS I P M X :≡
∑
s:S

P s→ X

Example

List X ∼= LN I (λn⇒ Fin n)M X

8

Containers

Definition (Container)
A container for an index type I consists of:

I A type of shapes S (constructors)
I A function P : I → S → Type

Assigns a type of positions to every shape and index (arities)

Notation: S B P

Definition (Container Function)

J·K : Container I → ((I → Type)→ Type)

JS B P K Γ :≡
∑
s:S

∏
i:I

P i s→ Γ i

9

Main Result

Theorem
Every strictly positive expression corresponds to a container.

We define this container by recursion.

10

Product Container
I By recursion we have containers S1 B P1 and S2 B P2

corresponding to eI and e′I .
I We need a container c with

JcK Γ ∼= JS1 B P1K Γ× JS2 B P2K Γ for all environments Γ.

JS1 BP1K Γ× JS2 B P2K Γ

≡ (
∑
s:S1

∏
i

P1 i s→ Γ i)× (
∑
s:S2

∏
i

P2 i s→ Γ i)

∼=
∑

(s1,s2):S1×S2

(
∏
i

P1 i s1 → Γ i)× (
∏
i

P2 i s2 → Γ i)

∼=
∑

(s1,s2):S1×S2

∏
i

(P1 i s1 → Γ i)× (P2 i s2 → Γ i)

∼=
∑

(s1,s2):S1×S2

∏
i

(P1 i s1 + P2 i s2)→ Γ i

≡ JS1 × S2 B λ i s⇒ P1 i s1 + P2 i s2K Γ
11

W-Types (Well-Founded Trees)
Inductive W A (B : A -> Type) :=
sup (label : A) (subtrees : B label -> W A B) : W A B.

Example

BTree ∼= W Bool (λb⇒ if b then Bool else 0)

true

true

false false

true

true

false false

true

false false

Lemma
W A B the least fixed point for LA I BM.

12

µ-Containers

By recursion we have a container S B P corresponding to eOption I .
For every environment Γ we need a least fixed point for

λX ⇒ JS B P K (Γ; ;X)

= L
∑
s:S

∏
i:I

P (some i) s→ Γ i I P none ◦ fstM

Representation as W-type:
(s0, f0)

(s1, f1)

(s2, f2) (s3, f3)

(s4, f4)

13

µ-Containers

W

(∑
s:S

∏
i:I

P (some i) s→ Γ i

)
(P none ◦ fst)

(s0, f0)

(s1, f1)

(s2, f2) (s3, f3)

(s4, f4)

Shapes:
Sµ :≡W S (P none)

Positions:

Pµ i (sup r s) :≡ P (some i) r +
∑

p:P none r

Pµ i (s p)

14

M-Types (Non-Wellfounded Trees)
We want the greatest fixed point of F :≡ LA I BM.

Representation as a sequence of finite trees:

1 F 1 F 2 1 F 3 1 F 4 1

. . .

π3π2π1π0

∑
x:
∏

n F
n1

∏
n:N

πn xn+1 = xn

15

Conclusion

I We wanted to construct nested inductive an coinductive types.
I For the construction of fixed points we introduced:

I strictly positive type expressions
I their representation as containers

I Every strictly positive type expression corresponds to a
container.

I M-types can be constructed from inductive types.

16

Conclusion

What we used:
I dependent functions
I dependent pairs
I sums
I equalities
I W-types

What we didn’t use:
I mutual inductive definitions
I coinductive definitions

17

References

Michael Abbott, Thorsten Altenkirch, and Neil Ghani.
“Containers: constructing strictly positive types”. In:
Theoretical Computer Science 342.1 (2005), pp. 3–27.

Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti.
“Non-wellfounded trees in homotopy type theory”. In: arXiv
preprint arXiv:1504.02949 (2015).

18

