Containers Constructing Strictly Positive Types

Felix Rech Advisor: Steven Schäfer

June 30, 2016

Topic

Construction of types

Nested inductive and coinductive types

Based on simple primitives

Type Equivalence

Definition (Equivalence)

Two types A and B are equivalent $(A \cong B)$ iff there is an isomorphism from A to B.

Axiom (Univalence)

Equivalence is equivalent to equality between two types

Proposition

 $Univalence \rightarrow Funext$

Inductive Types

$$F X :\equiv 1 + X$$

 \mathbb{N} is a fixed point of F:

$$\mathbb{N} \cong 1 + \mathbb{N}$$

 \mathbb{N} is the least fixed point of F:

$$\mathbb{N} \cong \mu 1 + X$$

Least fixed points are exactly the inductive types.

Inductive Types

What about $F X :\equiv X \to 0$? Assume $X \cong (X \to 0)$

- ▶ If X is empty, then $X \to 0$ is inhabited.
- ▶ If X is inhabited, then $X \to 0$ is empty.
- \Rightarrow F has no least fixed point.

Solution: restriction to strictly positive types

Strictly Positive Type Expressions

$$e_I ::= x \mid k \mid e_I + e_I' \mid e_I \times e_I' \mid k \to e_I \mid \mu e_{\text{Option } I} \mid \nu e_{\text{Option } I}$$

 $x : I, k : \text{Type}$

- Parametrized by the type of free variables I
- ▶ They serve as a specification for types, that depends on an environment $\Gamma: I \to \mathrm{Type}$.
- ▶ Types for x, k, $e_I + e'_I$, $e_I \times e'_I$ and $k \to e_I$ are specified explicitly.
- $\mu e_{\mathrm{Option}\ I}$ and $\nu e_{\mathrm{Option}\ I}$ require more work.

μ -Expressions

Idea: $\mu e_{\mathrm{Option}\ I}$ describes the least fixed point of $e_{\mathrm{Option}\ I}$ Problem: $e_{\mathrm{Option}\ I}$ might contain more than one free variable.

More precisely:

- ▶ Fix an expression $e_{\mathrm{Option}\ I}$ and an environment $\Gamma: I \to \mathrm{Type}$.
- ▶ Assume $F: \mathrm{Type} \to \mathrm{Type}$ is a function such that F Y corresponds to $e_{\mathrm{Option}\ I}$ in the environment $\Gamma; Y$ for all Y.
- If X is the least fixed point of F, then X corresponds to µe_{Option I}.

The specification for greatest fixed points works in the same way.

Containers

Definition (Unary Container)

A unary container consists of:

- ► A type of shapes *S* (*constructors*)
- ▶ A function $P: S \to \mathrm{Type}$ Assigns a type of positions to every shape (arities)

Notation: $S \triangleright P$

Definition (Unary Container Function)

$$(\!(\cdot)\!): \text{UContainer} \to (Type \to Type)$$

$$(\!(S \blacktriangleright P)\!) \ X :\equiv \sum_{G} P \ s \to X$$

Example

List
$$X \cong (N \triangleright (\lambda n \Rightarrow \text{Fin } n)) X$$

Containers

Definition (Container)

A container for an index type I consists of:

- ► A type of shapes S (constructors)
- ▶ A function $P: I \to S \to \mathrm{Type}$ Assigns a type of positions to every shape and index (arities)

Notation: $S \triangleright P$

Definition (Container Function)

$$\begin{split} \llbracket \cdot \rrbracket : \text{Container } I \to ((I \to Type) \to Type) \\ \llbracket S \rhd P \rrbracket \; \Gamma :\equiv \sum_{s:S} \prod_{i:I} P \; i \; s \to \Gamma \; i \end{split}$$

Ĉ

Main Result

Theorem

Every strictly positive expression corresponds to a container.

We define this container by recursion.

Product Container

- ▶ By recursion we have containers $S_1 \triangleright P_1$ and $S_2 \triangleright P_2$ corresponding to e_I and e'_I .
- ▶ We need a container c with $\llbracket c \rrbracket \ \Gamma \cong \llbracket S_1 \rhd P_1 \rrbracket \ \Gamma \times \llbracket S_2 \rhd P_2 \rrbracket \ \Gamma$ for all environments Γ .

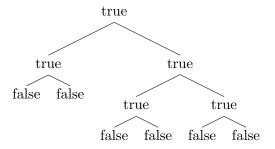
$$\begin{bmatrix}
S_1 \rhd P_1 \end{bmatrix} \Gamma \times \begin{bmatrix}
S_2 \rhd P_2 \end{bmatrix} \Gamma \\
\equiv \left(\sum_{s:S_1} \prod_i P_1 \ i \ s \to \Gamma \ i\right) \times \left(\sum_{s:S_2} \prod_i P_2 \ i \ s \to \Gamma \ i\right) \\
\cong \sum_{(s_1,s_2):S_1 \times S_2} \left(\prod_i P_1 \ i \ s_1 \to \Gamma \ i\right) \times \left(\prod_i P_2 \ i \ s_2 \to \Gamma \ i\right) \\
\cong \sum_{(s_1,s_2):S_1 \times S_2} \prod_i \left(P_1 \ i \ s_1 \to \Gamma \ i\right) \times \left(P_2 \ i \ s_2 \to \Gamma \ i\right) \\
\cong \sum_{(s_1,s_2):S_1 \times S_2} \prod_i \left(P_1 \ i \ s_1 + P_2 \ i \ s_2\right) \to \Gamma \ i \\
\equiv \begin{bmatrix}
S_1 \times S_2 \rhd \lambda \ i \ s \Rightarrow P_1 \ i \ s_1 + P_2 \ i \ s_2\end{bmatrix} \Gamma$$

W-Types (Well-Founded Trees)

```
Inductive W A (B : A -> Type) :=
sup (label : A) (subtrees : B label -> W A B) : W A B.
```

Example

 $BTree \cong W \text{ Bool } (\lambda b \Rightarrow if b \text{ then Bool else } 0)$



Lemma

W A B the least fixed point for $(A \triangleright B)$.

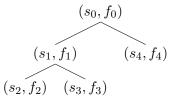
μ -Containers

By recursion we have a container $S \rhd P$ corresponding to $e_{\mathrm{Option}\,I}$. For every environment Γ we need a least fixed point for

$$\lambda X \Rightarrow \llbracket S \rhd P \rrbracket \ (\Gamma; ; X)$$

$$= \emptyset \sum_{s:S} \prod_{i:I} P \text{ (some } i) \ s \to \Gamma \ i \blacktriangleright P \text{ none} \circ \text{fst} \emptyset$$

Representation as W-type:



μ -Containers

$$W\left(\sum_{s:S} \prod_{i:I} P \text{ (some } i) \ s \to \Gamma \ i\right) \ (P \text{ none} \circ \text{fst})$$

$$(s_0, f_0)$$

$$(s_1, f_1) \qquad (s_4, f_4)$$

$$(s_2, f_2) \qquad (s_3, f_3)$$

Shapes:

$$S_{\mu} :\equiv W S (P \text{ none})$$

Positions:

$$P_{\mu} i \text{ (sup } r s) :\equiv P \text{ (some } i) r + \sum_{p:P \text{ none } r} P_{\mu} i \text{ (s } p)$$

M-Types (Non-Wellfounded Trees)

We want the greatest fixed point of $F := (A \triangleright B)$.

Representation as a sequence of finite trees:

$$1 \leftarrow \frac{\pi_0}{F} \quad F \quad 1 \leftarrow \frac{\pi_1}{F^2} \quad F^2 \quad 1 \leftarrow \frac{\pi_2}{F^3} \quad F^3 \quad 1 \leftarrow \frac{\pi_3}{F^4} \quad 1 \leftarrow \cdots$$

$$\sum \prod \pi_n \quad x_{n+1} = x_n$$

 $x:\prod_{n} F^{n} 1 n:\mathbb{N}$

Conclusion

- ▶ We wanted to construct nested inductive an coinductive types.
- ► For the construction of fixed points we introduced:
 - strictly positive type expressions
 - their representation as containers
- Every strictly positive type expression corresponds to a container.
- M-types can be constructed from inductive types.

Conclusion

What we used:

- dependent functions
- dependent pairs
- sums
- equalities
- W-types

What we didn't use:

- mutual inductive definitions
- coinductive definitions

References

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. "Containers: constructing strictly positive types". In: *Theoretical Computer Science* 342.1 (2005), pp. 3–27.

Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. "Non-wellfounded trees in homotopy type theory". In: arXiv preprint arXiv:1504.02949 (2015).