
Saarland University
Faculty of Mathematics and Computer Science

Bachelor’s Thesis

Strictly Positive Types in
Homotopy Type Theory

Author:
Felix Rech

Advisor:
Steven Schäfer

Reviewers:
Prof. Dr. Gert Smolka

Prof. Dr. Holger Hermanns

Submitted: 24th April 2017

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath:

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent:

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken, 24th April, 2017

Abstract

We adapt the work of Abbott et al. [1] to construct strictly positive types in Homotopy
Type Theory. For this construction we use the concept of containers and show that
containers are closed under all strictly positive type formers. Moreover we show that
propositional resizing can be used to refine a construction of M-types by Ahrens et al. [2]
such that the computation rule for corecursion holds judgmentally. Finally we present a
construction of W-types from natural numbers with propositional resizing. Together this
leads to the result that we have nested inductive and coinductive types in every type
theory that contains dependent functions, dependent pairs, natural numbers, paths, a
hierarchy of univalent universes and propositional resizing.

i

Acknowledgments

I am very grateful to my advisor Steven Schäfer who not only introduced me to this
fascinating topic but spent a lot of time discussing my work and helped me with countless
valuable ideas. I also want to thank Fabian and Julian for proofreading unfinished drafts
of my work. Finally I want to thank Prof. Smolka and Prof. Hermanns for reviewing this
thesis.

iii

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Contributions . 2

2 Background 3
2.1 The Core Type Theory . 3

2.1.1 Functions . 3
2.1.2 Pairs . 4
2.1.3 Natural Numbers . 4
2.1.4 Paths . 5
2.1.5 Universes . 5

2.2 Admissible Type Formers . 5
2.2.1 Empty Type . 6
2.2.2 Unit . 6
2.2.3 Bool . 6
2.2.4 Coproducts . 6
2.2.5 Options . 7
2.2.6 W-Types . 7

2.3 Propositions as Types . 7
2.4 Working with Paths . 8
2.5 Equivalence . 9
2.6 Univalence . 9
2.7 Mere Propositions . 11
2.8 Contractibility . 11
2.9 Inductive Types . 12
2.10 Coinductive Types . 14
2.11 Addresses . 15
2.12 Containers . 17

3 Construction of M-Types 19

4 Construction of Strictly Positive Types 23

5 W-Types 33
5.1 Construction of W-Types . 33
5.2 Recursion with Judgmental Computation Rule 40

v

Contents

6 Construction of Basic Types 43
6.1 The Empty Type . 43
6.2 The Unit Type . 43
6.3 The Type of Booleans . 44
6.4 Coproducts . 44
6.5 Options . 45
6.6 Propositional Truncation . 45

vi

1 Introduction

This work presents a construction of nested inductive and coinductive types in Homotopy
Type Theory [4] (HoTT), which means in particular that we do proof relevant work on
equalities. Furthermore, we base our work on a small subset of the theory that is usually
assumed as a basis for HoTT. Most notably we need no inductive or coinductive types
except natural numbers. In the course of our construction we show that a wide class of
types can be represented in a certain normal form. This normal form itself has other
useful applications, for example in generic programming, which is the programming of
functions that work on all possible data structures.

The inductive and coinductive types that we focus on, are described by the grammar
of strictly positive types:

A,B ::= K | x | A×B | A+B | K → A | µx.A | ν x.A.

Here K stands for a constant type and x is a variable. We also have products (A×B),
coproducts (A+B) and function types with constant domain (K → A). The type formers
µx.A and ν x.A describe the inductive and coinductive types that are fixed points of A
as a function in x. For example the inductive type of lists containing natural numbers
List(N) satisfies the equivalence List(N) ' (N × List(N)) + 1, where 1 stands for the
one-element type. Hence it is equivalent to the inductive fixed point µx.(N × x) + 1.
The coinductive fixed point ν x.(N× x) + 1 on the other hand is the type of potentially
infinite lists over N. We use the term strictly positive type because we allow only constant
types on the left side of an arrow. Such a restriction is necessary to guarantee that both
fixed points always exist. In general this is not the case. The function λx. x → 0 for
example with 0 as the empty type does not have a fixed point.

To construct strictly positive types, we follow an approach by Abbott et al. [1] and
employ the concept of containers as a polynomial-like normal form of strictly positive
types with a free variable. A container SBP consists of a type of shapes S and a function
P : S → U , that assigns a type of positions from a type universe U to each shape. Such a
container represents the type

∑
(s:S) P (s)→ x, where x is the free variable. That means,

every element consists of a shape and an assignment of a component in x to each position.
For example the type List(N) has representation NB Fin, where Fin(n) is the finite type
with n elements. The shape tells us the length of a list while the number of positions is
exactly the number of components in the list. Containers are useful because they always
have inductive and coinductive fixed points that we call W- and M-types. Containers
can be extended to model types with multiple free variables. They are closed under all
strictly positive type formers, which allows us to build the container representation of a
strictly positive type step by step.

1

1 Introduction

Abbott et al. [1] showed that in a type theory with uniqueness of identity proofs,
M-types can be reduced to natural numbers. We can think of inhabitants of an M-type
as trees with potentially unlimited depth. The reduction represents such a tree as a
series of finite approximations with increasing depth. Ahrens et al. [2] showed that
this construction can also be executed in HoTT. However, the computation rule for
corecursion holds only as a propositional equality, not judgmentally. This problem can be
overcome, if we are willing to extend the core theory by propositional resizing. Roughly
speaking this allows us to assume that every type with no more than one inhabitant lives
in the smallest universe. We can use it to refine our M-type such that the computation
rule holds by definition.

Like M-types, we can also reduce W-types to natural numbers. The intuition of M-types
as types of trees applies to W-types as well, with the difference that all elements of a
W-type have to be well-founded. This means that we can define every W-type as subtype
of the corresponding M-type that contains only well-founded trees. Well-foundedness can
be defined as the fact that a weak form of the induction principle for W-types holds on a
given element. As with M-types there is a way to add some judgmental equalities to a
W-type: We can get a judgmental computation rule for simple recursion if every element
carries its own recursor.

Finally we can reduce our core theory even further by dropping some more basic type
formers, such as the empty type and coproducts. In the resulting theory we can define
equivalent types that possess all expected judgmental equalities. Our overall result is,
that we can start with a theory that contains dependent functions and pairs, natural
numbers, paths, univalent universes and propositional resizing and obtain all strictly
positive types. Most of our work is formalized in Coq. There are some unformalized
parts however, because Coq does not support propositional resizing.

1.1 Related Work

Abbott et al. [1] described the category of containers in a type theory with uniqueness of
identity proofs and showed that W-types are sufficient to construct all strictly positive
types in such a type theory. Altenkirch et al. [3] extended this work to indexed containers
that capture also inductive and coinductive families of types. Ahrens et al. [2] translated
the construction of M-types from natural numbers to the proof relevant setting of HoTT.

1.2 Contributions

• Construction of strictly positive types in HoTT

• W-types from natural numbers

• M-types with judgmental computation rule

2

2 Background

In this chapter we introduce some basic concepts and notations that we will use throughout
the thesis. The notations are the same as in the HoTT book [4]. In the first section we
describe the core of the type theory that we will use. The second section contains type
formers that we will assume for the moment. In later chapters we will see however that
those type formers can be replaced by definitions in the core theory. Other sections of this
chapter present some basic definitions and lemmas from HoTT and add two important
extensions to our type theory which are univalence and propositional resizing. To the
end of this chapter we will introduce containers and a characterization of inductive and
coinductive types which is central to our work.

2.1 The Core Type Theory

We use a subset of the type theory from the HoTT book [4] which is an extension of
Martin-Löf type theory. We only give a short, informal overview here. For a more
extensive presentation we refer to the HoTT book. We think of types as set-like objects.
There are two judgments that allow us to make statements about types and their elements:

(i) The judgment x : A expresses that x is an element of the type A. We also say, x
has type A or x inhabits A.

(ii) The judgment x ≡ y expresses an equality between x and y. We read this as, x is
judgmentally equal to y or x is equal to y by definition.

The notation x :≡ y indicates that we define x to be equal to y. The type theory consists
of a set of inference rules that allow us to conclude judgments. There are rules that
make judgmental equality an equivalence relation and a rule that makes judgmentally
equal types interchangable i.e. if x has type A and A is judgmentally equal to B then x
has type B. Other rules can be grouped into type formers which are sets of rules that
describe how a certain type behaves. This usually means that they allow us to build and
destruct elements of a type and give us judgmental equalities for those operations, which
we call computation rules.

2.1.1 Functions

Fix a type A, and a term Φ that describes a type with free variable x. The term
∏

(x:A) Φ
stands for the type of dependent functions that take an argument a : A and return an
element of Φ[a/x] which stands for Φ with every free occurence of x replaced by a. Often
we ommit the type annotation for binders, which means in the case of function types

3

2 Background

that we just write
∏

(x) Φ. Sometimes we use a wildcard () as in
∏

(:A) Φ to indicate
that we won’t use the argument and don’t want to assign a name to it. If Φ does not
contain x as free variable, we also write A→ B for the type of functions from A to B.

If f :
∏

(x:A) Φ is a function and a : A then we can apply f to a. The result f(a) has
type Φ[a/x]. We build functions as abstractions: Given a term φ : Φ with free variable
x, the abstraction λ(x :A). φ has type

∏
(x:A) Φ. As a shorthand for abstraction we use

the blank symbol (–) to indicate a bound variable. For example the term f(–) stands
for the abstraction λx. f(x). If we want to assign a name to a function, we also use the
syntax f(x) :≡ Φ to define f :

∏
(x:A) Φ.

There are two computation rules for functions. The first describes the application of
an abstraction: (λx.Φ)(a) ≡ Φ[a/x]. The second computation rule enables us to unfold
trivial abstractions: λx. f(x) :≡ f for all functions f .

We define functions with multiple arguments by currying, which means for example
that a function f that takes arguments x : A and y : B(x) and returns an element of
C(x, y) has type

∏
(x:A)

∏
(y:B(x))C(x, y). If we give both arguments at the same time,

we usually write this as f(a, b).

2.1.2 Pairs

Fix a type A, and a term Φ that describes a type with free variable x. The term
∑

(x:A) Φ
stands for the type of dependent pairs that consist of a component a : A and a component
b : Φ[a/x]. If Φ has no free occurence of x, we use the notation A × Φ. We construct
a pair as (a, b). Given a pair p :

∑
(x:A) Φ, we denote both components by pr1(p) : A

and pr2(p) : Φ[pr1(p)/x] respectively. We have two computation rules that describe the
result of projections on a constructor application: pr1((x, y)) ≡ x and pr2((x, y)) ≡ y.
A third computation rule describes the application of the constructor on projections:
(pr1(p), pr2(p)) ≡ p. Sometimes we use the pair notation in binders as in λ(x, y). φ or∏

((x,y)) Φ, which means that x and y stand for the components of the pair.

2.1.3 Natural Numbers

We denote by N the type of natural numbers. There are two constructors 0 : N and
succ : N → N. We also write 1 for succ(0), 2 for succ(succ(0)) etc. and also n + 1 for
succ(n), n+ 2 for succ(succ(n)) For natural numbers we have an induction principle

indN :
∏

P :N→U
P (0)→

(∏
n:N

P (n)→ P (succ(n))

)
→
∏
n:N

P (n)

with computation rules

indN(P, s, f, 0) ≡ s
indN(P, s, f, succ(n)) ≡ f(indN(P, s, f, n)).

4

2.2 Admissible Type Formers

We use a pattern-matching notation for the definition of recursive functions on natural
numbers and later also for other types. The definition

r :
∏

(n)P (n)

r(0) :≡ s
r(succ(n)) :≡ f(r(n))

stands for r :≡ indN(P, s, f).

2.1.4 Paths

Given two objects x, y : A, there is a type x = y of paths from x to y, which we
also call propositional equalities. If the type x = y is inhabited, we say that x and
y are propositionally equal or just that x is equal to y. There is a single constructor
refl(–) :

∏
(x:A) x = x. The induction principle, which we call path induction, states that

if have x, y : A and a path p : x = y, we can assume that y is x and p is reflx:

ind=A :
∏

P :
∏

(x,y:A)(x=y)→U

(∏
x

P (x, x, reflx)

)
→

∏
(x,y:A)

∏
(p:x=y)

P (x, y, p).

The computation rule is
ind=A(P, f, x, x, reflx) ≡ f(x).

Our treatment of equality as the type of paths is different from that which was used for
the construction of strictly positive types by Abbott et al. [1]. There might be different
proofs of equality between two objects. In fact the type of paths between objects can
have very interesting structures It is the core of HoTT reason about these structures.

2.1.5 Universes

Universes are types that contain types. We have an infinite hierarchy of universes

U0 : U1 : U2 : · · ·

This hierarchy is cumulative which means that every element of one universe is also
contained in all bigger universes. All types are contained in some universe. The universe
of a type is generally the biggest of all universes of types that were used in its construction.
For example assume that A : Um and B : Un. Then A→ B has universe level max(m,n).
A consequence is that the type A :≡ Un → B has universe level at least n+ 1 and thus a
function f : A cannot be applied to A. We will usually leave the universe index implicit.
Where it is important, we will mention it explicitly.

2.2 Admissible Type Formers

Now we list some type formers that we will define from elements in our core theory later
on. All of our redefinitions will have the same properties as introduced here except for
W-types which will have less judgmental computation rules.

5

2 Background

2.2.1 Empty Type

We denote by 0 the empty type which has no constructor. The induction principle states
that we can construct everything from an element of 0.

ind0 :
∏
C

c.

2.2.2 Unit

We denote by 1 the type with exactly one element. It has one constructor ? : 1 and an
induction principle

ind1 :
∏

C:1→U
C(?)→

∏
x:1

C(x).

We also have a computation rule

ind1(C, c, ?) ≡ c.

2.2.3 Bool

We denote by 2 the boolean type with exactly two elements. It has constructors 12 : 2
and 02 : 2 and an induction principle

ind2 :
∏

C:2→U
C(02)→ C(12)→

∏
x:2

C(x)

with computation rules

ind2(C, c0, c1, 02) ≡ c0

ind2(C, c0, c1, 12) ≡ c1.

2.2.4 Coproducts

Given types A and B, the coproduct A+B is the type theoretic equivalent to the disjoint
union in set theory. Every element of A+B is either an element of A or an element of B.
We have two constructors inl : A→ A+B and inr : B → A+B. The induction principle
has type

indA+B :
∑

C:A+B→U

(∏
a:A

C(inl(a))

)
→

(∏
b:B

C(inr(b))

)
→

∏
x:A+B

C(x).

There are two computation rules

indA+B(C, g0, g1, inl(x)) ≡ g0(x)

indA+B(C, g0, g1, inr(x)) ≡ g1(x).

6

2.3 Propositions as Types

2.2.5 Options

Given a type A, the option type Option(A) extends A by one element. There are two
constructors none : Option(A) and some : A→ Option(A). We have an induction principle

indOption(A) :
∏

C:Option(A)→U

(∏
a:A

C(some(a))

)
→ C(none)→

∏
x:Option(A)

C(x)

and two computation rules

indOption(A)(C, csome, cnone, some(x)) ≡ csome(x)

indOption(A)(C, csome, cnone, none) ≡ cnone.

2.2.6 W-Types

Given a type A and a family B : A → U , the elements of the W-type W(a:A)B(a)
represent well-founded trees with nodes labeled by elements of A. If a node is labeled
with some a : A, the type B(a) gives us the number of subtrees at that node. The type is
generated by one constructor sup :

∏
(a:A)(B(a)→W(a:A)B(a))→W(a:A)B(a). We have

an induction principle

indW(a:A)B(a) :
∏

(C:W(a:A)B(a)→U)∏
(a:A)

∏
(f :B(a)→W(a:A)B(a))

 ∏
b:B(a)

C(f(b))

→ C(sup(a, f))

→
∏

x:W(a:A)B(a)

C(x).

This satisfies the computation rule

indW(a:A)B(a)(C, g, sup(a, f)) ≡ g(a, f, indW(a:A)B(a)(C, g) ◦ f).

As for all other types we will use the more readable pattern-matching notation for the
definition of rekursive functions on a W-type.

2.3 Propositions as Types

We will use types to express propositions, as it is common practice in type theory. Every
element of the type is considered a proof for this proposition.

• The type A→ B expresses that A implies B.

• The type
∏

(x:A)B(x) expresses that all x : A satisfy B.

• The type A×B expresses that both A and B are true.

• The type
∑

(x:A)B(x) expresses that there is some x : A that satisfies B.

• The type x = y expresses that x is equal to y.

7

2 Background

2.4 Working with Paths

We will now introduce some operations that allow us to reason about equality. The
proofs are all by path induction.

Fact 2.4.1. Given paths p : x = y and q : y = z, there is a path p � q : x = z.

Fact 2.4.2. Given elements a path p : x = y, there is a path p−1 : y = x.

Lemma 2.4.3. If we apply a function to equal terms, we get equal results: For all
functions f : A→ B, elements x, y : A and paths p : x = y we have a path

apf (p) : f(x) = f(y).

Proof. By path induction we only need to consider the case where y is x and p is the
reflexivity path. In this case we define apf (reflx) :≡ reflf(x).

If we have types A and B, an element x : A and a propositional equality p : A = B,
one could expect that we also have x : B, but in general this is not the case. We can
however apply the following slightly more general lemma to obtain an element of B in
such a setting.

Lemma 2.4.4. Given a family of types B : A → U , an equality p : x = y between
elements of A and an element b : B(x), there is an inhabitant

transportB(p, y) : B(y).

If the family B is clear from the context, we use the shorter notation p∗(b) : B(y).

Proof. By path induction we only need to consider the case where y is x and p is the
reflexivity path, hence B(x) ≡ B(y). For this case we define transportB(reflx, b) :≡ b.

The application of this lemma is also called rewriting because it allows us to rewrite
parts of types, especially in propositions that we want to prove.

When working with transport, we often need to know what it does on certain types.
The following equalities can often be used to compute the result of a transport.

Fact 2.4.5.

transportλx.A(x)→B(x)(p, f)(a) = transportB(p, f(transportA(p, a))).

Fact 2.4.6.

transportλx.A(x)×B(x)(p, (a, b)) = (transportA(p, a), transportB(p, b)).

8

2.5 Equivalence

2.5 Equivalence

Types that are defined differently can still behave very similar. For example the products
A×B and B ×A allow us to do exactly the same things. This also holds for the types
A and A+ 0 and many others. We express this similarity with the notion of equivalence.
For its definition we need to talk about inverses of a function.

Definition 2.5.1. Given a function f : A → B, another function g : B → A is a left
inverse to f if for all x : A we have g(f(x)) = x.

Definition 2.5.2. Given a function f : A→ B, another function g : B → A is a right
inverse to f if for all x : B we have f(g(x)) = x.

Definition 2.5.3. A function f : A→ B is an equivalence if there is a left inverse and
a right inverse.

There is a reason not to demand that the left inverse and right inverse are the same,
but it is not relevant for our work. For more information we refer to chapter 4 [4]. When
we explicitly construct an equivalence, we will always use the same function for both. In
that case we call it a pseudo-inverse.

Definition 2.5.4. Given a function f : A → B, another function g : B → A is a
pseudo-inverse to f if it is a left inverse and a right inverse.

Definition 2.5.5. Two types A and B are equivalent (A ' B) if there is an equivalence
from A to B.

We will see that type equivalence is really an equivalence relation. We show this step
by step because in general there can be many equivalences between two types. We need
to compute with equivalences, thus it matters how exactly they are defined.

Fact 2.5.6. The identity function idA is an equivalence. Hence type equivalence is
reflexive.

Fact 2.5.7. If f : A → B is an equivalence and g : B → C is an equivalence, the
composition g ◦ f : A→ C is also an equivalence. Hence type equivalence is transitive.

Fact 2.5.8. Every equivalence f has a unique pseudo-inverse. We denote it by f−1.
Hence type equivalence is symmetric.

Corollary 2.5.9. Type equivalence is an equivalence relation.

2.6 Univalence

Now we will proceed to introduce the univalence axiom which is likely the most important
innovation from HoTT. It is based on the observation that there is no way to distinguish
equivalent types inside the type theory. Moreover we can use an equivalence to manually

9

2 Background

transport definitions that were done on one type to the other type. Thus it seems natural
to assume that equivalent types are equal. This is a consequence of the univalence axiom.
But the univalence axiom is even stronger. It doesn’t just state the equivalence implies
equality, it asserts that equivalence is equivalent to equality. This means that there are
exactly as many paths between two types as there are equivalences. We can define one
direction of the equivalence without further axioms:

Lemma 2.6.1. For every equality p : A = B between types, there is an equivalence

idtoeqv(p) : A ' B.

Proof. By path induction and reflexivity .

Axiom 2.6.2 (Univalence). For all types A and B the function idtoeqv : (A = B) →
(A ' B) is an equivalence.

Definition 2.6.3. For every equivalence f : A→ B we define

ua(f) : A = B

as the unique pseudo inverse of idtoeqv.

Sometimes we transport over a path that was built by univalence. In such cases the
transport does the same as an application of the underlying equivalence:

Fact 2.6.4. For all equivalences e : A→ B and inhabitants x : A we have

transportid(ua(e), x) = e(x).

One welcome side effect of univalence is function extensionality. Similar to the definition
of univalence this does not only mean that pointwise equality on functions implies equality.
It means that for all functions f and g the following is an equivalence.

Lemma 2.6.5. For all functions f, g :
∏

(x:A) → B(x) and paths p : f = g there is a
pointwise equality

happly(p) :

(∏
x

f(x) = g(x)

)
.

Proof. By path induction.

Fact 2.6.6. For f, g :
∏

(x:A) → B(x) the function happly : (f = g)→
(∏

(x) f(x) = g(x)
)

is an equivalence.

Definition 2.6.7. For all functions f, g :
∏

(x:A) → B(x), we define

funext :

(∏
x

f(x) = g(x)

)
→ (f = g)

as the unique pseudo-inverse of happly.

10

2.7 Mere Propositions

2.7 Mere Propositions

Definition 2.7.1. A type is a mere proposition if it has at most one inhabitant:

isProp(A) :≡
∏
x,y:A

x = y.

We define the type of mere propositions as

Prop :≡
∑
A:U

isProp(A)

but identify inhabitants of Prop with their first component. If the codomain of a function
is a mere proposition, we call it a mere predicate.

We call such a type A a mere propositions because an element doesn’t give us any more
information than the fact that A holds as a proposition. Hence any other interpretation
of A but that as a proposition is not very interesting in most cases. However we will
see that mere propositions can also be useful through the judgmental equalities on their
elements. To exploit this we will need propositional resizing as an extension to our
type theory.

Axiom 2.7.2 (Propositional Resizing). Every mere proposition inhabits the smallest
universe.

For the moment we assume a type former that is related to mere propositions. Given
A : U , the type ‖A‖ is propositional truncation of A. The propositional truncation
is a mere proposition i.e. every two inhabitants are equal. It has one constructor
|– | : A→ ‖A‖ and an elimination principle

rec‖A‖ :
∏

P :Prop

(A→ P)→ ‖A‖ → P.

The computation rule gives us an equality rec‖A‖(P, f, |a|) ≡ f(a) for all f and a.

2.8 Contractibility

Sometimes we say that a type has exactly one inhabitant. We will now give a formal
definition for this statement in the form of contractibility.

Definition 2.8.1. A type is contractible if it has exactly one inhabitant:

isContr(A) :≡
∑
(x:A)

∏
(y:A)

x = y.

Every contractible type is also a mere proposition:

11

2 Background

Fact 2.8.2. Given two inhabitants x and y of a contracible type A, there is a path
path contr(x, y) : x = y.

There is one form of contractible types that we will use throughout this thesis.

Fact 2.8.3. For all types A and inhabitants a : A the type
∑

(x:A) a = x is contractible.

When we prove contractibility of function-types or products, we can use the following
facts.

Fact 2.8.4. The type
∏

(x:A)B(x) is contractible if for all x : A the type B(x) is
contractible.

Fact 2.8.5. The type
∑

(x:A)B(x) is contractible if A is contractible and for all x : A
the type B(x) is contractible.

Fact 2.8.6. Given a type A, the type isContr(A) is contractible.

2.9 Inductive Types

In this chapter we introduce a characterization of inductive types. We could characterize
inductive types as types with certain constructors and an induction principle, but we
choose another way because we want it to be dual for coinductive types. For our
characterization we need the notion of a functor.

Definition 2.9.1. Given a type I, a functor F consists of

• A function F0 : U → U
• For all types A and B a function FA,B : (A→ B)→ F0(A)→ F0(B)

• For all types A a proof FA,Aid = id

• For all types A, B and C and functions f : A → B and g : B → C a proof
FA,C(g ◦ f) = FB,C(g) ◦ FA,B(f)

We adopt the often seen notation from category theory and write F A for F0(A), if A is
a type and F f for FA,B(f), if f is a function from A to B.

Intuitively we can think of functors as abstract data structures. A value of type F A
may contain elements of A and FA,B allows us to replace those by elements of B. The
additional rules make sure that FA,B really replaces components and doesn’t permute
them on the way. When we define a functor, we often give only F0 and FA,B and
sometimes not even FA,B . The definition of the remaining components is routine and not
interesting for us.

Now let us take a look at things that we expect from an inductive type. First of all,
an inductive type should have constructors. For example the type of natural numbers
has constructors 0 : N and succ : N → N. But we could as well define it with a single
constructor sN : 1 + N→ N. In which case the signature of the constructor is given by
the functor FNX :≡ 1 +X. We generalize this concept of types with a constructor for a
functorial signature as algebras.

12

2.9 Inductive Types

Definition 2.9.2. Given a functor F , an F -algebra is a type A with an algebra structure
sA : F A→ A.

Another example is the type T2 of binary trees, which can be defined with a constructor
sT2 : 1 + (T2 ×T2)→ T2 and thus gives rise to an F -algebra for the functor defined by
FT2 X :≡ 1 + (X ×X).

But an inductive type should not only have a constructor. We also expect a way to
define functions on it by recursion. On natural numbers we can use any start value
0X : X and step function succX : X → X to uniquely define a function r : N→ X which
iterates succX and satisfies the computation rules

r(0) ≡ 0X

r(succ(n)) ≡ succX(r(n)).

To generalize this, note that X is a FN-algebra with algebra structure

sX(inl(?)) :≡ 0X

sX(inr(x)) :≡ succX(x).

With this structure we can write the computation rule as∏
x:F N

r(sN(x)) = sX(F (r)(x)).

We generalize the type of such functions with computation rule by the definition of
algebra morphisms.

Definition 2.9.3. Given F -algebras (A, sA) and (B, sB), an algebra morphism from
(A, sA) to (B, sB) consists of a function from A to B and a proof of the computation
rule:

AlgHom((A, sA), (B, sB)) :≡
∑

(h:A→B)

∏
(x:F A)

h(sA(x)) = sB(F (h)(x)).

The algebra morphisms from (N, sN) correspond to iterative functions. Now that
we can describe types with constructors as algebras and iterative functions as algebra
morphisms, we can describe inductive types as algebras that have exactly one morphism
to every other algebra.

Definition 2.9.4. An initial F -algebra is an F -algebra A such that for every second
F -algebra B the type of algebra morphisms from A to B is contractible.

It is clear that every inductive type is an initial algebra but the following fact shows
that the definition of initial algebras is already strict enough to exclude everything else.

Fact 2.9.5. There is at most one initial algebra for every functor.

13

2 Background

This still doesn’t mean that we can do everything with initial algebras, that we expect
from inductive types. But we will see that every initial algebra has an induction principle
that satisfies at least a propositional computation rule. The induction principle on natural
numbers has type

∏
P :N→U

P (0)→

(∏
n

P (n)→ P (n+ 1)

)
→
∏
n

P (n)

'
∏

P :N→U
P (0)→

 ∏
(n,p):

∑
(n) P (n)

P (n+ 1)

→∏
n

P (n)

'
∏

x:FN(
∑

(n) P (n))

P (sN(FN(pr1)(x)))→
∏
n

P (n).

The induction scheme for every other algebra can be expressed in the same form, which
makes it possible to formulate a general induction principle for initial algebras.

Fact 2.9.6. Every initial F -algebra (A, sA) has an induction induction principle

ind(A,sA) :
∏

x:F (
∑

(a) P (a))

P (sA(F (pr1)(x)))→
∏
a

P (a).

It satisfies the computation rule

ind(A,sA)(f, sA(x)) = f(F (λa. (a, ind(A,sA)(f, a)))(x))

for all f and x.

2.10 Coinductive Types

Coinductive types have a destructor and a unique corecursion function that constructs
elements of the type from a step function. This is completely dual to the definition of
initial algebras. We generalize types with a destructor as coalgebras.

Definition 2.10.1. Given a functor F , an F -coalgebra is a type A with a coalgebra
structure sA : A→ F A.

The computation rule for corecursion gives us the result of destructor applications
on elements that were corecursively constructed. We generalize corecursive functions as
coalgebra morphisms.

Definition 2.10.2.

CoalgHom((A, sA), (B, sB)) :≡
∑

(h:A→B)

∏
(a)

sB(h(a)) = F (h)(sA(a)).

Finally we generalize coinductive types as final coalgebras.

14

2.11 Addresses

Definition 2.10.3. A final F -coalgebra is a coalgebra such that the type of morphisms
to every other algebra is contractible.

Here we also have a uniqueness result.

Fact 2.10.4. For every functor F there is at most one final F -algebra.

There is no dual concept to the induction principle. There is coinduction which can be
used to prove equality between elements of a coinductive type from bisimulation, but we
will not use that for our work.

2.11 Addresses

W-types describe tree-like structures. We want to define a type of addresses in such
structures, but we want to use it with coinductive types as well. Hence we generalize.
Fix types T and A and a family B : A→ U and assume that we have two destructors
label : T → A and arg :

∏
(t:T)B(label(t)) → T . We think of an element t : T as a tree

with label label(t) at the root and subtrees arg(w, b) for b : B(label(t)). We want the type
Addr(t) of addresses to be the indexed inductive type with two constructors

root addr :
∏
w:W

Addr(w)

subtree addr :
∏

(w:W)

∏
(b:B(label(w)))

∏
(addr ′:Addr(arg(w,b)))

Addr(w).

Since we want to keep our type theory small, we construct this type from the core
theory.

Definition 2.11.1. We define the types of addresses with fixed depth by recursion and
then define Addr(t) as disjoint union of those types:

Addr0(t, 0) :≡ 1

Addr0(t, succ(n)) :≡
∑

b:B(label(t))

Addr0(arg(t, b), n)

Addr(t) :≡
∑
n:N

Addr′(t, n).

Definition 2.11.2. We define the constructors

root addr :≡ (0, ?)

subtree addr(b, (n, x)) :≡ (succ(n), (b, x)).

15

2 Background

Lemma 2.11.3. There is an induction principle of type

indAddr :
∏

P :
∏

(w:W) Addr(w)→U

(∏
w:W

P (w, root addr)

)
→

∏
(w)

∏
(b)

∏
(addr :Addr(arg(w,b)))

P (arg(w, b), addr)→ P (w, subtree addr(b, addr))

→
∏

(w:W)

∏
(addr :Addr(w))

P (w, addr).

Proof. By recursion on the depth of the address.

We will use the familiar pattern-matching notation on addresses as syntactic sugar. The
following remark asserts that the resulting functions satisfy the expected computation
rules by definition.

Remark 2.11.4. The computation rules for indAddr hold judgmentally.

Now we define three functions on addresses that we will use later.

Definition 2.11.5. We define a function subtree at :
∏

(w:W) Addr(w)→ W, that returns
the subtrees at given addresses by recursion on the address and a function label at :∏

(w:W) Addr(w)→ A, that returns the label at an address:

subtree at(w, root addr) :≡ w
subtree at(w, subtree addr(b, addr)) :≡ subtree at(arg(w, b), addr)

label at(w, addr) :≡ label(subtree at(w, addr)).

Definition 2.11.6. We define a function

extend addr :
∏

(w:W)

∏
(addr :Addr(w))

B(label at(w, addr))→ Addr(w)

that extends an address to an address at a deeper level:

extend addr(w, root addr, b) :≡ subtree addr(b, root addr)

extend addr(w, subtree addr(b′, addr), b) :≡ subtree addr(b′,

extend addr(arg(w, b′), addr , b)).

We also use a slightly different familly of types Addr′ : A→ T → U . The inhabitants
of such a type Addr′(a, t) represent addresses that point to node that is labeled with a.
The definition is analogous to that of Addr.

16

2.12 Containers

Fact 2.11.7. There is a family of types Addr′ : A→ T → U with constructors

root addr′ :
∏
w:W

Addr′(label(w), w)

subtree addr′ :
∏

(w:W)

∏
(b:B(label(w)))

∏
(addr ′:Addr′(a,arg(w,b)))

Addr(a,w).

and an induction principle

indAddr′ :
∏

P :
∏

(a:A)

∏
(w:W) Addr

′(a,w)→U

(∏
w:W

P (label(w), w, root addr′)

)
→

 ∏
(a,w,b)

∏
(addr :Addr′(a,arg(w,b)))

P (a, arg(w, b), addr)→ P (a,w, subtree addr′(b, addr))

→
∏

(a:A)

∏
(w:W)

∏
(addr :Addr′(a,w))

P (a,w, addr).

This type also satisfies the computation rule judgmentally.

2.12 Containers

We use containers as normal form that can represent many types with free variables. The
most primitive form of a container represents types in a single free variable and describes
a functor.

Definition 2.12.1. A container S � P consists of a type of shapes S and a family
P : S → U .

Definition 2.12.2. The extension of a container S � P is the functor LS � P M with

LS � P M Γ : U
LS � P M Γ :≡

∑
(s:S)P (s)→ Γ

LS � P M f : LS � P M Γ→ LS � P M Γ′

LS � P M f :≡ λ(s, g). (s, f ◦ g)

for all Γ,Γ′ : U and f : Γ→ Γ′.

We have already seen the type of lists as an example for this. Container functors are
interesting because they have an initial algebra and a final coalgebra.

Fact 2.12.3. For all types A and families B : A → U , the type W(a:A)B is an initial
algebra of the functor LA�BM.

17

2 Background

We will see in the next chapter how to construct a final coalgebra for container functors.
Now we define a more general form of containers that represent types with multiple free
variables.

Definition 2.12.4. An I-indexed container S BP consists of a type of shapes S and
a family P : I → S → U .

The index I represents the type of free variables.

Definition 2.12.5. The extension of an I-indexed container S BP is the function
JS B P K with

JS B P K Γ : U
JS B P K Γ :≡

∑
(s:S)

∏
(i)P (i, s)→ Γ(i)

for all Γ : I → U . For applications of this function we use the same notation as for
functors although it is not a functor by our formal definition.

A simple example is the 2-indexed container

c :≡ 1B λi. λs.1.

For all environments Γ : 2→ U we have

JcK Γ ≡
∑
(:1)

∏
(i:2)

1→ Γ(i)

which is equivalent to the product Γ(02)× Γ(12).

18

3 Construction of M-Types

In this chapter we present a construction of M-types which are final coalgebras for container
functors. Analogously to W-types we think of M-types as trees, with the difference that an
element of a M-type does not need to be well-founded. For the remainder of the chapter
fix a type A and a family B : A→ U . We build on a construction of final coalgebras for
container functors by Ahrens et al. [2] and refine it to obtain the computation rule as
judgmental equality.

Fact 3.0.1. There is a final coalgebra (M0, sM0) for the container functor JABBK.

We denote the corecursor on this coalgebra by corecM0 . We use (M0, sM0) to define a
new coalgebra (M, sM) and explicitly give a corecursor that satisfies the computation rule
judgmentally. Finally we will prove the new coalgebra equal to (M0, sM0), which implies
that it is also final.

We define M as the image of the corecursor in M0:

Definition 3.0.2.

M :≡
∑
m:M0

∥∥∥∥∥∥
∑

((C,sC):MCoalg(A,B))

∑
(x:C)

corecM0(C, sC , x) = m

∥∥∥∥∥∥.
Our corecursor applies the corecursor on M0 as the first component and stores its

arguments in the second component:

Definition 3.0.3.

corecM :
∏
C:U

(
C → (

∑
a:A

B(a)→ C)

)
→ C → M

corecM(C, sC , x) :≡ (corecM0(C, sC , x), |((C, sC), (x, refl))|).

The interesting part is the definition of the destructor sM : M→ (
∑

(a:A)B(a)→ M).
It has to satisfy the following computation rule.

sM(corecM(C, sC , x)) = (pr1(sC(x)), corecM(C, sC) ◦ pr2(sC(x)))

Since C and sC are stored in corecM(C, sC , x), the definition of the destructor can return
exactly the term on the right side of the computation rule. We just need to eliminate the
propositional truncation before. For this, we need to eliminate into a mere proposition.
We define this proposition as

P :≡
∑

((a, f) :
∑

(a:A)B(a)→ M), sM0(m0) = (a, pr1 ◦ f).

19

3 Construction of M-Types

The first part of this type is exactly the result type of sM. The second part is chosen
to obtain a mere proposition. That it really is a mere propositon, can be seen with the
equivalence

P ≡
∑

((a, f) :
∑

(a:A)B(a)→ M), sM0(m0) = (a, pr1 ◦ f)

'
∑

((a, p) :
∑

(a) label0(m0) = a),∏
(b : B(a)),

∑
((m′0,) :

∑
(m′

0) arg0(m, p−1
∗(b)) = m′0),∥∥∥∥∥∥

∑
((C,sC))

∑
(x)

corecM0(C, sC , x) = m

∥∥∥∥∥∥.
Contractibility of the right side follows from repeated application of Facts 2.8.2, 2.8.4
and 2.8.5.

Definition 3.0.4. We define a helper-function s′M : M → P by truncation elimination
as

s′M((m0, |((C, sC), (x, p))|)) :≡ ((pr1(sC(x)), corecM(C, sC) ◦ pr2(sC(x))), p).

where p is a the proof

sM0(m0) = sM0(corecM0(C, sC , x))

= (pr1(sC(x)), corecM0(C, sC) ◦ pr2(sC(x)))

≡ (pr1(sC(x)), pr1 ◦ corecM(C, sC) ◦ pr2(sC(x))).

Definition 3.0.5. We define the destructor sM : M→
∑

(a:A)B(a)→ M by

sM(m) :≡ pr1(s′M(m)).

Remark 3.0.6. We have the computation rule for corecursion by definition:

sM (corecM(C, sC , x)) ≡ (pr1(sC(x)), corecM(C, sC) ◦ pr2(sC(x))).

Now we show that (M, sM) is actually a final coalgebra by equality with (M0, sM0). We
start with an equivalence between both carriers.

Lemma 3.0.7.
M ' M0

Proof. We define a function f from M to M0 and show that it is an equivalence.

f((m0,)) :≡ m0.

To prove that f is an equivalence, we define a quasi-inverse

g(m0) :≡ (m0, |((M0, sM0), (m0, p))|)

20

Where p : corecM0(M0, sM0 ,m0) = m0 is proven by uniqueness of corecursive functions
on M0. The function g is a right inverse to f by judgmental equality. It is also a left
inverse because

g(f(m0, y)) ≡ g(m0)

≡ (m0, |((M0, sM0), (m0, . . .))|)
= (m0, y)

for all M0 and y. The last line holds because the type of the second component is a mere
proposition. Hence g is a quasi-inverse to f and thus f is an equivalence.

Lemma 3.0.8.
(M, sM) = (M0, sM0)

Proof. We use f and g as defined in Lemma 3.0.7. As equality on the first component
we apply univalence to f . Then we have to show equivalence of both destructors over
ua(f). This holds by

(ua(f)∗(sM))(m0) = ua(f)∗

(
sM (ua(f)−1

∗(m0))
)

= ua(f)∗(sM (g(m0)))

≡ ua(f)∗
(
sM ((m0, |((M0, sM0), (m0, . . .))|))

)
≡ ua(f)∗((pr1(sM0(m0)), corecM(M0, sM0) ◦ pr2(sM0(m0))))

= (pr1(sM0(m0)), ua(f)∗(corecM(M0, sM0) ◦ pr2(sM0(m0))))

= (pr1(sM0(m0)), f ◦ corecM(M0, sM0) ◦ pr2(sM0(m0)))

≡ (pr1(sM0(m0)), corecM0(M0, sM0) ◦ pr2(sM0(m0)))

= (pr1(sM0(m0)), id ◦ pr2(sM0(m0)))

≡ sM0(m0).

We apply Fact 2.4.5 in the first line and Fact 2.6.4 in the second sixth line. Line five is
an application of Fact 2.4.6. In line eight we use uniqueness of corecursive functions.

Lemma 3.0.9. The coalgebra (M, sM) is final.

Proof. By Lemma 3.0.8 (M, sM) is equal to (M0, sM0). Thus finality of (M0, sM0) implies
finality of (M, sM).

This leads to the following general result.

Theorem 3.0.10. For all types A and families B : A → U , there is a final coalge-
bra (M(a:A)B(a), sM(a:A)B(a)) for the container functor LA�BM. This coalgebra has a
corecursion function

corecM(a:A)B(a) :
∏
C:U

(
C → (

∑
a:A

B(a)→ C)

)
→ C →M

21

3 Construction of M-Types

which satisfies the computation rule

sM(a:A)B(a)(corecM(a:A)B(a)(C, sC , x)) ≡
(

pr1(sC(x)), corecM(a:A)B(a)(C, sC) ◦ pr2(sC(x))
)
.

Proof. We use the type from Definition 3.0.2 as carrier and the function from Defini-
tion 3.0.5 as destructor. By Lemma 3.0.9 this coalgebra is final. As corecursor we use
the function from Definition 3.0.3. The computation rule holds by Remark 3.0.6.

In later chapters we will use the following functions to work with M-types.

Definition 3.0.11. Given a tree m : Ma : AB(a), we define the label label(m) : A of m
as.

label(m) :≡ pr1(sMa:AB(a)).

Definition 3.0.12. Given a tree m : Ma : AB(a) and a subtree index b : B(label(m)),
we define the subtree arg(m, b) : Ma : AB(a) of m at index b as.

arg(m, b) :≡ pr2(sMa:AB(a))(b).

Fact 3.0.13. For all A : U and B : A→ U , there is a pseudo-inverse

sup :

(∑
a:A

B(a)→ Ma:AB(a)

)
→ Ma : AB(a)

of the destructor sMa:AB(a).

22

4 Construction of Strictly Positive Types

In this chapter we present a construction of nested inductive and coinductive types. First
we define the syntax of strictly positive types and use it as a specification for types and
functors. Then we show that containers are closed under all strictly positive type formers.
It follows that we can build every strictly positive type as a container.

Definition 4.0.1. We define strictly positive expressions by the grammar

eI , e
′
I ::= K | x | eI × e′I | eI + e′I | K → eI | µ.eOption(I) | ν.eOption(I)

where I and K are types and x : I. Hence the index of a metavariable indicates the type
of free variables which the expression may contain. This means that we do not define
a single type, but a family with the type of free variables as parameter. We will often
ommit this index if it can be inferred from the context.

The last two rules represent inductive and coinductive types and work as binders.
Therefore the inner expression may contain free variables from Option(I), which adds
one variable none which we regard as the bound variable. We associate every other value
some(x) with the variable x in the outer expression. This leads to a kind of De Bruijn no-
tation in which every variable in a closed expression has the form some(. . . (some(none)))
and the number of nested constructor applications indicates the distance to the corre-
sponding binder. With this in mind we define how strictly positive expressions serve as
specification for types and functors. This specification depends on a context Γ : I → U
that binds all free variables or in the case of functors all free variables except one. First
we need to define how we extend a context.

Definition 4.0.2. Given a context Γ : I → U and a type X, the extension Γ ; ; X :
Option(I)→ U of Γ by X is defined by

(Γ ; ;X)(some(i)) :≡ Γ(i)

(Γ ; ;X)(none) :≡ X

Definition 4.0.3. We define recursively what it means for a type to realize a strictly
positive expression with free variables in I in a given context Γ : I → U :

• A type realizes the constant expression K in any context if it is equivalent to K.

• A type realizes the variable expression x in a context Γ if it is equivalent to Γ(x).

• A type realizes the product expression e× e′ in a context Γ if it is equivalent to a
product A1 ×A2 and A1 and A2 realize e and e′ respectively in context Γ.

23

4 Construction of Strictly Positive Types

• A type realizes the coproduct expression e+ e′ in a context Γ if it is equivalent to
a coproduct A1 +A2 and A1 and A2 realize e and e′ respectively in context Γ.

• A type realizes the function type expression K → e in a context Γ if it is equivalent
to a function type K → A and A realizes e in context Γ.

• A type realizes a fixed point expression µ.e in a context Γ if it is the initial algebra
of a functor that realizes e in context Γ.

• A type realizes a fixed point expression ν.e in a context Γ if it is the final coalgebra
of a functor that realizes e in context Γ.

A functor realizes a strictly positive expression e with free variables in Option(I) in a
context Γ : I → U if the type F X realizes e in context Γ ; ;X for all X : U .

Most of the rules explicitly give the type that realizes an expression. If we had only
those, the construction of strictly positive types would be easy. However, the specification
for inductive and coinductive types is harder to satisfy. To build an initial algebra or a
final coalgebra, we need more information about the functor. But if we know that it is
a container functor, we can use the corresponding W- and M-type. For this reason we
construct strictly positive types as containers.

Definition 4.0.4. An I-indexed container c realizes a strictly positive expression e if
in every context Γ, the type JcK Γ realizes e.

Our goal is that given a strictly positive expression, we can recursively construct a
container that realizes this expression. To every strictly positive type former, we devote
one lemma in which we prove that container types are closed that particular type former.

Lemma 4.0.5. Every constant expression is realized by a container.

Proof. Given K : U , we need a container S B P such that for all contexts Γ, we have
JS B P K Γ ' K. If we set P (i, s) :≡ 0, we generally have

JS B P K Γ ≡
∑
(s:S)

∏
(i:I)

0→ Γ(i)

'
∑
(s:S)

∏
(i:I)

1

' S

.

Hence it suffices to set S :≡ K and the container S B P realizes K.

Lemma 4.0.6. Every variable expression is realized by a container.

Proof. Given x : I, we need a container S B P such that for all contexts Γ, we have

24

JS B P K Γ ' Γ(x). If we set S :≡ 1 and P (i,) :≡ x = i, we have

JS B P K Γ ≡
∑
(:1)

∏
(i:I)

x = i→ Γ(i)

'
∏
i:I

x = i→ Γ(i)

'
∏
i:I

x = i→ Γ(x)

' (
∑
i:I

x = i)→ Γ(x)

' Γ(x).

Hence the container S B P realizes x.

Lemma 4.0.7. Container types are closed under product i.e. if two expressions e1 and
e2 are realized by containers then e1 × e2 is realized by a container.

Proof. Fix strictly positive expressions e1 and e2, and containers S1BP1 and S2BP2, that
realize e1 and e2 respectively. We need a container S BP such that for all contexts Γ, we
have JS B P K Γ ' JS1 B P1K Γ× JS2 B P2K Γ. If we set S :≡ S1×S2 and P (i, (s1, s2,)) :≡
P1(i, s1) + P2(i, s2), we have

JS B P K Γ

≡
∑

((s1,s2):S1×S2)

∏
(i:I)

(P1(i, s1) + P2(i, s2))→ Γ(i)

'
∑

((s1,s2):S1×S2)

∏
(i:I)

(P1(i, s1)→ Γ(i))× (P2(i, s2)→ Γ(i))

'
∑

(s1,s2):S1×S2

(∏
i:I

P1(i, s1)→ Γ(i)

)
×

(∏
i:I

P2(i, s2)→ Γ(i)

)

'

 ∑
(s1:S1)

∏
(i:I)

P1(i, s1)→ Γ(i)

×
 ∑

(s2:S2)

∏
(i:I)

P2(i, s2)→ Γ(i)


≡ JS1 B P1K Γ× JS2 B P2K Γ.

Hence the container S B P realizes e1 × e2.

Lemma 4.0.8. Container types are closed under coproduct i.e. if two expressions e1

and e2 are realized by containers then e1 + e2 is realized by a container.

Proof. Fix strictly positive expressions e1 and e2, and containers S1 B P1 and S2 B P2,
that realize e1 and e2 respectively. We need a container S B P such that for all contexts

25

4 Construction of Strictly Positive Types

Γ, we have JS B P K Γ ' JS1 B P1K Γ + JS2 B P2K Γ. If we set S :≡ S1 + S2 and define P
by

P (i, inl(s)) :≡ P1(i, s)

P (i, inr(s)) :≡ P2(i, s),

we have

JS B P K Γ ≡
∑

(s:S1+S2)

∏
(i:I)

P (i, s)→ Γ(i)

'

∑
(s:S1)

∏
(i:I)

P (i, inl(s))→ Γ(i)

+

∑
(s:S2)

∏
(i:I)

P (i, inr(s))→ Γ(i)


≡ JS1 B P1K Γ + JS2 B P2K Γ.

Hence the container S B P realizes e1 + e2.

Lemma 4.0.9. Container types are closed under function types with constant domain
i.e. if an expressions e is realized by containers then K → e is realized by a container.

Proof. Fix a strictly positive expression e and a container S′ B P ′, that realizes e. We
need a container SBP such that for all contexts Γ, we have JS B P K Γ ' K → JS′ B P ′K Γ.
If we set S :≡ K → S′ and P (i, s) :≡

∑
(k:K) P

′(i, s(k)), we have

JS B P K Γ ≡
∑

(s:K→S′)

∏
(i)

(∑
k

P ′(i, s(k))

)
→ Γ(i)

'
∑

(s:K→S′)

∏
(i)

∏
(k)

P ′(i, s(k))→ Γ(i)

'
∑

(s:K→S′)

∏
(k)

∏
(i)

P ′(i, s(k))→ Γ(i)

' K →
∑

(s:S′)

∏
(i)

P ′(i, s)→ Γ(i)

≡ K → JS′ B P ′K Γ.

Hence the container S B P realizes K → e.

Lemma 4.0.10. Container types are closed under inductive fixed points i.e. if an expres-
sion e with free variables in Option(I) is realized by a container then µ.e is also realized
by a container.

Proof. Fix an expression e and an I-indexed container S′ B P ′ that realizes e. We need
a container S B P such that for every context Γ, we have a functor F that realizes e in Γ
and JS B P K Γ is an initial algebra of F . Fix a context Γ. We will define the functor F
that realizes e in Γ. Then we will define S B P such that JS B P K Γ is an initial algebra

26

of F . The definition of S B P will not depend on Γ. Thus the condition is satisfied for
all Γ and S B P realizes e.

We want the functor F to realize e in Γ. By definition this means that for all X : U , the
type F X realizes e in Γ ; ;X. We already have the type JS′ B P ′K(Γ ; ;X) that does this.
Hence it suffices to define F such that F X ' JS′ B P ′K(Γ ; ;X) for all X. We also want
F to be a container functor because in this case we have an initial algebra. Therefore we
transform JS′ B P ′K(Γ ; ;X) into container form and use the result as definition for F .

JS′ B P ′K(Γ ; ;X) ≡
∑

(s:S′)

∏
(i)

P ′(i, s)→ (Γ ; ;X)(i)

'
∑
s:S′

(∏
i

P ′(some(i), s)→ Γ(i)

)
× P ′(none, s)→ X

'
∑

((s,) :
∑

(s)

∏
(i) P

′(some(i), s)→ Γ(i)), P ′(none, s)→ X

≡ L
∑
(s)

∏
(i)

P ′(some(i), s)→ Γ(i) � P ′(none) ◦ pr1MX

Let F :≡ L
∑

(s)

∏
(i) P

′(some(i), s)→ Γ(i) � P ′(none) ◦ pr1M. We know that the initial
algebra of F is the W-type

W((s,) :
∑

(s:S′)

∏
(i) P

′(some(i), s)→ Γ(i)), P ′(none, s).

We need to define the container S B P such that this type is the result of JS B P K Γ and
the definition does not depend on Γ. Again, we transform the W-type step by step into
container form:

W((s,):
∑

(s:S′)
∏

(i) P
′(some(i),s)→Γ(i))P

′(none, s)

'
∑

(w:W(s:S)P
′(none,s))

∏
(s)

Addr(s, w)→
∏
i

P ′(some(i), s)→ Γ(i)

'
∑

(w:W(s:S′)P
′(none,s))

∏
(i)

(∑
s

Addr(s, w)× P ′(some(i), s)

)
→ Γ(i)

≡ JW(s:S′)P
′(none, s)B λi. λw.

∑
s

Addr(s, w)× P ′(some(i), s)K Γ.

In the first step we apply Lemma 4.0.11 that we prove next.
In summary, we have defined a functor F that realizes e in a given context and a

container S B P that produces an initial algebra for F . The definition of the container
does not depend on the context. Thus the SBP produces initial algebras for all contexts
and realizes the expression µ.e.

Lemma 4.0.11. For every A1 : U , A2 : A1 → U and B : A1 → U there is an equivalence

W((a1,):
∑

(a1:A1)
A2(a1))B(a1) '

∑
(w:W(a1:A1)

B(a1))

∏
(a1)

Addr′(a1, w)→ A2(a1)

27

4 Construction of Strictly Positive Types

We postpone the proof because it needs more preparation. Our intuition of the lemma
is that on the left side we have a type of trees with pairs as labels, but the number of
subtrees and with it the whole structure of the tree depends only on the first component
of the labels. Thus we can split the tree into a tree that contains only the first component
of each label and a function that assigns the second component to each node. For the
remainder of the section fix a type A1 and families A2, B : A1 → U . We abbreviate the
left side of the equivalence as

W :≡W((a1,):
∑

(a1:A1)
A2(a1))B(a1).

For the right side we define

W′1 :≡W(a1:A1)B(a1)

W′2(w) :≡
∏
a1

Addr′(a1, w)→ A2(a1).

Now we can write the equivalence as W '
∑

(w:W′
1) W′2(w). To prove Lemma 4.0.11, we

will define functions dec : (
∑

(w:W′
1) W′2(w))→W and undec : W→

∑
(w:W′

1) W′2(w) and
show that undec is the pseudo-inverse of dec.

Definition 4.0.12.

dec :
(∑

(w:W′
1)W

′
2(w)

)
→W

dec((sup(a1, f), g)) :≡ sup((a1, g(a2, root addr)),

λb. dec((f(b), g ◦ subtree addr(b))))

Definition 4.0.13. We define undec component-wise with components

undec1 : W→W′1

undec1(sup((a1,), f)) :≡ sup(a1, undec1 ◦ f)

undec2 :
∏

(w : W), W′2(undec1(w))

undec2(sup((, a2),), root addr) :≡ a2

undec2(sup(, f), subtree addr(b, addr ′)) :≡ undec(f(b), addr ′).

We combine them to

undec : W→
∑

(w:W′
1)W

′
2(w)

undec(w) :≡ (undec1(w), undec2(w)).

For the proof, that dec and undec are mutually inverse, we will use an encoding of
paths in W-types, that simplifies our work significantly.

Definition 4.0.14. Given a type A, a family B : A → U and inhabitants sup(a1, f1)
and sup(a2, f2) of W(a:A)B(a), we define

sup(a1, f1) ≈W sup(a2, f2) :≡
∑

(p:a1=a2)

∏
(b)

f1(b) ≈W fw(p∗(b))

28

Lemma 4.0.15. For A : U , B : A→ U and w1, w2 : W(a:A)B(a) there is an equivalence

(w1 = w2) ' (w1 ≈W w2).

We call it encode and its pseudo-inverse decode.

Proof. Fix some w1, w2 : W(a:A)B(a). We will use the fact that w1 = w2 has the same
recursive structure as w1 ≈W w2 to do a proof by induction on w1. For the inductive
step assume that w1 ≡ sup(a1, f1) and w2 ≡ sup(a2, f2). Then we have

sup(a1, f1) = sup(a2, f2) '
∑

p:a1=a2

p∗(f1) = f2

'
∑

p:a1=a2

f1 = p−1
∗(f2)

'
∑

(p:a1=a2)

∏
(b)

f1(b) = (p−1
∗(f2))(b)

'
∑

(p:a1=a2)

∏
(b)

f1(b) = f2(p∗(b))

'
∑

(p:a1=a2)

∏
(b)

f1(b) ≈W f2(p∗(b))

≡ sup(a1, f1) ≈W sup(a2, f2).

In the second to last step we apply the induction hypothesis.

Now we prove that undec is right inverse and left inverse to dec. The first proof is
simple.

Lemma 4.0.16. For all w : W we have

w = dec(undec(w)).

Proof. By induction on w.

The second part is harder to prove. We will show it seperately for both components.

Lemma 4.0.17. For all w : W′1 and g : W′2(w) we have

w ≈W undec1(dec(w, g)).

Proof. We do a prove by induction on w for arbitrary g. For the inductive step assume
that w ≡ sup(a1, f). We have

sup(a1, f)

≈W sup(a1, λb. undec1(dec((f(b), g ◦ subtree addr(b)))))

≡ undec1(sup((a1, g(root addr)), λb. dec((f(b), g ◦ subtree addr(b)))))

≡ undec1(dec(sup(a1, f), g)).

29

4 Construction of Strictly Positive Types

The resulting proof term for the inductive step consists of the identity path in the first
component and an application of the induction hypothesis in the second component. The
proof term for the whole lemma is given by the recursive definition

undec1 dec(sup(a1, f), g) :≡ (refla1 , λb. undec1 dec(f(b), g ◦ subtree addr(b)).

Corollary 4.0.18. For all w : W′1 and g : W′2(w) we have

w = undec1(dec(w, g)).

For the proof of the equality in the second component, we will work with a transport
over the equality defined by Corollary 4.0.18. It will be usefull, to have a recursive
description of transport of addresses over paths that were created by decode.

Definition 4.0.19. For a type A and a family B : A→ U , we define

transport addr :
∏

w1,w2:W(a:A)B(a)

(w1 ≈W w2)→
∏
a:A

Addr′(a,w1)→ Addr′(a,w2)

transport addr(sup(a1, f1), sup(a2, f2), (p, q), a1, root addr)

:≡ transportAddr(– ,sup(a2,f2)(p−1, root addr)

transport addr(sup(a1, f1), sup(a2, f2), (p, q), a, subtree addr(b, addr))

:≡ subtree addr(p∗(b), transport addr(f1(b), f2(p∗(b)), q(b), a, addr)

What transport addr does is that it recursively transports the subtree indices but doesnt
change the structure of an address in any other way. The following lemma shows that
this is indeed how transport of addresses behaves.

Lemma 4.0.20. For all types A, families B : A→ U , trees w1, w2 : W(a:A)B(a), encoded
paths p : w1 ≈W w2, labels a : A and addresses addr : Addr(a,w1) we have

transportAddr(a)(decode(p), addr) = transport addr(w1, w2, p, a, addr).

Proof. We show the equivalent statement that

transportAddr(a)(p, addr) = transport addr(w1, w2, encode(p), a, addr)

for all paths q : w1 = w2 by path induction on q and induction on addr .

Lemma 4.0.21. Given w : W′1 and g : W′2(w), let p : w = undec1(dec((w, g))) be the
path from Corollary 4.0.18. Then we have

p∗(g) = undec2(dec(w, g)).

30

Proof. We move the transport to the right side and apply functional extensionality to
show the equivalent statement

g(addr) = p−1
∗(undec2(dec(w, g)))(addr)

for arbitrary but fixed a : A1 and addr : Addr(a,w). We do this by the following
calculation.

p−1
∗(undec2(dec(w, g)))(addr)

= undec2(dec(w, g), p∗(addr))

≡ undec2(dec(w, g), decode(undec1 dec(w, g))∗(addr))

= undec2(dec(w, g), transport addr(decode(undec1 dec(w, g)), addr)

= g(addr)

In the second to last step we apply Lemma 4.0.20. We prove the last step by induction
on addr for arbitrary g.

The inductive case for the root address holds by reflexivity.

undec2(dec(w, g), transport addr(decode(p), root addr))

≡ undec2(dec(w, g), root addr)

≡ g(root addr).

The inductive case for subtree addresses consists of a single application of the inductive
hypothesis.

undec2(dec(w, g), transport addr(decode(p), subtree addr(b, addr))

≡ undec2(dec(w, g),

subtree addr(b, transport addr(decode(pr2(p)(b)), addr)))

≡ undec2(arg(dec((w, g)), b),

transport addr(decode(pr2(p)(b)), addr))

≡ undec2(dec(f(b), g ◦ subtree addr(b)),

transport addr(decode(pr2(p)(b)), addr))

= g(subtree addr(b, addr)).

Corollary 4.0.22. The function undec is left inverse to dec.

Proof. By Corollary 4.0.18 and Lemma 4.0.21.

With this corollary we have everything that we need to prove the equivalence.

Proof of Lemma 4.0.11. We have to show W '
∑

(w:W′
1) W′2(w). There is a function

dec : (
∑

(w:W′
1) W′2(w)) → W and a function undec : W →

∑
(w:W′

1) W′2(w) which is a
pseude-inverse by Corollary 4.0.22 and Lemma 4.0.16.

31

4 Construction of Strictly Positive Types

Now that we have finished the construction of inductive-fixed-point containers, the
only case that is left are coinductive fixed points. The construction is analogous to
that of inductive fixed points. Instead of W-types we use M-types, instead of recursion
we use corecursion and instead of induction for equality proofs we apply the use the
uniqueness of corecursive functions. The only big difference is that we don’t have a
recursive encoding of equality between elements of an M-type, which makes some manual
rewriting necessary. We don’t present the full construction here and only give the result.

Fact 4.0.23. Container types are closed under coinductive fixed points i.e. if an expression
e with free variables in Option(I) is realized by a container then ν.e is also realized by a
container.

We conclude the chapter with a theorem that summarizes our work.

Theorem 4.0.24. Every strictly positive expression is realized by a container. In
particular if a strictly positive expression is closed i.e. the type of free variables is 0 then
it is realized by a type.

Proof. We construct the container by recursion on the expression. For the different cases
we apply Lemmas 4.0.5 to 4.0.10 and Fact 4.0.23. If the expression is closed, we obtain
the realizing type by application of the container on the empty context.

32

5 W-Types

In this chapter we present a construction of W-types as subtypes of the corresponding
M-types. For the remainder of the chapter fix a type A and a family B : A → U and
abbreviate M(a:A)B(a) to M. First we will construct an initial algebra (W′, s′W) for the
functor LA�BM. Then we will refine it, to obtain one that satisfies the computation rule
for the non-dependent recursor judgmentally.

5.1 Construction of W-Types

The basic idea of the construction is based on the intuition that W-types and M-types
both describe trees, with the difference that elements of a W-type need to be well-founded.
If we have a definition of well-foundedness, it is straight forward to define W′ as a subtype
of M. Well-foundedness would be easy to define as an inductive predicate. Without
a mechanism for general inductive definitions we need an impredicative encoding of
well-foundedness.

Definition 5.1.1. A tree m : M is well-founded if the induction principle holds on m
for all mere predicates:

isWf(m) :≡
∏

P :M→Prop

∏
(a:A)

∏
(f :B(a)→M)

 ∏
b:B(a)

P (f(b))

→ P (sup(a, f))

→ P (m).

It is important that we allow only mere predicates for P , because now the codomain
of isWf is a mere proposition, which makes isWf itself into a mere predicate. Hence the
following definition yields a subtype.

Definition 5.1.2. We define W′ as the subtype of well-founded elements in M:

W′ :≡
∑
m:M

isWf(m).

Now we define a constructor and two destructors on W′.

Definition 5.1.3. We define the constructor sup′ :
∏

(a:A)(B(a) → W′) → W′ in two

components. Let a : A and f : B(a)→ W′ be given. For the first component we apply the
constructor of M. For the second component we now need to prove well-foundedness of
the resulting tree sup(a, pr1 ◦ f). Fix a mere predicate P : M→ Prop and a step function

step :
∏

(a:A)

∏
(f :B(a)→M)

(∏
(b:B(a)) P (f(b))

)
→ P (sup(a, f)). To show P (sup(a, pr1◦f)),

33

5 W-Types

we apply step and we are left with the proof obligation P (pr1(f(b))) for an arbitrary
b : B(a). This is proven by induction on pr1(f(b)), which means, we apply the proof of
well-foundedness pr2(f(b)).

Definition 5.1.4. We define a label destructor label : W′ → A by an application of
the label destructor of the M-type.

Definition 5.1.5. For the definition of a subtree destructor

arg(w, b) :
∏
w:W′

B(label(w))→W′

we apply the argument destructor of the M-type to obtain an element of M that we
return as first compnent. Now we have to show that the resulting subtree arg(pr1(w), b)
is again well-founded. We fix some predicate P and step function step and have to prove
P (arg(pr1(w), b)). We do this by generalization to

∏
(b:B(label(m))) P (arg(pr1(w), b)) and

induction on m.

Fact 5.1.6. The constructor and destructors on W′ are mutually pseudo-inverse:

• For all w : W′ we have
sup′(label(w), arg(w)) = w.

• For all a : A and f : B(a)→W′ we have(
label(sup′(a, f)), arg(sup′(a, f))

)
= (a, f).

Now we want to show initiality of W′, which is defined as the contractibility of the
type of homomorphisms from W′ to all other LA�BM-algebras. For the remainder of
the section we fix such an algebra (C, sC) and show contractibility of homomorphisms
from W′ to (C, sC). As an intermediate step we show contractibility of what we call
local morphisms. The type of morphisms local to some w : W′ is intended to contain
morphisms that are defined only on the subtrees of w. To simplify proofs we do not
really use the type of subtrees in the formal definition, but the type of addresses in w.
Every address will represent the subtree at that position. The difference is that a single
subtree can be found at many addresses, hence the type of addresses might be larger. We
may still talk about subtrees in informal explanations, as it better reflects the intuition
behind our approach.

Definition 5.1.7. We define the type of local morphisms from W′ to (C, sC) at
position w similar to that of regular homorphisms from W′ to (C, sC):

LHom(w) :≡
∑

(h:Addr(w)→C)

∏
(addr)

sC(label at(w, addr), h ◦ extend addr(addr)) = h(addr).

34

5.1 Construction of W-Types

Note that the computation rule for regular homomorphisms tells us how the morphism
behaves on the result of constructor applications while we talk about destructor appli-
cations in the definition of local morphisms. This is because we have no good way to
express constructor application on addresses. But since the constructor and destructors
are mututally inverse, we could express the computation rule for regular homomorphisms
in the same form that we used here.

Lemma 5.1.8. For all w : W′ we have

LHom(w) '
∏

b:B(label(w))

LHom(arg(w, b)).

Proof. The lemma holds by

LHom(sup(a, f))

≡
∑
(h)

∏
(addr)

sC(label at(w, addr), h ◦ extend addr(addr)) = h(addr)

'
∑
(h)

∏
(addr)

(sC(label at(w, root addr), h ◦ extend addr(root addr)) = h(root addr))

× (
∏

(b:B(label(w)))

∏
(addr :Addr(arg(w,b)))

sC(label at(w, subtree addr(b, addr), h ◦ extend addr(subtree addr(b, addr)) =

h(subtree addr(b, addr))

'
∑
(c:C)

∑
(h:

∏
(b:B(label(w))) Addr(arg(w,b))→C)

(sC(label(w), λb. h(b, root addr)) = c)

× (
∏
(b)

∏
(addr)

sC(label at(arg(w, b), addr), λb′. h(b, extend addr(addr , b′))) =

h(b, addr))

'
∑

(h:
∏

(b:B(label(w))) Addr(arg(w,b))→C)

∏
(b)

∏
(addr)

sC(label at(arg(w, b), addr), λb′. h(b, extend addr(addr , b′))) = h(b, addr)

'
∏

(b:label(w))

∑
(h:Addr(arg(w,b))→C)

∏
(addr)

sC(label at(arg(w, b), addr), λb′. h(b, extend addr(addr , b′))) = h(b, addr)

'
∏
b:B(a)

LHom(f(b)).

35

5 W-Types

Lemma 5.1.9. For all w : W′ the type LHom(w) of local morphisms at w is contractible.

Proof. Assume w is a pair (m,wf) : W. We apply wf to show that for all wf ′ : isWf(m) the
type LHom((m,wf ′)) is contractible by well-founded induction on m. For this application,
we need to prove that the goal is a mere proposition, which holds by Fact 2.8.6. But we
also need to use propositional resizing on the goal because it contains the well-foundedness
predicate and wf : isWf(m), which means that wf can only be instanciated with predicates
from a smaller universe. For the inductive step fix wf ′ : isWf(m). We use the equivalence

LHom((m,wf ′)) '
∏

b:B(label((m,wf ′)))

LHom(arg((m,wf ′), b))

≡
∏

b:B(label((m,wf ′)))

LHom((arg(m, b), . . .))

from Lemma 5.1.8 which makes it sufficient to show isContr(LHom((arg(m, b), . . .))) for
all b : label(m). This holds by the inductive hypothesis.

Corollary 5.1.10. The type
∏

(w:W′) LHom(w) is contractible.

Now we have contractibility of local homomorphisms and need to show that this implies
contractibility of regular homomorphisms, i.e. inhabitants of AlgHom((A, sA), (C, sC)).
We will work with an alternative definition of W-homomorphisms, which is more similar
to that of local morphisms and thus simplifies parts of the proof.

Definition 5.1.11.

WHom′ :≡
∑

(h:W′→X)

∏
(w)

sC(label(w), h ◦ arg(w)) = h(w).

This definition is justified by the following lemma.

Lemma 5.1.12.
WHom′ 'WHom((W′, sup′), (C, sC)).

Proof. The lemma holds by

WHom′ ≡
∑

(h:W′→X)

∏
(w)

sC(label(w), h ◦ arg(w)) = h(w)

'
∑

(W′→X)

∏
(a)

∏
(f)

h(sup′(a, f)) = sC(a, h ◦ f)

≡WHom((W′, sup′), (C, sC)).

In the second line we use that the constructor and destructors are mutually inverse by
Fact 5.1.6 and hence form an equivalence.

We will show that WHom′ '
∏

(w) LHom(w). Then Corollary 5.1.10 implies con-

tractibility of WHom′. We prove the equivalence with two mutually inverse functions

Φ : WHom′ →
∏

(w) LHom(w) and Ψ :
(∏

(w) LHom(w)
)
→WHom′.

36

5.1 Construction of W-Types

Definition 5.1.13. We define the first component of Φ by

Φ1((h, β), w, addr) :≡ h(subtree at(w, addr)).

For the second component we prove the computation rule:

Φ1((h, β), w, addr)

≡ h(subtree at(w, addr))

= sC(label at(w, addr), h ◦ arg(subtree at(w, addr)))

= sC(label at(w, addr), h ◦ subtree at(w) ◦ extend addr(addr))

≡ sC(label at(w, addr), h′ ◦ extend addr(addr)).

On the second line we apply the computation rule β and on the third line we prove
arg(subtree at(w, addr)) = subtree at(w) ◦ extend addr(addr) by induction on addr .

The resulting proof term is

Φ2((h, β), w, addr) :≡ β(subtree at(w, addr)) � subtree at extend addr(w, addr).

We combine both components to the definition

Φ((h, β), w) :≡
(

Φ1((h, β), w),Φ2((h, β), w)
)
.

All that we need to know about the second component of Φ, is expressed in the
following lemma.

Lemma 5.1.14. For all (h, β) : WHom′ and w : W′ we have

pr2(Φ((h, β), w))(root addr) = β(w).

Proof. By the judgmental equality subtree at extend addr(w, root addr) ≡ refl.

For the definition of Ψ we will have a family of local morphisms and our task is to
combine them to a single regular morphism. For this we will need the fact that all
local morphisms are compatible in the sense that they agree on common subtrees. To
formulate this we will need the restriction of local morphisms to subtrees.

Definition 5.1.15. For a tree w : W′, a local morphism H : LHom(w) and a subtree
index b : B(label(w)), we define the restriction of H to the subtree at index b as

H
∣∣
b

: LHom(arg(w, b))

H
∣∣
b

:≡ (pr1(H) ◦ subtree addr(b),

pr2(H) ◦ subtree addr(b)).

Definition 5.1.16. We define the first component of Ψ as

Ψ1(H,w) :≡ pr1(H(w))(root addr).

37

5 W-Types

For the definition of the second component we would like to apply the computation
rule from one of the local morphisms. The problem is that we defined Ψ1 from different
local morphisms. Hence we need to fill a gap here and show that those morphisms agree
on the relevant subtrees. That is where the restriction comes in. The computation rule
for Ψ1 holds by

Ψ1(H,w) ≡ pr1(H(w))(root addr)

= sC(label(w), pr1(H(w)) ◦ extend addr(root addr))

≡ sC(label(w), λb. pr1(H(w)) ◦ subtree addr(b, root addr))

≡ sC(label(w), λb. pr1(H(w)
∣∣
b
)(root addr))

= sC(label(w), λb. pr1(H(arg(w, b)))(root addr))

≡ sC(label(w),Ψ1(H) ◦ arg(w)).

In the second line we apply the computation rule pr2(H(w)). In the fourth line we use
that H(w)

∣∣
b

= H(arg(w, b)), because the type of local recursors is contractible. The
resulting proof term is

Ψ2(H,w) :≡ pr2(H(w))(root addr) � κ(λb. path contr(H
∣∣
b
, H(arg(w, b)))).

where the function

κ(p) :≡ apsC(label(w),–)(funext(λb. appr1(–)(root addr)(p(b))))

defines the context in which we apply the second rewrite step.
We combine those two components to the definition

Ψ(H) :≡ (Ψ1(H),Ψ2(H)).

What is left to show, is that Φ and Ψ are mutually inverse. The first direction is trivial.

Lemma 5.1.17. The function Ψ is right inverse to Φ i.e. for all families of local
morphisms H :

∏
(w) LHom(w) we have

Φ(Ψ(H)) = H.

Proof. By contractibility of local morphisms.

For the other direction we need to replace the resulting path from an application of
path contr by a path with known behavior. This is possible with the following fact.

Fact 5.1.18. Let x and y be inhabitants of a contractible type. Then the type of paths
x = y is contractible.

Lemma 5.1.19. The function Ψ is left inverse to Φ i.e. for all homomorphisms (h, β) :
WHom we have

Ψ
(

Φ((h, β))
)

= (h, β).

38

5.1 Construction of W-Types

Proof. The equality holds by

Ψ(Φ((h, β)))

≡ Ψ(λw. (h ◦ subtree addr(w),Φ2((h, β), w)))

≡ (λw. h ◦ subtree at(w, root addr),Ψ2(Φ((h, β))))

≡ (h,Ψ2(Φ((h, β))))

= (h, β).

The last step consists of functional extensionality applied to the following computation:

Ψ2(Φ((h, β)), w)

≡ Φ2((h, β), w)(root addr)

� κ(λb. path contr(Φ((h, β))′(w, b),Φ((h, β), arg(w, b))))

= Φ2((h, β), w)(root addr) � κ(λb. refl)

≡ β(w) � κ(λb. refl)

= β(w)

For the second equality we use Fact 5.1.18 to replace the path

path contr(Φ((h, β))′(w, b),Φ((h, β), arg(w, b)))

by the identity path, which is valid because we have a judgmental equality

Φ((h, β))′(w, b)

≡ (Φ1((h, β), w) ◦ subtree addr(b),

Φ2((h, β), w) ◦ subtree addr(b))

≡ Φ((h, β), arg(w, b)).

For the last equality we use that κ(λb. refl) is equal to to

κ(λb. refl)

≡ apsC(label(w),–)(funext(λb. appr1(–)(root addr)refl))

≡ apsC(label(w),–)(funext(λb. refl))

= apsC(label(w),–)(refl)

≡ refl.

Now we can combine those lemmas to an equivalence

Lemma 5.1.20.
WHom′ '

∏
w

LHom(w).

39

5 W-Types

Proof. By Lemmas 5.1.17 and 5.1.19 the function Φ is an equivalence from WHom′ to∏
(w) LHom(w).

Corollary 5.1.21. The type WHom((W′, sup′), (C, sC)) is contractible.

Proof. By the equivalence

WHom((W′, sup′), (C, sC)) 'WHom′ '
∏
w

LHom(w)

from Lemmas 5.1.12 and 5.1.20 and contractibility of
∏

(w) LHom(w) from Corollary 5.1.10.

Lemma 5.1.22. The algebra (W′, sup′) is initial.

Proof. Initiality means contractibility of the type of homomorphisms from (W′, sup′)
to every other LA�BM-algebra. Because the algebra (C, sC) was fixed arbitrarily, this
follows from Corollary 5.1.21.

Theorem 5.1.23. For evey type A and family B : A→ U , there is an initial algebra of
the functor LA�BM.

Proof. By the construction of (W′, sup′) and Lemma 5.1.22.

5.2 Recursion with Judgmental Computation Rule

Similar to our construction of M-types we can use propositional resizing to refine W′ and
get a judgmental computation rule. However, our construction only archieves this for the
simple non-dependent recursor which is equivalent to the family of algebra morphism
from W′. The computation rule for the more general induction principle still holds only
as a prospositional equality. Like with M-types this is not specific to W′ and works on
every initial algebra for the functor JABBK.

For the definition of W we use a similar idea as for the definition of W′.

Definition 5.2.1. An element of W consists of

• an element of w′ : W′,

• a function r that is intended to mimic the application of the recursor on w′,

• a proof that r actually agrees with the recursor.

More precisely, we define the type W as

W :≡
∑
w′:W′

∑
(r:

∑
(P :U)(

∑
(a)B(a)→P)→P)(λP. λsP . recW′(P, sP , w

′)) = r.

Now we do not need the recursor on W′ anymore, but can apply our own version
instead.

40

5.2 Recursion with Judgmental Computation Rule

Definition 5.2.2. We define the recursor on W as

recW(P, sP , (w
′, r, p)) :≡ r(P, sP).

For the definition of the constructor we have two options:

(i) Apply the recursor on W′ as the second component,

(ii) Use the second component of all subtrees to build a new recursor.

Of course only the second option gives us any benefit over W′.

Definition 5.2.3. We define the constructor on W component-wise with the first two
components being

sup1(a, f) :≡ sup′(a, pr1 ◦ f)

sup2(a, f) :≡ λP. λsP . sP (a, λb. pr1(pr2(f(b)))(P, sP)).

We define the third component sup3(a, f) as the proof

λP. λsP . recW′(P, sP , sup1(a, f))

= λP. λsP . sP (a, recW′(P, sP) ◦ pr1 ◦ f)

≡ λP. λsP . sP (a, λb. (λP. λsP . recW′(P, sP , pr1(f(b))))(P, sP))

= λP. λsP . sP (a, λb. pr1(pr2(f(b)))(P, sP))

≡ sup2(a, f).

The first step is an application of the computation rule for recW′ . In the second step we
apply pr2(pr2(f(b))).

Finally we combine all components to

sup(a, f) :≡
(

sup1(a, f),
(
sup2(a, f), sup3(a, f)

))
.

Remark 5.2.4. As promised, these definitions satisfy the computation rule judgmentally:

recW(P, sP , sup(a, f))

≡ recW(P, sP , (. . . , λP. λsP . sP (a, λb. pr1(pr2(f(b)))(P, sP), . . .))

≡ sP (a, λb. pr1(pr2(f(b)))(P, sP)

≡ sP (a, recW(P, sP) ◦ f).

The only thing that is left to show, is the initiality of our newly defined algebra
(W, sW), where sW((a, f)) :≡ sup(a, f) defines the uncurried version of our constructor.
We already know that (W′, sW′) is initial, so it suffices to show (W, sW) = (W′, sW′). We
start with an equivalence between both carriers:

Lemma 5.2.5.
W 'W′.

41

5 W-Types

Proof. We define functions g and h in both directions and show that h is quasi-inverse
to g:

g((w′, (– , –))) :≡ w′

h(w′) :≡ (w′, (λP. λsP . recW′(P, sP , w
′), refl)).

The function h is a right inverse by judgmental equality. To prove that it is a left inverse,
fix (w′, (r, p)) : W. We show

h(g((w′, (r, p))))

≡ (w′, (λP. λsP . recW′(P, sP , w
′), refl))

= (w′, (r, p))

by based path induction on p : (λP. λsP . recW′(P, sP , w
′)) = r.

Lemma 5.2.6.
(W, sW) = (W′, s′W).

Proof. Let g and h be the two functions from the proof of Lemma 5.2.5 and e the resulting
equivalence. Equality on the first component follows from e by univalence. Equality on
the second component holds by

(ua(e)∗(sW))((a, f))

= ua(e)∗

(
sup(a, ua(e)−1

∗(f))
)

= g(sup(a, h ◦ f))

≡ g((sup′(a, pr1 ◦ h ◦ f), . . . , . . .))

≡ g((sup′(a, f), . . . , . . .))

≡ s′W((a, f)).

In the first step we apply Fact 2.4.5 and in step three we apply Fact 2.6.4.

Theorem 5.2.7. The algebra (W, sW) is initial.

Proof. By initiality of (W′, sW′) and Lemma 5.2.6.

Theorem 5.2.8. For evey type A and family B : A → U , there is an initial algebra
(W(a:A)B(a), s) of the functor LA�BM It has a recursor

recW(a:A)B(a) :
∏
C:U

(∏
a:A

(B(a)→ C)→ C

)
→W(a:A)B(a)→ C

which satisfies the computation rule

recW(a:A)B(a)(C, g, s(a, f)) ≡ s(a, recW(a:A)B(a)(C, g) ◦ f).

Proof. By the construction of (W, sup), Theorem 5.2.7 and Remark 5.2.4.

42

6 Construction of Basic Types

In this chapter we show that we can drop some of the most basic type constructs from
our core theory and replace them by definitions with the exact same behavior, including
judgmental equalities. This justifies the use of the common pattern-matching syntax on
types after we redefined them. We will define the empty type 0, the unit type 1, the
type of booleans 2, coproduct A+B of types A and B, the option type Option(A) and
the propositional truncation ‖A‖ of a type A. The order is important because we need 0
and 1 for the definition of 2 and 2 for the definition of coproducts. It is not surprising
that those definitions are possible in our theory, but it is notable that we get the desired
judgmental equalities.

6.1 The Empty Type

The empty type has no constructors and is characterized only by its induction eliminator
rec0 :

∏
(C:U) 0→ C. We define the empty type as

0 :≡ 0 = 1.

For the eliminator assume that we have C : U and an inhabitant x : 0. We will use p
for a transport in a family of types P : N→ U , such that P (0) is some inhabited type
and P (1) is C.

P (0) :≡ N
P (succ(x)) :≡ C

rec0(C, x) :≡ transportP (x, 0)

We don’t need to prove any computation rules, because there are no elements in 0.

6.2 The Unit Type

We define the unit type and its constructor as

1 :≡
∑
n:N

0 = n

? :≡ (0, refl0).

The induction principle ind1 :
∏

(C:1→U)C(?)→
∏

(x:1)C(x) is defined by a based path
induction. Fix a family C : 1→ U , an element c : C(?) and a pair (n, p) : 1 as arguments.

43

6 Construction of Basic Types

With based path induction it suffices to consider the case where n is 0 and p is refl0,
hence (n, p) is ?. In this case we define

ind1(C, c, (0, refl0)) :≡ c.

The computation rule ind1(C, c, ?) = c holds by definition.

6.3 The Type of Booleans

We define the type of booleans as the subtype of natural numbers that are less than 2.

2 :≡
∑
n:N

n < 2.

The less relation is defined recursively with 0 and 1 as base cases.

n < 0 :≡ 0

0 < succ(n) :≡ 1

succ(m) < succ(n) :≡ m < n.

The constructors just return the numbers 0 and 1 with corresponding proofs.

02 :≡ (0, ?)

12 :≡ (1, ?)

For the definition of the induction principle ind2 :
∏

(C:2→U)C(02) → C(12) →∏
(x:2)C(x) we will use pattern-matching on the natural number and exclude all cases for

numbers of the form succ(succ(n)) by elimination on the proof of succ(succ(n)) < 2 ≡ 0.

ind2(C, c0, c1, (0,)) :≡ c0

ind2(C, c0, c1, (1,)) :≡ c1.

The computation rules coincide with the defining equations.

6.4 Coproducts

Fix types A and B. Elements of A+B will be pairs consisting of a boolean in the first
component, that tells us, if we have an element of the left or the right side. Depending
on the first component, the second component will contain an element of either A or B.

A+B :≡
∑
b:2

if b thenA elseB

inl(a) :≡ (02, a)

inr(b) :≡ (12, b)

44

6.5 Options

The induction principle does pattern matching on the boolean.

indA+B :
∑

C:A+B→U

(∏
a:A

C(inl(a))

)
→

(∏
b:B

C(inr(b))

)
→

∏
x:A+B

C(x)

indA+B(C, g0, g1, (02, a)) :≡ g0(a)

indA+B(C, g0, g1, (12, b)) :≡ g1(b).

The computation rules hold by definition.

6.5 Options

Given a type A, we define the option and its constructors by

Option(A) :≡ A+ 1

some(a) :≡ inl(a)

none :≡ inr(?)

and the induction principle by

indOption(A) :
∏

C:Option(A)→U

(∏
a:A

C(some(a))

)
→ C(none)→

∏
x:Option(A)

C(x)

indOption(A)(C, csome, cnone, inl(a)) :≡ csome(a)

indOption(A)(C, csome, cnone, inr(?)) :≡ cnone

The computation rule holds judgmentally.

6.6 Propositional Truncation

Given some type A, we define the propositional truncation impredicatively as

‖A‖ :≡
∏

P :Prop

(A→ P)→ P.

This is a mere proposition because its codomain is always a mere proposition.

|a| :≡ λ(P : Prop). λ(f :A→ P). f(a)

rec‖A‖ :
∏

(P :Prop)(A→ P)→ ‖A‖ → P

rec‖A‖(P, f, x) :≡ x(P, f)

45

6 Construction of Basic Types

For this construction to work, it is necessary that we have propositional resizing, because
the argument P can have any universe level, but x can only be applied to propositions
with a lower universe level than its own. With propositional resizing this doesn’t matter,
since P is a mere proposition and hence inhabits the lowest universe. The computation
rule holds judgmentally:

rec‖A‖(P, f, |a|) ≡ (λP. λf. f(a))(P, f)

≡ f(a).

46

Bibliography

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing
Strictly Positive Types. Theoretical Computer Science, 342(1):3–27, 2005.

[2] Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. Non-wellfounded trees in
Homotopy Type Theory. arXiv preprint arXiv:1504.02949, 2015.

[3] Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris.
Indexed containers. Journal of Functional Programming, 25:e5, 2015.

[4] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

47

https://homotopytypetheory.org/book

	Introduction
	Related Work
	Contributions

	Background
	The Core Type Theory
	Functions
	Pairs
	Natural Numbers
	Paths
	Universes

	Admissible Type Formers
	Empty Type
	Unit
	Bool
	Coproducts
	Options
	W-Types

	Propositions as Types
	Working with Paths
	Equivalence
	Univalence
	Mere Propositions
	Contractibility
	Inductive Types
	Coinductive Types
	Addresses
	Containers

	Construction of M-Types
	Construction of Strictly Positive Types
	W-Types
	Construction of W-Types
	Recursion with Judgmental Computation Rule

	Construction of Basic Types
	The Empty Type
	The Unit Type
	The Type of Booleans
	Coproducts
	Options
	Propositional Truncation

