
Containers
Constructing Strictly Positive Types

Felix Rech
Advisor: Steven Schäfer

December 9, 2016

1



(Co-)Inductive Types in Coq
I Coq doesn’t always generate a useful induction principle:

Inductive Tree := node : List Tree -> Tree

I Equality on co-inductive types is to weak:

CoFixpoint ones : stream nat := Cons 1 ones.

CoFixpoint zeroes : stream nat := Cons 0 zeroes.
Definition ones’ := map S zeroes.

I Syntactic conditions for (co-)inductive and (co-)recursive
definitions are hard to justify.

I Functions like size and map have to be rewritten for every
(co-)inductive definition.

We overcome those problems by a construction of types and type
constructors inside our type theory.

2



Type Equivalence

Definition (Equivalence)
Two types A and B are equivalent (A ' B) iff there is an
isomorphism from A to B.

Examples

I Unit + Unit ' Bool

I A×B → C ' A→ B → C

Axiom (Univalence)
Equivalence is equivalent to equality between two types

Proposition

Univalence → Funext

3



Functor

A container type

Examples

I List

I Option

I Tree

Definition
A Functor consists of functions F : Type→ Type and
map : (A→ B)→ F A→ F B, that obey two rules:
1. map id = id

2. map (f ◦ g) = map f ◦map g

4



Inductive Types are Fixed Points

Every inductive type is fixed point of some non-trivial functor.

Example (Natural Numbers)

N + Unit ' N

O

S

FN X :≡ X + Unit

Example (Binary Trees)

A+ (A× T × T ) ' T

5



Algebra

A type with a constructor

Definition (Algebra)
An algebra over a functor F consists of

I A type A (the carrier)
I A function α : F A→ A

Example (Natural Numbers)

αN : N+ Unit→ N
αN (inl n) :≡ n+ 1

αN (inr tt) :≡ 0

6



Initial Algebra
A type with a constructor an a unique recursion function

Definition (Initial Algebra)
An F -algebra (A,α) is initial iff for every F -algebra (A′, α′) there
is exactly one function h : A→ A′ with

F A A

F A′ A′

maph

α

h

α′

Example (Natural Numbers)
For A′ : Type and α′ : A′ + Unit→ A′ we define:

h : N→ A′

h 0 :≡ α′ (inr tt)

h (n+ 1) :≡ α′ (inl (h n))
7



Initial Algebras are Unique

Proof Sketch
Fix two initial F -algebras A and A′.

F A A F A A

F A′ A′

F A A F A A

map h

α

map (h′◦h)

h

h′◦h

α

map idA idA

map h′

α′

h′

α α

⇒ h′ ◦ h = idA
h ◦ h′ = idA′ follows in the same way.
⇒ h is an equivalence.

8



Initial Algebras are Fixed Points (Lambek’s theorem)
Proof Sketch
Fix an initial F -algebra A.

F (F A) F A

F A A ⇒ h ◦ α = idF A

F (F A) F A ⇒ α ◦ h = idA

F A A

map α

map α

map (h◦α)

α

h◦α

map h

α

map (α◦h)

h

α◦h

map α

map α

α

α

⇒ α is an equivalence.
9



Initial Algebra – Induction (On Natural Numbers)

Proof Sketch
We have P : N→ Type, s : P 0 and f :

∏
n P n→ P (n+ 1).

We want to obtain a function ind :
∏
n P n just from initiality of N.

Outline

1. Construct a recursive function h : N→
∑

n P n

2. Show π1 ◦h = idN to obtain a function ind :
∏
n P n

3. Prove β-law for ind

α′ (inr tt) ≡ (0, s)

α′ (inl (n, x)) ≡ (n+ 1, fn x)

10



Initial Algebra – Induction (On Natural Numbers)
Proof Sketch
We have P : N→ Type, s : P 0 and f :

∏
n P n→ P (n+ 1).

We want to obtain a function ind :
∏
n P n just from initiality of N.

Outline

1. Construct a recursive function h : N→
∑

n P n

2. Show π1 ◦h = idN to obtain a function ind :
∏
n P n

3. Prove β-law for ind
FN N N

FN (
∑

n P n)
∑

n P n

FN N N

map h

αN

map (π1 ◦h)

h

π1 ◦h

map π1

α′

π1

αN

10



Unary Container

A polynomial-like normal form for strictly positive functors

Example (List)

ListA '
∑
n: N

Fin n→ A ≡ L N I Fin M A

In general
A unary container consists of:

I A type of shapes S

I A function P : S → Type

Semantics:
LS I P M A :≡

∑
s:S

P s→ A

11



W-Types
Type of well-founded trees

Inductive W A (B : A -> Type) :=
sup (label : A) (subtrees : B label -> W A B) : W A B.

Example

BTree 'W Bool (λb⇒ if b then Bool else Empty)

true

true

false false

true

true

false false

true

false false

Lemma
W A B is the initial algebra for LA I B M.

12



Parameterized Initial Algebra

A Functor that produces initial algebras

Example (List)
For all A, List A is initial algebra of λX. (A×X) + Unit.

In general
Fix a multi-functor F : (Option I → Type)→ Type.
Define FΓ :≡ λA.F (Γ; ;A) as the partial application of F to
Γ : I → Type.
A parameterized initial algebra of F is a multi-functor
G : (I → Type)→ Type such that G Γ is initial algebra of FΓ for
all Γ.

13



Indexed Containers

Polynomial functors with multiple arguments

Example (Sum)

A+B '
∑
b:Bool

(b = true → A) ∗ (b = false → B)

In general
An I-indexed container for I : Type consists of:

I A type of shapes S
I A function P : I → S → Type

Semantics:
JS B P K Γ :≡

∑
s:S

∏
i:I

P i s→ Γ i

14



µ-Containers

Containers that produce initial algebras

We have an Option I-indexed container S B P .
We want an I-indexed container cµ such that JcµK Γ is the initial
algebra of JS B P KΓ for all environments Γ.

Outline

1. Fix Γ and transform JS B P KΓ into polynomial form
2. Obtain the initial algebra as W-type
3. Transform the W-type into a polynomial in Γ

15



µ-Containers

Outline

1. Fix Γ and transform JS B P KΓ into polynomial form
2. Obtain the initial algebra as W-type
3. Transform the W-type into a polynomial in Γ

JS B P KΓ X ≡
∑
s:S

∏
i:Option I

P i s→ (Γ; ;X) i

'
∑
s:S

(
∏
i:I

P (some i) s→ Γ i)× P none s→ X

'
∑

s′:
∑

s

∏
i P (some i) s→Γ i

P none (π1 s′)→ X

15



µ-Containers

Outline

1. Fix Γ and transform JS B P KΓ into polynomial form
2. Obtain the initial algebra as W-type
3. Transform the W-type into a polynomial in Γ

W

(∑
s:S

∏
i:I

P (some i) s→ Γ i

)
(P none ◦π1)

(s0, f0)

(s1, f1)

(s2, f2) (s3, f3)

(s4, f4)

15



Tree Splitting

Given types A1 and A2 and a function B : A1 → Type we want to
show:

W (A1 ∗A2) (B ◦ π1) '
∑

w : W A1 B

Addr w → A2

undecorate1

undecorate2

decorate

Here Addr w is the inductively defined type of addresses in the tree
w.

16



Tree Splitting

W (A1 ∗A2) (B ◦ π1) '
∑

w : W A1 B

Addr w → A2

undecorate1

undecorate2

decorate

Proof Obligations

I
∏
w decorate (undecorate w) = w (by induction)

I p :
∏
w,f undecorate1 (decorate (w, f)) = w (by induction)

I ∏
w,f

pw,f # (undecorate2 (decorate (w, f))) = f

↔
∏
w,f

(undecorate2 (decorate (w, f))) = p−1
w,f # f

↔
∏

w,f,addr

(undecorate2 (decorate (w, f))) addr = f (pw,f # addr)

(by induction with a recursive description of pw,f # addr) 17



Co-Inductive Types

The description of co-inductive types is dual to initial algebras.

Inductive

Algebras Type with constructor
Initial Algebra

F A A

F A′ A′

maph

α

h

α′

W-Types Well-founded trees

Coinductive

Coalgebra Type with destructor
Final Coalgebra

F A A

F A′ A′

α

maph

α′

h

M-Types Potentially infinite trees

The proofs for uniqueness and the fixed point property are dual.
Instead of induction we have co-induction.

18



Conclusion

What you saw

I A general description of (co-)inductive types
I Construction of (co-)inductive types with containers

Next steps

I Indexed containers
I Construction of W-types from N
I Rational fixed points

Thank you!

19



Conclusion

What you saw

I A general description of (co-)inductive types
I Construction of (co-)inductive types with containers

Next steps

I Indexed containers
I Construction of W-types from N
I Rational fixed points

Thank you!

19



References

Michael Abbott, Thorsten Altenkirch, and Neil Ghani.
“Containers: constructing strictly positive types”. In:
Theoretical Computer Science 342.1 (2005), pp. 3–27.

Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti.
“Non-wellfounded trees in homotopy type theory”. In: arXiv
preprint arXiv:1504.02949 (2015).

20


